PHILIPPS-UNIVERSITÄT MARBURG

Fachbereich Mathematik und Informatik Prof. Dr. R. Loogen J.Berthold D-35032 Marburg Hans Meerwein Straße

2.Mai 2006

2. Übung zu "Semantik von Programmiersprachen", SS 2006

Abgabe schriftlicher Aufgaben: Di, 9.Mai 2006 (vor der Vorlesung)

Besprechung mündlicher Aufg.: 4.Mai 2006 in der Übung

Mündliche Aufgaben

2.1 Wohlfundierte Relationen

Begründen Sie für die angegebenen Relationen, ob sie wohlfundiert sind:

- (a) Relation \subseteq auf P(M) für eine Menge M.
- (b) die folgende Relation auf \mathbb{Z} :

$$n <^2 m : \Leftrightarrow n^2 < m^2$$

- (c) Relation < auf $[0,1] \cap \mathbb{Q}$
- (d) die lexikographische Ordnung $<_{lex}$ auf Wörtern über $\Delta = \{a \dots z\}$
- (e) Die folgende Relation auf Wörtern über $\Delta = \{a \dots z\}$: v < w, falls $|v|_a + |v|_b < |w|_a + |w|_b$ (wobei $\forall w \in \Delta^*, a \in \Delta$: $|w|_a = \text{Zahl der a in w}$)

2.2 Induktion

(a) Definieren Sie induktiv eine Abbildung

$$FV: \mathbf{AExp} \to \mathcal{P}(\mathbf{Loc})$$

die zu einem arithmetischen Ausdruck die Menge der in diesem Ausdruck vorkommenden (freien) Variablen bestimmt.

(b) Beweisen Sie induktiv die folgende Aussage:

Seien $a \in \mathbf{AExp}$ und $\sigma, \sigma' \in \Sigma$ mit $\sigma(X) = \sigma'(X)$ für alle $X \in FV(a)$. Dann gilt für alle $n \in \mathbf{N}$:

$$\langle a, \sigma \rangle \to n \text{ gdw. } \langle a, \sigma' \rangle \to n.$$

2.3 Wohlfundierte Relationen und Halbordnungen

Sei \prec eine wohlfundierte Relation über einer Menge B. Zeigen Sie:

- (a) Die transitive Hülle \prec^+ ist ebenfalls wohlfundiert.
- (b) Die reflexive, transitive Hülle $\underline{\prec}^+$ ist eine Halbordnung.

Schriftliche Aufgaben

2.4 Induktionsprinzipien

6 Punkte

Sei Δ ein Alphabet (d.h. eine endliche, nicht-leere Menge). Eine Zeichenkette über Δ ist eine Folge $a_1 \ldots a_n$ von Symbolen $a_j \in \Delta$ mit $0 \leq j \leq n, n \geq 0$. Die Anzahl n der Symbole einer Zeichenkette bezeichnet man als Länge der Zeichenkette. Die leere Zeichenkette hat die Länge 0. Zwei Zeichenketten u und v können zu der Zeichenkette uv konkateniert werden.

Behauptung: Es existiert keine Zeichenkette u, für die au = ub mit zwei verschiedenen Symbolen a und b aus Δ .

Zeigen Sie diese Behauptung

- (a) mittels vollständiger Induktion
- (b) durch einen Widerspruchsbeweis
- (c) mittels einer (von der vollständigen Induktion verschiedenen) wohlfundierten Induktion

2.5 Terminationsbeweis

6 Punkte

Gegeben sei die folgende While-Anweisung, die Euklids Algorithmus zur Bestimmung des größten gemeinsamen Teilers zweier positiver ganzer Zahlen implementiert:

Euklid \equiv while $\neg (M = N)$ do if $M \le N$ then N := N - M else M := M - N

Beweisen Sie, dass für alle $\sigma \in \Sigma$ gilt:

$$\sigma(M) \ge 1 \land \sigma(N) \ge 1 \implies \exists \sigma' . \langle \text{ Euklid}, \sigma \rangle \to \sigma'$$

Hinweis: Benutzen Sie eine wohlfundierte Relation auf Zuständen.