
Describing the singular behaviour of parabolic
equations on cones in fractional Sobolev spaces

S. Dahlke∗ and C. Schneider†

Abstract

In this paper, the Dirichlet problem for parabolic equations in a
wedge is considered. In particular, we study the smoothness of the
solutions in the fractional Sobolev scale Hs, s ∈ R. The regularity
in these spaces is related with the approximation order that can be
achieved by numerical schemes based on uniform grid refinements.
Our results provide a first attempt to generalize the well-known H3/2-
Theorem of [13] to parabolic PDEs. As a special case the heat equation
on radial-symmetric cones is investigated.
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1 Introduction

In this paper we are concerned with the fractional Sobolev regularity of
solutions to parabolic equations of the form

∂u

∂t
(x, t)−

d∑
i,j=1

Aij(t)
∂2u

∂xi∂xj
(x, t) = f(x, t) in K × R, u

∣∣
∂K×R = 0,

(1.1)
where K = K × Rd−m is a wedge in Rd and K ⊂ Rm a smooth cone, cf.
Definition 2.1. Moreover, A = (Aij(t))

d
i,j=1 is symmetric and the coefficients

Aij(t) are assumed to be real valued measurable functions of t satisfying an
ellipticity condition in Rd, see (3.3).
Our main regularity result is stated in Theorem 3.5. For convenience let us
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consider here the special case of K = K being a smooth cone in R3. Then
we obtain from Theorem 3.5 that for right hand sides f ∈ L2(R,K0

−µ,2(K))
where K0

−µ,2(K) is a specific Kondratiev space, see Section 2.2, and ϕ being
a suitable cut-off function with support in the truncated cone K0, the solution
u of problem (1.1) satisfies

ϕu ∈ L2(R, Hs(K0)) for any s < 2− µ,

where µ is bounded from above and below by max
(

1
2
− λ+

c , 0
)
< µ < 3

2
+ λ−c

(µ = 0 is allowed if 1
2
< λ+

c ). Here λ±c > 0 are the so-called critical exponents
introduced in [20]. We see that optimal regularity results are achieved for
small µ and the best we can hope for in terms of fractional Sobolev regularity
is

s < min

(
3

2
+ λ+

c , 2

)
, (1.2)

additionally assuming that the right hand side f belongs to the approriate
subspace of L2(K × R). In Example 3.8 we furthermore present a result
from [19], which indicates that our results are optimal in the sense that we
cannot expect s > 3

2
+ λ+

c in general.
Our regularity results are in good agreement with the corresponding theory
of elliptic equations: concerning the Sobolev regularity of solutions to elliptic
problems it is well-known that for smooth coefficients and smooth boundaries
we have u ∈ Hs+2(Ω) for f ∈ Hs(Ω), but this becomes false for more general
non-smooth domains. In particular, in [13] it has been shown that for general
Lipschitz domains Ω for the solution of the Poisson equation we only have
u ∈ Hs for all s ≤ 3/2, even for smooth right-hand side f due to singularities
of the solution near the boundary. This H3/2–Theorem has some important
consequences for the numerical treatment of the Poisson equation. Indeed,
it implies that the order of convergence that can be achieved by numerical
methods based on uniform grid refinement is limited by 3/2d,as long as we
do not impose further properties on the domain see, e.g. [3, 11] for details.
Moreover, for the Poisson equation with Dirichlet boundary conditions con-
sidered on corner domains, in [8] the same upper bound (1.2) we derive here
for the spacial regularity of our parabolic problem is given.
The authors are aware of the fact that regularity theory for partial differential
equations is a well-established field of research with a long history, and a lot
of spectacular results have been achieved. In particular, for elliptic PDEs,
the amount of literature is enormous and cannot be completely discussed
here. Let us just refer to [7, 9, 10, 13, 16, 23] for an (extremely uncomplete)
overview. Also for parabolic equations many results are known so far, let
us e.g. refer to [14, 15, 22]. Nevertheless, to the authors surprise, concern-
ing the generalization of the H3/2-Theorem to parabolic equations not much
seems to be known so far. In [10] it is shown that for the heat equation on a
polygonal domain Ω ⊂ R2 with right hand side f ∈ L2((0,∞) × Ω) there is
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a solution u ∈ L2((0,∞), Hs(Ω)) with s < π
maxj ωj

+ 1, where ωj denote the

inner angles of the polygon. Thus, for ωj → 2π we see that s < 3
2

is optimal.
The 3-dimensional case is not treated there at all. Our results now can be
seen as a first step to generalize the H3/2-Theorem to other parabolic prob-
lems. However, concerning the type of the domain, we are not as general
as [13], since the domains we consider are restricted to wedges (or cones) ac-
cording to Definition 2.1 instead of general Lipschitz domains. Furthermore,
our right-hand sides f are chosen to be (only) subsets of L2(K × R) unless
µ = 0 is allowed.
To substantiate our findings, in Section 3.3 we discuss in detail their impli-
cations for the classical case of the heat equation on a smooth cone K ⊂ R3,
i.e., we consider

∂u

∂t
−∆u = f in K × R, u

∣∣
∂K×R = 0. (1.3)

In this case the critical exponents λ±c are known to both coincide with λ+
1 =

−1
2
+
√

Λ1 + 1
4
, where Λ1 is the first eigenvalue of the Dirichlet problem of the

Laplace-Beltrami operator in Ω = K∩S2. For the particular case of Ω = Ωθ0

being a spherical cap, i.e., K being a radial symmetric cone with opening
angle θ0 ∈ (0, π), the critical exponents λ±c can be determined precisely (they
coincide in this case with the minimal root νmin of the Legendre function with
respect to the angle θ0). Exact values for λ+

1 and certain angles θ0 are listed
in Figure 7. If, additionally, K is a convex cone we obtain (similar to the
elliptic case) a shift in the spacial regularity by 2, i.e., for a right–hand side
f ∈ L2(R×K) and cutoff function ϕ with support in the truncated cone K0,
there is a solution u of the heat equation (1.3) satisfying

ϕu ∈ L2(R, Hs(K0)) for any s < 2,

see Corollary 3.11.
The paper is organized as follows. In Section 2 we collect the background
material related to the function spaces we need for our investigations.
Especially the weighted Sobolev spaces will play an important role. Then in
Section 3 we present our regularity results for the general parabolic problem
(1.1) as well as more specific results for the heat equation on a spherical cap.

2 Function spaces

2.1 Classical function spaces and types of domains

We start by collecting some general notation used throughout the paper.
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As usual, N stands for the set of all natural numbers, N0 = N ∪ {0}, Z
denotes the integers, and Rd, d ∈ N, is the d-dimensional real Euclidean
space with |x|, for x ∈ Rd, denoting the Euclidean norm of x. For a ∈ R,
let bac := max{k ∈ Z : k ≤ a}. Let Nd

0, where d ∈ N, be the set of all
multi-indices, α = (α1, . . . , αd) with αj ∈ N0 and |α| := ∑d

j=1 αj.
Furthermore, Bε(x) is the open ball of radius ε > 0 centered at x.
We denote by c a generic positive constant which is independent of the main
parameters, but its value may change from line to line. The expression A . B
means that A ≤ cB. If A . B and B . A, then we write A ∼ B.
Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and
the natural embedding is bounded.
By supp f we denote the support of the function f . A domain Ω is a con-
nected open set in Rd (which can be unbounded). Let Lp(Ω), 1 ≤ p ≤ ∞,
be the Lebesque spaces on Ω as usual. For r ∈ N ∪ {∞} we write Cr(Ω)
for the space of all real-valued r-times continuously differentiable functions,
whereas C(Ω) is the space of bounded continuous functions. Moreover, D(Ω)
denotes the set of test functions, i.e., the collection of all infinitely differen-
tiable functions with support compactly contained in Ω. For a multi-index
α = (α1, . . . , αd) ∈ Nd

0 with with |α| := α1 + . . . + αd = r, r ∈ N0, and an
r-times differentiable function u : Ω→ R, we write

Dαu =
∂|α|u

∂(x1)α1 . . . ∂(xd)αd

for the corresponding partial derivative or ∂αu = Dαu. Hence, the space
Cr(Ω) is normed by

‖u|Cr(Ω)‖ := max
|α|≤r

sup
x∈Ω
|Dαu(x)| <∞.

Let S(Rd) denote the Schwartz space of rapidly decreasing functions, whereas
S ′(Rd) is the set of tempered distributions on Rd. The set of distributions on
Ω will be denoted by D′(Ω). For the application of a distribution u ∈ D′(Ω)
to a test function ϕ ∈ D(Ω) we write (u, ϕ).
Let m ∈ N and 1 ≤ p ≤ ∞. Then Wm

p (Rd) denotes the standard Sobolev
space which contains all f ∈ S ′(Rd) such that

‖u |Wm
p (Rd)‖ :=

( ∑
|α|≤m

∫
Rd
|Dαu(x)|p dx

)1/p

<∞

(with the usual modification if p = ∞). Derivatives must be understood in
the sense of distributions. Concerning the definition of generalized Lebesgue
and Sobolev spaces Lp(I,X) and W k

p (R, X) for X-valued functions, where
X denotes some Banach space, we refer e.g. to [6], Section 2.2.
Furthermore, let F stand for the Fourier-transform on S ′(Rd) with inverse
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F−1. For s ∈ R and 1 < p <∞ we define fractional Sobolev spaces Hs(Rd)
as the collection of all f ∈ S ′(Rd) such that

‖f |Hs(Rd)‖ := ‖F−1((1 + |ξ|2)s/2Ff)|L2(Rd)‖ <∞.

These spaces partially coincide with the classical Sobolev spaces, i.e., we have
Hs(Rd) = Wm

2 (Rd) for s = m with m ∈ N0.
Corresponding spaces on domains can be defined via restriction, i.e., we put

Hs(Ω) =
{
f ∈ D′(Ω) : ∃g ∈ Hs(Rd), g

∣∣
Ω

= f
}
,

‖f |Hs(Ω)‖ = inf
g|Ω=f

‖f |Hs(Rd)‖.

Now we introduce Besov and Triebel-Lizorkin spaces via the Fourier-
analytical version in terms of dyadic Littlewood-Paley decompositions. For
further information on these function spaces we refer to [28] and the ref-
erences therein. We start with a function ϕ0 ∈ S(Rd) with ϕ0 = 1 for
|x| ≤ 1 and ϕ(x) = 0 for |x| ≥ 3

2
. Define ϕ1(x) = ϕ0(2x) − ϕ0(x) and

put ϕj(x) = ϕ1(2−j+1x). Then {ϕj}j∈N0 forms a so-called dyadic resolution
of unity; in particular, we have

∑
j≥0 ϕj(x) = 1 for every x ∈ Rd. Based

on such resolutions of unity, we can decompose every tempered distribution
f ∈ S ′(Rd) into a series of entire analytical functions,

f =
∞∑
j=0

F−1(ϕjFf),

converging in S ′(Rd). Then, for s ∈ R and 0 < p, q ≤ ∞ (p < ∞ in
case of Triebel-Lizorkin spaces), the Besov spaces Bs

p,q(Rd) are defined as the
collection of all distributions f ∈ S ′(Rd) such that

‖f |Bs
p,q(Rd)‖ :=

(
∞∑
j=0

2jsq‖F−1(ϕjFf)|Lp(Rd)‖q
)1/q

<∞

(with a supremum instead of a sum if q =∞). Moreover, the Triebel-Lizorkin
spaces F s

p,q(Rd) are defined in a similar way by interchanging the order in
which the norms are taken. In particular, they contain all distributions
f ∈ S ′(Rd) such that

‖f |F s
p,q(Rd)‖ :=

∥∥∥∥∥∥
(
∞∑
j=0

2jsq|F−1(ϕjFf)(·)|q
)1/q ∣∣Lp(Rd)

∥∥∥∥∥∥ <∞.
Corresponding spaces on domains Ω ⊂ Rd are defined via restriction. Let
A ∈ {B,F}. Then

Asp,q(Ω) := {f ∈ D′(Ω) : ∃g ∈ Asp,q(Rd), g
∣∣
Ω

= f},
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normed by
‖f |Asp,q(Ω)‖ := inf

g|Ω=f
‖g|Asp,q(Rd)‖.

Within the scales we have Sobolev-type embeddings, i.e., for σ < s and p < τ
it holds

Asp,q(Ω) ↪→ Aστ,r(Ω) if s− d

p
≥ σ − d

τ
, (2.1)

where 0 < r ≤ ∞ and, additionally, q ≤ r if A = B. A final important aspect
of Triebel-Lizorkin spaces is their close relation to many classical function
spaces. For our purposes, we especially mention the identities

F s
2,2(Rd) = Hs(Rd) and Fm

2,2(Rd) = Hm(Rd) = Wm
2 (Rd), (2.2)

where m ∈ N0, s ∈ R, and 1 < p <∞.

In our later considerations we will mainly deal with wedges K = K × Rd−m

where K ⊂ Rm is a cone defined as follows.

Definition 2.1 Let 2 ≤ m ≤ d. We define a cone K in Rm via

K := {x ∈ Rm : x/|x| = ω ∈ Ω},

where we assume that Ω = K ∩ Sm−1 is of class C1,1. Moreover, let

K = K × Rd−m

be a wedge in Rd.

Remark 2.2 Note that in our considerations the case K = K, i.e., m = d,
is not excluded. Two important examples for domains which are covered by
Definition 2.1 are given in Figures 1 and 2.

We need some further notation. Let x = (x′, x′′) = (x1, . . . , xd) be a point in
Rd. In particular, x′ = (x1, . . . , xm) ∈ Rm and x′′ = (xm+1, . . . , xd) ∈ Rd−m.
Moreover, (x, t) is a point in Rd+1.
In the sequel we will also deal with the truncated cone

K0 := {Bm
r0

(0) ∩K} = {x ∈ K : |x| < r0}, (2.3)

the bounded wedge
K0 := K0 ×Bd−m

r0
(0), (2.4)

and the truncated cylinder

Qr0(0, t0) := K0 × (t0 − r2
0, t0]

with constants r0 > 0 and t0 ∈ R.
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K ⊂ R2R

∂Ω

Figure 1: m = 2 < 3 = d,
K = K × R

∂Ω ∈ C1,1

Ω = K ∩ S2

K

Figure 2: m = 3 = d,
K = K

2.2 Weighted Sobolev spaces

In this subsection, we introduce a family of weighted Sobobev spaces, the
so–called Kondratiev spaces. Regularity estimates in these spaces will be the
major tool to establish regularity in fractional Sobolev spaces.

Definition 2.3 Let Ω be a domain of Rd and let M be a nontrivial closed
subset of its boundary ∂Ω. Furthermore, let 1 ≤ p ≤ ∞, m ∈ N0, and a ∈ R.
We define the space Kma,p(Ω,M) as the collection of all measurable functions,
which admit m weak derivatives in Ω satisfying

‖u|Kma,p(Ω,M)‖ :=
( ∑
|α|≤m

∫
Ω

|ρ(x)|α|−a∂αu(x)|p dx
)1/p

<∞

if p <∞, modified by

‖u|Kma,∞(Ω,M)‖ :=
∑
|α|≤m

sup
x∈Ω
|ρ(x)|α|−a∂αu(x)| <∞

if p =∞. Therein, the weight function ρ is defined by

ρ(x) := min{1, dist(x,M)} , x ∈ Ω .

Remark 2.4 In our applications the set M will usually be the singularity
set S of the domain Ω, i.e., the set of all points x ∈ ∂Ω for which for any
ε > 0 the set ∂Ω ∩Bε(x) is not smooth. In this case, we simply abbreviate

Kma,p(Ω) := Kma,p(Ω, S).

7



In particular, for a wedge K = K × Rd−m according to Definition 2.1 the
singularity set is S = {0}×Rd−m with dimension δ = d−m. In this case we
put ρ(x) = min(|x′|, 1) and get

‖u|Kma,p(K)‖ :=
( ∑
|α|≤m

∫
K

∣∣min(|x′|, 1)|α|−a∂αu(x)
∣∣p dx)1/p

.

We collect some properties of the Kondratiev spaces:

(i) Kma,p(Ω,M) is a Banach space, see [17], [18], and [27, Thm. 3.2.2(a)].

(ii) The scale of Kondratiev spaces is monotone in m and a, i.e.,

Kma,p(Ω,M) ↪→ Km′

a,p(Ω,M) and Kma,p(Ω,M) ↪→ Kma′,p(Ω,M) (2.5)

if m > m′ and a > a′.

(iii) Let a ≥ 0. Then Kma,p(Ω,M) ↪→ Lp(Ω).

(iv) A function ψ ∈ Cm(Ω) is a pointwise multiplier for Kma,p(Ω,M), i.e.,
ψ u ∈ Kma,p(Ω,M) for all u ∈ Kma,p(Ω,M). This follows directly from the
definition of the spaces.

3 Regularity results in fractional Sobolev

spaces

In this section, we present our new regularity results for parabolic PDEs.
First of all, in Subsection 3.1, we discuss the problem we will be concerned
with. Then, in Subsection 3.2, we recall a well-known regularity result in
weighted Sobolev spaces, cf. Theorem 3.2. This result is one of the central
ingredients to establish our new regularity result in Theorem 3.5. We also
briefly discuss the regularity in time. Finally, in Subsection 3.3, we apply
our findings to the classical heat equation.

3.1 Non-divergence parabolic equations

3.1.1 The general problem

We study parabolic equations of the form

Lu = f in K × R, u
∣∣
∂K×R = 0, (3.1)

where

Lu(x, t) :=
∂

∂t
u(x, t)−

d∑
i,j=1

Aij(t)
∂2u

∂xi∂xj
(x, t). (3.2)
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We only assume that the coefficients Aij are real valued measurable functions
of t satisfying Aij = Aji and that for some constant ν > 0 we have

ν|ξ|2 ≤ Aij(t)ξiξj ≤ ν−1|ξ|2 for all ξ ∈ Rd. (3.3)

Equation (3.1) is understood in the distributional sense (i.e., in the sense of
generalized functions) only with resprect to x. By a solution of (3.1) we mean
a function u(t), t ∈ R, taking values in the set of generalized functions on K
(i.e., in D′(K)) such that, for any t, s ∈ R satisfying t ≥ s and ϕ ∈ D(K), we
have

(u(t), ϕ) = (u(s), ϕ) +

∫ t

s

[
d∑

i,j=1

Aij(r)
(
u(r),

∂2u

∂xi∂xj
ϕ
)

+ (f(r), ϕ)

]
dr.

3.1.2 Critical exponents

We define the critical exponent λ+
c ≡ λ+

c (K,L) for the operator L and the
wedge K as the supremum of all λ such that

|u(x, t)| ≤ C(λ, κ)

( |x′|
R

)λ
sup

QκR(0,t0)

|u| for (x, t) ∈ QR/2(0, t0) (3.4)

for a certain κ ∈ (1/2, 1) independent of t0, R, and u. This inequality must
hold for all t0 ∈ R, R > 0 and u ∈ Vloc(QR(0, t0)), i.e., the space containing
all functions having finite norm

sup
t∈(t0−R′2,t0]

‖u(t, ·)|L2(BR′(0))‖+
n∑
i=1

∥∥∥∥ ∂

∂xi
u
∣∣L2(QR′(0, t0))

∥∥∥∥
for all R′ ∈ (0, R), which additionally satisfy

Lu = 0 in QR(0, t0), u
∣∣
x∈∂K = 0.

Furthermore, we define

λ−c ≡ λ−c (K,L) := λ+
c (K, L̂),

where L̂ is defined as L in (3.2) with Aij(t) replaced by Aij(−t).

Remark 3.1 We list some important properties and estimates for the criti-
cal exponents λ±c for various geometries of K, see [20, Sect. 2] for details.

(i) The definition (3.4) does not depend on κ ∈ (1/2, 1).

(ii) It can be shown that λ±c > 0.

9



(iii) Let K1 ⊂ K2. Then λ+
c (K1,L) ≥ λ+

c (K2,L) and λ−c (K1,L) ≥
λ−c (K2,L).

(iv) If Aij(t) = δij then

λ±c ≡ λ+
1 := −m− 2

2
+

√
Λ1 +

(m− 2)2

4
, (3.5)

where Λ1 is the first eigenvalue of the Dirichlet boundary value problem
of the Laplace-Beltrami operator on Ω.

(v) If K is an acute cone, i.e.,

K \ {0} ⊂ Rm
+ = {x′ ∈ Rm : x1 > 0},

then λ±c > 1.

(vi) If K → Rm
+ , then λ±c → 1.

(vii) λ±c ≥ −m−2
2

+ ν
√

Λ1 + (m−2)2

4
, where ν is the constant from (3.3). In

particular, if Λ1 →∞, then λ±c →∞.

3.2 Regularity results

Our aim is to study the regularity of the solution u of (3.1) in general-
ized fractional Sobolev spaces. We rely on [20, Thm. 1.1], were the authors
obtained results concerning the regularity of the solution u of (3.1) in gener-
alized weighted Sobolev spaces. We reformulate their results in terms of our
spaces from Definition 2.3 as follows.

Theorem 3.2 (Weighted Sobolev regularity) Let 2 ≤ m ≤ d, 1 <
p, q < ∞, and let K = K × Rd−m be a wedge according to Definition 2.1.
Suppose that

2− m

p
− λ+

c < µ < m− m

p
+ λ−c ,

where λ±c are the critical exponents defined in Section 3.1.2. Furthermore,
assume f ∈ Lq(R,K0

−µ,p(K)). Then there is a solution u of problem (3.1)
satisfying

‖u|Lq(R,K2
2−µ,p(K)) ∩W 1

q (R,K0
−µ,p(K))‖ . ‖f |Lq(R,K0

−µ,p(K))‖.

In order to investigate the fractional Sobolev regularity of the solution u of
(3.1) we need the following embedding result from [12, Thm. 4.9].
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Theorem 3.3 Let D ⊂ Rd be a bounded Lipschitz domain with piecewise
smooth boundary and singularity set S of dimension δ. Moreover, let 1 <
p <∞, 0 < τ < p, m ∈ N0, and a > 0. Then for

m− a < (d− δ)
(

1

τ
− 1

p

)
we have an embedding

Kma,p(D) ↪→ Fm
τ,2(D). (3.6)

Remark 3.4 The fact that Theorem 3.3 also holds when m = 0 was ob-
served in [5, Rem. 15].

We wish to combine the results from [20] as stated in Theorem 3.2 with the
embedding result from Theorem 3.3. The problem arises that Theorem 3.2
holds for unbounded wedges K ⊂ Rd whereas the embedding result in The-
orem 3.3 is true for bounded Lipschitz domains D ⊂ Rd. In order to avoid
this problem we consider the truncated wedge K0 as defined in (2.4). Then,
the additional difficulty occurs that the Kondratiev norm on the truncated
wedge is not just defined by restriction. Instead, the distance to the new
corners produced by the truncation from considering K0 instead of K have
to be taken into account. We solve this problem by multiplying u with a
radial cut-off function ϕ ∈ C∞0 (K0) satisfying

ϕ(x) ≡ ϕ(x′, x′′) =

{
1 on (Bm

r0−ε(0) ∩K)×Bd−m
r0−ε(0),

0 on K0 \
(
(Bm

r0− ε2
(0) ∩K)×Bd−m

r0− ε2
(0)
)
.

(3.7)

ϕ ≡ 1
ϕ ≡ 0

r0 − ε r0

Figure 3: Illustration of cut-off function ϕ when m = d = 2

This truncation process does not induce serious restrictions for when it comes
to practical applications it is clear that only truncated wedges can be consid-
ered. Then the regularity of ϕu corresponds to the regularity of u as stated
in Theorem 3.2 and we obtain

‖ϕu|Lq(R, K2
2−µ,2(K0)) ∩W 1

q (R,K0
−µ,2(K0))‖

. ‖ϕu|Lq(R,K2
2−µ,2(K)) ∩W 1

q (R,K0
−µ,2(K))‖

≤ cϕ‖u|Lq(R,K2
2−µ,2(K)) ∩W 1

q (R,K0
−µ,2(K))‖,

cf. Remark 2.4(iv). We are now in a position to apply the embedding result
from Theorem 3.3 to the function ϕu. This together with the regularity
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results for weighted Sobolev spaces from Theorem 3.2 gives the following
fractional Sobolev regularity.

Theorem 3.5 (Fractional Sobolev regularity) Let 2 ≤ m ≤ d, 1 < q <
∞, 1 < p ≤ 2, and let K = K ×Rd−m be a wedge according to Definition 2.1
with singularity set of dimension δ = d−m. Suppose that

max

(
2− m

p
− λ+

c , 0

)
< µ < m− m

p
+ λ−c , (3.8)

where µ = 0 is allowed if 2−m
p
−λ+

c < 0. In particular, λ±c are the critical ex-

ponents defined in Section 3.1.2. Furthermore, assume f ∈ Lq(R,K0
−µ,p(K))

and let ϕ be the cut-off function from (3.7). Then there is a solution u of
problem (3.1) satisfying

ϕu ∈ Lq(R, Hs(K0)) for any s < 2− dµ

d− δ −
d

p
+
d

2
.

P r o o f : We make use of Theorem 3.3. Here we consider the truncated
wedge K0, which is a bounded Lipschitz domain. By Theorem 3.2 and our
assumptions we know that ϕu(·, t) ∈ K2

2−µ,p(K0). But then from (3.6) we
obtain

K2
2−µ,p(K0) ↪→ F 2

τ,2(K0) (3.9)

if

2− (2− µ) < (d− δ)
(

1

τ
− 1

p

)
i.e.,

1

τ
>

µ

d− δ +
1

p
=:

1

τ ∗
.

Note that by the support properties of ϕu we may smoothen the boundary of
K0 at the new corners and edges of the truncated wedge without any problem
such that the singular set of the smoothed truncated wedge is the same as
the singular set of the unbounded wedge K. In particular, in this case we
have δ = d −m. Now Sobolev’s embedding for the Triebel-Lizorkin spaces
from (2.1) yields for s < 2 and τ < 2 that

F 2
τ,2(K0) ↪→ F s

2,2(K0) = Hs(K0), (3.10)

if 2− d
τ
≥ s− d

2
. Inserting τ ∗ gives

2− dµ

d− δ −
d

p
> s− d

2
, i.e., s < 2− dµ

d− δ −
d

p
+
d

2
,

and we deduce that τ < 2 and s < 2 are satisfied if µ ≥ 0 and τ < p ≤ 2.
Combining the above results (3.9) and (3.10) yields

ϕu ∈ Lq(R,K2
2−µ,p(K0)) ↪→ Lq(R, Hs(K0))

for all s < 2− dµ
d−δ − d

p
+ d

2
, which completes the proof.
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Remark 3.6 Since δ = d−m, the restriction on s in Theorem 3.5 is

s < 2− dµ

m
− d

p
+
d

2
. (3.11)

In particular, for d = m and p = q = 2 we obtain s < 2− µ.

Remark 3.7 (i) From Theorem 3.5 we obtain (similar as in the elliptic
case) a shift by 2 in the fractional Sobolev scale when we consider
equations of the form Lu = f . In particular, let (3.8) be satisfied. Then
for right hand side f ∈ Lq(R,K0

−µ,p(K)) we have ϕf(·, t) ∈ K0
−µ,p(K0),

where ϕ is the cut-off function defined in (3.7). Using (3.6) we obtain

K0
−µ,p(K0) ↪→ F 0

τ,2(K0) (3.12)

if

µ < (d− δ)
(

1

τ
− 1

p

)
, i.e.,

1

τ
>

µ

d− δ +
1

p
=:

1

τ ∗
.

Sobolev’s embedding for the Triebel-Lizorkin spaces, cf. (2.1), yields
for s < 0 and τ < 2 that

F 0
τ,2(K0) ↪→ F s

2,2(K0) = Hs(K0), (3.13)

if 0− d
τ
≥ s− d

2
. Inserting τ ∗ gives

− dµ

d− δ −
d

p
> s− d

2
, i.e., s < − dµ

d− δ −
d

p
+
d

2
,

and we deduce that τ < 2 and s < 0 are satisfied if µ ≥ 0 and τ < p ≤ 2.
Combining the above results (3.12) and (3.13) yields

ϕf ∈ Lq(R,K0
−µ,p(K0)) ↪→ Lq(R, Hs(K0))

for all s < − dµ
d−δ − d

p
+ d

2
. The results in Theorem 3.5 then im-

ply that under these conditions we obtain a solution satisfying
ϕu ∈ Lq(R, Hs+2(K0)).

(ii) For the special case when p = 2,
d = m = 3, and δ = 0 (which we
may assume by the support of ϕ
since in that case the singular set
of K = K contains only the vertex
of the cone), we obtain fractional
Sobolev smoothness s < −µ for
f and s < 2 − µ for the solution
u. The situation is illustrated in
Figure 4. We obtain the maximal
Sobolev regularity for the small-
est possible value of µ. The con-
dition (3.8) in this case reads as
µ > max

(
1
2
− λ+

c , 0
)

with λ+
c > 0.

2

s

− 1
2

0

3
2

1
2

µ

regularity of
solution u

regularity of
right hand side f

Figure 4: Shift from s to s+ 2
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(iii) We compare our regularity results with related ones. Concerning the
solutions to elliptic problems it is nowadays classical knowledge that
their Sobolev regularity depends not only on the properties of the co-
efficients and the right-hand side, but also on the regularity/roughness
of the boundary of the underlying domain. While for smooth coeffi-
cients and smooth boundaries we have u ∈ Hs+2(Ω) for f ∈ Hs(Ω),
it is well-known that this becomes false for more general domains. In
particular, if we only assume Ω to be a Lipschitz domain, then it was
shown by Jerison and Kenig [13] that in general we only have u ∈ Hs

for all s ≤ 3/2 for the solution of the Poisson equation, even for smooth
right-hand side f . This behaviour is caused by singularities near the
boundary. Moreover, this famous H3/2-Theorem implies that the opti-
mal rate of convergence for nonadaptive methods of approximation is
just 3/2d as long as we do not impose further properties on Ω.
If, additionally, Ω ⊂ R2 is a polygonal domain then it was shown
in Grisvard [10, Rem. 2.4.6] that the Poisson equation with Dirichlet
boundary conditions, i.e.,

∆u = f in Ω, u
∣∣
∂Ω

= 0, (3.14)

for f ∈ L2(Ω) has a solution u ∈ Hs(Ω) for every s < π
maxj ωj

+ 1,

where ωj denote the inner angles of the polygon. Furthermore, if we
consider bounded polyhedral domains Ω ⊂ R3, the results in Gris-
vard [10, Sect. 2.6] imply that (3.14) has a solution u ∈ Hs(Ω) with
s ∈ (3

2
, 2], see [10, Cor. 2.6.7]. As in the two dimensional case again the

upper bound of s depends on the inner angles of the polygon.
In particular, for (3.14) considered on corner domains in R3 in [8] the
upper bound is precisely determined by s < λ+

c + 3
2
.

Turning towards parabolic problems we now see that Theorem 3.5 gives
corresponding results. Also in this situation µ depends on the inner an-
gle of the cone and the smaller the angles the higher is the regularity. In
this context we refer to the results on specific cones derived in Theorem
3.10, where this dependence becomes clearer. For the special case that
p = 2, d = m = 3, and δ = 0 already mentioned above, we see from
Theorem 3.5 that for right hand side f ∈ L2(R,K0

−µ,2(K)) equation
(3.1) has a solution

ϕu ∈ L2(R, Hs(K0)) with s < 2− µ,
where µ > max(1

2
−λ+

c ) for λ+
c ∈

(
0, 1

2

]
, i.e., the best we can hope for in

this case in general is s < min
(

3
2

+ λ+
c , 2
)
. We give an example below

which demonstrates that these results are optimal, i.e., s > 3
2

+ λ+
c is

impossible even for smooth right hand sides f . In this sense, our results
can be interpreted as a first step towards the generalization of the H3/2-
Theorem to parabolic problems. However, we remark that our results
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are not as general as the H3/2-Theorem from [13]. Firstly, the bounded
wedges K0 we consider here are (only) special Lipschitz domains. Sec-
ondly, if µ > 0 we have f ∈ L2(R,K0

−µ,2(K)) ⊂ L2(R,K0
0,2(K)) =

L2(R×K), so we do not cover all right hand sides f ∈ L2(R×K).
Our results are also in good agreement with Grisvard [10, Thm. 5.2.1].
There it was shown for the heat equation

∂u

∂t
−∆u = f in Ω× (0,∞), u

∣∣
∂Ω×(0,∞)

= 0,

when Ω ⊂ R2 is a bounded polygonal domain, that for right hand sides
f ∈ L2((0,∞)× Ω) there is a solution u satisfying

u ∈ L2((0,∞), Hs(Ω)) with s <
π

maxj ωj
+ 1,

where ωj again denote the inner angles of the polygon.

Example 3.8 The following example was considered in [19] and indicates
that our results are optimal. The authors consider the heat equation on a
cone K ⊂ Rm as in Definition 2.1, where Ω = K ∩ Sm−1 is of class C∞ and
find representations for the coefficients in the asymptotic expansions of the
solutions near the conical point. To be more precise, the following boundary
value problem is considered:

∂u

∂t
−∆u = 0 in K × (0,∞),

u
∣∣
∂K×(0,∞)

= 0,

u
∣∣
t=0

= ϕ in K,

where ϕ ∈ D(K\{0}), satisfying ϕ(x) = 0 for x ∈ ∂K. Moreover, let {Λj}j∈N
be the nondecreasing sequence of eigenvalues of the Laplace-Beltrami opera-
tor on Ω (with Dirichlet boundary condition) counted with their multiplici-
ties, and let {ϕj}j∈N be an orthonormal (in L2(Ω)) sequence of eigenfunctions
corresponding to the eigenvalues Λj. Furthermore, by λ±j we denote the so-
lutions of the quadratic equation λ(λ+ d− 2) = Λj. In particular, it follows
that λ+

1 ≡ λ±c from (3.5) in this case. Let M be the largest integer such that
λ+
M < 1

2
. Then the authors show in [19] that the solution u is given by

u(t, x) =
1

2

M∑
j=1

rλ
+
j ϕj(ω)

mj∑
k=0

(
r2 ∂

∂t

)k
hj(t)

k!Γ(k + σj + 1)
+O(rλ

+
M+1), (3.15)

where σj = (λ+
j − λ−j )/2, r < 1, mj = b(λ+

M+1 − λ+
j )/2c, and

hj(t) = (2
√
t)−λ

+
j

∫
K

ϕ(2
√
tx)rλ

+
j e−r

2

ϕj(ω)dx.
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From the representation (3.15) we see that the singularity of the solution u

near the vertex behaves like rλ
+
1 = rλ

+
c . Therefore, u(·, t) belongs locally to

Hs(K) if for some constant c > 0 we have∫ c

0

r2(λ+
c −s)rm−1dr ∼

[
r2(λ+

c −s)+m
]c
r=0

<∞,

which holds for 2(λ+
c − s) +m > 0, i.e., s < m

2
+λ+

c and shows that Theorem
3.5 gives the best result possible in this case. Note that there is the slight
discrepancy that the results from [19] hold for time axis t ∈ (0,∞) whereas
our results are established for t ∈ R. However, this should be immaterial in
the context when regarding spacial regularity of the solution u.

So far we have focused on spacial regularity of the solution u to (3.1). With
the help of Theorem 3.2 also the following Hölder regularity in time can be
shown.

Theorem 3.9 (Regularity in time) Let 2 ≤ m ≤ d, 1 < p, q < ∞, and
let K = K × Rd−m be a wedge according to Definition 2.1. Suppose that

2− m

p
− λ+

c < µ < m− m

p
+ λ−c ,

where λ±c are the critical exponents defined in Section 3.1.2. Furthermore,
assume f ∈ Lq(R,K0

−µ,p(K)). Then there is a solution u of problem (3.1)
satisfying

u ∈ C0,1− 1
q (R,K0

−µ,p(K)).

P r o o f : This is an immediate consequence of Theorem 3.2 together with
Sobolev’s embedding theorem for Banach-space valued functions, cf. [25,
Cor. 26]. In particular, we have the following embedding

u ∈ Lq(R,K2
2−µ,p(K)) ∩W 1

q (R,K0
−µ,p(K)) ↪→ W 1

q (R,K0
−µ,p(K))

↪→ C0,1− 1
q (R,K0

−µ,p(K)),

which completes the proof.

3.3 The heat equation

As a special important case of (3.1) we now consider the heat equation

∂

∂t
u−∆u = f in K × R, u

∣∣
∂K×R = 0, (3.16)
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where K ⊂ R3 is the cone in Definition 2.1, m = d = 3, and assume that
Ω = K ∩ S2 is of class C1,1. Using (3.5) we see that the critical exponents
coincide in this case. In particular, we have

λ±c = λ+
1 := −1

2
+

√
Λ1 +

1

4
, (3.17)

where Λ1 is the first eigenvalue of the Dirichlet problem of the Laplace-
Beltrami operator in Ω. In terms of fractional Sobolev regularity of the
solution u of (3.16) for p = q = 2 Theorem 3.5 now implies the following.

Theorem 3.10 (Fractional Sobolev regularity of heat equation)
Let K ⊂ R3 be a cone according to Definition 2.1. Suppose

max

(
1

2
− λ+

1 , 0

)
< µ <

3

2
+ λ+

1 ,

where µ = 0 is allowed if 1
2
−λ+

1 < 0 and λ+
1 is defined in (3.17). Furthermore,

assume f ∈ L2(R,K0
−µ,2(K)) and let ϕ be the cut-off function from (3.7).

Then there is a solution u of (3.16) satisfying

ϕu ∈ L2(R, Hs(K0)) for any s < 2− µ.

3.3.1 Eigenvalues of the Laplacian on a spherical cap

We are interested in exact values of λ+
1 for particular cones K ⊂ R3 in

Theorem 3.10. In view of (3.17) we need to determine the first eigenvalue Λ1

of the Dirichlet problem of the Laplace-Beltrami operator on Ω = K ∩ S2.
In the particular case of Ω = K ∩S2 being a spherical cap precise results are
known. Therefore, we now investigate the problem{

∆S2w + Λw = 0 in Ωθ0 × R,
w = 0 on ∂Ωθ0 × R,

}
(3.18)

where Ωθ0 := K∩S2 is a spherical cap, which in polar coordinates is expressed
as 

y1 = sin θ sinϕ,
y2 = sin θ cosϕ,
y3 = cos θ,

i.e., Ωθ0 = {(y1, y2, y3) ∈ S2 : θ ∈ (0, θ0), ϕ ∈ [0, 2π]}. Since Ωθ0 is a compact
Riemannian manifold with smooth boundary it follows from [26, Cor. 1.5]
that the eigenfunctions w of the Laplace-Beltrami operator in (3.18) are
smooth.
The operator ∆S2 + λ in this coordinates reads as
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y2

y1

y3

Ωθ0 = K ∩ S2

θ0

Figure 5: spherical cap,
angle θ0 <

π
2

y2

y1

y3
Ωθ0 = K ∩ S2

θ0

Figure 6: spherical cap,
angle θ0 >

π
2

∆S2w + Λw =
1

sin θ

∂

∂θ

(
∂w

∂θ
sin θ

)
+

1

sin2 θ

∂2w

∂ϕ2
+ Λw.

Solutions to (3.18) are expressed by using separation of variables,

w(θ, ϕ) = P (x)Φ(ϕ) with x = cos θ.

With this we see that

0 = ∆S2w + Λw

=
1

sin θ

∂

∂θ

(
∂P (cos θ)

∂θ
sin θ

)
Φ(ϕ) +

1

sin2 θ

∂2Φ(ϕ)

∂ϕ2
P (cos θ) + ΛP (cos θ)Φ(ϕ)

=

(
(1− x2)

∂2P

∂x2
− 2x

∂P

∂x

)
Φ(ϕ) +

1

1− x2

∂2Φ(ϕ)

∂ϕ2
P (x) + ΛP (x)Φ(ϕ)

(3.19)

Recall that the eigenfunctions w(θ, ϕ) = P (x)Φ(ϕ) are smooth (and from
[24, Thm. 3] is follows that the eigenfunction corresponding to the smallest
positive eigenvalue Λ1 has no roots). Thus, we can multiply both sides of
(3.19) by (1− x2)/(P (x)Φ(ϕ)) and separating variables yields

1− x2

P (x)

(
(1− x2)

∂2P

∂x2
− 2x

∂P

∂x

)
+Λ(1−x2) = −∂

2Φ(ϕ)

∂ϕ2

1

Φ(ϕ)
=: m2. (3.20)

By the regularity of the solutions, |P (1)| < ∞, Φ(0) = Φ(2π), and Φ′(0) =
Φ′(2π) must be satisfied. For convenience below we define ν ≥ 0 satisfying
Λ := ν(ν + 1). From (3.20) for P (x) and Φ(ϕ) we see that

(1− x2)
d2P

dx2
− 2x

dP

dx
+

(
ν(ν + 1)− m2

1− x2

)
P = 0, (3.21)

18



and
d2Φ

dϕ2
+m2Φ = 0. (3.22)

From the periodicity of Φ(ϕ) it follows that m is a non-negative integer and
any solutions to (3.22) are expressed as Φ(ϕ) = c1 cos(mϕ) + c2 sin(mϕ).
Furthermore, (3.21) is known as the associated Legendre equation, which has
two kinds of (linearly independent) solutions P = Pm

ν (x) and Qm
ν (x) such

that |Pm
ν (1)| < ∞ and |Qm

ν (x)| → ∞ as x → 1, respectively. From the
condition |P (1)| <∞, we only have to treat P = Pm

ν (x) and, in conclusion,
Λ = ν(ν+ 1) and c1P

m
ν (cos θ) cos(mϕ) + c2P

m
ν (cos θ) sin(mϕ) are eigenvalues

and eigenfunctions of ∆S2w + Λw = 0 on S2, respectively.
In order to solve the eigenvalue problem (3.18), we are required to find solu-
tions to (3.21) satisfying the boundary condition

P (cos θ0) = 0. (3.23)

For any fixedm = 0, 1, 2, . . . there exist infinitely many Λ = ν(ν+1) satisfying
(3.21) and (3.23). Since we are interested in the smallest positive eigenvalue
Λ1 of (3.18), we have to look for the smallest root νmin of the Legendre
function Pm

ν such that Pm
ν (cos θ0) = 0. Moreover, from (3.17) we see that

λ+
1 = −1

2
+

√
νmin(νmin + 1) +

1

4
= −1

2
+

√(
νmin +

1

2

)2

= νmin,

hence, λ+
1 in this case is determined by the minimal root νmin of the Legendre

function Pm
ν with respect to the angle θ0. Figure 7 is taken from [1], where

the roots of the Legendre functions Pm
ν for different values of θ0 were

computed.

Now for the heat equation in the special case that K is a convex cone with
Ωθ = K ∩ S being a spherical cap we obtain the following regularity result.

Corollary 3.11 Let K ⊂ R3 be a convex cone such that Ωθ0 = K ∩ S is a
spherical cap. Assume f ∈ L2(R × K). Furthermore, let ϕ be the cut-off
function from (3.7). Then there is a solution u of (3.16) satisfying

ϕu ∈ L2(R, Hs(K0)) for any s < 2.

P r o o f : If K is convex, then θ0 ≤ π
2
. But then the values in Figure 7

imply that λ+
1 ≥ 1. Therefore, we can choose µ = 0 in Theorem 3.10, which

completes the proof.
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θ0 λ+
1 θ0 λ+

1 θ0 λ+
1

5◦ 27.0558 65◦ 1.5988 125◦ 0.5523
10◦ 13.2756 70◦ 1.4456 130◦ 0.5063
15◦ 8.6812 75◦ 1.3124 135◦ 0.4631
20◦ 6.3832 80◦ 1.1956 140◦ 0.4223
25◦ 5.0038 85◦ 1.0922 145◦ 0.3834

30◦ 4.0837 90◦ 1.000 150◦ 0.3462
35◦ 3.4260 95◦ 0.9172 155◦ 0.3101
40◦ 2.9323 100◦ 0.8423 160◦ 0.2745
45◦ 2.5479 105◦ 0.7741 165◦ 0.2387
50◦ 2.2400 110◦ 0.7118 170◦ 0.2012
55◦ 1.9878 115◦ 0.6545 175◦ 0.1581
60◦ 1.7773 120◦ 0.6015

Figure 7: Values for λ+
1 = νmin when Ωθ0 = K ∩ S is a spherical cap

Remark 3.12 (i) A closer look at Figure 7 reveals that Corollary 3.11
remains true for cones K with Ωθ0 = K ∩ S being a spherical cap
and angles θ0 ∈ [0, 130◦), since we have λ+

1 > 1
2

in this case and can
therefore choose µ = 0 in Theorem 3.10.

(ii) If 0 < λ+
1 ≤ 1/2 Theorem 3.10 yields that µ > 1

2
− λ+

1 . Then for
f ∈ L2(R,K0

− 1
2

+λ+
1 ,2

(K)) and ϕ being the cut-off function from (3.7),

the solution u of (3.16) satisfies

ϕu ∈ L2(R, Hs(K0)) with s <
3

2
+ λ+

1 .

(iii) Our results strongly indicate that it might be possible to improve recent
regularity results for parabolic equations from [6, Ex. 4.7] (although
there the time interval was [0, T ] for some T > 0 whereas here we
consider R).
The results from Theorem 3.10 together with what was stated in [6,
Ex. 4.7] suggest that if f ∈ L2(R,K0

−µ,2(K)) with µ > max
(

1
2
− λ+

1 , 0
)

and ϕ being the cut-off function from (3.7), then the solution u of (3.16)
satisfies

ϕu ∈ L2(R, Bγ
τ,∞(K0)) for all

1

2
<

1

τ
<
γ

3
+

1

2
, (3.24)

where for the Besov regularity γ we derive the upper bound

γ < 3(2− µ) <

{
6 if λ+

1 > 1
2
,

9
2

+ 3λ+
1 if 0 < λ+

1 ≤ 1
2
.
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This implies that for all cones K with Ωθ0 = K∩S being a spherical cap
we might always have γ < 9

2
whereas in [6, Ex. 4.7] we only obtained

γ < 3 in case of non-convex cones.
Moreover, the results from Theorem 3.10 can also help to improve the
nonlinear Sobolev regularity results from [6, Thm. 4.10]. There we
needed the restriction that m ≥ 2 for the Sobolev regularity of the
solution, i.e., u(·, t) ∈ Wm

2 (K). The reason for this was a multiplier
result used in the proof, cf. [6, formula (4.23)]. This multiplier result
can now be reformulated with the help of the spaces Hs(K) as long as
s > 3

2
.

Finally, let us mention that the obtained results hint, that when it
comes to numerical schemes providing constructive approximations of
the solutions, adaptive schemes usually would outperform uniform ones.
The reason for this lies in the fact that as a role of thumb the conver-
gence order that can be achieved by adaptive algorithms is determined
by the regularity γ of the exact solution in the adaptivity scale of Besov
spaces (3.24), whereas the convergence order for uniform schemes de-
pends on the classical Sobolev smoothness s. From the considerations
above we have γ < 3(2− µ) in contrast to s < 2− µ.

References

[1] H. F. Bauer (1986): Tables of the roots of the associated Legendre
function with respect to the degree. Math. Comp., 46, no. 174,
601–602, S29–S41.

[2] D.L. Cohn (2013): Measure theory. Birkhäuser Advanced Texts:
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