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Abstract. This paper describes CASH (the Computer Algebra SHell),
a new interface that allows Haskell programmers to access the complete
functionality of a number of computer algebra systems directly and in-
teractively. Using CASH, Haskell programmers can access previously-
unavailable mathematical software. Additionally, users of computer al-
gebra systems can exploit the rapidly growing Haskell code base and its
rich set of libraries. In particular, CASH provides a simple and effec-
tive interface for users of computer algebra systems to parallelise their
algorithms using domain-specific skeletons written in Haskell.

1 Introduction

Users of functional programming languages can often feel as if they are in a
ghetto. While foreign-function interfaces (FFIs) often exist to e.g. C, they can,
indeed, feel foreign to use, especially where complex data structures are involved.
And while library developers work hard to provide new functionality to func-
tional programmers, this hard-won capability often bit-rots faster than it can
be used effectively. As part of an EU-funded project4, we have been working to
address some of these issues (and, incidentally, to provide a new user base for
functional languages). In this way, we hope to open the gates to the ghetto of
functional programming, and break some of the barriers preventing wider use.

This paper describes a new way to link Haskell [1] with computer algebra
systems, avoiding the FFI route. CASH (the Computer Algebra SHell) provides
a two-way interface to a number of widely-used computer algebra systems, in-
cluding GAP [2], KANT [3], MuPAD[4], Maple [5] and Macaulay [6]. In order
to achieve this, it exploits the generic SCSCP [7] protocol that has been im-
plemented for all these systems. This, in turn, uses the OpenMath [8] standard
format to describe the structure of mathematical objects.

4 SCIEnce: Symbolic Computation Infrastructure in Europe, RII3-CT-2005-026133.
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Interfacing between (an interactive shell for) Haskell and computer algebra
systems has several advantages. Firstly, these systems are domain-specific envi-
ronments that provide a large number of specialised data-types and that build
on decades of expert experience. For instance, the open source system GAP [2]
comes with a library of complex computer algebra algorithms that have been
contributed by hundreds or thousands of domain experts. Exploiting existing
optimised environments such as GAP from within Haskell increases programmer
productivity since the Haskell programmer does not have to learn the mathemat-
ics behind the code. Providing an interface to Haskell from within a computer
algebra system allows advanced features to be accessed, such as Haskell’s paral-
lelisation capabilities. The domain expert does not have to learn about parallel
programming: they can use their favourite computer algebra system,

Contributions. The main technical contributions of this paper are as follows:

1. we show how CASH can be used to integrate Haskell and computer algebra
code using SCSCP and OpenMath, giving examples that show how CASH
can be used to call computer algebra systems from Haskell and vice-versa;

2. we show how to define domain-specific parallel skeletons for computer algebra
in the Eden [9] dialect of Haskell, in particular, we describe a new multiple
homomorphic images skeleton; and

3. we expose these parallel skeletons as SymGrid-Par [10] services, that can be
called directly both from the CASH shell and from within the shell of any
SCSCP-enabled computer algebra client.

The idea of interfacing functional languages and computer algebra systems is,
of course, not new. For example, GHC-Maple [11] and Eden-Maple [12] pro-
vide dedicated sequential and parallel interfaces, respectively, to the commercial
Maple system. However, CASH goes beyond these earlier approaches in terms
of both usability and generality: CASH uses a Haskell implementation of the
standardised OpenMath-based SCSCP [7] interface, which means that it can in-
teract with any computer algebra system that implements the SCSCP standard;
moreover, it also allows any SCSCP-compliant system to interact with Haskell.

2 Linking Haskell and Computer Algebra Systems

CASH uses the GHCi interpreter to provide a Haskell-side shell for accessing
computer algebra systems via SCSCP. The underlying libraries provide data
structures and conversion functions targeted at computer algebra, plus a “com-
mand line API” for an interactive front end, that is used to establish a connec-
tion to, and interact with, an SCSCP-enabled system. To show how powerful,
expressive and useful the CASH system can be, we will consider a simple exam-
ple involving matrix groups over finite fields. We first define two matrices, m1
and m2 over the finite field Z3 = {0, 1, 2}, interactively, using the CASH shell

*Cash> let m1 = [[Z(3)^0, Z(3)^0],[Z(3),0*Z(3)]]

*Cash> let m2 = [[Z(3), Z(3)],[Z(3),0*Z(3)]]
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Here we have used the GAP-like syntax Z(3) for the element which generates
the multiplicative group in the finite field Z3, 0*Z(3) for the 0-element and
Z(3)^0 for the 1-element. Using CASH, we can directly exploit any of the GAP
functions on group algebra. Here we compute the multiplicative matrix groups
generated by each of these two matrices and then determine their intersection.

*Cash> group(m1)

Group([ [ [ Z(3)^0, Z(3)^0 ], [ Z(3), 0*Z(3) ] ] ])

*Cash> group(m2)

Group([ [ [ Z(3), Z(3) ], [ Z(3), 0*Z(3) ] ] ])

*Cash> intersection(group(m1), group(m2))

Group([ [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ])

The generator of the intersection is the unit matrix multiplied by the scalar Z(3).
Note that the result of each group operation is simply a symbolic representation
of the result in terms of one or more generators, rather than an enumeration
of all possible elements of the group. This is important, because the number of
elements in a group can be huge, and the user is usually only interested in some
specific properties of the group. We can often determine these properties without
needing to generate all the elements of the group. This dramatically reduces the
amount of computation that is required.

2.1 The SCSCP Interface

The interface between a client and a server is defined by the SCSCP communi-
cation protocol [7], which itself builds on the existing OpenMath standard [8] for
data representation of mathematical objects. The SCSCP communication pro-
tocol defines how messages are exchanged between client and server processes.
Its main functionality is to support (remote) calls of SCSCP server-side services
and to deliver results to the SCSCP client. In order to support automatic ser-
vice discovery, the protocol also specifies how to obtain a list of all the available
services that are supported by the SCSCP server, including their types.

Figure 1 shows a CASH session interacting with a GAP server using SCSCP.
The CASH session first connects to GAP with a Procedure Call message,
containing information such as the Procedure name, any Arguments and any
Options/Attributes, encoded in OpenMath. Alternatively, the user may inter-
rupt the interaction at any time between the computer algebra system and the
server. In this case the computation terminates and no result is returned. The
GAP server responds to the CASH client by sending a Procedure Completed
message: an OpenMath encoding containing the information about the result of
the procedure. This message contains the (OpenMath) Result value; any Manda-
tory Additional Information, such as the internal SCSCP call identifier; and any
Optional additional information, such as the procedure runtime/memory usage.
Alternatively, the GAP server may instead return a Procedure Terminated
message containing an Error message. The CASH user-level interface is provided
by the callSCSCP function, which takes a service name and a list of OpenMath
objects as arguments and issues an SCSCP call to the server. To simplify this
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CASH GAP

Procedure Call
"WS_Group", OMObj, "CASH", Return to sender 

[Interrupt Signal]

[Procedure Compeleted]
OMOBJ Result, "GAP"

Procedure Call
"WS_Group", OMObj, "CASH", Return to sender 

[Procedure Terminated]
Error, "GAP"

Fig. 1. An example interaction between CASH and GAP using SCSCP

interface, a family of functions call1, call2 etc. are defined, which hide the
(un)marshalling of the data-structures. Specifically, call1 is used to connect
with SCSCP functions that take one argument, call2 is used to SCSCP functions
taking two arguments, and so forth. These functions differ only in their arity,
and could be automatically generated using tools such as Template Haskell.

2.2 The OpenMath Data Format

The OpenMath [8] data format is an XML-based representation of mathematical
objects such as polynomials, finite field elements or permutations. Formally, an
OpenMath object is a labelled tree whose leaves form typical computer algebra
type representations. These include integers, unicode strings, variables or sym-
bols, where symbols consist of a name and a content dictionary. For instance, a
vector of finite field elements [[Z(3)^0,Z(3)^0]] can be encoded in the Open-
Math representation shown in Figure 2. This uses the linalg2 content dictionary
to define matrix and matrixrow.

3 Calling GAP from Haskell and vice-versa

We now give two examples of using CASH that show the usefulness of being
able to call computer algebra functionality from a Haskell environment without
having to step out of the functional paradigm.

3.1 Greatest Common Divisor

Our first, simple, example shows how to implement a generic greatest common
divisor (GCD) function by first calling existing factorisation functions in the
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<OMOBJ>

<OMA> <OMS cd="linalg2" name="matrix"/>

<OMA> <OMS cd="linalg2" name="matrixrow"/>

<OMA> <OMS cd="arith1" name="power"/>

<OMA> <OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

<OMA> <OMS cd="arith1" name="power"/>

<OMA> <OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

</OMA>

</OMA>

</OMOBJ>

Fig. 2. An example of an OpenMath encoding for finite field elements

computer algebra system (here, GAP) and by then combining the results in
Haskell. Although this operation is fairly trivial in itself, it highlights some im-
portant design features: first, we use Haskell’s overloading mechanism to define
a generic GCD implementation; and second, the compute-intensive parts (that
is, the factorisation and polynomial operations) are all delegated to the com-
puter algebra system using SCSCP services. The myGcd algorithm first factors
the inputs x and y. It then perfoms a bag-intersection on the Haskell side, to
identify all the common factors. Finally, the GCD is computed by folding the
generic multiplication operation over the list of common factors.

-- intersection on multi-sets (bags)

bagInter :: (Eq a) => [a] -> [a] -> [a]

bagInter [] _ = []

bagInter (x:xs) ys | elem x ys = x:(bagInter xs (delete x ys))

| otherwise = bagInter xs ys

-- generic GCD computation

myGcd :: (Num a, Factorisable a) => a -> a -> a

myGcd x y = let xs = factors x

ys = factors y

zs = xs ‘bagInter‘ ys

in product zs

Marshalling and UnMarshalling Polynomials: In order to use the algorithm on
polynomials in the computer algebra system, we need to define their OpenMath
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representation, as part of the OMType type. We currently implement Polynomials
as Haskell Strings, since it is usually easy to convert strings to polynomials in
the computer algebra system.

data OMType = List [OMType] | Rational [OMType] | Matrix [OMType]

| MatrixRow [OMType] | Mul FiniteField Int

| Power FiniteField Int | Num Integer

| Polynomial String

| ...

data FiniteField = PrimEl Int

Basic operations on polynomials are implemented via SCSCP calls to the cor-
responding SCSCP services. These calls use the call2 wrapper function, which
implicitly applies toOM/fromOM to convert data to/from values of type OMType.

instance Num (OMType) where

(*) p1@(Polynomial _) p2@(Polynomial _) = call2 scscp_WS_ProdPoly p1 p2

(*) ...

(+) p1@(Polynomial _) p2@(Polynomial _) = call2 scscp_WS_SumPoly p1 p2

(+) ...

Factorising Polynomials: We can now write Haskell code that calls computer
algebra functions to factorise polynomials. The Factorisable class contains a
single function factors that returns a list of all the factors of a given argument.

class Factorisable a where

factors :: a -> [a]

We can easily define an instance of this class for polynomials that invokes the
corresponding computer algebra service, as follows:

instance Factorisable (OMType) where

factors = call1 scscp_WS_Factors

An Example CASH Session: The trace below shows how CASH can be used
with our GCD implementation. We define two simple input polynomials p1 and
p2 and compute their GCD in Haskell using GAP polynomial operations.

*Cash> let p1 = polyFromString "x_1^3-x_1"

*Cash> factors p1

[x_1-1,x_1,x_1+1]

*Cash> let p2 = polyFromString "x_1^2+x_1"

*Cash> factors p2

[x_1,x_1+1]

*Cash> myGcd p1 p2

x_1^2+x_1
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3.2 A Linear System Solver

We now show how CASH can connect to GAP to run more serious computer
algebra computations. Given a linear system of equations over arbitrary precision
integers, represented as a matrix A ∈ Zn×n and a vector b ∈ Zn, n ∈ N, we want
to find a vector x ∈ Zn s.t. Ax = b. As is common for symbolic computations,
and in contrast to the more usually encountered numerical algorithms, we need
to produce an exact solution for arbitrary precision integers.

Multiple Homomorphic Images: A potential problem in solving a system of linear
equations is that the values in the matrix tend to become very large, meaning
that even simple arithmetic operations can become expensive to compute. A
common way to avoid this is to use a technique known as Multiple Homomorphic
Images [13]. In order to control the size of the matrix elements, a solver based
on homomorphic images will use a list of prime numbers, generate new matrices
modulo each prime, find the solutions to these smaller problems, and finally
combine these solutions using the Chinese Remainder algorithm (CRA). The
general multiple homomorphic images approach [13] consists of the following
three stages, where the names in brackets refer to the Haskell skeleton below:

1. map the input data into several homomorphic images (fwd);
2. compute the solution in each of these images (sol); and
3. combine the results of all images to a result in the original domain (comb).

In this case the original domain is Z, the set of (arbitrary precision) integer
values, and the homomorphic images are Z modulo p, written Zp, with p being
a prime number. If suitably large prime numbers are chosen, then cheap fixed-
precision arithmetic can be used for each of the homomorphic images. It is only
necessary to use expensive arbitrary precision arithmetic in the combination
phase, when applying the Chinese Remainder Algorithm [14] in Step (3). Thus,
this is already a very efficient sequential algorithm. It also has many uses: for
example, it allows us to solve a wide class of problems over Euclidean domains
and can be used to compute multivariate resultants.

A Multiple Homomorphic Images skeleton: It is straightforward to define a skele-
ton in Haskell to compute multiple homomorphic images:

multHomImg :: (Integer -> OMType -> OMType) ->

(Integer -> OMType -> OMType) ->

([Integer] -> OMType -> OMType) ->

[Integer] -> OMType -> OMType

multHomImg fwd sol comb ps x = res

where xList = zipWith fwd ps (repeat x)

resList = zipWith sol ps xList

res = comb ps (toOMMatrix resList)

The local definitions are each the result of one of the three steps above. The lists
of inputs, xList, and solutions in the homomorphic images, resList, are both
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(potentially infinite) lists. The combiner, comb is allowed to ignore the tail of the
possibly infinite list, ps. This design uses Haskell’s laziness to avoid hard-coding
a bound on the list lengths into the skeleton itself. Since data marshalling in
SCSCP is eager, however, these lists have to be finite when using SCSCP calls
in a concrete instance of the skeleton. Only data structures that remain on the
Haskell side can be infinite.

The Linear Solver: We can use this skeleton to define a linear system solver:

linearSolver :: [ Integer ] -> [ [Integer] ] -> [ Integer ] -> OMType

linearSolver ps ms vs

= multHomImg (call2 scscp_WS_Mod) (call2 scscp_WS_Sol)

(call2 scscp_WS_CRA) ps

(toOMList ((toMatrix ms):[toOMList (map toNum vs)]))

The functions scscp WS Mod, scscp WS Sol and scscp WS CRA are SCSCP calls
to the GAP functions ModMat, SolMat and CRAMat, respectively. ModMat takes a
prime number, a matrix and vector and returns the matrix and vector modulo
the prime number.

ModMat:=function(p, x)

return([x[1] mod p, x[2] mod p]);

end;

Here, x is a GAP list containing both the matrix and vector, so x[1] accesses the
matrix and x[2] accesses the vector. SolMat computes the solution for a matrix
and vector modulo a prime number. The interesting thing here is that the GAP
code computes the modulus by transforming the vector and matrix to an element
in a finite field of p elements, where p is a prime number. The function checks
that the determinant of the matrix is not 0 and returns the empty list if so, since
there would otherwise be no solution. To compute the solution for a matrix and
a vector in GAP we use the builtin library function SolutionMat.

SolMat:=function(p, x)

local e, r;

e:=One(GF(p));

if Determinant(x[1]*e) = 0*Z(p) then

return([]);

fi;

r:=SolutionMat(TransposedMat(x[1]*e),x[2]*e);

return(List(r, Int));

end;

Finally, CRAMat combines the result vectors using GAP’s built-in Chinese Re-
mainder algorithm, which works over (finite) lists. We also need to eliminate any
empty matrices that were generated by 0-determinants in the SolMat stage:

CRAMat:=function(ps, r)

local i, pris, vecs, res;

i:=0;
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vecs:=[];

while ( i < Length(r) ) do

if not r[i] = [] then

pris:=Concatenation(pris, ps[i]);

vecs:=Concatenation(vecs, r[i]);

fi;

i:=i+1;

od;

res:=ChineseRem(pris, vecs);

return res;

end;

Testing the solver in CASH: For the purposes of this example, we will generate
a random 1000 x 1000 matrix, together with a 1000 element vector of solutions.

*Cash> let m = generateMatrix(1000)

*Cash> let v = generateVector(1000)

We can then compute m × v to form b, and test the solution in CASH:

*Cash> let b = m * v

*Cash> (linearSolver [1009, 10007, 100003, 1000003] m b) == v

True

We note that the operator (*) is overloaded here so that it actually calls the
GAP (*) operator on matrices.

4 Using CASH to Enhance Parallelism

Using one of the several available parallel Haskell implementations, such as the
one that is provided with GHC, it is easy to parallelise the multiple homomorphic
images skeleton from Section 3.2. We can then make this available to computer
algebra users through the CASH interface. Hitherto most computer algebra sys-
tems have limited, if any, support for parallelism. Therefore a Haskell-side par-
allel skeleton which is accessible to the computer algebra user in this way is a
major advantage of our design. Here we use the Eden parallel dialect of Haskell,
which targets parallel clusters. Using Eden, we can simply transform the orig-
inal skeleton, which called the sequential zipWith function, into an equivalent
parallel version that uses parZipWith instead.

multHomImg fwd sol comb ps x = res

where xList = zipWith fwd ps (repeat x)

resL = parZipWith sol ps xList

res = comb ps (toOMMatrix resL)
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Worker WorkerWorker

Distribute

[(PEId,a)]

Merge

[a] [b]

[(PEId, b)]

[PEId]

Fig. 3. The workpool skeleton

A parallel zipWith skeleton: The parZipWith skeleton uses a workpool [15] ap-
proach (see Figure 3). Workpools are commonly used where tasks have varying
granularities, to dynamically balance the allocation of tasks to processors.

parZipWith f l1 l2 = newTasks

where

(newReqs, newTasks) = ...

workerProcs = [process (zip [pe,pe..].(worker f))| pe <- [1..noPe]]

worker f [] = []

worker f ((v1, v2) : ts) = (f v1 v2) : worker f ts

The parZipWith skeleton creates one worker process for each available processor
(PE), where each worker process applies f to a pair of two arguments in a Curried
way. Each of these processes is executed in parallel using the Eden process

construct. workerProcs defines this set of worker processes, pairing each result
with the id of the PE that produced it, pe. This is used by the skeleton to
determine which PEs have surplus capacity.

(newReqs, newTasks) = (unzip . merge) (zipWith ( # ) workerProcs

(distributeLists (l1, l2) requests))

requests = (concat (replicate 2 [1..noPe])) ++ newReqs

The skeleton pairs the input tasks (the pairs of arguments to the worker function
f) with a list of requests. The requests value is a list of process ids that is
used to map tasks to processes. Each task is paired with a process id using
the distributeLists function and these ids are then used to assign the task
to the corresponding Eden process. The results of executing the tasks on the
processes are merged using Eden’s non-deterministic merge operation, and then
unzipped to give the lists of new requests, newReq, and new tasks, newTasks.
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The distributeLists function simply accumulates the tasks for each PE in an
ordered list so that these can be passed on to the correct worker process.

distributeLists tasks reqs = [taskList reqs tasks n | n <- [1..noPe]]

where taskList (r:rs) (v1:vs1, v2:vs2) pe

| pe == r = (v1, v2) : (taskList rs (vs1, vs2) pe)

| otherwise = taskList rs (vs1, vs2) pe

taskList _ _ _ = []

Modifying the GAP functions: For the linear solver, the results need to be or-
dered so that they can be combined correctly. Since not all instances of the
multiple homomorphic pattern will require this ordering, we offload it to the
relevant GAP functions. We therefore also need to modify the GAP function
ModMat so that it returns a pair of the solution vector and the prime. This pair
is implicitly passed through the skeleton, so that in the combination phase, the
CRAMat function first sorts the pairs by their prime numbers before computing
the Chinese Remainder algorithm. The modified GAP functions are as follows:

SolMat:=function(p, x)

...

return([List(r, Int), p]);

end;

CRAMat:=function(ps, r)

local x, pris, vecs, res;

pris:=[];

vecs:=[];

for x in r do

if not x = [] then

pris:=Concatenation(pris,[x[2]]);

vecs:=Concatenation(vecs,[x[1]]);

fi;

od;

res:=ChineseRem(pris, vecs);

return(res);

end;

Performance: In order to demonstrate the effectiveness of the parallel perfor-
mance of the skeleton, we tested it on several sample matrices of 200 x 200
17-digit elements. Experimentation shows a 1.795 speedup on 2 cores over the
original sequential version of the skeleton discussed in Section 3.2. Clearly, these
early results show that the skeleton can be used to increase the performance
of the linear solver; and, more importantly, the speedup shows that parallel
skeletons can be an effective way of increasing the performance of computer al-
gebra systems. Indeed, our domain-specific orbit skeleton has previously shown
a maximum speedup of 8.295 on eight cores [16].
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OpenMath
Socket

Server

OpenMath
SocketGAP
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Maple

Computer Algebra Server

Computer Algebra Server

Computer Algebra Server

Haskell MiddleWare 

Client: CASH/GAP

Fig. 4. SymGrid-Par System Architecture

4.1 SymGrid-Par

While this paper focuses on the interface between Haskell and computer alge-
bra systems, the full power of Haskell as a coordination language only becomes
apparent when we consider how large-scale symbolic computations can be coor-
dinated. SymGrid-Par (Figure 4) has been designed to achieve a high degree of
flexibility in constructing a platform for high-performance, distributed symbolic
computation, including computer algebra systems. It has 3 main components:

– The Client. The end user works in his/her own familiar programming en-
vironment, so avoiding needing to learn a new computer algebra system, or
a new language to exploit parallelism. We can imagine here the client being
CASH, connecting through the Haskell middleware coordination layer to the
computer algebra systems. The coordination layer is completely hidden from
the CASH end users, and they work exactly as they would dealing directly
with computer algebra systems. For example, the CASH client could send an
SCSCP request to the coordination server to use the multiple homomorphic
images skeleton.
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– The Coordination Server. This middleware provides parallelised services
and parallel skeletons to the client. The client may invoke these skeletons
as standard higher-order functions. The Coordination Server then delegates
work (usually calls to expensive computational algebra routines) to the Com-
putation Server, which is another SCSCP-compliant computer algebra sys-
tem. Currently the Coordination Server is implemented in Haskell, allowing
the user to exploit polymorphism, purity and higher-order functions for ef-
fective implementation of high-performance parallelism. In this example, the
Coordination Server executes the Eden multiple homomorphic images skele-
ton, creating GAP instances as separate worker processes.

– The Computation Server. This component is typically a dedicated com-
puter algebra system, e.g. GAP. Each server handles the requests that are
sent to it, sending the results back to the coordination layer for processing.
Finally, the coordination layer returns the result to the client.

Currently, all communication between the components uses the SCSCP inter-
face to maximise flexibility and interoperability. In future, we could adapt this
to call computer algebra functions directly, so avoiding the marshalling and com-
munication overhead. This could be useful on multi-core machines, whereas the
generic interface is better suited for large-scale distribution. Such a design is
discussed in [17].

4.2 Calling Haskell from GAP

Using the SymGrid-Par architecture, which provides an SCSCP server with a
collection of parallel skeletons, we can now use our interface to call parallel
Haskell code from a GAP client. In order to call the Multiple Homomorphic
Images skeleton from GAP, we first install it as an SCSCP service called CS MHI.
We then create a GAP wrapper that calls this parallel SCSCP service:

ParMHI:=function( mod_fct, sol_fct, cra_fct, primes, matvec )

local res;

res:=EvaluateBySCSCP("CS_MHI",

[mod_fct, sol_fct, cra_fct, primes, matvec],

SCSCPclientHost, SCSCPclientPort);

return res.object;

end;

In the GAP shell, we can then simply call this SCSCP wrapper as follows:

gap> ParMHI("WS_Mod", "WS_Sol", WS_CRA", Primes, [m,v])

Here, Primes is the list of prime numbers passed to the algorithm and m and
v are GAP representations of a matrix and a vector that need to be solved.
This is only an example of the power of the approach, of course: in addition
to domain-specific skeletons such as this, we also provide a number of general-
purpose skeletons such as parallel maps and folds that can be freely used by the
computer algebra user.
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5 Related Work

We are aware of two previous attempts to link computer algebra systems with a
general-purpose functional language. The GHC-Maple [11] system provides a be-
spoke interface between sequential Haskell and the Maple heap, using an internal,
string-based representation of mathematical objects in Maple. The Eden-Maple
system [12] builds on this interface, using Haskell’s foreign function interface
(FFI) to link Maple with the parallel Eden system. The main difference to CASH
is that both these systems are restricted to one computer algebra system, using
an interface that is specific to that system. They are therefore fragile to change.
In the wider arena, one early system that used a declarative language to coordi-
nate parallel Maple programs was ||MAPLE|| [18]. This used the guarded horn
clause language Strand to coordinate parallel Maple computations, executing on
networks for workstations. Another system enabling parallelism for Maple is Dis-
tributed Maple [19], which provides primitives for explicit thread creation and
synchronisation, as well as non-determinism and speculation. Compared to the
above approaches, it provides a lower level of coordination with explicit threads.
In contrast to the approach we have taken here, of offloading computer algebra
to dedicated systems, DoCON, the Algebraic Domain Constructor [20] aims to
provide a full computer algebra system for students, using a Haskell implemen-
tation. At present, DoCON provides only a small subset of the functionality
of computer algebra systems such as GAP, mainly providing support for linear
algebra, polynomial GCD and Gröbner bases.

GAP itself has been parallelised with the ParGAP [21] package, using the
MPI message passing library. To ease parallel programming, it builds higher-level
abstractions over the MPI layer, for example a ParList skeleton that computes
a function in parallel over a list. Work is still underway. The latest development
in the open source GAP system is to make the GAP kernel itself parallel [2], by
providing both high and low levels of parallel abstraction for the end GAP user.
However, in contrast to CASH, all these approaches are specific to GAP, and
cannot exploit the existing large body of work on parallelism in Haskell.

Finally, the recently revised Numeric Prelude [22], is a Haskell library that
contains many complex mathematical representations together with those most
commonly found in computer algebra systems. For example, it contains support
for groups, rings, domains, fields, lattices, monoid, polynomials and basic matrix
manipulation. In contrast to our design, the numeric prelude does not offer a
full system for computer algebra and tends to focus on numerical rather than
symbolic computation. In the longer term we intend to support the evolving class
hierarchy that is being developed as part of the Numeric Prelude to simplify our
Haskell-side usage of symbolic computations, while maintaining the SCSCP link
to computer algebra systems.

6 Conclusions

By connecting SymGrid-Par to the CASH front-end client, using the generic SC-
SCP interface, we have allowed computer algebra systems to be easily combined
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with functional programming. This makes the existing rich repertoire of complex
and efficient library functions over mathematical data structures, with all the
mathematical knowledge that has been captured in them, easily available to the
Haskell programmer. It also makes Haskell available to computer algebra users.
One particular advantage of this is that parallelism can be much more easily ex-
pressed in Haskell, using any of the available parallel Haskell implementations.
We have used this in the Coordination Server component of SymGrid-Par, show-
ing here how the Eden distributed memory implementation can be exploited to
parallelise the new, domain-specific multiple homomorphic images skeleton.

There are several possible avenues for future work, both for SymGrid-Par and
for CASH itself. Firstly, in order to simplify the interface for the CASH user, we
intend to build on the evolving Haskell class hierarchies that are being developed
as part of the Numeric Prelude [22]. We are also in the process of extending the
library of parallel skeletons that are available to the CASH user by implementing
more domain-specific skeletons for computer algebra, and conversely are consol-
idating client-side functionality by defining and revising content dictionaries for
particular computer algebra sub-domains [23]. Finally, we are promoting the SC-
SCP protocol in order to increase the number of computer algebra (and other)
systems that can be exploited in this way.

This paper represents a first, but important, step in removing the walls of
the ghetto between functional programming and computer algebra systems. We
are pleased by our initial results and believe that there are significant benefits to
both communities both from this development, and from the future cooperations
that this will enable.
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Downloading CASH
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