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1 Introduction

Gaussian mixture models provide a flexible tool for data modeling, clustering and classifi-
cation. We consider the problem of estimating the parameters of a multivariate Gaussian
mixture with K components by maximizing the likelihood function. This approach has a
theoretical drawback: the likelihood function is unbounded, and the interesting maxima
are local maxima in the interior of the parameter space. Consider an estimator with
µ̂1 = Y1, |Σ̂1| = ε, µ̂2 ∈ Rd arbitrary, Σ̂2 = I, p̂1 = 1/2. Then the likelihood function
tends to infinity as ε→ 0 and hence the MLE is not consistent.

Two basic strategies for overcoming the unboundedness were studied in the literature:
restricted optimization and penalization of the likelihood. In the first case a lower bound
on the variances or their ratios is imposed, see e.g. Hathaway [6]. In the second case a
term which penalizes small variances or ratios of variances is added to the log likelihood,
see e.g. Ciuperca et al. [5], Tanaka [8], Chen et al. [4], Chen and Tan [3]. The second
approach has some advantages over the first one - there is no tuning constant to choose
and the penalty function actually disappears with increasing sample size.

In the current paper I discuss the consistency proof of the penalized MLE from Chen
and Tan [3]. Among the above papers on consistency of the penalized MLE it is the
most interesting one in the context of Gaussian mixtures, since it treats the multivariate
case. Adjusting the penalty magnitude is an important issue and requires an assessment
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of the number of observations with a high likelihood contribution. Such an assessment
is given in Lemma 2 in Chen and Tan [3]. However its proof seems to contain a soft spot
and I was not able to fix it. In Section 2 I elaborate on the soft spot in detail. In Section
3 I give an alternative proof of a similar statement based on a uniform law of iterated
logarithm. This allows to make Chen and Tan’s nice consistency proof fully rigorous.

2 Outline of Chen and Tan’s consistency proof

In the following let Ln be the log-likelihood, ϕ the normal density, Θ the set of K-
component mixture parameters (µj,Σj, pj, 1 ≤ j ≤ K), where µ ∈ Rd, |Σ| ∈ Pd, p ∈
[0, 1],

∑
pj = 1 and Pd is the set of d × d symmetric positive definite matrices. Two

parameters are considered as equivalent if they induce the same distribution. θ0 denotes
a true parameter. The proof has roughly the following scheme:

1 Divide the parameter space Θ in K + 1 disjoint subsets Γ1, . . . ,ΓK+1 where each
subset is characterized by the number of components whose covariances are bounded
away from zero. The subset where all covariances are bounded away from zero,
ΓK+1, is regular and contains the true parameter θ0 so the classical MLE theory
as in Wald [10] or Kiefer and Wolfowitz [7] can be applied.

2 Show that asymptotically the penalized MLE θ̂n,pMLE a.s. does not lie in any
subset except the regular one, that is

sup
θ∈Γi

Ln(θ) + pn(θ)− Ln(θ0)− pn(θ0)→ −∞, i ∈ {1, . . . , K},

where pn : Θ→ R is a penalty function.

The second step is quite involved and will be outlined more precisely. The penalty
function pn fulfils several conditions, see Chen and Tan [3]. Recall the key condition
C3: p̃n(Σ) ≤ 4(log n)2 log |Σ| for |Σ| < cn−2d, where pn(θ) =

∑K
j=1 p̃n(Σj) and c some

positive constant. This condition is imposed in order to rule out the damaging effect
of components with degenerate covariance matrices. It will turn out, that 4(log n)2 is
actually not sufficient.

A key element of the proof is a uniform assessment of the number of observations, with
a high contribution to the likelihood. These are observations, that are located in certain
critical regions. It turns out that an appropriate choice for such critical regions are
sets

Ã(µ,Σ) := {y ∈ Rd : (y − µ)TΣ−1(y − µ) ≤ (log |Σ|)2},

where µ and Σ correspond to a degenerate component of the point at which the likelihood
is evaluated.
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The contribution of observations inside such a set will be ruled out by the penalty
function and the one outside can be shown to be small enough. Precisely, following
bounds are used

ϕ(y, µ,Σ) ≤

{
|Σ|− 1

2 y ∈ Ã(µ,Σ),

exp(−1
4
(y − µ)TΣ−1(y − µ)) otherwise.

A statement of the form

Hn(µ,Σ) :=
n∑
i=1

1Yi∈Ã(µ,Σ) ≤ a(n) + b(n, |Σ|), (1)

for all µ ∈ Rd, Σ ∈ Pd almost sure, is needed, where a(n) = o(n) and b(n, s) = O(n) for
each s and b(n, s) log s−1/2 → 0 as s → 0. An important detail here is, that the almost
sure statement has to hold simultaneously for all tuples (µ,Σ) and not solely for each one.
Given any statement with these properties one can prove the consistency of the penalized
MLE, if the penalty function fulfils a modified condition C3: p̃n(Σ) ≤ a(n) log |Σ| for
|Σ| ≤ cn−2d.

Chen and Tan [3] claimed essentially the following bound (Lemma 2)

Hn(µ,Σ) ≤ 4(log n)2 + 8nM |Σ|1/2d log |Σ|, (2)

for all (µ,Σ) with |Σ| < exp(−4d) a.s., where M is an upper bound of the true mixture
density. The proof uses an ascription to the univariate case, which was proved in Chen
et al. [4] by applying a Bernstein inequality and Borel-Cantelli Lemma. We omit further
details of this involved proof and refer to the source. Instead, we pay our attention on
the ascription, which actually does not work. The argument behind the ascription is the
following

{y ∈ Rd : (y − µ)TΣ−1(y − µ) ≤ (log |Σ|)2}

= {y ∈ Rd :
∑

λ−1
j |aTj (y − µ)|2 ≤ (log |Σ|)2}

⊆ {y ∈ Rd : |aTj (y − µ)| ≤ −
√
λj log |Σ|, j = 1, . . . , d}

⊆ {y ∈ Rd : |aTj (y − µ)| ≤ −
√
λ1 log |Σ|},

where a1, . . . , ad and λ1 ≤ . . . ≤ λd are unit length eigenvectors and the corresponding
eigenvalues of Σ respectively.

Further one argues that for every bounded set B ⊂ R
d, there exists a finite subset of

the unit d-sphere Q ⊂ Sd−1, such that for every a ∈ Sd−1 there exists a b ∈ Q with the
following property

{y ∈ B : |aT(y − µ)| ≤ −
√
λ1 log |Σ|} ⊆ {y ∈ B : |bT(y − µ)| ≤ −

√
2λ1 log |Σ|} (3)

and concludes

Hn(µ,Σ) ≤ max
b∈Q

n∑
i=1

1{|bT(Yi−µ)|≤−
√

2λ1 log |Σ|},
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for every Σ ∈ Pd. Hence the problem is reduced to univariate normal samples bTY1, . . . b
TYn

for finitely many b ∈ Sd−1. But the argument seems to be not fully rigorous, since the
inclusion (3) holds only given a fixed, bounded set B but not on the whole Rd. I found
no easy way to correct the ascription to the univariate case. However, there is an alter-
native, more easy approach.

3 Approach based on the uniform law of iterated
logarithm

For the next statements the term of the Vapnik-Chervonenkis dimension of a class of
sets is needed. This combinatorial concept serves for characterization of the complexity
of a class of sets.

Definition 1. Let X be a complete separable metric space, C ⊂ 2X a family of subsets,
D ⊂ X any finite subset. The shatter coefficient of C with respect to D is defined by

S(D : C) := |{C ∩D : C ∈ C}|. (4)

The VC dimension of C dim(C) is the largest integer k ∈ N such that S(D : C) = 2k

for some k-element subset D of X . If for every k there exists a finite k-element subset
D ⊂ X such that S(D : C) = 2k, then dim(C) =∞.

A class C with a finite VC dimension is called a VC class.

A class F of real valued functions X → R is called a VC-graph class if the collection of
all sub-graphs of the functions in F forms a VC class of sets in X × R.

VC classes have some comfortable properties, like being Glivenko-Cantelli or even Donsker
classes, see e.g. van der Vaart and Wellner [9].

If C is a VC class, then the class F := {1C : C ∈ C} of indicator functions is a VC-graph
class satisfying conditions of Theorem 2.13 from Alexander [2] and the next statement
follows.

Theorem 1. Let C ⊂ Bd be a VC class of sets, (Yn)n∈N a d-dimensional i.i.d. process.
Then a.s.

lim sup
n→∞

sup
C∈C

|
∑n

i=1 1C(Yi)− nPY1(C)|√
2n log log n

= sup
C∈C

(PY1(C)(1− PY1(C)))1/2. (5)

Hence follows
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Corollary 2. Let (Yn)n∈N be a d-dimensional i.i.d. process and

Ed :=
{
{y ∈ Rd : (y − µ)TA(y − µ) ≤ 1} : µ ∈ Rd, A ∈ Rd×d s.p.d.

}
.

Then a.s. there exits a N ∈ N such that

n∑
i=1

1{Yi∈C} ≤
3

4

√
n log log n+ nPY1(C) for all n ≥ N and all C ∈ Ed (6)

Remark 1. The constant 3/4 can be replaced by any other constant greater than
√

2/2.

Proof. Akama and Irie [1] have shown that the VC-dimension of the set Ed is (d2 +3d)/2.
From Theorem 1 follows: for any ε > 0 a.s. there exists a N ∈ N such that

sup
C∈Ed

∑n
i=1 1C(Yi)− nPY1(C)√

2n log log n
≤ sup

c∈Ed
(PY1(C)(1− PY1(C)))1/2 + ε for all n ≥ N

⇒
n∑
i=1

1C(Yi) ≤ nPY1(C) + (1/2 + ε))
√

2n log logn for all n ≥ N, C ∈ Ed.

With the above corollary we can a.s. uniformly bound the number of i.i.d. observations
generated by a bounded lebesgue density falling into an elliptical region in Rd.

Corollary 3. Let (Yn)n∈N be i.i.d. variables with a bounded lebesgue density f , M :=
supy f(y). Then a.s. there exists a N ∈ N such that

n∑
i=1

1{(Yi−µ)TΣ−1(Yi−µ)≤(log |Σ|)2} ≤
3

4

√
n log log n+

nMπd/2

Γ(d
2

+ 1)
|Σ|

1
2 (log |Σ|)d (7)

for every µ ∈ Rd, Σ ∈ Rd×d symmetric positive definite and n ≥ N .

Proof. First we show PY1(C) ≤M πd/2

Γ( d
2

+1)
|Σ| 12 (log |Σ|)d for the ellipse C = {(y − µ)TΣ−1(y − µ) ≤

(log |Σ|)2} and then we apply Corollary 2.

PY1 has lebesgue density f ≤ M . Hence PY1(C) ≤ Mλd(C). The lebesgue measure of
the ellipsoid C is given by λd(C) = |Σ|1/2λd({yTy ≤ (log |Σ|)2}) by the invariance of
λd w.r.t. translations and the substitution rule. For the measure of the sphere it holds
λd({yTy ≤ (log |Σ|)2}) = πd/2

Γ( d
2

+1)
(log |Σ|)d.

A bound as in (1) with functions a(n) =
√

2n log log n and b(n, |Σ|) = nMπd/2

Γ( d
2

+1)
|Σ| 12 (log |Σ|)d

is obtained.
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4 Conclusion

In the presented work the soft spot in the consistency poof in Chen and Tan [3] was
identified, namely the ascription to the univariate case in Lemma 2 there. The in-
troduced alternative in form of Corollary 3 fits almost seamless in Chen’s consistency
proof. Merely the condition C3 on the penalty function has to be strengthened to
p̃n(Σ) ≤ (3

4

√
n log log n) log |Σ| for |Σ| < cn−2d for some c > 0. However, it is not

a problem, since the example penalty function with p̃n(Σ) = −n−1(tr(Σ−1) + log |Σ|)
fulfills this requirement. To see this, assume |Σ| < n−2d. Then it holds for the eigen-
values of Σ:

∏d
i=1 λi < n−2d and hence λ1 = λmin < n−2. Now, write the trace

as the sum of the eigenvalues: tr(Σ−1) = λ−1
1 + . . . + λ−1

d > λ−1
min > n2. Finally

−n−1(tr(Σ−1) + log |Σ|) < −n + n−12d log n < −(3
4

√
n log log n)2d log n for n large

enough.

The theoretical background for the new approach is given by Alexander’s uniform law of
iterated logarithm for VC classes. Elaborate arguments involving Bernstein’s inequality
and Borel-Cantelli Lemma needed for the one-dimensional case as in Chen et al. [4] are
avoided and the proof becomes thereby shorter and more simple.

Moreover, the introduced approach, together with the general proof principle as in Chen
and Tan [3] resp. Chen et al. [4] can be used to prove consistency results for penalized
MLE for mixtures of distributions with similar properties, like Gamma distributions.

Acknowledgements

I gratefully thank the referees for their helpful and constructive comments and my doc-
toral supervisor Prof. Dr. Hajo Holzmann for his help in writing the note.

References

[1] Akama, Y. and Irie, K. (2011). VC dimension of ellipsoids. arXiv:1109.4347
[math.CO].

[2] Alexander, K. S. (1984). Probability inequalities for empirical processes and a
law of the iterated logarithm. Annals of Probability, 12 1041–1067.

[3] Chen, J. and Tan, X. (2009). Inference for multivariate normal mixtures. Journal
of Multivariate Analysis, 100 1367–1383.

[4] Chen, J., Tan, X. and Zhang, R. (2008). Inference for normal mixtures in mean
and variance. Statistica Sinica, 18 443–465.

6



[5] Ciuperca, G., Ridolfi, A. and Idier, J. (2003). Penalized maximum likelihood
estimator for normal mixtures. Scandinavian Journal of Statistics, 30 645–59.

[6] Hathaway, R. J. (1985). A constrained formulation of maximum-likelihood esti-
mation for normal mixture distributions. Annals of Statistics, 13 795–800.

[7] Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood
estimator in the presence of infinitely many incidental parameters. Annals of Math-
ematical Statistics, 27 887–906.

[8] Tanaka, K. (2009). Strong consistency of the maximum likelihood estimator for
finite mixtures of location-scale distributions when penalty is imposed on the ratios
of the scale parameters. Scandinavian Journal of Statistics, 36 171–184.

[9] van der Vaart, A. and Wellner, J. A. (2000). Weak Convergence and Em-
pirical Processes. Springer.

[10] Wald, A. (1949). Note on the consistency of the maximum likelihood estimate.
Annals of Mathematical Statistics, 20 595–601.

7


	Introduction
	Outline of Chen and Tan's consistency proof
	Approach based on the uniform law of iterated logarithm
	Conclusion

