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Abstract. Data serialisation is a crucial feature of real-world program-
ming languages, often provided by standard libraries or even built-in to
the language. However, a number of questions arise when the language in
question uses demand-driven evaluation and supports higher-order func-
tions, as is the case for the lazy functional language Haskell. To date, so-
lutions to serialisation for Haskell generally do not support higher-order
functions and introduce additional strictness.
This paper investigates a novel approach to serialisation of Haskell data
structures with a high degree of flexibility, based on runtime support for
parallel Haskell on distributed memory platforms. This serialisation has
highly desirable and so-far unrivalled properties: it is truly orthogonal
to evaluation and also does not require any type class mechanisms. Es-
pecially, (almost) any kind of value can be serialised, including functions
and IO actions. We outline the runtime support on which our serialisa-
tion is based, and present an API of Haskell functions and types which
ensure dynamic type safety of the serialisation process. Furthermore, we
explore and exemplify potential application areas for orthogonal seriali-
sation.

1 Introduction

Serialisation of data is a crucial feature of real-world programming systems. Be-
ing able to write out and read in data structures without complications provides
a simple and straightforward way of saving and restoring an application’s config-
uration, and generally enables a program’s state to persist between runs. Main-
stream and scripting languages like Java, Ruby, Perl and Python provide power-
ful libraries for this purpose by default, concentrating on ease of use (consider e.g.
Python’s pickle interface or the omnipresent JSON format for object-oriented
web programming). There is considerable interest and demand for general se-
rialisation features in Haskell. In the past year, we have come across related
requests on mailing lists or talked about it in personal discussion at several
opportunities [1, 12, 14, 13]. For the functional world, the characteristic equal
treatment of a program (functions) and its (heap) data poses additional chal-
lenges to the design and implementation of serialisation features. Functions (in
particular higher-order functions) are first-class citizens and should be serialis-
able as other data. Another complication is added if the language in question
uses demand-driven evaluation: how should serialisation treat unevaluated data?
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The lazy purely functional language Haskell [9] has both properties, yet existing
serialisation approaches for Haskell do not preserve either of them.

To overcome this deficiency, this paper proposes and explores a new approach
to serialisation of Haskell data structures, based on runtime support for paral-
lel Haskell. Implementations of parallel Haskell variants for distributed memory
systems obviously require to transfer data from one heap to another. This trans-
fer is based on breadth-first packing and unpacking of graph structures from the
Haskell heap, which can represent Haskell data structures of various kind, inde-
pendent of the evaluation state. In other words, the parallel runtime includes an
internal built-in serialisation mechanism with novel and interesting properties.
In this paper, we explore the potential and technical limits of using the parallel
Haskell graph packing routines to serialise data in Haskell:

– In Section 3, we propose a serialisation mechanism based on runtime support,
which is orthogonal in two ways:
+ Orthogonal to evaluation. That is, both normal form and non-normal

form data can be serialised.
+ Orthogonal to type. That is, values of any data type can be serialised, no

type class mechanisms are required. The notable exception are special
concurrency types (MVar and transactional variables), serialisation of
which is not supported by the runtime system.

– We show how to re-establish dynamic type safety for this type orthogonal
serialisation support of the runtime system, by suitable Haskell wrapper
code.

– In Section 4, we propose and exemplify application areas for our approach
which cannot be realised using other serialisation approaches.

2 Related Work

As already mentioned in the beginning, serialisation is a common standard fea-
ture present in many programming languages. We put the focus of our discussion
on approaches specific to lazy functional languages, considering mechanisms for
serialisation and persistence.

A very simple, yet unsatisfying, serialisation (and thereby data persistence) is
to use the Show and Read class instances. Data types which define instances for
these classes can simply be written to a string (show) and parsed back in (read).
Efficiency can be drastically improved by using binary I/O (various libraries
have been proposed), and integrated approaches like [25], which uses additional
type classes, offer more programming comfort. More recently, we also see efforts
to improve efficiency by reproducing the original sharing structure when reading
in data [6].

However, all these approaches require to completely evaluate the data which
are serialised, and serialisation of infinite or cyclic data structures will send the
program into an infinite loop1. The real challenge in combining serialisation and

1 In the Haskell wiki [11], we have found allusions to a library SerTH that allegedly
supports cyclic data structures and uses template haskell. The provided links are
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laziness is to serialise only partially evaluated values. Only if data evaluation and
data serialisation are truly orthogonal, a library for persistence can be established
where previous evaluations are reused later. Efforts have been made in the past
to join lazy functional languages and persistence in an orthogonal way.

McNally [19, 18] has pioneered these questions with Staple, a programming
system with a purely functional interpreter interface, related to Miranda and the
then-upcoming Haskell. In an integrated whole-system approach, Staple supports
two concepts of persistence: a store of persistent modules which evolve to more
and more evaluated state transparently, and interactive stream persistence which
allows the user to explicitly create, retrieve and update persistent values in the
store. Stream I/O instead of monads and the simplistic interpreter interface
characterise Staple as early pioneering work in the field. To our knowledge, no
existing system is similar to the Staple persistent store, but it has set directions
for several successors.

One such strand of work is Persistent Haskell [24, and earlier: [7]], which
describes concepts for adding persistence to the GHC runtime, based on the
GUM [26] runtime support for packing which we are using subsequently as well.
As in GUM, special closures with fetch semantics are used for retrieving persis-
tent data, which is stored in an external generic persistent object store. While
these mechanisms remain completely transparent, the programming interface to
the system requires to explicitly open a store and retrieve and store values. The
approach of the authors is based on the same runtime system features as ours,
yet the paper stays with a high-level design and does not present working solu-
tions to the inherent problems (some of which are nevertheless discussed). One
essential advantage is, however, that their design will preserve sharing across
several serialised values.

The system which comes closest to what we outline here is the way Clean
provides lazy dynamics [27]. Clean dynamics both solve the problem of runtime
typing and retain the laziness of stored data, while allowing to transfer data
between different applications. However, this transfer feature for unevaluated
data requires an integrated systemic design around an “application repository”
which contains all functions referenced by persistent data (we will see why this
is necessary in the technical main part).

Very limited support for dynamics is included in the Haskell base library [10]
as well, in Data.Dynamic. We mention it here because we are going to use the
underlying Data.Typeable to solve typing problems in our approach. Based on the
module Data.Typeable which provides runtime type reification and guarded type
casts, data can be converted to a Dynamic and back to its original type (failing
at runtime if the type is wrong). Haskell Dynamics are very limited, since a
Dynamic can only be used in the same run of the same program (binary). In
practice, this limits their use to up- and downcasting elements for a uniform
container type.

however not accessible any more. This library seems to have perished (including all
substantial information about its implementation techniques).
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3 Implementation

3.1 Runtime System Support

Our implementation of heap data serialisation is based on functionality needed
for the Eden [17] and GUM [26] parallel variants of Haskell, namely graph pack-
ing. The runtime system (RTS) for Eden and GUM contains methods to tra-
verse and pack a computation graph in the heap in breadth-first manner, and
the respective counterpart for unpacking. This is by far the most crucial and
error-prone part of the parallel Haskell implementations Eden and GUM [17, 4,
26]. At the same time, it needs to be integrated part of the RTS. Outsourcing
its functionality into a library appears to require rather specialised and complex
supporting runtime features (we investigated in [3] and [2]).

Heap closures in GHC are laid out in memory as a header section containing
metadata, followed by all pointers to other graph nodes, and then by all non-
pointers2. The essential and first header field is the info pointer, pointing to
information as e.g. the amount of pointers and non-pointers in the particular
heap closure, and the entry code.

When packing data, the respective computation graph structure is traversed
and serialised. During the traversal, unevaluated data (thunks) are packed as the
function to apply and its arguments, so they can be evaluated on the receiver
side. Newly met closures are packed as their header data and non-pointer data.
Pointers will be reestablished from the global packet structure when unpacking.
Cyclic graph structures are broken up by using back references into the previous
data. I.e. when a closure is met again, the routine will not pack the actual
closure data again, but a special marker (REF) for a back reference and the
relative position of the previously packed closure in the packet. As this requires
a starting marker field, normal closures will start by another marker (CLO). A
third type of marker indicates static closures (constant applicative forms).

1:graphroot

CLO hdr d1, d2

5:closure 2

CLO hdr d1, d2

9:closure 3

CLO hdr

11:closure 4

CLO hdr d1, d2, d3

16: ref 2

REF 5

18:closure 5

CLO hdr d1, d2, d3

23: ref 4

REF 11

1

d1,d2

2

d1,d2

3

empty

4
d1,d2,

d3

5
d1,d2,

d3

Fig. 1. Example serialisation packet for a computation graph

2 There are some heap closures which use a bitmap layout, mixing pointers and non-
pointers. We only describe the common case with standard layout here.
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Figure 1 shows an example packet (on the left) which serialises a subgraph
of five nodes (depicted on the right), with a line of explaining comments below
the packet data. For simplicity, header data is assumed to be just one word, the
info pointer. The graph traversal is breadth-first from left to right. As indicated,
closures 2 and 4 appear twice in the packet, the second time only as references.
All pointer fields are left out in the packet; they will be filled with references to
the subsequent closures upon unpacking, using a closure queue.

As the reader might already have noticed from the description, this packing
routine relies on the closure layout information and info pointers being pre-shared
between the sender and receiver. The packing algorithm in its current form
also uses static memory addresses of the program’s (and libraries’) functions.
In consequence, the algorithm assumes that the exact same binary is receiving
the data. This limitation is discussed at the end of this section. Furthermore,
packing may currently fail because a graph structure in the heap is bigger than
a configurable maximum buffer size. The RTS could reallocate a bigger buffer in
this case, but this is not implemented yet.

On the plus side, graph packing works on most closure types in GHC and is
therefore to a large extent independent of the data type to be packed. The notable
exception are primitive data structures for synchronisation, mutable variables
(MVars) and transactional variables, which cannot be packed. Typically, packing
and transfering data structures which contain MVars does not make sense, since
they imply and store external system state. Examples include IO file handles,
as well as semaphores and other synchronisation structures. Apart from this
restriction, serialisation is completely orthogonal to the Haskell type system.

3.2 Heap to Array: Unsafe Dynamics

As the first step towards our Haskell serialisation, we define a primitive operation
which, instead of sending a serialised graph over the wire, returns the data
in a Haskell byte array. A byte array is a primitive data type in GHC which
provides a chunk of heap for unboxed non-pointer values. This type is the basis
of every higher-level array which contains unboxed values (raw data, as opposed
to “boxed” values which are stored in pointer arrays).

Primitives and IO-monadic wrapper

serialize# :: a -> State# s -> (# State# s, ByteArray# #)

deserialize# :: ByteArray# -> State# s -> (# State# s, a #)

heapToArray :: a -> IO (UArray Int Word)

heapFromArray :: UArray Int Word -> IO a

Shown here are the types of the primitive operations and two small wrapper func-
tions which provide an IO-monadic version and lift the result type to an unboxed
array (UArray) of Words. These two functions heapToArray and heapFromArray

provide the minimum wrapper around the primitive operation: the functions
return a regular Haskell data structure in the IO monad.
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When used in a disciplined manner, these functions can already prove useful,
for they contain all necessary data to reconstruct the serialised structure in its
current evaluation state. However, no type safety is provided: any type of value
can be serialised and later unpacked and used as any other data type, interpreting
the raw data in the heap closures in an incorrect way. A programmer might well
be aware of this problem, but make wrong assumptions on the type inference
defaults in the compiler, as the following example illustrates.

An unintended type cast

lucky = do let list = map (2^) [30..40] -- defaults to [Integer]

pack <- heapToArray list

...

copy <- heapFromArray pack -- type of copy??

putStrLn (show (length copy : copy)) -- fixes copy :: [Int]

-- (length :: [a] -> Int)

In our example, a list of whole numbers is packed (its default type is a large
(GMP-based) [Integer]), and most list elements will exceed 32bit in size. When
unpacking the data, explicit type annotations or the type context of the copy
(here, the added length copy) might lead to interpreting it as [Int] instead. Only
the first number in the list retains its correct value 230, and only because Integers
are handled by machine instructions and stored in a format similar to Int when
they are small enough. For the following (larger) numbers, the data structures in
the Haskell heap are GMP-specific. Their addresses are misinterpreted as 32bit
Int values, leading to the following wrong program output:

Output when running lucky:

[11,1073741824,28788544,45565760,45565760,45565760,45565760,45565761,...]

Unpacking a serialised value into a value of the wrong type can lead to all kinds
of runtime errors. The subsequent code makes false assumptions about its heap
representation and enters the data structure at the wrong point. In the best case,
the two types have a “similar” underlying heap representation, but might still
be misinterpreted, as in our example above. Other cases might lead to complete
failure.

3.3 Phantom Types: Type-safe Dynamics in one Program Run

In order to provide more type safety, we wrap the array containing the serialised
data inside a structure which uses a phantom type:

Serialisation data structure for type safety

data Serialized a = Serialized { packetSize :: Int

, packetData :: ByteArray#}

serialize :: a -> IO (Serialized a)

deserialize :: Serialized a -> IO a
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Passing the original type to a Serialized type constructor in this way ensures
that the type checker refuses ill-typed programs with a meaningful error message.
The type is not arbitrary any more, but included in the data structure passed
to the deserialisation function (as a phantom type, at compile time). Data can
be restored in a typesafe manner within the same program run now. In our
example, the type [Int] inferred from concatenating the unpacked list to an Int

propagates up to the original (exposing the Int overflow one can expect).

Type propagating up

works = do let list = map (2^) [30..40] -- inferred: [Int]

pack <- serialize list -- inferred: Serialized [Int]

...

copy <- deserialize pack

putStrLn (show (length copy : copy)) -- fixes the type: [Int]

-- (length :: [a] -> Int)

-- output: [11,1073741824,-2147483648,0,0,0,0,0,0,0,0,0]

3.4 Type-safe Persistence

With the previously presented code in place, an obvious idea is to store and
later retrieve the array which represents the serialised data. Essentially this is
what we need in order to realise persistence, i.e. keeping partially evaluated
data in an external store and loading it into a program. Using Show and Read

instances with read . show == id for the Serialized a type allows one to write
a representation to a file as a string and parse it. Much more space efficient, yet
conceptually equivalent, the Binary interface can be used. Two problems become
apparent when doing so, only one of which can be solved easily.

Dynamic Type Checks. The first problem is again one of typing: when reading
Serialized a from a file and deserializing the represented data, the type a of
these data has got to be accurate, either given by the programmer or inferred.
Since a user can (attempt to) read from any arbitrary file, this type check needs
to happen at runtime. Figure 2 shows how to realise this dynamic type check
using the runtime type reification provided by Data.Typeable,

First, the Serialized data structure now needs to include type information.

data Serialized a = Serialized { packetSize :: Int

, packetType :: TypeRep

, packetData :: ByteArray#}

Second, the represented type has got to be established and checked when
reading in and deserialising data. With the phantom type, the right place to do
this type check is inside the Read instance for Serialized, requiring a Typeable

context (instances can be automatically derived with GHC). Data loaded into
the running program must have the appropriate type, and the program will
otherwise halt with a runtime error and report the type mismatch.
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instance Typeable a => Show (Serialized a)

where ... -- showing packet in human-readable and parsable format.

parseP :: ReadS (Int,String,[Word]) -- Parser matching the Show format

parseP = ... -- not shown. Returns packet size, type string, values.

instance Typeable a => Read (Serialized a)

where readsPrec _ input

= case parseP input of

[((size,tp,dat),r)] ->

let !(UArray _ _ _ arr# ) = listArray (0,size-1) dat

t = typeOf (undefined::a)

in if show t == tp

then [(Serialized size t arr# , r)]

else error ("Type error during parse: "

++ show t ++ " vs. " ++ tp)

other -> error "No parse"

Fig. 2. Serialisation structure, Read instance

Figure 3 shows the definition of a binary instance for type Serialized, using
the same type check mechanism, and file interface functions encodeToFile and
decodeFromFile, in analogy to encodeFile and decodeFile provided by the Binary
module itself.

instance Typeable a => Binary (Serialized a) where

put (Serialized sz tp bArr#)

= do let typeStr = show tp

arr = UArray 0 (sz-1) sz bArr# :: UArray Int Word

put typeStr

put arr

get = do typeStr <- get :: Get String

uarr <- get :: Get (UArray Int Word)

let !(UArray _ _ sz bArr#) = uarr

tp = typeOf (undefined :: a) -- for type check

if (show tp == typeStr)

then return ( Serialized sz tp bArr# )

else error ("Type error during parse:\n\tExpected "

++ show tp ++ ", found " ++ typeStr ++ ".")

encodeToFile :: Typeable a => FilePath -> a -> IO ()

encodeToFile path x = serialize x >>= encodeFile path

decodeFromFile :: Typeable a => FilePath -> IO a

decodeFromFile path = decodeFile path >>= deserialize

Fig. 3. Serialisation structure, Binary instances
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Using Typeable in our implementation now restricts the serialisation to monomor-
phic types. Furthermore, the check compares not the TypeRep itself, but its string
representation – TypeRep is just an ID that changes from run to run. Both limi-
tations are introduced by the GHC implementation of Data.Typeable.

Please note that the place of our type check is essentially different to dy-
namics in Clean [27], where a pattern match on types is performed at the time
of unpacking a value from dynamic (corresponding to deserialize). Clean’s ap-
proach is more liberal and even allows to “try” several different type matches in
one function, as well as polymorphism through the dynamic apply function.

References to Raw Memory Addresses. The second, more serious limita-
tion of the approach is the use of static information and memory addresses (info
pointers and static functions) in the packing code. The packing algorithm in its
current form directly uses the memory addresses of functions in the program and
in libraries which it uses, as well as static layout information. The latter could
be easily fixed by duplicating this layout information in the packet. However,
directly using code addresses in memory assumes that the exact same binary is
receiving the data and that no code relocation takes place.

Dynamic assignment of code addresses (relocatable code) can be dealt with
by packing offsets to a known reference point (as also mentioned in [24]). Another
possibility is to inspect the application at runtime using binary utilities like
nm. However, if an application is recompiled after making changes to its code,
the addresses of static data and the compiler-generated names will necessarily
change, thereby invalidating previously produced packet data without a chance
of correction for the new binary.

Well-understood, the ability to store and retrieve only partially evaluated
data is the main advantage of our proposal, and this property conceptually re-
quires to keep references to a program’s functions if they are needed in the
serialised computation. Clean [27] achieves this by a system-wide application
store which contains all code referenced from a saved dynamic, requiring special
tools for its maintenance (transfer to other machines, deletion, garbage collec-
tion of the application store). We consider this a slightly too system-invasive and
demanding solution.3 It would be better to achieve a compromise design where
serialisation packets stay independent and self-contained (at the price of higher
failure potential at runtime).

To enable data transfer between several applications (and there is no funda-
mental difference between this and data exchange between different versions of
one application), big changes to the packing format will be necessary. Not only
does the code need to replace static addresses by relative references, the packet
needs to include the static data itself, metadata as well as chunks of code for
functions of the program, which has to be dynamically linked at runtime. In
contrast, it is easy to make the system produce an understandable runtime error

3 In a personal conversation [23], the author came to know that in practice, Clean
uses a “reduced” version of Dynamics without application store, which poses similar
problems.
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checkpoint :: Typeable a => FilePath -> IO a -> IO a

checkpoint name actions = encodeToFile name actions >> actions

recover :: Typeable a => FilePath -> IO a

recover name = doesFileExist name >>= \b ->

if b then decodeFromFile name >>= id

else error ("No checkpoint file " ++ name)

Fig. 4. Basic checkpointing constructs

message when loading data with the wrong version. This can be achieved by in-
cluding a hash value of the program code into the Serialized data and checking
that value while parsing, as another dynamic consistency check. All this can be
realised purely at the Haskell level.

4 Potential Applications

4.1 Checkpointing Long-running Applications

Checkpointing is the process of storing a snapshot of an application’s current
state during runtime, in order to restart the application in this state after inter-
ruptions.

With the presented serialisation approach, we can realise a simple check-
pointing mechanisms to recover long-running Haskell applications from external
failures and interruptions, by serialising suitable parts of the running program
(as a sequence of IO actions) and storing them for a potential recovery.

Figure 4 shows two utility functions which we propose for this purpose. The
first function checkpoint serializes the given sequence of IO actions (which might
be the whole remainder of a program at a certain stage of program execution)
and executes it afterwards. Previous variable bindings referred to by the sequence
are automatically included in this serialisation, in their current evaluation state.
The second function loads an IO action from a file and executes it. To achieve
good performance, both functions use the binary file interface functions defined
in Figure 3.
These functions can now be used directly at the top level, as sketched here:

main = do args <- getArgs

if not (null args) && head args == "-r"

then recover "checkpt"

else do x1 <- computation_1 args

actions_1 x1

checkpoint "checkpt" $ do

actions_2 x1

x2 <- computation_2 x1

checkpoint "checkpt" $ do

more_actions x1 x2

...
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However, the program needs to be structured in a somewhat unelegant “con-
tinuation-capturing” style: Every checkpoint needs to capture the entire re-
mainder of the program. The example code uses the IO monad, and checkpoints
therefore have to be established at the very top level; the calling context of a
subordinate function cannot be accessed from inside that function. A slightly
more elegant solution would be to use the continuation monad instead of the IO
monad, and a monad transformer to embed IO actions. A callCC-like mechanism
can then capture and serialise the entire program continuation – but again, the
program needs to be rewritten to use monad ContT () IO () instead of IO in
every function that involves establishing checkpoints.

So, our diagnosis is: To equip a program with failover safety through check-
points requires considerable restructuring by the programmer. That said, it
seems promising to provide “checkpointed” versions of monadic computation
combinators like sequence and mapM to support and facilitate this manual re-
structuring (the type of the checkpoint functions in Figure 4 is based on IO a

instead of a unit return IO () precisely to allow this). A checkpoint will typically
be established at a particular stage of execution, for instance after each step of an
iteration. Figure 5 shows how to realise a combinator sequenceC where previous
results are accumulated and stored in a checkpoint after each step of a monadic
sequence. A monadic mapM with checkpoints can be expressed using sequenceC,
and used as shown in the example. Introducing a number of checkpoints to a
program remains an explicit restructuring task for the programmer, but such
checkpointed IO-monadic combinators greatly facilitate the job.

sequenceC :: Typeable a => FilePath -> [IO a] -> IO [a]

sequenceC name ms = seqC_acc [] ms

where seqC_acc acc [] = return (reverse acc)

seqC_acc acc (m:ms) = do x <- m

checkpoint name (seqC_acc (x:acc) ms)

-- build mapM_C with sequenceC:

mapMC :: Typeable b => FilePath -> (a -> IO b) -> [a] -> IO [b]

mapMC name f xs = sequenceC name (map f xs)

-- usage example:

example args = -- either the recover option "-r" has been given...

let doRecover = not (null args) && head args == "-r"

-- or we read an argument n (if any given)

n = if null args then 10 else read (head args)::Int

in do xs <- if doRecover then recover "seqC_test"

else mapMC "seqC_test" doIt [1..n]

putStrLn (show xs)

where doIt :: Int -> IO Int

doIt x = ... -- an expensive computation

Fig. 5. Combinator for checkpointed sequence, with usage example
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4.2 Persistent Memoisation for Frequently Used Applications

A second potential application area for the approach (with its present limita-
tions) can be to alleviate computational load of frequently used applications in
a production environment, by memoisation.

Memoisation [20] is a well-known technique to speed up function calls in
a computer program by storing results for previously-processed inputs. This
technique is particularly well suited for languages that support higher-order
functions: automatic memoisation can be readily provided by a library func-
tion. For the language Haskell, several such libraries exist [15, 8, 21, 5], with only
small differences between them: Both Elliot’s MemoTrie library [8] and Palmer’s
Memocombinators [21] use a Trie-based store [15], another library we have found
[5] relies on Haskell Generics [16].

Extending these memoisation techniques to more than one run of the pro-
gram is possible using our proposed serialisation. Persistent memo tables for
supportive data structures and repeatedly used functions can be built up, seri-
alised to persistent storage at shutdown, and loaded (deserialised) into memory
at startup. In order to realise persistent memoisation, a program using memoised
functions has to be extended by suitable init and shutdown mechanisms. The
shutdown routine will serialise all memoised functions to a file, with their memo
tables obtained so far. The init routine of a subsequent run will then load these
existing memo table dumps if they exist, or otherwise use the “fresh” definition
in the program.

f :: Integer -> Integer

f = memo f’ -- assuming a suitable memoisation library

where f’ x = ... -- can use f (not f’) recursively

main = do haveFile <- doesFileExist "f_memo.cache"

f_memo <- if haveFile then decodeFromFile "f_memo.cache"

else return f

...

-- all code must use (and pass around) f_memo

...

encodeToFile file_f f_memo

Fig. 6. Usage example for a memoised function in a program

A simple way to realise this is sketched in Figure 6. Function f memo is either
loaded from a serialised file or used from the original definition in a file, before
doing any work. Then, after the main execution, this function is serialised into
a file to be loaded in the next program execution.

A drawback of the code shown here is that the memoised function is loaded
inside the main function, and has to be passed around as an argument to every
function which was originally using f. This can be remedied by loading the file
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{-# NOINLINE f_memo2 #-} -- this will be executed once, because

f_memo2 = unsafePerformIO $ do -- of lazy evaluation.

haveFile <- doesFileExist "f_memo2.cache"

if haveFile then decodeFile "f_memo2.cache" >>= deserialize

else let f = memo f’

f’ x = ... -- can use f recursively

in return f

main = do ... -- f_memo2 can be used for f

... -- in the entire program

encodeFile "f_memo2.cache" f_memo2 -- and is saved at shutdown

Fig. 7. Less intrusive, however unsafe memoisation variant

inside f as an “unsafe global” (using unsafePerformIO, see [22]), as we show in
Figure 7. In this way, the function will be loaded from the given file automatically.
Saving it at shutdown still needs to be done explicitly, but the program can
remain otherwise identical to the non-memoised version. However, the memo
effect in this version relies on the compiler pragma not to inline the function –
especially not at the place where the file is written at shutdown.

We have experimented with the different memoisation libraries and did proof-
of-concept implementations for all of them, and also for a näıve list-based mem-
oisation. For the latter, care had to be taken to prevent the compiler from opti-
mising away the memoisation effect by aggressive inlining or let floating, but the
memoisation libraries generally provide suitable compiler pragmas. MemoTrie [8]
appears to be the most widely accepted, but Memocombinators [21] produced
slightly smaller memoisation data for our test program (fibonacci). In all, the
differences between these libraries are very minor, and all can be used with our
approach to memoise functions persistently across program runs.

5 Conclusions and Future Work

We have presented an approach to serialisation for Haskell data structures which
is orthogonal to both evaluation and data types, and can be fitted with dynamic
type checks by suitable Haskell wrapper functions. Haskell heap structures rep-
resenting data can be serialised independently of their evaluation state, and
restored later by the same program (but potentially in a different run of it). Our
approach is, to a large extent, also orthogonal to data types; no special serialisa-
tion type class is used. By Haskell wrapper functions using the Typeable class, we
have re-established type safety at runtime, ensuring that ill-typed usage will be
at least dynamically detected and results in meaningful runtime error messages
instead of unspecific internal failure.

The base implementation for our approach is directly carried over from pre-
vious research in the area of parallel Haskell implementations. As such, our
approach has conceptual and technical limits; the most relevant being that data
can only be read by the very same version of a program. This limitation notwith-
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standing, we have pointed out and demonstrated important application areas for
the approach in its current form. Easy-to-use checkpointing constructs for iter-
ative computations in the IO monad have been proposed, and we have shown
how memoisation techniques can be made persistent with only minor effort.
Very few related approaches have been been investigated in the past, and to our
knowledge, no previous work has investigated the technical details in comparable
depth or exemplified the application areas as we did here.

As future work, we plan to investigate how the Haskell code and the RTS
routines should be extended to provide better support for serialisation. The
version checksums for serialised data which we have briefly outlined appears to
be a straightforward extension at the Haskell level. In contrast, considerable
modifications to the packing routine need to be made in order to support data
exchange between several (versions of) applications. It would require to make
the packet format entirely self-contained and to avoid dependence on any static
data; necessarily a very long-term goal. A way to achieve this could be to include
dynamically linkable code chunks in the packet. Parallel Haskell implementations
for distributed memory systems can as well profit from these improvements, in
the form of extended platform independence and flexibility.

Availability. The runtime support on which we build our implementation is
available as part of the Eden-version of GHC4, currently at release 6.12.3.
Haskell code is available on request from the author.
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Haskell on distributed memory platforms. Special thanks go to Phil Trinder,
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