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Abstract

The likelihood function of a Gaussian hidden Markov model is unbounded, which

is why the maximum likelihood estimator (MLE) is not consistent. A penalized MLE

is introduced along with a rigorous consistency proof.
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1. Introduction

Hidden Markov models (HMMs) build a wide class of general-purpose models for de-

scribing weakly dependent stochastic processes. A HMM is a bivariate stochastic process

(Xi, Yi)i∈Z where (Xi)i∈Z is a Markov chain and (Yi)i∈Z is given (Xi)i∈Z a sequence of

independent random variables, such that given (Xi)i∈Z Yi depends only on Xi. The pro-

cess (Yi)i∈Z can be observed, whereas the Markov chain (Xi)i∈Z cannot (is hidden). We

consider the case where the cardinality of the image space of the state variables (state

space) is finite and transition probabilities P (Xi = k | Xi−1 = l) do not depend on

i. In this case every irreducible Markov chain has a unique strictly positive stationary

distribution, which is a left eigenvector of the t.p.m. with eigenvalue 1, see Zucchini

and MacDonald [15] and the distribution of the Markov chain can be described by the

transition probability matrix (t.p.m.).

HMMs have many application areas such as speech-, face-, handwriting recognition,

biological sequence analysis, earthquakes prediction, finance etc..

Often the state-dependent distributions Yi | Xi = k are determined by a finite-

dimensional euclidean parameter, like in the case of Gaussian HMMs. Then the law

of the process (Yi, Xi)i∈Z is determined by the t.p.m. and the vector of state-dependent

parameters.
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An important task in the context of HMMs is estimation of the underlying parameter,

which is often solved by maximizing the log-likelihood function. In the case of Gaussian

HMMs however, a direct maximization has a theoretical drawback since the objective

function is unbounded. Consider a two-state HMM and an estimator with µ̂1 = Y1,

|Σ̂1| = ε, µ̂2 ∈ R
d arbitrary, Σ̂2 = I, Φ̂ aperiodic and irreducible. Then the likelihood

function tends to infinity as ε→ 0 and hence the MLE is not consistent.

The same problem exists in the i.i.d. mixture setting and was addressed by several

authors. Two basic strategies for overcoming the unboundedness were studied in the

literature: restricted optimization and penalization of the likelihood. In the first case a

lower bound on the variances or their ratios is imposed, see e.g. Hathaway [7]. In the

second case a term which penalizes small variances (Ciuperca et al. [6], Chen et al. [5],

Chen and Tan [4]) or ratios of variances (Tanaka [13]) is added to the log-likelihood. The

second approach has some advantages over the first one - there is no tuning constant to

choose and the penalty function actually disappears with increasing sample size.

Although the unboundedness has no serious impact on the practice, since maximization

algorithms, like EM, search for local maxima and converge only seldom against degenerate

solutions, it should be desirable to eliminate this theoretical drawback by introducing a

consistent estimator.

The state-dependent parameters of a HMM can be consistently estimated by maxi-

mizing the marginal mixture log-likelihood, or equivalently the HMM likelihood under

independence assumption (IMLE) under some thechnical conditions, see Lindgren [10]

and references therein. One necessary condition is limθ→∂Θ ϕ(y, θ) = 0 except on a zero-

measure set, independent of the limit of θ. This condition is violated in our case as

indicated above.

In the present work, a two-stage procedure is proposed for a consistent estimation of

the parameters of a Gaussian HMM. In the first stage, the parameters of the marginal

distribution of the observed process are estimated by maximizing a penalized mixture

likelihood. Some ideas from Chen et al. [5] are used, where consistency of a penalized

MLE for Gaussian mixtures is shown. The main difficulty during the generalization of

that result is a more complicated large deviations behaviour of HMM samples.

In the second stage, the full HMM likelihood is maximized over a neighbourhood of

the estimates from the stage 1. Since this neighbourhood is regular and contains the true

parameter of the HMM for n large enough, the consistency result from Leroux [9] can be

applied. The maximization in each step can be done with the EM algorithms for Gaussian

mixture models and for HMMs respectively.

No simulation study is given in the current work, since trial runs showed unpenalized

maximization to work very well, if the initial guests are not chosen consciously poor. The

aim of present paper is a theoretical one - to prove the existence of a consistent penalized

MLE for Gaussian hidden models.
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2. The model and main results

In what follows θ0 denotes the true parameter of the HMM, θmix0 the true parameter of
the marginal mixture and F the true marginal distribution function. Y n

1 is a shorthand
for (Y1, . . . , Yn). The matrix Φ0 is assumed to be irreducible. Following notations will be
used:

θk = (µk, σ
2
k) parameters of the k’th state

dc(x, y) =
∑r

s=1 |arctan(xs)− arctan(ys)| metric on R
r

T = {Φ ∈ RK×K , Φi,. ∈ SK−1, 1 ≤ i ≤ K} transition probability matrices

SK−1 = {(α1, . . . , αK) ∈ RK ,
∑K

i=1 αi = 1, αi ≥ 0} distributions on {1, . . . , K}

Table 1: Notations

Definition 1. Let (Xi, Yi)i∈Z be a stochastic process, where (Yi)i∈Z are independent given

(Xi)i∈Z, which is a homogeneous first order Markov chain. Furthermore

Xi ∈ {1, . . . , K}, (1)

Yi | (Xj)j∈Z = Yi | Xi, (2)

Yi | Xi = k = N(µ0k, σ
2
0k). (3)

The process (Xi, Yi)i∈Z is called a Gaussian hidden Markov model (HMM). In the special

case where (Xi)i∈Z are independent, the process (Xi, Yi)i∈Z is called a Gaussian mixture

model.

The set of possible HMM parameters will be denoted by

Θfull = {(Φ, µ1, . . . , µK , σ
2
1, . . . , σ

2
K) | Φ ∈ T , µj ∈ R, σ2

j ∈ (0,∞), j = 1 . . . K}.

The set parameters of a Gaussian mixture for the first stage of the algorithm will be

denoted by

Θmix = {(π, µ1, . . . , µK , σ
2
1, . . . , σ

2
K) | π ∈ SK−1, µj ∈ R, σ2

j ∈ (0,∞), j = 1 . . . K}.

µk(θ), σk(θ) denote the coordinate projections on the state-dependent parameters for 1 ≤
k ≤ K. This dependence on θ will be suppressed whenever no confusion can occur. The

compactification of both sets is done by adding limits of Cauchy sequences with respect to

dc as in Kiefer and Wolfowitz [8], and is denoted by Θ̄full and Θ̄mix. Let α = (α1, . . . , αK)

be an initial state distribution, ϕ(y, µ, σ2) the density of the normal distribution with

mean µ and variance σ2:

ϕ(y, µ, σ2) = (2π)−
1
2σ−1 exp(−1

2

(x− µ)2

σ2
).

For θ ∈ Θfull the function

Lfulln (θ;Y1, . . . , Yn) =
K∑

x1=1

. . .

K∑
xn=1

αx1ϕ(Y1, θx1)
n∏
i=2

φxi−1, xiϕ(Yi, θxi) (4)
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is called the likelihood function for Y1, . . . , Yn. For θ ∈ Θmix the function

Lmixn (θ;Y1, . . . , Yn) =
n∏
i=1

K∑
j=1

πjϕ(Yi, θj) =
n∏
i=1

f(Yi, θ), (5)

where f(y, θ) =
∑K

j=1 πjϕ(y, θj), is called the marginal-mixture-likelihood function for

Y1, . . . , Yn.

Now penalty functions for the first stage of the procedure are defined similar to Chen

et al. [5] .

Definition 2. A function pn : Θmix → R with following properties

1. pn(θ) =
K∑
k=1

p̃n(σ2
k).

2. At any fixed θ, with σ2
k > 0, k = 1, . . . , K, we have pn(θ) = o(n), and

supθ max{0, pn(θ)} = o(n).

3. pn is differentiable and as n → ∞, p′n(θ) = o(n
1
2 ) at any fixed σ2

k, with σ2
k > 0,

k = 1, . . . , K.

4. For large enough n, p̃n(σ2) ≤
√
n(log n)2 log σ2, when σ2 < cn−2 for some c > 0.

5. For every ε > 0 holds sup{θ | σ2(θ)>ε} |p̃n(θ)| = o(n).

is called a penalty function.

These requirements are very similar to those from Chen et al. [5] and Chen and Tan

[4]. The last condition was missing in the cited works, although it was implicitly assumed.

The main difference lies in the fourth condition, which is linked to Lemma 11 below and

is imposed to control the damaging effect of observations near degenerate components.

Lemma 11 generalizes Lemma 1 from Chen and Tan [4] and is the most challenging part

of the proof. The original proof relies on a Bernstein inequality for i.i.d. observations

from Serfling [12], which is however not applicable for dependent observations. A more

recent result from Merlevède et al. [11] was used instead.

The requirements are not very restrictive, for example the following function p̃n(σ2) =

−n−1tr(σ−2) fulfils them.

Definition 3. Let

θ̂pIMLE
n = argmax

θ∈Θmix
logLmixn (θ;Y1, . . . , Yn) + pn(θ) (6)

For ease of notation let ν(θ) = (µ1, . . . , µK , σ
2
1, . . . , σ

2
K)(θ) for θ ∈ Θmix ∪ Θfull be the

coordinate projection on the state-dependent parameters. For a mixture parameter θ′ ∈
Θmix and a δ > 0 let

Θfull(θ′, δ) = {θ ∈ Θfull | ||ν(θ), ν(θ′)||2 ≤ δ}.
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The penalized maximum likelihood estimator (pMLE) of θ is defined by

θ̂pMLE
n = argmax

θ∈Θfull(θ̂pIMLE
n , δ)

logLfulln (θ;Y1, . . . , Yn) + pn(θ) (7)

for a penalty function pn.

Now we are ready to establish the main result of this paper, namely the consistency

of the penalized maximum likelihood estimator for Gaussian hidden Markov models. The

consistency is formulated in terms of the convergence in quotient topology (see Leroux

[9]]).

Definition 4. For a parameter θ ∈ Θfull, the equivalence class θ̃ is defined by

θ̃ = {θ′ ∈ Θfull | (θ′Xi)i∈Z
d
= (θXi)i∈Z},

that is the set of the parameters which induce the same law for the process (θXi)i∈Z as θ.

Convergence in quotient topology means that every open subset of the parameter

space, that contains the equivalence class of θ0, must for large n, contain the equivalence

class of θ̂pMLE.

Theorem 5. θ̂pMLE converges to θ0 in quotient topology with probability one for every

positive δ > 0 in definition of θ̂pMLE
n .

Next theorem states the asymptotic equivalence between the penalized MLE and the

maximizer of the full HMM likelihood over a restricted parameter space, where the vari-

ance parameters are bounded away from the zero. This allows us to transfer some results

from the restricted case to the penalized one.

Theorem 6 (Asymptotic equivalence). Let θ̂R = argmaxΘfull logLfulln (θ;Y n
1 ), s.t. σ2

k ≥
ε, for k ∈ {1, . . . , K} for some small ε, such that σ2

0k > ε, for k ∈ {1, . . . , K}, then

√
n(θ̂pMLE

n − θ̂R)
P→ 0. (8)

Proof. We expand ∇ logLfulln (θ̂pMLE
n ) = ∇ logLfulln (θ̂R) + ∇2 logLfulln (θ̃)(θ̂pMLE

n − θ̂R),

where θ̃ lies on the line segment between θ̂R and θ̂pMLE
n . Since the true parameter lies in the

interior of the feasible set, we have ∇ logLfulln (θ̂R) = 0. So we obtain ∇ logLfulln (θ̂pMLE
n ) =

∇2 logLfulln (θ̃)(θ̂pMLE
n − θ̂R). Furthermore, since θ̂pMLE

n and θ̂R are both consistent 2, we

have θ̃ → θ0. Hence by the consistency of θ̃ and Lemma 2 from Bickel et al. [2] it holds:
1
n
∇2 logLmixn (θ̃)

P→ −I0, where I0 is a non-random matrix (the Fisher-Information) and

by the continuous mapping theorem n∇2 logLfulln (θ̃)−1 P→ −I0
−1. Combining these facts

yields

√
n(θ̂pMLE

n − θ̂R) =

→−I0−1︷ ︸︸ ︷
n∇2 logLfulln (θ̃)−1 1√

n
∇ logLfulln (θ̂pMLE

n ).

2 θ̂R satisfies conditions stated by Leroux
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Finally 1√
n
∇ logLfulln (θ̂pMLE

n )
P→ 0, since ∇ logLfulln (θ̂pMLE

n ) = −∇pn(θ̂pMLE
n ) and

pn(θ̂pMLE
n ) = o(

√
n) a.s. by construction.

The following result establishes the asymptotic normality of the penalized MLE.

Theorem 7 (Asymptotic normality).
√
n(θ̂pMLE

n − θ0)
d→ N(0, I−1

0 ), (9)

where −I0 = limn→∞
1
n
∇2 logLfulln (θ0, Y1, . . . , Yn).

Proof. This statement follows from the asymptotic equivalence between θ̂pMLE
n and θ̂R

and the fact, that θ̂R satisfies the assumptions of Theorem 1 in Bickel et al. [2]. The

assumptions are:

(A1) The transition probability matrix is ergodic.

(A2) The elements of Φ and the stationary distribution are twice differentiable w.r.t θ.

(A3) Let θ = (θ1, . . . , θr). There exists a δ > 0, such that (i) for all 1 ≤ i ≤ r and all

k ∈ {1, . . . , K}

E0

[
sup
|θ−θ0|<δ

| ∂
∂θi

logϕ(Y1;µk, σ
2
k)|2
]
<∞,

(ii) for all 1 ≤ i, j ≤ r and all k ∈ {1, . . . , K}

E0

[
sup
|θ−θ0|<δ

| ∂2

∂θi∂θj
logϕ(Y1;µk, σ

2
k)|

]
<∞,

(iii) for all j = 1, 2, all 1 ≤ il ≤ r, l = 1, . . . , j, and all k ∈ {1, . . . , K}

∫
sup
|θ−θ0|<δ

| ∂j

∂θi1 . . . ∂θij
ϕ(Y1;µk, σ

2
k)|dy <∞,

(A4) There exists a δ > 0 such that with

ρ0(y) = sup
|θ−θ0|<δ

max
1≤k1,k2≤K

ϕ(y|µk1 , σ2
k1)

ϕ(y|µk2 , σ2
k2)
,

P(ρ0(Y1) =∞|X1 = k) < 1 for all k ∈ {1, . . . , K}.

(A5) θ0 is an interior point of Θ

(A6) The maximum likelihood estimator is strongly consistent.

(A1) is part of our assumptions. The elements of Φ are part of the parameter vector

and the initial distribution doesn’t depend on θ, so (A2) is satisfied too. The conditions

(A3) and (A4) are satisfied since ϕ is the normal density and σ2
k > 0 for k ∈ {1, . . . , K}.

Furthermore (A5) follows also from σ2
k > 0 for k ∈ {1, . . . , K}. Finally (A6) holds, since

θ̂R satisfies the regularity conditions from Leroux [9].
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3. Proofs

3.1. Preliminary analytic results

Several technical statements follow.

Proposition 8. Let (µ, σ2) ∈ R× (0,∞) set

Ã = Ã(µ, σ2) = {y ∈ R | (y − µ)2

σ2
≤ (log σ2)2}. (10)

Then

ϕ(y, µ, σ2) ≤

{
σ−1 y ∈ Ã
exp− (y−µ)2

4σ2 otherwise.
(11)

Proof. First we note ϕ(y, µ, σ2) ≤ σ−1 for every y ∈ R, so the first inequality is obvious.

For y /∈ Ã we have that (y−µ)2

σ2 > (log σ2)2. Therefore

ϕ(y, µ, σ2) ≤ 1√
σ2

exp
(
− (y − µ)2

σ2
/4
)

exp
(
− (y − µ)2

σ2
/4
)

<
1√
σ2

exp
(
− 1

4
(log σ2)2

)
exp

(
− (y − µ)2

σ2
/4
)

= exp
(
− 1

2

(
log σ2 + (log σ2)2/2

))
exp(−(y − µ)2

σ2
/4)

≤ exp
(
− (y − µ)2

σ2
/4
)
. (12)

Proposition 9. Let µ1, µ2 ∈ R and σ2
1, σ

2
2 ∈ (0,∞) with σ2

1 ≤ σ2
2 ≤ ε, for some 0 < ε <

e−1/4. Suppose that y ∈ R is such that

(y − µ1)2

σ2
1

> (log σ2
1)2,

(y − µ2)2

σ2
2

≤ (log σ2
2)2.

then

ϕ(y, µ1, σ
2
1) < ϕ(y, µ2, σ

2
2).

Proof. From the properties of y we have

1√
σ2

1

exp{−1

2

(y − µ1)2

σ2
1

} < 1√
σ2

1

exp{−1

2
(log σ2

1)2},

1√
σ2

2

exp{−1

2

(y − µ2)2

σ2
2

} ≥ 1√
σ2

2

exp{−1

2
(log σ2

2)2}.
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Thus, it sufficies to shows that the function

f(z) =
1

z
exp{−1

2
log(z2)2}, z > 0,

is increasing near zero. The first derivative is given by

f ′(z) = − 1

z2
exp{−1

2

(
log(z2)

)2} [1 + 4 log(z)] ,

which is > 0 for z < e−1/4.

Lemma 10. Let Y be a random variable in R with a bounded density w.r.t. the Lebesgue

measure. Given δ > 0 there is a τ0, such that for any µ ∈ R and σ2 ∈ (0,∞) with σ2 < τ0,

we have

P
(
Y ∈ Ã(µ, σ2)

)
< δ,

where Ã(µ, σ2) is defined in (10).

Proof. The Lebesgue length of Ã(µ, σ2) is given by 2σ | log σ2|, which tends to zero as

σ2 → 0. The statement follows since Y has a bounded Lebesgue density.

3.2. Bounds on the number of points near degenerate components

The following lemma is a generalization of Lemma 1 from Chen et al. [5] for Gaussian

hidden Markov processes. It bounds the number of observations of such a process which

are located in neighbourhoods of degenarate components. These observations have a high

contribution to the likelihood and will be ruled out by penalty function.

Lemma 11. Let (Yn)n≥1 be a stationary Gaussian hidden Markov process with K states

and parameter vector (Φ, µ1, . . . , µK , σ
2
1, . . . , σ

2
K). Let Fn be the empirical distribution

function of Y1, . . . , Yn, and M denote an upper bound for the marginal mixture density.

Then almost sure there exists N ∈ N, such that

sup
y

[Fn(y + τ)− Fn(y)] ≤ (log n)2

√
n

+ 2Mτ +
1

n

for all n ≥ N and τ ∈ [0, e−1].

Proof of Lemma 11. For τ = 0 the statement is trivial. Let τ ∈ (0, e−1] and 1 ≤ k, i ≤ n

we define ηk = F−1( k
n
). We have

sup
y

[Fn(y + τ)− Fn(y)]

≤ max
k

[Fn(ηk + τ)]− Fn(ηk−1)

≤ max
k

[{Fn(ηk + τ)− Fn(ηk−1)} − {F (ηk + τ)− F (ηk−1)}]

+ max
k
{F (ηk + τ)− F (ηk−1)}.

(13)
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To bound the second term in (13), by the Mean Value Theorem we obtain

F (ηk + τ)− F (ηk−1) = F (ηk + τ)− F (ηk) + n−1

≤Mτ + n−1 =: δn(τ).
(14)

It remains to find an appropriate bound for

∆τ
n,k = |{Fn(ηk + τ)− Fn(ηk−1)} − {F (ηk + τ)− F (ηk−1)}|.

Write

n∆τ
n,k = |

n∑
i=1

1{Yi≤ηk+τ} − 1{Yi≤ηk−1} − {F (ηk + τ)− F (ηk−1)}|

= |
n∑
i=1

Zτ
i,k − {F (ηk + τ)− F (ηk−1)}|.

where Zτ
i,k = 1{Yi≤ηk+τ} − 1{Yi≤ηk−1}.

From the Bernstein inequality in Lemmas 13 and 15 in the Appendix, there exist

positive constants γ, C1, C2, C3, C4, V and n0 ∈ N depending only on the true parameter

vector (Φ0, µ01, . . . , µ0K , σ
2
01, . . . , σ

2
0K) of the HMM such that

P(|∆τ
n,j | ≥ x) ≤ n exp

(
−n

γxγ

C1

)
+ exp

(
− n2x2

C2(1 + nV )

)
+ exp

(
−n

2x2

C3n
exp

(nx)γ(1−γ)

C4(log{xn})γ

)
(15)

for every x ∈ R, j = 1, . . . , n and τ ∈ (0, e−1]. Setting x = (logn)2

2
√
n

gives

P(|∆τ
n,k| ≥

(log n)2

2
√
n

) ≤ n exp

(
−n

γ
2 (log n)2γ

2γC1

)
+ exp

(
− n(log n)4

4C2(1 + nV )

)
+ exp

(
−(log n)4

4C3

exp
{n 1

2 (log n)2/2}γ(1−γ)

C4(log{(log n)2n
1
2/2})γ

)
.

Therefore we get that for every n ≥ n0, j = 1, . . . , n and τ ∈ (0, e−1],

P

(
|∆τ

n,k| ≥
(log n)2

2
√
n

)
≤ cn−3 (16)

for some constant c. Let rn = (logn)2

2M
√
n

. We have that

P
(

max
k=1...n

|∆rn
n,k| ≥

(log n)2

2
√
n

)
≤ P

(
∪nk=1 {|∆rn

n,k| ≥
(log n)2

2
√
n
}
)

≤
n∑
k=1

P(|∆rn
n,k| ≥

(log n)2

2
√
n

) < cn−2.

(17)
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By Borel-Cantelli, a.s. there is an N1, such that

max
k=1...n

|∆rn
n,k| ≤

(log n)2

2
√
n

, n ≥ N1.

Therefore, by (13) and (14) and monotonicity,

sup
τ∈(0,rn]

sup
y
|Fn(y + τ)− Fn(y)| ≤ sup

y
|Fn(y + rn)− Fn(y)|

≤(log n)2

2
√
n

+ δn(rn) ≤ (log n)2

√
n

+ 1/n, n ≥ N1,

which shows the estimate for all τ ∈ (0, rn].

Next consider τ ∈ [rn, e
−1]. Now we define a finite grid over [rn, e

−1] by τ0 = rn and

τk+1 = 2τk, where k ≤ blog2
2Me−1√n

(logn)2
c =: kn < log n for n large enough. If τkn < e−1, we

add the point τkn+1 = e−1 to the grid, hence we assume w.l.o.g. τkn = e−1. Let

Dn =
kn⋃
k=1

{
sup
y
Fn(y + τk)− Fn(y) ≥ (log n)2

2
√
n

+ δn(τk)
}
.

From (13), (14) and (16) we obtain

∞∑
n=1

P(Dn) ≤
∞∑
n=1

kn∑
j=1

P

({
sup
y
Fn(y + τj)− Fn(y) ≥ (log n)2

2
√
n

+Mτj +
1

n

})
≤

∞∑
n=1

kn∑
k=1

P

(
max
j=1...n

|∆τk
n,j| ≥

(log n)2

2
√
n

)
≤

∞∑
n=1

c log nn−2 <∞.

where we estimate the maximal probability as in (17). We conclude by Borel-Cantelli

P(Dn i.o.) = 0. Since for every τ ∈ [rn, e
−1] there exist two grid points such that τ ∈

[τj, τj+1], a.s. there is an N2 such that

sup
y
Fn(y + τ)− Fn(y) ≤ sup

y
Fn(y + τj+1)− Fn(y) ≤ (log n)2

2
√
n

+ 2Mτ +
1

n

for all n ≥ N2 and τ ∈ [τj, τj+1], where we used τj+1 ≤ 2τ .

Remark: The rate in the lemma above can be improved from
√
n(log n)2 to√

n(log n)1+q For any q > 0. But the higher one is still sufficient for the proof.

3.3. Proof of Theorem 5 in case K = 2

Proof. It is sufficient to show the consistency of θ̂pIMLE
n for the state dependent param-

eters. Then the consistency of θ̂pMLE
n follows from the result in Leroux [9], since the
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maximization in stage 2 is carried out over a regular set, which contains the true param-

eter.

We show the consistency of θ̂pIMLE
n for the case K = 2 since the general K follows

analogously. We follow Chen and Tan [4] in the proof structure and divide the parameter

space in a finite number of subsets, one of which is regular. Step by step we show by

applying Lemma 11 and classical techniques θ̂pIMLE
n to lie outside any of the irregular

subsets.

Let K = 2 and assume w.l.o.g. σ2
1 ≤ σ2

2. We divide the parameter space Θmix into

three disjoint subsets.

Γ1 = { θ ∈ Θmix |σ2
1 ≤ σ2

2 ≤ ε0 },
Γ2 = { θ ∈ Θmix |σ2

1 ≤ τ0, σ
2
2 ≥ ε0 },

Γ3 = Θmix \ Γ1 ∪ Γ2.

For each (µ1, µ2, σ
2
1, σ

2
2) ∈ R × R × (0,∞) × (0,∞) we define the intervals subsets as in

(10),

Ã1 = Ã(µ1, σ
2
1), Ã2 = Ã(µ2, σ

2
2).

Set

A1 = {i | Yi ∈ Ã1}, A2 = {i | Yi ∈ Ã2}, (18)

and M = σ−1
1 . Further set

H0 = lim
n

1

n
logLmixn (θmix0 ;Y n

1 ), (19)

which exists and is finite, see Lindgren [10]. The scalars ε0 and τ0 are chosen to satisfy

1. 2
√

2ε
1
2
0 | log ε0| < e−1, |ε

1
2
0 log ε0 log ε

− 1
2

0 | ≤ 1/2.

2. 0 < τ0 ≤ ε0,

3. − log ε0 − (log ε0)2 ≤ 4(H0 − 2),

4. ε0 < σ2
01,

5. P(Y1 ∈ Ãc1 ∩ Ãc2) ≥ 1
2

for θ ∈ Γ1.

The first part of condition 1 is necessary for applying Lemma 11, the second part is

possible since ε
1
2 log ε log ε−

1
2 → 0 as ε → 0. The second condition ensures the order of

the components. The third condition bounds the effect of observations, which will be

ruled out by the log-likelihood at the true parameter. The existence of ε0 and τ0 which

satisfy the first four conditions is obvious. The fifth condition can be achieved by applying

Lemma 10.

11



Step 1. We shall show that

sup
θ∈Γ1

(
logLmixn (θ;Y n

1 ) + pn(θ)
)
− logLmixn (θmix0 ;Y n

1 )− pn(θmix0 )→ −∞. (20)

To this end, we shall show that a.s. there is an N , such that for n ≥ N we have that

logLmixn (θ;Y n
1 ) + pn(θ) ≤ n(H0 − 1), n ≥ N. (21)

the conclusion then follows together with (19). To show (21), for a set S ⊂ {1, . . . , n}
with n(S) elements let

Lmixn (θ;S) =
∏
j∈S

f(Yj, θ),

and write

logLmixn (θ;Y n
1 )+pn(θ) =

(
logLmixn (θ;A1)+p̃n(σ2

1)
)

+
(

logLmixn (θ;Ac1∩A2)+p̃n(σ2
2)
)

+logLmixn (θ;Ac1∩Ac2).

(22)

We shall bound each term on the right seperately in order to achieve (21). Since σ2
1 ≤ σ2

2

we have that f(y, θ) ≤ σ−1
1 for any y, and hence that logLmixn (θ;A1) ≤ n(A1) log σ1

−1.

First we assert for ε0 ≥ σ2
1 > n−2 with the help of Lemma 11

logLmixn (θ;A1) ≤ n(A1) log σ2
1 ≤

(√
n(log n)2 − nMσ1 log σ2

1 + 1
)

log σ1
−1

=
√
n(log n)2 log σ1

−1 − nMσ1 log σ1 + log σ1
−1 =: hn(σ2

1)

and

sup
σ2
1∈[n−2, ε0]

hn(σ2
1) ≤

√
n(log n)2 log n− nMε

1/2
0 log ε0 + log n < n/4. (23)

The right hand side of the last display is less than a fraction of n for n large and ε

small enough. Now suppose σ2
1 ≤ n−2, then from Property 4 of the penalty p̃n and Lemma

11, a.s. for large enough n, we obtain the bound

logLmixn (θ;A1) + p̃n(σ2
1) ≤ n(A1) log σ1

−1 +
√
n(log n)2 log σ2

1

≤
(√

n(log n)2 − nMσ1 log σ2
1 + 1

)
log σ1

−1 +
√
n(log n)2 log σ2

1

=
√
n(log n)2 log σ1 + log σ1

−1 − nMσ1 log σ2
1 log σ1

−1

≤n/4,

(24)

since
√
n(log n)2 log σ1 + σ1

−1 is negative, σ2
1 ≤ ε0 and ε0 is chosen to satisfy the second

part of condition 1 above. Similarly, for y ∈ Ac1 ∩ A2, from Lemma 9 we have that

f(y, θ) ≤ log σ2
−1, and hence that Lmixn (θ;Ac1 ∩ A2) ≤ n(A2) log σ2

−1, and similarly as in

(24) we obtain a.s. for large enough n that

sup
σ2
1∈[n−2, ε0]

logLmixn (θ;Ac1 ∩ A2) + p̃n(σ2
2) ≤ n/4

sup
σ2
1∈(0, n−2)

logLmixn (θ;Ac1 ∩ A2) ≤ n/4
(25)

12



Further,

logLmixn (θ;Ac1 ∩ Ac2) ≤
∑

j∈Ac1∩Ac2

log

[
exp(log σ2

−1 − 1

2
(log σ2

2)2)

]
≤

∑
j∈Ac1∩Ac2

−1

2
log ε0 −

1

2
(log ε0)2

≤ n(H0 − 2).

(26)

Here, for the first inequality we recall that the function 1
z

exp{−1
2

log(z2)2} is monotone

increasing near zero, as shown in the proof of Lemma 9. Let us argue for the last inequality

in (26). In case H0 < 2, we assumed that − log ε0 − (log ε0)2 ≤ 4(H0 − 2), so that in this

case we obtain ∑
j∈Ac1∩Ac2

−1

2
log ε0 −

1

2
(log ε0)2

≤n(Ac1 ∩ Ac2) 2 (H0 − 2) ≤ n(Ac1 ∩ Ac2) (H0 − 2).

In case H0 ≥ 2 we use the trivial bound − log ε0 − (log ε0)2 ≤ 2(H0 − 2), and get∑
j∈Ac1∩Ac2

−1

2
log ε0 −

1

2
(log ε0)2 ≤ n(Ac1 ∩ Ac2) (H0 − 2)

as well. By condition 5 and the ergodic theorem, we get n(Ac1 ∩ Ac2)/n ≥ 1/2 a.s., which

gives the last estimate in (26). Now (21) follows from (22), (23), (24), (25) and (26).

Step 2. Next, we show that

sup
θ∈Γ2

(
logLmixn (θ;Y n

1 ) + pn(θ)
)
− logLmixn (θmix0 )− pn(θmix0 )→ −∞. (27)

In the following, the parameters µi, σ
2
i will depend on θ, i = 1, 2, which we suppress in the

notation. Define the set of indices A1 = A(µ1, σ
2
1) as in (18). We recall following bounds

from the proof of Lemma 8

ϕ(y, µ1, σ
2
1) ≤

σ1
−1 exp(− (µ1−y)2

4σ2
1

) y ∈ Ã1

exp(− (µ1−y)2

4σ2
1

) otherwise
.

Following Chen and Tan [4] we define a sub-density

g(y, θ) = π1 exp(−(µ1 − y)2

4σ2
1

) + π2ϕ(y, µ2, σ
2
2).

13



the function g is bounded by ε
− 1

2
0 on Γ2. Following statements hold for every θ ∈ Γ2:

log f(Yi, θ) ≤ log g(Yi, θ) + 1{i∈A1} log σ1
−1,

logLmixn (θ) ≤ n(A) log σ1
−1 +

n∑
i=1

log g(Yi, θ),

Eθmix0
log g(Y, θ)/f(Y, θmix0 ) ≤ log Eθmix0

g(Y, θ)/f(Y, θmix0 ) < 0,

1

n

n∑
i=1

log
g(Yi, θ)

f(Yi, θmix0 )
→ Eθmix0

log
g(Y, θ)

f(Y, θmix0 )
< 0.

Now by using E supθ∈Uε(θ′) ϕ(Y, θ) < ∞ for a sufficiently small neighborhood Uε(θ
′) of a

θ′ ∈ Γ2 and considering the compactification of Γ2 by taking limits with respect to dc, we

apply the classical technique, see Wald [14], to obtain

lim
n→∞

sup
θ∈Γ2

1

n

n∑
i=1

log
g(Yi, θ)

f(Yi, θmix0 )
=: −κ(τ0) < 0

Where κ(τ0) is a decreasing function, since larger τ0 makes Γ2 larger. Hence for a small
enough τ0 ≤ ε0

sup
θ∈Γ2

logLmixn (θ)+pn(θ)− logLmixn (θmix0 )− pn(θmix0 )

≤ sup
θ∈Γ2

n(A) log σ1
−1 + pn(θ) +

n∑
i=1

log g(Yi, θ)− logLmixn (θmix0 )− pn(θmix0 )

≤ sup
θ∈Γ2

(√
n(log n)2 − nMσ1 log σ2

1 + 1
)

log σ1
−1 + pn(θ)

+ sup
θ∈Γ2

n∑
i=1

log
g(Yi, θ)

f(Yi, θmix0 )
− pn(θmix0 )

≤ κ(ε0)n/2− nκ(ε0) = −κ(ε0)n/2− pn(θmix0 )→ −∞.

We conclude θ̂pIMLE
n ∈ Γ3 which is regular and contains the true parameter θmix0 , so

θ̂pIMLE
n is consistent for parameters of the stationary mixture.

The feasible set Θfull(θ̂pIMLE
n , δ) in stage 2 of the calculation of θ̂pMLE

n contains a.s.

the true parameter θ0 and the consistency result from Leroux [9] can be applied. It

completes the proof of the theorem.

4. Conclusion

In the presented paper the existence of a consistent, asymptotically normal estimator for

Gaussian hidden Markov models was proved. Ideas from the articles Chen et al. [5] and

Chen and Tan [4] were used and generalized.
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The proof was restricted to the one-dimensional case. The multivariate case could be

proved if an analogon of Lemma 11 for more than one dimension would exist. In the i.i.d.

setting Chen and Tan [4] in Lemma 2 use an ascription to the univariate case in order

derive such a statement. But this ascription is flawed. However, there exists an alternative

approach, based on a uniform Law of Iterated Logarithm for VC classes, see Alexandrovich

[1]. Unfortunately such an approach is currently not available for dependent observations.
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A. Mixing properties and Bernstein inequality

Here we deduce the Bernstein-type inequality (15) from Theorem 1 from Merlevède et al.

[11]. Let us start by formulating a simplified version of that result.

Definition 12. Let (Ω,A,P) be a probability space, M1,M2 ⊂ A sub-sigma-fields,

Z = (Zi)i∈Z real valued random variables.

1. The α-dependence coefficient between M1 and M2 is defined by

α(M1,M2) = sup{|P(A ∩B)− P(A)P(B)| : A ∈M1, B ∈M2} (28)

2. For the sequence (Zi)i∈Z the α-mixing (or strong-mixing) coefficient is a function

N→ R
+ defined by

αZ(g) = sup
k∈N

α(σ(Zi, −∞ < i ≤ k), σ(Zi, k + g ≤ i <∞)) (29)

The conditions that are needed for the Bernstein inequality are the following. There

exist positive constants a, b, γ1 and c, γ2 > 0 such that

α(g) ≤ ae−cg
γ1 , (B1)

sup
i
P(|Zi| > z) ≤ e1−(z/b)γ2 , (B2)

From Merlevède et al. [11], we have the following result.



Lemma 13. Let (Zi)i∈Z be a sequence of centered real valued random variables, which

satisfy Assumptions (B1) and (B2). Set Sj =
j∑
i=1

Zi. Then there exist constants

V, γ, C1, C2, C3 and C4 depending only on the constants a, b, γ1 and c, γ2 > 0 involved in
Assumptions (B1) and (B2), such that for all x > 0,

P(sup
j≤n
|Sj | ≥ x) ≤ n exp

(
−x

γ

C1

)
+ exp

(
− x2

C2(1 + nV )

)
+ exp

(
− x2

C3n
exp

xγ(1−γ)

C4(log x)γ

)
.

In order to deduce (15) from this result, we need to show that given a univariate

Gaussian HMM Y = (Yi)i∈Z, the conditions (B1) and (B2) hold true for

Z̃τ
i,k = 1{Yi≤ηk+τ} − 1{Yi≤ηk−1} −

(
F (ηk + τ)− F (ηk−1)

)
, (30)

where the constants a, b, γ1 and c, γ2 > 0 do not depend on k and τ . Since∣∣Z̃τ
i,k

∣∣ ≤ 2 + 2M, ∀ τ ∈ (0, e−1], 1 ≤ k ≤ n, n ≥ 1,

this is evidently possible for (B2) and the constants b and γ2. For (B1), we first consider

the HMM itself. For lack of easy reference, we prove the following well-known result.

Proposition 14. Let Y = (Yi)i∈Z be a stationary Gaussian Hidden Markov process with

a finite state space. Then α(g) = O(ρg) for some 0 < ρ < 1.

Proof. Since the process is assumed to be stationary, it suffices to show that

sup{|P(A ∩B)− P(A)P(B)| : A ∈ σ(Yi; i ≤ 0), B ∈ σ(Yi; i ≥ g)} ≤ cρg (31)

for some c > 0, 0 < ρ < 1. First we prove (31) for certain algebras and then show that

the sets, which satisfy (31) form a monotone class. An application of the monotone class

theorem (e.g. Theorem 8.9 in Billingsley [3]) then completes the proof. We consider the

following algebras

F0 = {(Yi1 , . . . , Yim) ∈ B |B ∈ Bm,−∞ < i1, . . . , im < 0,m ∈ N},
F1 = {(Yj1 , . . . , Yjl) ∈ B |B ∈ Bl, g ≤ j1, . . . , jl <∞, l ∈ N}.

It is easy to see, that F0 and F1 are really algebras and generate σ2(Yi,−∞ < i ≤ 0) and

σ2(Yi, g ≤ i < ∞) respectively. Now we assume A ∈ F0 and B ∈ F1, that is there exist

Borel sets B1 and B2 so that, A = {(Yi1 , . . . , Yim) ∈ B1} and B = {(Yj1 , . . . , Yjl) ∈ B2}
for some integer-vectors (i1, . . . , im) and (j1, . . . , jl).

For y ∈ R we define P̃(y) = diag(ϕ(y, µ1, σ
2
1), . . . , ϕ(y, µK , σ

2
K)). With 1 we denote a



column-vector of dimension K with 1 at every entry. Now we have

P(A)P(B) =

∫
B1

δP̃(y1)
m∏
p=2

Φip−ip−1P̃(yp)1dy

∫
B2

δP̃(y1)
l∏

p=2

Φip−ip−1P̃(yp)1dy

=

∫
B1×B2

δP̃(y1)
m∏
p=2

Φip−ip−1P̃(yp)1δP̃(y′1)
l∏

p=2

Φjp−jp−1P̃(y′p)1dydy
′

P(A ∩B) =

∫
B1×B2

δP̃(y1)
m∏
p=2

Φip−ip−1P̃(yp)Φ
j1−imP̃(y′1)

l∏
p=2

Φjp−jp−1P̃(y′p)1dydy
′

We have j1 − im ≥ g and from Theorem 8.9 in Billingsley [3] we have Φg → 1δ with

exponential rate, that is |Φg − 1δ| ≤ c∗ρg11T. For some c∗ > 0 and 0 < ρ < 1. So we

obtain

|P(A ∩B)− P(A)P(B)| = |
∫

B1×B2

δP̃(y1)
m∏
p=2

Φip−ip−1P̃(yp)1δP̃(y′1)
l∏

p=2

Φjp−jp−1P̃(y′p)1dydy
′

−
∫

B1×B2

δP̃(y1)
m∏
p=2

Φip−ip−1P̃(yp)Φ
j1−imP̃(y′1)

l∏
p=2

Φjp−jp−1P̃(y′p)1dydy
′|

= |
∫

B1×B2

δP̃(y1)
m∏
p=2

Φip−ip−1P̃(yp)
(
1δ − Φj1−im

)
P̃(y′1)

l∏
p=2

Φjp−jp−1P̃(y′p)1dydy
′|

≤
∫
B1

δP̃(y1)
m∏
p=2

Φip−ip−1P̃(yp)dy

︸ ︷︷ ︸
≤1T

|
(
1δ − Φj1−im

)
|
∫
B2

P̃(y′1)
l∏

p=2

Φjp−jp−1P̃(y′p)1dy
′

︸ ︷︷ ︸
≤1

≤ c∗ρgK2

for every A,B of the assumed form. Here we used the convention
∫
fdy =

(
∫
f1dy, . . . ,

∫
fKdy) for the integral of a vector-valued function f . Now, we have

that for a fixed B ∈ F1, the set MB of sets A satisfying that inequality builds a monotone

class. Indeed, let A1 ⊂ A2 ⊂ . . . ⊂ A, where Aj ∈ MB. The measure P is continuous

from below, so |P(A ∩ B) − P(A)P(B)| = |P(
⋃∞
j=1Aj ∩ B) − P(

⋃∞
j=1 Aj)P(B)| =

| lim
j→∞

P (Aj ∩ B) − lim
j→∞

P (Aj)P(B)| = lim
j→∞
|P (Aj ∩ B) − P (Aj)P(B)| ≤ cρg. The same

argument works for A1 ⊃ A2 ⊃ . . . ⊃ A, since the measure P is also continuous from

above. So MA is a monotone class. By the monotone class Theorem (Billingsley, Theorem

3.4) we can extend the inequality on the set σ(F0) × F1. Now we fix an A ∈ σ(F0) and

the same argumentation applied to the set MA of sets B satisfying the inequality for this

A yields that also MA is a monotone class. So finally we establish the inequality on the

set σ(F0)× σ(F1).



Lemma 15. Given a univariate stationary Gaussian HMM, the variables (Z̃τ
i,k) in (30)

satisfy the conditions (B1) and (B2), where the constants can be chosen independently

of k and τ . Therefore, the Bernstein inequality in Lemma 13 applies, and all constants

involved can be chosen independently of k and τ .

Proof. We already discussed Assumption (B2) above. For (B1), since

σ(Z̃τ
i,k; i ≤ 0) ⊂ σ(Yi; i ≤ 0), σ(Z̃τ

i,k; i ≥ g) ⊂ σ(Yi; i ≥ g)

for any k and τ , the α-mixing coefficients are evidently uniformly bounded by those of

the HMM.

B. Ergodicity

Stationarity affects marginal distributions of a process, while the strong mixing property

describes the dependence intensity between process parts as function of the time gap

between them. In the next lemma we combine the both properties to conclude ergodicity

- a property which allows us to apply a strong law of large numbers to the process.

Lemma 16. Let (Yi)i∈Z be a stationary strong mixing process. Then it is also ergodic.

Proof. Since (Yi)i∈Z is strong mixing, we have for every n, g ∈ N, A ∈ σ2(Y n
−∞), B ∈

σ2(Y ∞n+g) : |P(A∩B)−P(A)P(B)| < cρg for a positive constant c and 0 < ρ < 1. Now let C

be an invariant set, that is there exists a Borel set B ∈ BZ, such that C = {T−kY ∞−∞ ∈ B}
for every k ∈ N, where T 0 = id, T−1Y ∞−∞(ω)n = Yn+1(ω), T−k = T−(k−1) ◦ T−1. So T−1

is the left shift and T the right shift. According to Kolmogorov extension theorem, there

is a sequence (Cn) of sets Cn = {Y n
−n ∈ Bn}, for some cylinder set Bn ∈ B2n, such that

P(C ∆Cn) < 2−n, where C ∆Cn = {C \ Cn} ∪ {Cn \ C} is the symmetric difference.

Now since C is invariant we have

P(T−kC ∆Cn) = P(C ∆T kCn) < 2−n,

for all k, n ∈ N. Furthermore T kCn = {Y n−k
−n−k ∈ Bn}, and hence T kCn ∈ σ2(Y n−k

−n−k) ⊂
σ2(Y n−k

−∞ ) and Cn ∈ σ2(Y n
−n) ⊂ σ2(Y ∞−n). Let k ≥ 2n, gk,n = k − 2n, then using the strong

mixing property we conclude

|P(Cn ∩ T kCn)− P(Cn)P(T kCn)| < cρgk,n ,

for some c > 0 and 0 < ρ < 1. We summarize, for every ε > 0 there exist n, k ∈ N, such

that

1. ||P(C ∩ C)− P(C)2| − |P(Cn ∩ T kCn)− P(Cn)P(T kCn)|| < ε
2
,

2. |P(Cn ∩ T kCn)− P(Cn)P(T kCn)| < ε
2
,

and therefore |P(C)− P(C)2| < ε. Since ε > 0 was arbitrary, we have P(C) ∈ {0, 1}.
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