PHILIPPS-UNIVERSITÄT MARBURG

Fachbereich Mathematik und Informatik Prof. Dr. R. Loogen J.Berthold D-35032 Marburg Hans Meerwein Straße

9.Mai 2006

3. Übung zu "Semantik von Programmiersprachen", SS 2006

Abgabe schriftlicher Aufgaben: Di, 16.Mai 2006 (vor der Vorlesung)

Besprechung mündlicher Aufg.: 11.Mai 2006 in der Übung

Mündliche Aufgaben

3.1 Einzelschrittsemantik

(a) Führen Sie für das Programm

while
$$\neg(x = 1)$$
 do $(x := x + y; y := y - x)$,

im Zustand $\sigma_{\emptyset}[X \to 9, Y \to 1]$ eine Auswertung in Einzelschritten durch.

(b) Begründen Sie mit Hilfe der Einzelschrittsemantik, dass dieses Programm für bestimmte Zustände (welche?) nicht terminiert.

3.2 Beschleunigte Auswertung Boolescher Ausdrücke

Die Auswertung Boolescher Ausdrücke der Form $b_1 \wedge b_2$ und $b_1 \vee b_2$ kann beschleunigt werden, indem man die folgenden Strategien einsetzt:

- (a) **Sequentielle Auswertung:** Falls die Auswertung einen Ausdruck der Gestalt **false** $\land b_2$ und **true** $\lor b_2$ ergibt, wird der zweite Teilausdruck nicht ausgewertet, weil das Gesamtergebnis unabhängig von dessen Wert ist.
- (b) **Parallele Auswertung:** Beide Teilausdrücke werden gleichzeitig ausgewertet. Ein Boolescher Ausdruck der Form $b_1 \vee b_2$ wird zu **true** auswerten, wenn sich b_1 oder b_2 zu **true** auswerten lässt.

Geben Sie Herleitungsregeln der Einzelschrittsemantik für diese Auswertungsvarianten Boolescher Ausdrücke an.

Schriftliche Aufgaben

3.3 Beweisen Sie die Vollständigkeit der Einzelschrittsemantik bezüglich der Gesamtschrittsemantik:

4 Punkte

$$\forall c \in \mathbf{Cmd} \ \forall \sigma, \sigma' \in \Sigma : (c, \sigma) \to \sigma' \curvearrowright (c, \sigma) \Rightarrow^* \sigma'$$

Sie können das entsprechende Resultat für arithmetische und Boolesche Ausdrücke voraussetzen.

Def. X sei eine beliebige Menge.

Ein Paar (A/x) mit einem Element $x \in X$ und einer endlichen Teilmenge $A \subseteq X$, $|A| < \infty$ heißt Regelinstanz über X.

x heißt Folgerung, die Elemente $a_i \in A$ Voraussetzungen der Regel.

Eine Menge von Regelinstanzen über X heißt Regelsystem über X.

(a) Geben Sie die Menge X an, mit der die Herleitungsinduktion der Vorlesung / 1 arbeitet.

Im folgenden sei X stets eine beliebige Menge und R ein Regelsystem über X.

Def. Eine Teilmenge $Q \subseteq X$ heißt unter R abgeschlossen, wenn gilt:

$$\forall (A/x) \in R : A \subseteq Q \curvearrowright x \in Q$$

(b) Bestimmen Sie für das Regelsystem $R = \{(\{a\}/d), (\{b\}/a), (\{a,d\}/c), (\{d\}/a)\}$ / 2 über $X = \{a,b,c,d\}$ alle unter R abgeschlossenen Teilmengen von X.

Def. Wir definieren eine Abbildung. $\hat{R}: \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$:

$$\hat{R}(Q) = \{ x \in X \mid \exists Y \subseteq Q : (Y/x) \in R \}$$

 \hat{R} bestimmt also alle aus der Teilmenge Q in einem Schritt herleitbaren Elemente.

Wir betrachten speziell: $Q_0 = \emptyset$, $Q_{i+1} = \hat{R}(Q_i)$ für $i \in \mathbb{N}$.

- (c) Zeigen Sie, dass \hat{R} monoton bzgl. \subseteq ist und folgern Sie $\forall i \in \mathbb{N} : Q_i \subseteq Q_{i+1}$.
- (d) Beweisen Sie: $Q = \bigcup_{i \in \mathbb{N}} Q_i$ ist kleinste unter R abgeschlossene Menge, d.h.:
 - i. Q ist unter R abgeschlossen
 - ii. $\forall Q' \subseteq X : Q'$ unter R abgeschlossen $\curvearrowright Q \subseteq Q'$).