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Abstract. This paper is concerned with new discretization methods for the nu-
merical treatment of elliptic partial differential equations. We derive an adaptive
approximation scheme that is based on frames of quarkonial type. These new
frames are in turn constructed from a finite set of functions via translation, dila-
tion and multiplication by monomials. By using non-overlapping domain decom-
position ideas, we establish quarkonial frames on domains that can be decomposed
into the union of parametric images of unit cubes. We also show that these new
representation systems are stable in a certain range of Sobolev spaces. The con-
struction is performed in such a way that, similar to the wavelet setting, the frame
elements, the so-called quarklets, possess a certain number of vanishing moments.
This enables us to generalize the basic building blocks of adaptive wavelet algo-
rithms to the quarklet case. The applicability of the new approach is demonstrated
by numerical experiments for the Poisson equation on L-shaped domains.
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1. Introduction

Many problems in science and engineering are modeled by partial differential equa-
tions. Very often, an analytic expression of the unknown solution is not available,
so that efficient numerical schemes for its constructive approximation are needed.
During the last decades, many different approaches have been developed, such as
finite differences, finite elements, and spectral methods, just to name a few. The
amount of literature is overwhelming and can of course not be discussed in detail
here. When it comes to real-life problems, systems with hundreds of thousands or
even millions of degrees of freedom have to be handled, so that adaptive strategies
are essential to increase the overall efficiency. In principle, an adaptive algorithm is
an updating strategy in the sense that additional degrees of freedom are only spent
in regions where the numerical approximation is still far away from the exact solu-
tion. To realize such a scheme, efficient and reliable a posteriori error estimators and
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associated refinement strategies have to be derived. In particular, in the realm of
finite element methods (FEM), many impressive results in this direction have been
obtained. Once again, the amount of literature cannot be discussed in detail here;
we refer, e.g., to the book of Verfürth [35] for an overview. In principle, the following
general strategies have been developed: the h-FEM which is based on adaptive space
refinement, the p-FEM which corresponds to polynomial enrichments, and a com-
bination of both, the hp-FEM. It is observed in practice that adaptive hp-methods
are often very efficient; sometimes they even have exponential convergence [1]. How-
ever, rigorous convergence and complexity proofs of FEM schemes could be derived
only recently. In the last years, some results have been obtained for h- and hp-FEM
of second-order elliptic equations, we mention the timely reviews [2–5, 26] and the
references therein.

At this point, another recently developed approach, i.e., adaptive numerical schemes
based on wavelets, comes into play. The strong analytic properties of wavelets can
be used to derive adaptive schemes that are guaranteed to converge with optimal
order in the sense that they realize the convergence order of the best N -term wavelet
approximation. We refer to [9, 33] for details. So far, these schemes are based on
adaptive space refinements, i.e., they correspond to the h-methods. Then, a very
natural question shows up: is it possible to construct wavelet versions of adaptive
hp-methods? And if so, can this in the long run pave the way to new convergence
proofs for hp-methods?

This paper can be interpreted as one step in this direction. The first challenge
is of course the question how to incorporate polynomial enrichment into a wavelet
system. It turns out that this is possible when working with frames, i.e. redundant
generating systems F = {fλ}λ∈I of a Hilbert space H that are still numerically stable
in the sense of the equivalence

‖f‖2
H h inf

{c∈`2(I):f=
∑
λ∈I

cλfλ}

∑
λ∈N

|cλ|2, for all f ∈ H,

see Appendix A.1 for equivalent definitions and basic facts from frame theory. The
frame concept has the advantage that it provides much more flexibility than a ba-
sis setting. As a consequence, on complicated computational domains, frames are
much easier to construct than Riesz bases. In particular, our work is inspired by
an approach of H. Triebel. In [34], he derived highly redundant frames for Sobolev
and Besov function spaces where the frame elements are constructed via dilation and
polynomial enrichment of a partition of unity. These frames can be interpreted as
subatomic, i.e., quarkonial decompositions, and this concept is of course very close
to the idea of an hp-finite element system.

However, to design an adaptive numerical scheme directly based on these quarko-
nial decompositions is highly non-trivial since the frame elements do not possess
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vanishing moments, and the vanishing moment property is essential for the conver-
gence and optimality proofs of adaptive wavelet schemes, see again [9] for details.
Therefore, we proceed in a different way. We start with a biorthogonal wavelet basis
as, e.g., constructed in [11], and implement the polynomial enrichment by multiply-
ing the wavelets with monomials. In the predecessor paper [16], we have shown that
this approach indeed works for problems on the real line. It has turned out that
the resulting highly redundant system has the frame property in scales on Sobolev
spaces. Moreover, the whole construction has been designed in such a way that the
vanishing moments of the underlying wavelet basis are preserved which implies that
the basic building blocks of adaptive wavelet schemes can still be constructed.

In this paper, we generalize this concept to quite general domains contained in Rd.
Even in the classical wavelet setting, the construction of wavelets on domains is a
non-trivial task. Usually, this is performed by some kind of domain decomposition
approach. One possible way could be to use an overlapping domain decomposition
approach as outlined in [15]. Indeed, it has been shown that the resulting adaptive
wavelet frame schemes again converge with optimal order. However, in practice, one
is very often faced with non-trivial quadrature problems that hamper the overall
performance of the scheme. Therefore, we proceed in a different way and use a non
overlapping domain decomposition similarly to the earlier work [18]. It has been
shown in [7] that this approach gives rise to generalized tensor product wavelet bases
on quadranglelizable domains. In general, tensor product wavelets can be interpreted
as a wavelet version of sparse grids. Therefore, related approximation schemes can
attain dimension-independent convergence rates. In [7], it has been shown that these
properties carry over to the case of more general domains. In this paper, we show
that a combination of these ideas with quarkonial decompositions indeed works and
gives rise to a generalized tensor product quarklet frame on computational domains
which can be quadrangulated.

To carry out this program, several steps have to be performed. First of all, the
quarkonial frame construction in [16] has to be adapted to problems on bounded
intervals. In particular, Dirichlet boundary conditions have to be incorporated. Once
this is done, a quarkonial frame on unit cubes can be designed by taking tensor
products. Then, one has to establish that the new systems are again stable in scales
of Sobolev spaces. This is by no means obvious because the underlying Sobolev
spaces are usually not of tensor product type. Finally, this construction has to be
generalized to arbitrary domains by using non-overlapping domain decomposition
strategies and suitable extension operators. In this paper, we show that all these
steps can indeed be carried out. Moreover we prove that several very important
properties such as vanishing moments are preserved, which again implies that the
basic building blocks of adaptive algorithms still can be derived.
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This paper is organized as follows. In Section 2, we show that the construc-
tion in [16] can be adapted to bounded intervals in such a way that, e.g., Dirichlet
boundary conditions can be incorporated without destroying the vanishing moment
properties of the underlying biorthogonal wavelet basis. In Section 3, we generalize
the construction to bounded domains contained in Rd. We start with the case of unit
cubes. We show that by tensorizing quarkonial frames on intervals one obtains frames
for the Sobolev spaces Hs((0, 1)d). In contrast to the basis case, this does not follow
by general arguments; it seems that additional conditions on the underlying frames
are necessary. Fortunately, these conditions are satisfied in our case. Then the case
of quadranglelizable domains is studied. We show that, given reference frames on
the unit cube, these frames can be extended to the whole domain in such a way that
their union once again provides a frame for scales of Sobolev spaces. Having shown
this, in principle one can run the general machinery of adaptive frame algorithms
as outlined in [15]. To this end, several building blocks have to be established. In
particular, a routine APPLY is needed which approximates products of the infinite
stiffness matrix with finitely supported vectors. This can be performed provided
that the stiffness matrix is compressible which is usually implied by the vanishing
moment property, see again [9, 33]. In Section 4 we establish a first compression
result related with the new generalized quarkonial tensor frames. Finally, in Section
5, we conduct first numerical experiments. In particular, the Poisson equation on
an L-shaped domain is studied. It turns out that for natural test examples adaptive
quarklet schemes outperform the well-established wavelet (frame) methods. There-
fore, the higher redundancy induced by the polynomial enrichment really pays off in
practice.

2. Quarkonial decomposition on the interval

In this section, we present an explicit construction of quarkonial decompositions
on bounded intervals. It turns out that properly rescaled versions of the resulting
representation systems form frames for L2 as well as for the Sobolev spaces Hs.
The construction is based on a generalization of the approach outlined in [16]. There
quarkonial decompositions in L2(R) have been constructed by polynomial enrichment
of a given biorthogonal wavelet basis. For readers convenience, in Subsection 2.1
we briefly recall the main results of [16]. To generalize this approach to bounded
intervals, first of all a multiresolution analysis (MRA) and a biorthogonal wavelet
basis on the interval are needed. This topic has been intensively studied within the
last years, see e.g.. [6, 17]. In this paper, we particularly employ the construction
of M. Primbs [28], since several numerical experiments have shown that this basis
produces the best constants. In Subsection 2.2, we briefly recall this construction.
Quite surprisingly, it turns out that a direct application of the ideas in [16] does not
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work since this would destroy the vanishing moment property at the boundary. The
necessary modifications will be described in Subsection 2.4. Finally, in Subsection
2.5, we prove that the frame properties established in [16] indeed carry over to the
boundary adapted setting.

2.1. The shift-invariant case. As a starting point, let us recall some techniques
from the design of quarklet frames on the real line, see [16] for details. The core
ingredient is a shift-invariant wavelet Riesz basis for L2(R) with sufficient regularity,
approximation and compression properties. Usually, wavelets are constructed by
means of a multiresolution analysis (MRA) which is a nested sequence {Vj}j∈Z of
closed linear subspaces whose union is dense in L2(R) while their intersection is zero.
Moreover, we assume that all spaces are related by dyadic dilation, i.e., f ∈ Vj if
and only if f(2·) ∈ Vj+1, and that V0 is shift-invariant, i.e., f ∈ V0 if and only if
f(· − k) ∈ V0 for all k ∈ Z.

In addition, one asks for a function ϕ such that {ϕ(· − k) : k ∈ Z} is a Riesz basis
for its closed span V0 with respect to ‖ · ‖L2(R). Then ϕ is called the generator of the
multiresolution analysis.

The properties of a multiresolution analysis imply that ϕ is refinable, i.e., there
exist refinement coefficients a = {ak}k∈Z ∈ `2(Z), such that ϕ admits the expansion

ϕ =
∑
k∈Z

akϕ(2 · −k).

For our purposes, we further assume that ϕ fulfills the additional properties:

(i) ϕ is compactly supported and a is a finite sequence;
(ii) ϕ ∈ Hs(R) for all 0 ≤ s < m− 1

2
and some m ∈ N;

(iii)
∫∞
−∞ ϕ(x) dx = 1;

(iv) the system {ϕ(·−k) : k ∈ Z} is able to reproduce polynomials Pm−1 of degree at
most m− 1, i.e., for each q ∈ Pm−1, there exist coefficients c = {ck}k∈Z ∈ `0(Z)
with the locally finite expansion

q =
∑
k∈Z

ckϕ(· − k).

These assumptions are fulfilled, e.g., by cardinal B-splines Nm of order m. Moreover,
the properties (i)-(iv) imply that the integer translates of ϕ form a partition of unity,∑

k∈Z

ϕ(· − k) ≡ 1.

Given a (MRA), a wavelet basis can be constructed by finding one function ψ whose
translates span a complement W0 of V0 in V1, V1 = V0⊕W0, see, e.g., [20] for details.
We assume that the wavelet ψ ∈ L2(R) has the following properties:
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(i) ψ is compactly supported and fulfills

(2.1) ψ =
∑
k∈N

bkϕ(2 · −k),

with expansion coefficients bk ∈ R, only finitely many of them being non-zero;
(ii) ψ has m̃ vanishing moments, i.e.

∫∞
−∞ q(x)ψ(x) dx = 0 for all q ∈ Pm̃−1;

(iii) the system

Σ :=
{
ϕ(· − k) : k ∈ Z

}
∪
{

2j/2ψ(2j · −k) : j ∈ N0, k ∈ Z
}

is a Riesz basis for L2(R).

Although constructions with other kinds of generators are possible, we confine our-
selves in this subsection to the case of a shifted cardinal B-spline generator ϕ =
Nm(· + bm

2
c). Associated spline wavelets ψ with these properties (i)-(iii) have been

constructed in [11], where N 3 m̃ ≥ m and m + m̃ ∈ 2N. What is more, by simple
rescaling, the system

Σs :=
{
ϕ(· − k) : k ∈ Z

}
∪
{

2−j(s−1/2)ψ(2j · −k) : j ∈ N0, k ∈ Z
}

is a Riesz basis for Hs(R), where 0 ≤ s < m− 1
2
.

In the construction of quarkonial frames for L2(R) from [16], we obtain quarks ϕp
by enrichment of ϕ with polynomials of degree p ∈ N0 via pointwise multiplication
with monomials,

ϕp :=

(
·

dm/2e

)p
ϕ, p ∈ N0.

Replacing ϕ by ϕp in (2.1) gives rise to the compactly supported quarklets

(2.2) ψp :=
∑
k∈Z

bkϕp(2 · −k), p ∈ N0.

It has been shown in [16] that there exist weights wp > 0 which decrease inverse-
polynomially in p ∈ N0, such that

(2.3) Ψ :=
{
ϕp(· − k) : p ∈ N0, k ∈ Z

}
∪
{
wp2

j/2ψp(2
j · −k) : p, j ∈ N0, k ∈ Z

}
⊃ Σ

is a frame for L2(R), cf. [16, Theorem 3]. The main result considering the case of
the whole real line is the following ( [16, Theorem 4]).

Theorem 2.1. Let wp,j,s := 2−js(p+ 1)−2s−δ with δ > 1. Then the system

(2.4) Ψs := {wp,0,sϕp(· − k), wp,j,s2
j/2ψp(2

j · −k) : p, j ∈ N0, k ∈ Z}

is a frame for Hs(R), 0 ≤ s < m− 1
2
.



ADAPTIVE QUARKONIAL DOMAIN DECOMPOSITION METHODS FOR ELLIPTIC PDES 7

2.2. Wavelets on the interval. The construction principles of quarklet frames on
the interval are very similar to the real axis case. Again, a (MRA) and the associated
wavelet basis on the interval I := (0, 1) are needed. Moreover, we would like the
system to satisfy certain boundary conditions. Systems that fulfill these requirements
are, e.g., the ones constructed in [18] or [27, 28]. In view of their good numerical
properties, we decided to take the wavelet bases constructed by Primbs [27, 28] as
the fundament of our construction. Up to modifications of the respective index sets,
however, it is possible to derive quarklet frames also from other spline wavelet bases
on the interval.

In this subsection we summarize the construction principles and the most impor-
tant properties of the Primbs wavelet basis. First let us fix some notation.

Let m, m̃ ∈ N0, so that m̃ ≥ m ≥ 2, m+m̃ ∈ 2N. Let ~σ = (σl, σr) ∈ {0, bs+1/2c}2

denote the order of boundary conditions. Furthermore, let j ∈ N, j ≥ j0∈ N with j0

sufficiently large. With ∆j,~σ ⊂ Z we denote the index set

(2.5) ∆j,~σ := {−m+ 1 + sgnσl, . . . , 2
j − 1− sgnσr}.

Dealing with free boundary conditions, we set ∆j := ∆j,(0,0). As in the shift-invariant
case the construction of a wavelet basis on the unit interval commonly is based upon
a multiresolution analysis. The first step is again the construction of a boundary-
adapted generator function. Given the knots

tjk :=


0, k = −m+ 1, . . . , 0,

2−jk, k = 1, . . . , 2j − 1,

1, k = 2j, . . . , 2j +m− 1,

with boundary knots of multiplicity m and single inner knots, the Schoenberg B-
Splines are defined by

Bm
j,k(x) := (tjk+m − t

j
k) (· − x)m−1

+ [tjk, . . . , t
j
k+m], k ∈ ∆j, x ∈ I,

using divided differences of the function t+ := max(t, 0), t ∈ R. The generating
functions of the Primbs basis are defined by

(2.6) ϕj,k := 2j/2Bm
j,k, k ∈ ∆j.

For further information on B-Splines we refer to [30, § 4.3] and [21]. As the Primbs
basis is a biorthogonal wavelet basis, a dual multiresolution analysis with dual gen-
erators ϕ̃j,k is necessary for the construction. If the generators are represented as

column vectors Φj := {ϕj,k : k ∈ ∆j,~σ}, Φ̃j := {ϕ̃j,k′ : k′ ∈ ∆j,~σ}, they fulfill the
duality relation

〈Φj, Φ̃j〉 :=
(
〈ϕj,k, ϕ̃j,k′〉L2(I)

)
k,k′∈∆j,~σ

= I∆j,~σ
.
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For construction details on the dual MRA we refer to [28, Chapter 4]. One of
the main properties of the dual generators is polynomial exactness of order m̃ − 1,
cf. [28, Section 2.2]. To yield stable systems, the MRA has to fulfill certain additional
Jackson and Bernstein inequalities . On the primal side they have the following form,
cf. [28, Lemma 5.2]:

inf
v∈Vj
||u− v||L2(I) ≤ C2−js||u||Hs(I) for all u ∈ Hs(I), 0 ≤ s < m,(2.7)

||u||Hs(I) ≤ C ′2js||u||L2(I) for all u ∈ Vj, 0 ≤ s < m− 1

2
.(2.8)

In the construction of the Primbs basis, it is possible to choose different boundary
conditions on the primal and the dual side, cf. [27, Section 4.7]. On the one hand, we
will need primal wavelets both with free and zero boundary conditions. On the other
hand, the corresponding dual wavelets always should be of free boundary type. This
choice is motivated as follows: As already stated above, in numerical applications
the vanishing moment property is essential, and with free boundary conditions the
dual generators have polynomial exactness m̃− 1, which allows to construct primal
wavelets with m̃ vanishing moments.

For the wavelets the following index sets are defined:

(2.9) ∇j,~σ :=

{
{0, · · · , 2j − 1}, j ≥ j0,
∆j,~σ, j = j0 − 1.

One main step carried out in [28] is the stable completion, i.e., the construction of
suitable matrices M~σ

j,1, M̃~σ
j,1, which contain the two-scale coefficients of Ψj = {ψ~σj,k :

k ∈ ∇j,~σ}:

Ψj := M~σ,T
j,1 Φj+1, j ≥ j0,

M~σ,T
j,1 :=

(
bj,~σk,l

)
k∈∇j,~σ ,l∈∆j+1,~σ

∈ R|∇j,~σ |×|∆j+1,~σ |,
(2.10)

and analogously for Ψ̃j. Then, the duality relations 〈Ψj, Φ̃j〉 = 0, 〈Φj, Ψ̃j〉 = 0,

〈Ψj, Ψ̃j〉 = I∇j,~σ are fulfilled. Furthermore the weighted system

(2.11) Σs
~σ := 2−j0sΦj0 ∪

⋃
j≥j0

2−jsΨj, 0 ≤ s < m− 1

2
,

is a Riesz basis of Hs
~σ(I) with dual basis Σ̃s

~σ, which is defined analogously.

2.3. Construction of boundary quarks. In this section we construct quarks on
the interval and derive crucial Bernstein and norm estimates. Since it is well known
that the inner Schoenberg splines are dilated and translated copies of the cardinal
B-spline Nm, we may define the inner quarks as the ones constructed in [16]. Hence,
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all important estimates for the inner quarks are already available and it is sufficient
to focus on the boundary quarks, as they differ from the construction in [16].

We define a quark as the product of a generator with a certain monomial. As
before, let p ∈ N0. Then, the (Schoenberg B-spline) quarks ϕp,j,k are defined by

(2.12) ϕp,j,k :=


(

2j ·
k+m

)p
ϕj,k, k = −m+ 1, . . . ,−1,(

2j ·−k−bm
2
c

dm
2
e

)p
ϕj,k, k = 0, . . . , 2j −m,

ϕp,j,2j−m−k(1− ·), k = 2j −m+ 1, . . . , 2j − 1.

The quarks form subspaces Vp,j of L2(I):

(2.13) Vp,j := closL2(I) span{ϕq,j,k : q = 0, . . . , p, k ∈ ∆j}.

In the sequel it is helpful to study the properties of the quarks independently of the
level. For this purpose we introduce quarks on level zero on the interval [0,∞):

ϕp,0,k(x) :=

{(
x

k+m

)p
Bm

0,k, k = −m+ 1, . . . ,−1,(
x−k−bm

2
c

dm
2
e

)p
Bm

0,k, k = 0, 1, . . . ,

where the knot sequence {t0k}k≥−m+1 is given by

t0k :=

{
0, k = −m+ 1, . . . ,−1,

k, k = 0, 1, . . . .

First we will show a two-scale-relation for the boundary quarks. This will be nec-
essary in Subsection 2.5 to derive frame properties of boundary adapted quarklet
systems. For the inner quarks a two-scale-relation was already shown in [16, Appen-
dix]. Because of the symmetry we restrict our discussion to left boundary quarks.

Proposition 2.2. For every p ∈ N0 there exist coefficients ajq,k,l ∈ R, so that the left
boundary quarks fulfill a two-scale-relation of the form

(2.14) ϕp,j,k =
m−2∑

l=−m+1

p∑
q=0

ajq,k,lϕp,j+1,l, k = −m+ 1, . . . ,−1.

Proof. Let k ∈ {−m + 1, . . . ,−1} be fixed. We use the corresponding two-scale-
relation for the Primbs wavelet generators, cf. [28, Lemma 3.3]:

ϕj,k =
m−2∑

l=−m+1

ajk,lϕj+1,l.
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Inserting this relation into the definition of the left boundary quarks, we obtain:

ϕp,j,k =

(
2j·

k +m

)p
ϕj,k =

(
2j·

k +m

)p m−2∑
l=−m+1

ajk,lϕj+1,l

=

(
2j·

k +m

)p( −1∑
l=−m+1

ajk,lϕj+1,l +
m−2∑
l=0

ajk,lϕj+1,l

)
.(2.15)

The first sum can be converted into a sum of left boundary quarks of degree p:(
2j·

k +m

)p −1∑
l=−m+1

ajk,lϕj+1,l =
−1∑

l=−m+1

ajk,l

(
l +m

2(k +m)

)p
(2j+1·)p

(l +m)p
ϕj+1,l

=
−1∑

l=−m+1

ajk,l

(
l +m

2(k +m)

)p
ϕp,j+1,l.(2.16)

For the second sum we obtain by an application of the binomial theorem:

(2j·)p
m−2∑
l=0

ajk,lϕj+1,l =2−p
m−2∑
l=0

ajk,l

(
2j+1 · −l − bm

2
c+ l + bm

2
c
)p
ϕj+1,l

=2−p
m−2∑
l=0

ajk,l

p∑
q=0

(
p
q

)(
2j+1 · −l − bm

2
c
)q (

l + bm
2
c
)p−q

ϕj+1,l.

Putting the monomials and wavelet generators together, we get:

(2j·)p
m−2∑
l=0

ajk,lϕj+1,l =
m−2∑
l=0

p∑
q=0

ajk,l2
−p
(
p
q

)(
l + bm

2
c
)p−q

dm
2
eq

·
(
2j+1 · −l − bm

2
c
)q

dm
2
eq

ϕj+1,l

=
m−2∑
l=0

p∑
q=0

ajk,l2
−p
(
p
q

)(
l + bm

2
c
)p−q

dm
2
eqϕq,j+1,l.(2.17)

Combining (2.15)-(2.17) leads to the coefficients of the two-scale-relation

ajq,k,l =


ajk,l

(
l+m

2(k+m)

)p
δp,q, l = −m+ 1, . . . ,−1,

ajk,l

(
1

2(k+m)

)p(p
q

)(
l + bm

2
c
)p−q dm

2
eq, l = 0, . . . ,m− 2.

�



ADAPTIVE QUARKONIAL DOMAIN DECOMPOSITION METHODS FOR ELLIPTIC PDES 11

To be able to show the stability of the quarklet systems, bounds for the Lq-norm of
the boundary quarks are necessary. In Proposition 2.3 we formulate such a statement.
Analogous properties for the inner quarks have been discussed in [16]. The quite
technical proof of Proposition 2.3 can be found in the appendix.

Proposition 2.3. Let 1 ≤ k ≤ m−1 and ϕp,0,−m+k a left boundary quark. For every
1 ≤ q ≤ ∞ there exist constants c = c(m, k, q) > 0, C = C(m, k, q) > 0, such that
for all p ≥ (m− 1)(k − 1):

(2.18) c(p+ 1)−(m−1+1/q) ≤ ||ϕp,0,−m+k||Lq(R) ≤ C(p+ 1)−(m−1+1/q).

As mentioned in Subsection 2.2, Jackson and Bernstein inequalities play a key
role to obtain stable systems not only in L2(I), but also in scales of Sobolev spaces
Hs(I). In [16, Theorem 1] a Jackson inequality for general polynomials and gener-
ating functions has been proven, but in our case it suffices to rely on the Jackson
inequalities for p = 0 as given in (2.7), since the inclusion of a Riesz basis in our
frame construction already assures the lower frame inequality, cf. (A.1). In the quark
case, the classical Bernstein inequality (2.8) reads as follows:

Proposition 2.4. Let p ∈ N0, j ≥ j0 and the spaces Vp,j be given by (2.13). Then
the following Bernstein inequalities hold true: For 1 ≤ q ≤ ∞ and r ∈ N0, r ≤ m−1
there exist constants C = C(m, q) > 0, such that for all f ∈ Vp,j:

(2.19) ||f (r)||Lq(I) ≤ C(p+ 1)2r2jr||f ||Lq(I).
For 0 ≤ s < m− 1

2
there exist constants C ′ = C ′(m, s) > 0 so that for all f ∈ Vp,j:

(2.20) |f |Hs(I) ≤ C ′(p+ 1)2s2js||f ||L2(I).

Proof. The proof can be performed by following the lines of [16, Corollary 1, 2]. �

2.4. Construction of boundary quarklets. Now we discuss the construction of
quarklets on the interval. For the inner quarklets, we proceed as in Subsection 2.1 and
assign the two-scale relation of the underlying wavelet to the quarks with the same
coefficients. Quite surprisingly, a similar approach does not work for the boundary
quarklets since this would destroy the vanishing moment properties. It turns out
that in order to preserve the vanishing moment properties of the underlying wavelet
Riesz basis for the full quarklet system, it is necessary to define the two-scale relation
of the boundary quarklets appropriately.

In any case, analogously to the shift-invariant case, cf. Subsection 2.1, quarklets
are defined as linear combinations of quark generators on the next higher level. Then,
the relation (2.2) for one quarklet becomes

(2.21) ψ~σp,j,k :=
∑

l∈∆j+1,~σ

bp,j,~σk,l ϕp,j+1,l, k ∈ ∇j,~σ.



12 S. DAHLKE, U. FRIEDRICH, P. KEDING, T. RAASCH, AND A. SIEBER

We already notice that in contrast to (2.2) the coefficients bp,j,~σk,l in (2.21) do not only
depend on l.

At first, let us discuss the construction of the inner quarklets. For p, j ∈ N0,
j ≥ j0, k ∈ ∇j,~σ with m − 1 ≤ k ≤ 2j −m the inner wavelets of the Primbs basis

are given by ψ~σj,k =
∑

l∈∆j+1,~σ
bj,~σk,lϕj+1,l, cf. (2.10). We construct an inner quarklet

by keeping these coefficients and inserting them into (2.21):

(2.22) bp,j,~σk,l := bj,~σk,l , m− 1 ≤ k ≤ 2j −m, l ∈ ∆j+1,~σ.

If the inner Primbs wavelets have m̃ vanishing moments, the inner quarklets defined
above have the same number of vanishing moments. This result is shown in [16,
Lemma 2] for cardinal B-spline quarks and therefore it holds true for the inner
Schoenberg B-spline quarks.

The next step is to construct boundary quarklets. As already mentioned, the
coefficients of the boundary wavelets are not suitable for the boundary quarklets,
since in general the vanishing moment properties can not be preserved. A simple
counter-example is given by ∫

R

2∑
l=−1

b
2,(0,0)
0,l ϕ1,3,l =

1

8
,

where the non-trivial coefficients are (b
2,(0,0)
0,l )2

l=−1 =
√

2(3
2
,−9

8
, 1

4
, 1

8
).

Therefore, Instead of keeping the coefficients, our approach is to modify the coef-
ficients in that way that the m̃ equations

(2.23)

∫
R
xqψ~σp,j,k(x) dx =

∫
R
xq

∑
l∈∆j+1,~σ

bp,j,~σk,l ϕp,j+1,l dx =0, q = 0, ..., m̃− 1

are fulfilled not only for p = 0 but for all p ∈ N0. We restrict our discussion to left
boundary quarklets, i.e., k = 0, . . . ,m−2, and assume that they are only composed of
left boundary and inner quarks. To get at least one non-trivial solution of (2.23) we
further assume that every boundary quarklet consists of m̃+ 1 quarks. Furthermore
the k-th quarklets representation should begin at the leftmost but k quark with
respect to boundary conditions. This leads to the m̃ × (m̃ + 1) linear system of
equations

(2.24)

−m+1+sgnσl+k+m̃∑
l=−m+1+sgnσl+k

bp,j,~σk,l

∫
R
xqϕp,j+1,l(x) dx = 0, q = 0, ..., m̃− 1.

Numerical tests indicate that the associated coefficient matrix has full rank so that
the solution is unique except for scaling. Hence, we are able to construct quarklets
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at the boundary with vanishing moments. If 0 6= bp,j,~σk ∈ Rm̃+1 solves (2.24), we
define the k-th left boundary quarklet by

(2.25) ψ~σp,j,k :=

−m+1+sgnσl+k+m̃∑
l=−m+1+sgnσl+k

bp,j,~σk,l ϕp,j+1,l, k = 0, . . . ,m− 2.

The vanishing moment property of the quarklets immediately leads to the following
cancellation property of the quarklets.

Lemma 2.5. Let p, j ∈ N0, j ≥ j0, k ∈ ∇j,~σ and ψ~σp,j,k a quarklet with m̃ vanishing
moments. There exists a constant C(m,ψ) > 0, such that for every r ∈ N0, r ≤ m̃−1
and f ∈ W r

∞(R):

(2.26) |〈f, ψ~σp,j,k〉L2(R)| ≤ C(p+ 1)−m2−j(r+1/2)|f |W r
∞(supp ψ~σp,j,k).

Proof. The proof can be performed by following the lines of [16, Lemma 3]. From
the vanishing moments of the quarklets, Hölder’s inequality and a Whitney type
estimate it follows:

(2.27) |〈f, ψ~σp,j,k〉L2(R)| ≤ C1|supp ψp,j,k|r|f |W r
∞(supp ψ~σp,j,k)||ψ~σp,j,k||L1(supp ψ~σp,j,k),

where C1 > 0 only depends on r. To further estimate the L1-norm expression in
(2.27) we use the symmetry of the boundary quarks, (2.21) and the relation

ϕp,j,k = 2j/2ϕp,0,k(2
j·), k = −m+ 1, . . . , 2j −m.

Combining this relation and the norm estimate (2.18) we obtain

||ψ~σp,j,k||L1(supp ψ~σp,j,k) ≤ C22−
j+1
2 (p+ 1)−m

∑
l∈∆j+1,~σ

|bp,j,~σk,l |,

where C2 > 0 only depends on m. The claim finally follows by estimating the
asymptotic behaviour of
|supp ψ~σp,j,k| by 2−j. �

The following proposition transfers the estimates for the Gramian matrices from
[16, Proposition 2] to the boundary adapted case. This is the last missing ingredient
to show the frame property of the quarklet systems in L2(I) and Hs(I).

Proposition 2.6. For fixed p ∈ N0, the operators induced by the Gramian matrices,
which are given by

Gp :=
(
〈ϕp,j0,k, ϕp,j0,k′〉L2(R)

)
k,k′∈∇j0−1,~σ

,(2.28)

Hp :=
(
〈ψ~σp,j,k, ψ~σp,j′,k′〉L2(R)

)
(j,k):j≥j0,k∈∇j,~σ ,(j′,k′):j′≥j0,k′∈∇j′,~σ

(2.29)
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are bounded operators on `2({(j0 − 1, k) : k ∈ ∇j0−1,~σ}) and `2({(j, k) : j ≥ j0, k ∈
∇j,~σ})), respectively, i.e., there exist constants C ′ = C ′(m,ϕ) > 0, C ′′ = C ′′(m,ψ) >
0, such that

||Gp||L (`2({(j0−1,k):k∈∇j0−1,~σ})) ≤ C ′(p+ 1)−(2m−1),(2.30)

||Hp||L (`2({(j,k):j≥j0,k∈∇j,~σ})) ≤ C ′′(p+ 1)−1.(2.31)

Proof. The proof is based upon the cancellation property (2.26) and can be performed
by following the lines of [16, Proposition 2]. �

2.5. Frames for L2(I) and Hs(I). After introducing the construction of quarks
and quarklets on the interval and proving some crucial estimates in the Subsections
2.3 and 2.4 we are finally able to transfer the frame properties of the shift-invariant
quarklets, cf. Subsection 2.1, to the case of boundary adapted quarklets. We define
the index set for the whole quarklet system by

(2.32) ∇~σ := {(p, j, k) : p, j ∈ N0, j ≥ j0 − 1, k ∈ ∇j,~σ},
which contains the Primbs basis index set

(2.33) ∇R
~σ := {(0, j, k) : j ∈ N0, j ≥ j0 − 1, k ∈ ∇j,~σ}.

With these index sets at hand we can formulate the following theorem, which states
the frame property in L2(I).

Theorem 2.7. The weighted quarklet system

(2.34) Ψ~σ := {(p+ 1)−δ/2ψ~σλ : λ ∈ ∇~σ}, δ > 1,

is a frame for L2(I).

Proof. The used weights ωp := (p + 1)−δ/2 fulfill ω0 = 1, so the quarklet system
contains an underlying Riesz basis which implies the lower frame estimate, cf. [16,
Theorem 3]. The convergence of the sum

∑
p ωp(p + 1)−1/2 < ∞ implies the upper

frame estimate, cf. [16, Theorem 3]. �

Choosing suitable weights we even derive frames for Sobolev spaces Hs
~σ(I), 0 <

s < m − 1
2
. First we study finite subsets of the full quarklet system Ψ~σ and the

subspaces they span:

Ψp,j := {ψp,i,k : i = j0 − 1, ..., j − 1, k ∈ ∇i,~σ},(2.35)

Up,j := span{
p⋃
q=0

Ψq,j}.(2.36)

From the two-scale-relation (2.14) it follows Up,j ⊂ Vp,j. This subset-relation is
necessary to transfer the technical results of [16, Proposition 3] to the interval case.
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It follows immediately that the Bernstein inequality (2.20) holds true for all f ∈ Up,j.
In addition, a Bessel property, cf. (A.8), can be shown:

Lemma 2.8. Let p, j ∈ N0 be fixed. Then, for all f ∈ Up,j the following holds true:

(2.37) C−1(p+ 1)−δ||f ||L2(I) ≤ inf
c:
∑p
q=0

∑j−1
i=j0−1

∑
k∈∇i,~σ

cq,i,kψq,i,k=f

p∑
q=0

j−1∑
i=j0−1

∑
k∈∇i

|cq,i,k|2.

Hence, the system
⋃p
q=0 Ψq,j forms a Bessel system, cf. (A.8), in Up,j with Bessel

bound B = C(m,ψ)(p+ 1)δ > 0, δ > 1.

Proof. For a proof we refer to [16, Proposition 3]. �

The following theorem is the main result of this section. It states that the con-
struction ideas of frames for scales of Sobolev spaces in the shift-invariant case, cf.
Theorem 2.1, can be carried over to the boundary adapted quarklets. These frames
serve as a starting point for the construction of multivariate tensor frames on cubes
and more general domains, as it will be outlined in Section 3.

Theorem 2.9. For 0 ≤ s < m− 1
2

the weighted quarklet system

(2.38) Ψs
~σ := {(p+ 1)−2s−δ2−sjψ~σλ : λ ∈ ∇~σ}, δ > 1,

is a frame for Hs
~σ(I).

Proof. The proof can be carried out by showing the Bessel property of quarklet
systems with increasing cardinality of the index sets, and can again be performed by
following the lines of [16, Theorem 4]. �

3. Quarklets on domains

The course of the section is as follows: in Subsection 3.1 we introduce the domains
of interest as the union of parametric images of the unit cube and recall some ideas
of [7] concerning extension operators and isomorphisms between Sobolev spaces on
different domains. In Subsection 3.2 we describe in a general setting how a combi-
nation of frames on cubes, Bessel systems which include the image of an extension
operator and simple extensions lead to frames for Sobolev spaces on our target do-
main Ω ⊂ Rd. In Subsection 3.3 we show how the univariate frames of Section 2
can be used to obtain frames on cubes. Finally, in Subsection 3.4 we show that
the general machinery outlined in Subsection 3.2 can be applied to our setting and
present explicit constructions.
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3.1. Preliminaries. In this subsection we collect the basic tools which are needed
to generalize Riesz bases on cubes to Riesz bases on general domains. Further in-
formation can be found in [7]. This approach can be used as a starting point of the
new frame construction on general domains. The final construction can be found in
Subsection 3.4.

Let us first describe the types of domains we will be concerned with in the sequel.
Let � := Id. Let {�0, . . . ,�N} with �j := τj +�, τj ∈ Zd, j = 0, . . . , N be a fixed
finite set of hypercubes. We assume ∪Nj=0�j ⊂ Ω ⊂ (∪Nj=0�j)

int and such that ∂Ω
is the union of (closed) facets of the �j’s. Later on we will present a construction
of frames for Sobolev spaces on Ω from frames for corresponding Sobolev spaces on
the subdomains �k by using extension operators. These extension operators form a
crucial ingredient in the final construction, see again Subsection 3.4. The following
conditions (D1)–(D5) are taken from [7] and ensure the existence of suitable extension
operators.

We set Ω
(0)
i := �i, i = 0, . . . , N and create a sequence ({Ω(q)

i : q ≤ i ≤ N})0≤q≤N
of sets of polytopes, where each next entry in this sequence is created by joining
two polytopes from the previous entry whose joint interface is part of a hyperplane.
More precisely, we assume that for any 1 ≤ q ≤ N , there exists a q ≤ ī = ī(q) ≤ N

and q − 1 ≤ i1 = i
(q)
1 6= i2 = i

(q)
2 ≤ N such that

(D1) Ω
(q)

ī
=
(

Ω
(q−1)
i1

∪ Ω
(q−1)
i2

\ ∂Ω
)int

is connected, and the interface J := Ω
(q)

ī
\

(Ω
(q−1)
i1

∪ Ω
(q−1)
i2

) is part of a hyperplane,

(D2) {Ω(q)
i : q ≤ i ≤ N, i 6= ī} =

{
Ω

(q−1)
i : q − 1 ≤ i ≤ N, i 6= {i1, i2}

}
,

(D3) Ω
(N)
N = Ω.

By construction, the boundary of each Ω
(q)
i is a union of facets of hypercubes �j.

We define
◦
Hs(Ω

(q)
i ) to be the closure in Hs(Ω

(q)
i ) of the smooth functions that are

supported in the interior of Ω
(q)
i . In particular, homogeneous boundary conditions are

imposed on those facets of �j that lie inside ∂Ω. Hence we have
◦
Hs(Ω

(N)
N ) = Hs

0(Ω)
and for some σ(j) ∈ ({0, bs+ 1/2c}2)d,

◦
Hs(Ω

(0)
j ) =

◦
Hs(�j) = Hs

σ(j)(�j).

The boundary conditions on the hypercubes that determine the spaces
◦
Hs(Ω

(q)
i ), and

the order in which polytopes are joined should be chosen such that

(D4) on the Ω
(q−1)
i1

and Ω
(q−1)
i2

sides of J , the boundary conditions are of order 0

and bt+ 1
2
c, respectively,

and, w.l.o.g. assuming that J = {0} × J̆ and I × J̆ ⊂ Ω
(q−1)
i1

,
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(D5) for any function in
◦
Hs(Ω

(q−1)
i1

) that vanishes near {0, 1} × J̆ , its reflection in

{0}×Rn−1 (extended with zero, and then restricted to Ω
(q−1)
i2

) is in
◦
Hs(Ω

(q−1)
i2

).

The condition (D5) can be formulated by saying that the order of the boundary

condition at any subfacet of Ω
(q−1)
i1

adjacent to J should not be less than this order

at its reflection in J , where in case this reflection is not part of ∂Ω
(q−1)
i2

, the latter

order should be read as the highest possible one bs + 1
2
c; and furthermore, that the

order of the boundary condition at any subfacet of Ω
(q−1)
i2

adjacent to J should not
be larger than this order at its reflection in J , where in case this reflection is not

part of ∂Ω
(q−1)
i1

, the latter order should be read as the lowest possible one 0.

Given 1 ≤ q ≤ N , for l ∈ {1, 2}, let R
(q)
l be the restriction of functions on Ω

(q)

ī
to

Ω
(q−1)
il

, let η
(q)
2 be the extension of functions on Ω

(q−1)
i2

to Ω
(q)

ī
by zero, and let E

(q)
1

be any extension that is well defined on Sobolev spaces on Ω
(q−1)
i1

to Sobolev spaces

Ω
(q)

ī
.

Roughly speaking, in every step of our construction we will glue together two
adjacent domains. One ingredient in such a step will be a bijective operator between
Sobolev spaces on those domains. In the following proposition, which is taken from [7,
Proposition 2.1], we consider a more general framework and give conditions under
which a class of mappings between a Banach space and the Cartesian product of two
other Banach spaces consists of isomorphisms. In Proposition 3.2, cf. [7, Proposition
4.2], we apply these statements to our special case.

Proposition 3.1. For normed linear spaces V and Vi (i = 1, 2), let E1 ∈ B(V1, V ),
η2 ∈ B(V2, V ), R1 ∈ B(V, V1), and R2 ∈ B(Ran(η2), V2) be such that

R1E1 = Id, R2η2 = Id, R1η2 = 0, Ran(Id− E1R1) ⊂ Ran(η2).

Then

E = [E1 η2] ∈ B(V1 × V2, V ) is boundedly invertible,

with inverse

E−1 =

[
R1

R2(Id− E1R1)

]
.

Proposition 3.2. Assume that E
(q)
1 ∈ B(

◦
Hs(Ω

(q−1)
i1

),
◦
Hs(Ω

(q)

ī
)),

η
(q)
2 ∈ B(

◦
Hs(Ω

(q−1)
i2

),
◦
Hs(Ω

(q)

ī
)). Then,

E(q) := [E
(q)
1 η

(q)
2 ] ∈ B

( 2∏
l=1

◦
Hs(Ω

(q−1)
il

),
◦
Hs(Ω

(q)

ī
)
)

is boundedly invertible.
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Proof. This is a direct application of Proposition 3.1 with V1 =
◦
Hs(Ω

(q−1)
i1

), V2 =
◦
Hs(Ω

(q−1)
i2

), V =
◦
Hs(Ω

(q)

ī
), E1 = E

(q)
1 , η2 = η

(q)
2 and Rl = R

(q)
l , for l ∈ {1, 2}. �

Sequential execution of extensions as in Proposition 3.2 induces an isomorphism
from the Cartesian product of Sobolev spaces on the cubes �j onto the Sobolev
spaces on the target domain Ω.

Corollary 3.3. For F being the composition for q = 1, . . . , N of the mappings
E(q) from Proposition 3.2, trivially extended with identity operators in coordinates

i ∈ {q − 1, . . . , N} \ {i(q)1 , i
(q)
2 }, it holds that

(3.1) F ∈ B
( N∏
j=0

◦
Hs(�j), H

s
0(Ω)

)
.

is boundedly invertible.

Remark 3.4. If we apply F to Riesz bases on cubes �j we end up with a Riesz basis
on Ω. While this is also true for the case of frames, the way for the construction of
frames in this paper will be a bit different, mainly to preserve the vanishing moments
of the frames on cubes. Nevertheless, the operators E(q) as defined in Proposition 3.2
will play an important role in the construction process.

The next proposition provides the link between the extension approach and tensor

products. It states that under the conditions (D1)–(D5), the extensions E
(q)
1 can be

constructed (essentially) as tensor products of univariate extensions with identity
operators in the other Cartesian directions.

Proposition 3.5. In the setting of (D1), w.l.o.g. let J = {0}×J̆ and I×J̆ ⊂ Ω
(q−1)
i1

.
Let G1 be an extension operator of functions on I to functions on (−1, 1) such that

G1 ∈ B(L2(I), L2(−1, 1)), G1 ∈ B(Hs(I), Hs
(bs+ 1

2
c,0)

(−1, 1)).

Let T ∈ B(
◦
Hs(Ω

(q−1)
i1

),
◦
Hs(Ω

(q−1)
i2

)) be defined as the composition of the restriction to

I × J̆ , followed by an application of

G1 ⊗ Id⊗ · · · ⊗ Id,

an extension by 0 to Ω
(q−1)
i2
\ (−1, 0)× J̆ and a restriction to Ω

(q−1)
i2

. Then, we define

E(q) ∈ B(
∏2

l=1

◦
Hs(Ω

(q−1)
il

),
◦
Hs(Ω

(q)

ī
)) as the operator which is the identity operator if

restricted to
◦
Hs(Ω

(q−1)
i1

) and T if restricted to
◦
Hs(Ω

(q−1)
i2

). By proceeding this way,

E(q) is well-defined and boundedly invertible by Proposition 3.2.
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Ω
(0)
i1

Ω
(0)
i2 Ω

(1)
i1

Ω
(1)
i2

Ω
(2)
i1

Ω
(2)
i2

Ω
(3)
i1

Ω
(3)
i2

Ω

Figure 1. Example of a domain decomposition such that D1 – D5 are
fulfilled. The arrows indicate the direction of the non-trivial extension.
Dotted lines and solid lines indicate free and zero boundary conditions,
respectively.

3.2. Construction of frames by extension. Based on the setting outlined in
Subsection 3.1, we will now describe a general procedure to construct frames for the
Sobolev space Hs(Ω), provided that suitable frames and Riesz-bases, respectively,
on the cubes �j are given. Suitable frames and bases on cubes will be constructed
in Subsection 3.3. Finally, a combination of the results of Subsection 3.2 and 3.3 will
provide us with the desired quarklet frame, cf. Subsection 3.4.

For j = 0, . . . , N , let Ψj be a frame for L2(�j), that renormalized in Hs(�j), is
a frame for

◦
Hs(�j). Furthermore assume that there exists a Riesz basis Σj ⊂ Ψj

for L2(�j), that renormalized in Hs(�j), is a Riesz basis for
◦
Hs(�j). Renormalized

versions of all sets will be indicated with an upper s. For q = 0, . . . , N , i = q, . . . , N
and s ≥ 0 we define recursively

(3.2) Σ
s,(q)
i :=


Σs
i , q = 0,

Σ
s,(q−1)

î
, 1 ≤ q ≤ N, i 6= i, Ω

(q)
i = Ω

(q−1)

î
,

E
(q)
1 (Σ

s,(q−1)
i1

) ∪ η(q)
2 (Σ

s,(q−1)
i2

), 1 ≤ q ≤ N, i = i.

We observe that Σ
s,(N)
N is exactly F (Σs

0, . . . ,Σ
s
N), with F defined as in Corollary

3.3. Thus, it is a Riesz basis for Hs
0(Ω), cf. Proposition A.4 (iii). For the frame

construction, we have to assume the existence of an additional family Ξs,(q) which

forms a Bessel system in
◦
Hs(Ω

(q)
i ), cf. (A.8), and satisfies E

(q)
i (Σ

s,(q−1)
i ) ⊂ Ξs,(q).

Then for q = 0, . . . , N , i = q, . . . , N and s ≥ 0 we set

(3.3) Ψ
s,(q)
i :=


Ψs
i , q = 0,

Ψ
s,(q−1)
i , 1 ≤ q ≤ N, i 6= i, Ω

(q)
i = Ω

(q−1)

î
,

Ξs,(q) ∪ η(q)
2 (Ψ

s,(q−1)
i2

), 1 ≤ q ≤ N, i = i.
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The next proposition implies that, by proceeding this way, we indeed obtain suitable
frames for Hs

0(Ω). Further information concerning the additional Bessel system as
well as construction details can be found in Subsection 3.4, Remark 3.15.

Proposition 3.6. For q = 0, . . . , N , i = q, . . . , N and s ≥ 0, let Ψ
s,(q)
i be defined as

in (3.3). Then, Ψs := Ψ
s,(N)
N , is a frame for Hs

0(Ω).

Proof. Let 1 ≤ q ≤ N . Since Ψ
s,(q−1)
i2

is a Bessel system in
◦
Hs(Ω

(q−1)
i2

) and

η
(q)
2 ∈ B(

◦
Hs(Ω

(q−1)
i2

),
◦
Hs(Ω

(q)

ī
)), we can conclude that η

(q)
2 (Ψ

s,(q−1)
i2

) is a Bessel system

in
◦
Hs(Ω

(q)

ī
), cf. Proposition A.4 (i). Hence, Ψ

s,(q)

ī
= Ξs,(q) ∪ η(q)

2 (Ψ
s,(q−1)
i2

) is a union

of two Bessel systems and therefore a Bessel system in
◦
Hs(Ω

(q)

ī
), cf. Proposition A.3

(i).

Since E
(q)
1 (Σ

s,(q−1)
i1

) ⊂ Ξs,(q) and Σ
s,(q−1)
i2

⊂ Ψ
s,(q−1)
i2

, we conclude that Σ
s,(q)

ī
⊂

Ψ
s,(q)

ī
. For 0 ≤ i ≤ N , Σ

s,(0)
i is a Riesz basis for

◦
Hs(Ω

(0)
i ). Furthermore E(q) =

[E
(q)
1 η

(q)
2 ] ∈ B

(∏2
l=1

◦
Hs(Ω

(q−1)
il

),
◦
Hs(Ω

(q)

ī
)
)

as defined in Proposition 3.2 is bound-

edly invertible. Thus, we can conclude inductively that Σ
s,(q)

ī
= E(q)(Σ

s,(q−1)
i1

,Σ
s,(q−1)
i2

)

is a Riesz basis for
◦
Hs(Ω

(q)

ī
), cf. Proposition A.4 (iii) . Hence, Ψ

s,(q)

ī
as a Bessel sys-

tem which contains a Riesz basis is a frame for
◦
Hs(Ω

(q)

ī
), cf. Proposition A.3 (iii).

Especially Ψs = Ψ
s,(N)
N is a frame for Hs

0(Ω) =
◦
Hs(Ω

(N)
N ). �

3.3. Frames on cubes. To carry out our program, we have to construct Riesz bases
and frames on the cubes �i. It is sufficient to consider the case �i = � = Id, since all
other cubes can be simply handled by translation. For reasons already outlined in the
introduction, it is our goal to construct the desired representation system by means
of tensor products of the univariate, boundary adapted quarklet frames introduced
in Section 2. However, then an additional difficulty comes into play, namely that the
spaces Hs

σ(�),σ = ( ~σ1, . . . , ~σd), ~σi ∈ {0, bs + 1
2
c}, are usually not of tensor product

type. Fortunately, the following relations hold for s ∈ [0,∞) \ (N0 + 1
2
), cf. [7]:

(3.4) Hs
σ(�) :=

d⋂
i=1

Hs
i (�),

where

Hs
i (�) := L2(I)⊗ · · · ⊗ L2(I)⊗Hs

~σi
(I)⊗ L2(I)⊗ · · · ⊗ L2(I) ⊂ L2(�),(3.5)

with Hs
~σi

(I) at the i-th spot. For the definitions of inner products and norms on
tensor product spaces we refer to [24, Section 2].
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The intersection of Hilbert spaces H(i) which all have to be contained in a Hilbert
space H is defined as

d⋂
i=1

H(i) := {f : ‖f‖⋂d
i=1H

(i) <∞}, ‖f‖⋂d
i=1H

(i) :=

(
d∑
i=1

||f ||2H(i)

)1/2

.

Therefore, we have to construct tensor quarklet frames for the spaces (3.5) and to
check to which extent the frame property carries over to the intersection (3.4).

The following two lemmas give rise to the construction of frames on tensor-product
spaces and on intersections of Hilbert spaces, respectively. They generalize Lemma
3.1.5 and Lemma 3.1.8 of [23] from the case of Riesz bases to the case of frames.

We assume that FL2(I) = {fλ}λ∈J is a frame for L2(I) with frame constants
A,B > 0, such that, for certain scalar weights wλ > 0 and an integer s ≥ 0, the set
{w−1

λ fλ}λ∈J is a frame for Hs
~σ(I) with frame constants As, Bs > 0.

Lemma 3.7. The system

FHs
i (�) :=

{
w−1
λi
fλ1 ⊗ · · · ⊗ fλd

}
λ∈J d , λ = {λ1, . . . , λd},

is a frame for the tensor product Sobolev space Hs
i (�) with frame constants AsA

d−1

and BsB
d−1, i.e.,

(3.6) AsA
d−1‖f‖2

Hs
i (�) ≤

∑
λ∈J d

∣∣〈f, w−1
λi
fλ1 ⊗ · · · ⊗ fλd〉Hs

i (�)

∣∣2 ≤ BsB
d−1‖f‖2

Hs
i (�),

for all f ∈ Hs
i (�).

Proof. Without loss of generality, we may assume that i = 1. Moreover, it is sufficient
to show (3.6) on a dense subset of Hs

1(�), cf. [8, Lemma 5.1.9] e.g., for all finite
sums of tensor product functions like

(3.7) f =
K∑
k=1

g
(1)
k ⊗ · · · ⊗ g

(d)
k , g

(j)
k ∈

{
Hs

~σ1
(I) , j = 1,

L2(I) , 2 ≤ j ≤ d.

Assume that f has this form, and let U = {uj}j∈N and V = {vj}j∈N be orthonormal
bases for Hs(I) and L2(I), respectively. Then obviously, the system {uj1⊗vj2⊗· · ·⊗
vjd}jl∈N,1≤l≤d is an orthonormal basis for Hs

1(�). By consequence, an application of
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the Parseval identity in Hs
1(�) and in Hs

~σ1
(I) yields

‖f‖2
Hs

1(�) =
∑
jl∈N

1≤l≤d

∣∣〈f, uj1 ⊗ vj2 ⊗ · · · ⊗ vjd〉Hs
1(�)

∣∣2

=
∑
jl∈N

1≤l≤d

∣∣∣ K∑
k=1

〈g(1)
k ⊗ · · · ⊗ g

(d)
k , uj1 ⊗ vj2 ⊗ · · · · · · ⊗ vjd〉Hs

1(�)

∣∣∣2

=
∑
jl∈N

1≤l≤d

∣∣∣ K∑
k=1

〈g(1)
k , uj1〉Hs

~σ1
(I)

d∏
ν=2

〈g(ν)
k , vjν 〉L2(I)

∣∣∣2

=
∑
jl∈N

2≤l≤d

∑
j1∈N

∣∣∣〈 K∑
k=1

d∏
ν=2

〈g(ν)
k , vjν 〉L2(I)g

(1)
k , uj1

〉
Hs
~σ1

(I)

∣∣∣2

=
∑
jl∈N

2≤l≤d

∥∥∥ K∑
k=1

d∏
ν=2

〈g(ν)
k , vjν 〉L2(I)g

(1)
k

∥∥∥2

Hs
~σ1

(I)
.

The Hs
~σ1

(I)-norms can be estimated from above and from below by using the frame

property of {w−1
λ1
fλ1}λ1∈J in Hs

~σ1
(I), resulting in the auxiliary estimate

(3.8)

As‖f‖2
Hs

1(�) ≤
∑
λ1∈J

w−2
λ1

∑
jl∈N

2≤l≤d

∣∣∣ K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)

d∏
ν=2

〈g(ν)
k , vjν 〉L2(I)

∣∣∣2 ≤ Bs‖f‖2
Hs

1(�).

It remains to bound the middle sum in (3.8) from above and from below. For fixed
λ1, . . . , λd ∈ J , we can transform

K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)

d∏
ν=2

〈g(ν)
k , vjν 〉L2(I)

=
〈 K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)

d∏
ν=3

〈g(ν)
k , vjν 〉L2(I)g

(2)
k , vj2

〉
L2(I)

.
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By using the Parseval identity in L2(I), we deduce∑
j2∈J

∣∣∣ K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)

d∏
ν=2

〈g(ν)
k , vjν 〉L2(I)

∣∣∣2
=
∥∥∥ K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)

d∏
ν=3

〈g(ν)
k , vjν 〉L2(I)g

(2)
k

∥∥∥2

L2(I)
,

so that the frame property of F in L2(I) yields

A
∑
j2∈J

∣∣∣ K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)

d∏
ν=2

〈g(ν)
k , vjν 〉L2(I)

∣∣∣2
≤
∑
λ2∈J

∣∣∣〈 K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)

d∏
ν=3

〈g(ν)
k , vjν 〉L2(I)g

(2)
k , fλ2

〉
L2(I)

∣∣∣2
≤ B

∑
j2∈J

∣∣∣ K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)

d∏
ν=2

〈g(ν)
k , vjν 〉L2(I)

∣∣∣2.
In view of (3.8), this implies

AsA‖f‖2
Hs

1(�) ≤
∑

λ1,λ2∈J

w−2
λ1

∑
jl∈N

3≤l≤d

∣∣∣ K∑
k=1

〈g(1)
k , fλ1〉Hs

~σ1
(I)〈g(2)

k , fλ2〉L2(I)

d∏
ν=3

〈g(ν)
k , vjν 〉L2(I)

∣∣∣2
≤ BsB‖f‖2

Hs
1(�).

The claim (3.6) follows by repeating the aforementioned calculations and estimates
in each of the remaining modes 3 ≤ ν ≤ d. �

Remark 3.8. By following the lines of the proof of Lemma 3.7, one can also show
that the system FL2(�) =

{
fλ1 ⊗ · · · ⊗ fλd

}
λ∈J d is a frame for L2(�) with frame

bounds Ad, Bd.

An application of Lemma 3.7 provides us with tensor frames for all the spaces
Hs
i (�) defined in (3.5). It remains to check under which conditions these frames

also give rise to suitable systems in the intersection space Hs
σ(�) in (3.4). Quite

surprisingly, to perform our proof, it is not sufficient that the individual system
possesses the frame property. In addition, each of the frames must contain a Riesz
basis. Although this assumption is in a certain sense restrictive, it is always satisfied
since our quarkonial frames by construction contain a wavelet Riesz basis.

Lemma 3.9. Let FH = {fλ}λ∈I be a frame for a Hilbert space H such that for i ∈
{1, . . . , d} and some non-zero scalars w

(i)
λ , λ ∈ I, the sets FH(i) := {(w(i)

λ )−1fλ}λ∈I
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form frames for Hilbert spaces H(i) ⊂ H. Furthermore we assume that there exists a

Riesz basisRH := {fλ}λ∈IR ⊂ FH forH such that the setsRH(i) := {(w(i)
λ )−1fλ}λ∈IR

form Riesz bases for H(i) ⊂ H. Then the collection
(

d∑
i=1

(w
(i)
λ )2

)−1/2

fλ


λ∈I

is a frame for
⋂d
i=1H(i) ⊂ H.

Proof. It is sufficient to prove the lemma for the case d = 2. Then, the general result
follows by induction. Let f ∈ H(1)∩H(2). Since RH is a Riesz basis for H we have a
unique representation f =

∑
λ∈IR ĉλfλ. Let Bi be the optimal upper frame bounds

and Bmax = max{B1, B2}. Then the frame property of FH(i) in H(i), i ∈ {1, 2}
implies

(3.9) B−1
max ‖f‖

2
H(i) ≤ B−1

i ‖f‖
2
H(i) ≤ inf

c(i)∈`2(I):(c(i))TFH=f

∑
λ∈I

(w
(i)
λ )2(c

(i)
λ )2

The definition of ‖·‖H(1)∩H(2) and (3.9) lead to

B−1
max ‖f‖

2
H(1)∩H(2) ≤ inf

(c(1),c(2))∈`2(I)2:(c(i))TFH=f

∑
λ∈I

(w
(1)
λ )2(c

(1)
λ )2 + (w

(2)
λ )2(c

(2)
λ )2

≤ inf
c∈`2(I):cTFH=f

∑
λ∈I

(
(w

(1)
λ )2 + (w

(2)
λ )2

)
c2
λ,(3.10)

showing the lower frame inequality. Let ARi , i ∈ {1, 2} be the optimal lower Riesz
constants and ARmin = min{AR1 , AR2 }. For the upper frame inequality we use the
unique representation and the Riesz basis properties of RH(i) in H(i), i ∈ {1, 2} to
estimate

inf
c∈`2(I):cTFH=f

∑
λ∈I

(
(w

(1)
λ )2 + (w

(2)
λ )2

)
c2
λ ≤

∑
λ∈IR

(
(w

(1)
λ )2 + (w

(2)
λ )2

)
ĉ2
λ

=
∑
λ∈IR

(w
(1)
λ )2ĉ2

λ +
∑
λ∈IR

(w
(2)
λ )2ĉ2

λ

≤ (AR1 )−1 ‖f‖2
H(1) + (AR2 )−1 ‖f‖2

H(2)

≤ (ARmin)−1 ‖f‖2
H(1)∩H(2) ,(3.11)

Combining (3.10) and (3.11) proves the claim. �

An application of Remark 3.8 and Theorem 2.7 yields the following theorem, which
is one of the main results of this paper.
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Theorem 3.10. Let {Ψ~σi
λi
}, i = 1, . . . , d, be a family of univariate boundary adapted

quarklet frames of order m ≥ 2, with m̃ vanishing moments, m̃ ≥ m, according to
Theorem 2.7. Then the family

Ψσ :=
d⊗
i=1

Ψ~σi =

{
(wL2
λ )−1ψσλ : λ ∈∇σ :=

d∏
i=1

∇ ~σi

}
,(3.12)

ψσλ :=
d⊗
i=1

ψ ~σi
λi
,(3.13)

with the weights

(3.14) wL2
λ :=

d∏
i=1

(pi + 1)δ/2 , δ > 1,

is a quarkonial tensor frame for L2(�).

By means of Lemma 3.7, Lemma 3.9 and Theorem 2.9 we also obtain quarkonial
frames for the Sobolev space Hs

σ(�), which is a second main result.

Theorem 3.11. Let {Ψ~σi
λi
}, i = 1, . . . , d, be a family of univariate boundary adapted

quarklet frames of order m ≥ 2, with m̃ vanishing moments, m̃ ≥ m, according to
Theorem 2.7. Then the family

(3.15) Ψs
σ :=

{
(wH

s

λ )−1ψσλ : λ ∈∇σ

}
,

with the weights

(3.16) wH
s

λ :=

(
d∑
i=1

(pi + 1)4s+δ1 4sji

)1/2 d∏
i=1

(pi + 1)δ2/2 , δ1 > 1, δ1 + δ2 > 2,

is a frame for Hs
σ(�), 0 ≤ s < m− 1

2
, s /∈ N0 + 1

2
.

Remark 3.12. Let us also introduce the notation

(3.17) Σσ :=
d⊗
i=1

Σ~σi =

{
ψσλ : λ ∈∇R

σ :=
d∏
i=1

∇R
~σi

}
for the L2(�) Riesz basis. Accordingly,

(3.18) Σs
σ :=


(

d∑
i=1

4sji

)−1/2

ψσλ : λ ∈∇R
σ


denotes a Riesz basis for Hs

σ(�).
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Clearly, Riesz bases and frames for L2(�j), j = {0, . . . , N}, can be chosen as

Σj := Σσ(j)(· − τj), Ψj := Ψσ(j)(· − τj),

whose renormalized versions are Riesz bases and frames for Hs
σ(j)(�j).

3.4. Frames on general domains. Once we have constructed quarkonial tensor
frames for scales of Sobolev spaces on cubes, the next step is clearly the generalization
to arbitrary domains as described in Subsection 3.1. To this end, we want to apply
the general machinery as outlined in Subsection 3.2. Then, two basic ingredients

have to be provided: suitable extension operators E
(q)
1 , cf. (3.2), and the additional

Bessel systems Ξ(q), cf. (3.3).

3.4.1. Construction of scale-dependent extension operators. For ~σ = (σl, σr) ∈
{0, bs + 1/2c}2, the index set ∇R

~σ , cf. (2.33), and with ~0 := (0, 0), the functions in

the univariate wavelet Riesz basis Σ~σ, cf. (2.11), and its dual Riesz basis Σ̃~σ satisfy
the following technical properties, cf. [7, Section 2]:

(W1) |〈ψ̃~σλ , u〉L2(I)| . 2−jt‖u‖Ht(supp ψ̃~σ) (u ∈ H t(I) ∩ Hs
~σ(I), λ ∈ ∇R

~σ ), for some
N 3 t > s,

(W2) 1 > ρ := supλ∈∇R
~σ

2j max(diam supp ψ̃~σλ , diam suppψ~σλ)

h infλ∈∇R
~σ

2j max(diam supp ψ̃~σλ , diam suppψ~σλ),

(W3) sup
i,k∈N0

#{λ ∈ ∇R
~σ : j = i ∧ [k2−i, (k + 1)2−i] ∩ (supp ψ̃~σλ ∪ suppψ~σλ) 6= ∅} <∞.

(W4) V ~σ
i := span{ψ~σλ : λ ∈ ∇R

~σ , j ≤ i} = V
~0
i ∩Hs

~σ(I),

(W5) ∇R
~σ is the disjoint union of ∇R,(`)

σ` , ∇R,(I), ∇R,(r)
σr, such that

(i) sup
λ∈∇R,(`)σ`

, x∈suppψ~σλ

2j|x| . ρ, sup
λ∈∇R,(r)σr , x∈suppψ~σλ

2j|1− x| . ρ,

(ii) for λ ∈ ∇R,(I), ψ~σλ = ψ
~0
λ, ψ̃

~σ
λ = ψ̃

~0
λ, and the extensions of ψ

~0
λ and ψ̃

~0
λ by

zero are in Hs(R) and L2(R), respectively.

(W6)

{
span{ψ~0λ(1− ·) : λ ∈ ∇R,(I), j = i} = span{ψ~0λ : λ ∈ ∇R,(I), j = i},
span{ψ(σ`,σr)

λ (1− ·) : λ ∈ ∇R,(`)
σ` , j = i} = span{ψ(σr,σ`)

λ : λ ∈ ∇R,(r)
σr , j = i},

(W7)

{
ψ~σλ(2l·) ∈ span{ψ~σµ : µ ∈ ∇R,(`)

σ` } (l ∈ N0, λ ∈ ∇R,(`)
σ` ),

ψ
~0
λ(2

l·) ∈ span{ψ~0µ : µ ∈ ∇R,(I)} (l ∈ N0, λ ∈ ∇R,(I)).

Let us first consider the simple reflection

(3.19)
(Ğ1v)(x) := v(x) x ∈ I
(Ğ1v)(−x) := v(x) x ∈ I,
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for any v ∈ L2(I). Obviously, we have

(3.20)
Ğ1 ∈ B(L2(I), L2(−1, 1))

Ğ1 ∈ B(Hs(I), Hs(−1, 1)),

for s < 3/2.

Remark 3.13. The use of the reflection operator has certain advantages and draw-
backs. On the one hand, the reflection preserves the vanishing moment properties
of the underlying frame elements which is a central ingredient for compression es-
timates, see Subsection 4.2. Moreover, the reflection possesses a moderate operator
norm.

On the other hand, it is clear that the reflection idea only works for Sobolev spaces
Hs, s < 3/2, i.e., the resulting numerical schemes are restricted to second order
elliptic equations. This bottleneck could be clearly avoided by using, e.g., higher order
Hestenes extension operators. However, in recent studies, it has turned out that the
norm of a Hestenes extension operator grows fast with respect to its order parameter.
Moreover, it is not a priori clear if the vanishing moments are preserved. For this
reason, in this paper we stick with the simple reflection operator.

Let η1 and η2 denote the extensions by zero of functions on I or on (−1, 0) to
functions on (−1, 1), with R1 and R2 denoting their adjoints. With a univariate

extension Ğ1 as in (3.19) at hand, the obvious approach is to define E
(q)
1 according

to Proposition 3.5 with G1 = Ğ1. A problem with the choice G1 = Ğ1 is that
generally it does not imply the desirable property diam(suppG1u) . diam(suppu).
Indeed, think of the application of the reflection to a function u with a small support
that is not located near the interface.

To solve this and the corresponding problem for the adjoint extension, following
[7] we will apply our construction using the modified, scale-dependent univariate
extension operator

(3.21) G1 : u 7→
∑

λ∈∇R,(`)0

〈u, ψ̃~0λ〉L2(I)Ğ1ψ
~0
λ +

∑
λ∈∇R,(I)∪∇R,(r)0

〈u, ψ̃~0λ〉L2(I)η1ψ
~0
λ.

So this operator reflects only wavelets that are supported near the interface. A proof
of the following proposition can be found in [7, Proposition 5.2].

Proposition 3.14. For ~σ ∈ {0, bs + 1
2
c}2, the scale-dependent extension G1 from

(3.21) satisfies

(3.22) G1ψ
~σ
µ =

{
η1ψ

~σ
µ when µ ∈ ∇R,(I) ∪∇R,(r)

σr ,

Ğ1ψ
~σ
µ when µ ∈ ∇R,(`)

σ` .
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The resulting adjoint extension G2 := (Id− η1G
∗
1)η2 satisfies

(3.23) G2(ψ̃~σµ(1 + ·)) =

{
η2(ψ̃~σµ(1 + ·)) when µ ∈ ∇R,(I) ∪∇R,(`)

σ` ,

Ğ2(ψ̃~σµ(1 + ·)) when µ ∈ ∇R,(r)
σr .

We have G1 ∈ B(L2(I), L2(−1, 1)), and G1 ∈ B(Hs(I), Hs
(bs+ 1

2
c,0)

(−1, 1)), for

s < 3/2.
Finally, for µ ∈ ∇~σ, it holds that

diam(supp Ğ1ψ
~σ
µ) . diam(suppψ~σµ),

diam(supp Ğ2ψ̃
~σ
µ) . diam(supp ψ̃~σµ).

Remark 3.15. In general, it is not possible to divide the univariate quarklet sets in
such parts that statements similar to (3.22) and (3.23) hold. This can be explained
as follows: since the univariate wavelets build a Riesz basis for a Sobolev space on the
unit interval, every quarklet can be decomposed into wavelet elements. For quarklets
near the boundary, it is not guaranteed that the participating wavelets of these decom-

position lie exclusively in ∇R,(I) ∪∇R,(r)
σr or in ∇R,(`)

σ` . Thus, it could happen that one
part of the decomposition will be reflected and another part will be extended by zero.
This would destroy the vanishing moments of the extended quarklets. Moreover, the
wavelet decompositions of the quarklets have to be computed for every single quarklet,
which is possible in theory but in practice very time-consuming. This is the reason
why we use another approach with Bessel systems, which was already introduced in
Section 3.2 and will be carried out further in the next subsubsection.

3.4.2. The Bessel systems Ξs,(q). For the univariate quarklet frame Ψ~σ we can specify
a non-canonical dual frame, cf. (A.6), if we augment the dual Riesz basis of the
univariate wavelet basis Σ~σ, cf. (2.11), with zero functions:

(3.24) Θ~σ := {θ~σλ : λ ∈ ∇~σ}, θ~σλ := ψ̃~σλ , for λ ∈ ∇R
~σ , θ~σλ :≡ 0, for λ ∈ ∇~σ \ ∇R

~σ .

It is obvious that Θ~σ is a dual frame of Ψ~σ, since∑
λ∈∇~σ

〈f, θ~σλ〉L2(I)ψ
~σ
λ =

∑
λ∈∇R

~σ

〈f, ψ̃~σλ〉L2(I)ψ
~σ
λ = f, for all f ∈ L2(I).

With this dual frame at hand, (W1)-(W3) also hold true if we replace ∇R
~σ with ∇~σ

and ψ̃~σλ with θ~σλ . Also, it is possible to construct ∇(`)
σ` ⊃ ∇

R,(`)
σ` , ∇(I) ⊃ ∇R,(I),

∇(r)
σr, ⊃ ∇

R,(r)
σr, , such that ∇~σ = ∇σ`

.
∪∇(I)

.
∪∇σr , and

(1) sup
λ∈∇(`)

σ`
, x∈suppψ~σλ

2j|x| . ρ, sup
λ∈∇(r)

σr , x∈suppψ~σλ

2j|1− x| . ρ,

(2) for λ ∈ ∇(I), ψ~σλ = ψ
~0
λ, θ

~σ
λ = θ

~0
λ, and the extensions of ψ

~0
λ and θ

~0
λ by zero are

in Hs(R) and L2(R), respectively,
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cf. (W5). For q ∈ {1, . . . , N}, s ≥ 0, we define Ψ
s,(q−1)
i1,`

as the subset of functions

f ∈ Ψ
s,(q−1)
i1

with the following properties:

(i) the support of f intersected with I × J̆ is not empty,

(ii) the cube of origin �i of f lies in the neighborhood of {0} × J̆ , i.e., for all

ε > 0: diam(�i, {0} × J̆) < ε,
(iii) the first Cartesian index of f restricted to its cube of origin is contained in

∇(`)
0 .

With Ψ
s,(q−1)
i1,r

:= Ψ
s,(q−1)
i1

\Ψ
s,(q−1)
i1,`

we denote the complementary subset. Now we

are ready to define the sets Ξs,(q) from (3.3) as

(3.25) Ξs,(q) := Ĕ
(q)
1 (Ψ

s,(q−1)
i1,`

) ∪ η(q)
1 (Ψ

s,(q−1)
i1,r

),

where Ĕ
(q)
1 , q ∈ {1, . . . , N}, are the operators corresponding to the simple reflection

Ğ1.

Proposition 3.16. For q ∈ {1, . . . , N}, the set Ξ0,(q) defined in (3.25) is a Bessel

system for L2(Ω
(q)

ī
) and Ξs,(q) a Bessel system for

◦
Hs(Ω

(q)

ī
), 0 < s < 3/2, s 6= 1

2
.

Also, we have E
(q)
1 (Σ

s,(q−1)
i1

) ⊂ Ξs,(q).

Proof. Both Ψ
0,(q−1)
i1,`

and Ψ
0,(q−1)
i1,r

are subsets of the frame Ψ
0,(q−1)
i1

for L2(Ω
(q−1)
i1

).

Hence, they are Bessel systems for L2(Ω
(q−1)
i1

). Since both Ĕ
(q)
1 and η

(q)
1 are bounded

operators from L2(Ω
(q−1)
i1

) to L2(Ω
(q)

ī
), the images Ĕ

(q)
1 (Ψ

0,(q−1)
i1,`

) and η
(q)
1 (Ψ

0,(q−1)
i1,r

) are

Bessel systems for L2(Ω
(q)

ī
), cf. Proposition A.4 (i). For the renormalized versions we

have to take care of the boundary conditions and the smoothness of the functions. For
s < 3/2, it is Ğ1 ∈ B(Hs

(0,bs+ 1
2
c)(I), Hs

0(−1, 1)). Since the first Cartesian component

of Ψ
s,(q−1)
i1,`

is in Hs
(0,bs+ 1

2
c)(I) the image of Ψ

s,(q−1)
i1,`

under Ĕ
(q)
1 is bounded in

◦
Hs(Ω

(q)

ī
)

and therefore a Bessel system in
◦
Hs(Ω

(q)

ī
), cf. Proposition A.4 (i). For the zero

extension part we have η1 ∈ B(Hs
(bs+ 1

2
c,0)

(I), Hs
(bs+ 1

2
c,0)

(−1, 1)). The first Cartesian

component of Ψ
s,(q−1)
i1,r

is in Hs
(bs+ 1

2
c,0)

(I) and therefore the image of Ψ
s,(q−1)
i1,r

under

η
(q)
1 is also a Bessel system for

◦
Hs(Ω

(q)

ī
). The relation E

(q)
1 (Σ

s,(q−1)
i1

) ⊂ Ξs,(q) follows

directly from (3.22) and (3.25) and the way how the sets Ψ
s,(q−1)
i1,`

and Ψ
s,(q−1)
i1,r

are
defined. �

It remains to choose the index sets ∇R,(`)
σ` ,∇R,(I),∇R,(r)

σr, and ∇(`)
σ` ,∇(I),∇(r)

σr, ap-
propriately. Let us assume that m ≥ 3. From [28] we deduce that the index sets
for which either the primal or dual wavelets depend on the incorporated boundary
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conditions are

∇R,(`)
σ`

= {(0, j, k) ∈ ∇~σ : k ∈ ∇(`)
j,σ`
}, ∇(r)

σr = {(0, j, k) ∈ ∇~σ : k ∈ ∇(r)
j,σr
},

with

∇(`)
j,σ`

=

{
{0, . . . , m+m̃−4

2
}, j ≥ j0,

{−m+ 1 + sgnσl, · · · , m̃− 2}, j = j0 − 1,

and

∇(r)
j,σr

=

{
{2j − m+m̃−2

2
, . . . , 2j − 1}, j ≥ j0,

{2j −m− m̃+ 2, . . . , 2j − 1− sgnσr}, j = j0 − 1.

The quarklet index sets are

∇(`)
σ`

= {(p, j, k) ∈ ∇~σ : k ∈ ∇(`)
p,j,σ`
}, ∇(r)

σr = {(p, j, k) ∈ ∇~σ : k ∈ ∇(r)
p,j,σr
}

with

∇(`)
p,j,σ`

=

 ∇
(`)
j,σ`
, p = 0,

{0 + sgn σl, . . . , 0}, p > 0, j ≥ j0,
{−m+ 1 + sgnσl, · · · ,−m+ 1}, p > 0, j = j0 − 1,

and

∇(r)
p,j,σr

=

{
∇(r)
j,σr

, p = 0,
{2j − 1, . . . , 2j − 1− sgnσr} p > 0,

j ≥ j0.

In order to identify individual quarklets from the collections constructed by the
applications of the extension operators, we have to introduce some more notations.
For 0 ≤ q ≤ N , we set the index sets

∇(0)
i := ∇σ(i) × {i} and, for q > 0,

∇(q)
i :=

{
∇(q−1)

i1
∪∇(q−1)

i2
if i = ī,

∇(q−1)

î
if i ∈ {q, . . . , N} \ {̄i} and Ω

(q)
i = Ω

(q−1)

î
.

(3.26)

We define the quarklets on the domains Ω
(q)
i as

ψ
(0,i)
λ,i := ψ

σ(i)
λ (· − τi),(3.27)

and, for q > 0,

ψ
(q,i)
λ,n :=




Ĕ

(q)
1 ψ

(q−1,i1)
λ,n (λ, n) ∈∇(q−1)

i1,`

η
(q)
1 ψ

(q−1,i1)
λ,n (λ, n) ∈∇(q−1)

i1,r

η
(q)
2 ψ

(q−1,i2)
λ,n (λ, n) ∈∇(q−1)

i2

 if i = ī,

ψ
(q−1,̂i)
λ,n if i ∈ {q, . . . , N} \ {̄i} and Ω

(q)
i = Ω

(q−1)

î
,

(3.28)

The index n ∈ {0, . . . , N} indicates the cube �n where the quarklet stems from. The

subsets ∇(q−1)
i1,`

and ∇(q−1)
i1,r

are defined according to Ψ
s,(q−1)
i1,`

and Ψ
s,(q−1)
i1,r

. With this
notations at hand we are now able to formulate the main theorem of this paper.
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Theorem 3.17. Let Ψ~σ denote a quarklet system of order m ≥ 2, m̃ vanishing
moments, m̃ ≥ m and m+ m̃ even, as constructed in Theorem 2.7. Furthermore, let
Ω ∈ Rd be a bounded domain that can be decomposed into cubes �i, i = 0, . . . , N . If
we choose weights wHs

λ as in (3.16), the system

(3.29) Ψs :=
{

(wHs

λ )−1ψα : α = (λ, n) ∈∇
}
, δ1 > 1, δ1 + δ2 > 2,

with ψα := ψ
(N,N)
λ,n , cf. (3.28), ∇ := ∇(N)

N , cf. (3.26), is a frame for Hs
0(Ω),

0 ≤ s < 3
2
, s 6= 1

2
.

4. Adaptive quarklet schemes

4.1. Adaptive frame schemes for elliptic operator equations. As already
mentioned in the introduction, the stability of weighted quarkonial frames in Sobolev
spaces and the compression properties of the individual quarklets can be used to de-
rive adaptive discretization schemes for linear elliptic operator equations in a quite
systematic way, see [10,14,15,31,33] for the general reasoning.

In order to briefly illustrate the main ideas of such schemes, let us consider a linear
elliptic variational problem of the form

(4.1) a(u, v) = F (v), for all v ∈ H,
where H is the solution Hilbert space and a : H × H → R a symmetric, elliptic
bilinear form and F : H → R a continuous functional. Given a frame F = {fλ}λ∈I
for H with countable index set I, it is well-known [10,14,31] that (4.1) is equivalent
to the linear system of equations

(4.2) Au = F,

where A := (a(fµ, fλ))µ,λ∈I ∈ L(`2(I)) is the biinfinite stiffness matrix, u := (uλ)λ∈I
is a coefficient array of the unknown solution u =

∑
λ∈I uλfλ with respect to the frame

F , and F := (F (fλ)λ∈I) contains the values of the right-hand side F at individual
frame elements. Due to the redundancy of the frame F , the system matrix A may
have a non-trivial kernel, so that (4.2) is not uniquely solvable. Straightforward
Galerkin-type approaches might hence run into problems, since the stiffness matrix
might be singular or arbitrarily ill-conditioned.

Nonetheless, classical iterative schemes like the damped Richardson iteration

(4.3) u(j+1) := u(j) + ω(F−Au(j)), 0 < ω <
2

‖A‖L(`2(I))

, j = 0, 1, . . .

or variations thereof, like steepest descent or conjugate gradient iterations, can
still be applied in a numerically stable way, and the associated expansions u(j) :=∑

λ∈I u
(j)
λ fλ ∈ H will converge to the solution u under quite general assumptions.

By judiciously choosing the respective tolerances, convergence can even be preserved
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under perturbation of the exact iterations when, e.g., each evaluation of the infinite-
dimensional right-hand side F and each matrix-vector product Av are replaced by
suitable numerical approximations [9,10,14,15,19,31,33]. The efficient inexact eval-
uation of F is closely related with the rate of best N -term approximation of the
continuous right-hand-side F from the given dictionary. Since our frame contains a
wavelet Riesz basis, sufficient approximation rates can be inferred via Besov regular-
ity estimates, cf. [22].

Therefore, inexact matrix-vector multiplications play a key role within adaptive
wavelet methods. In order to realize them in a computationally efficient way, it is
essential to exploit that the system matrix A is not arbitrarily structured but features
certain compressibility properties. By this we mean that A can be approximated well
by sparse matrices with a finite number of entries per row and column. To be precise,
we call a matrix M : `2(I) → `2(I) s∗-compressible, if there exist C > 0 and, for
every J ∈ N0, matrices MJ with at most C2J non-trivial entries per row and column,
which fulfill

||M−MJ ||L(`2(I)) . 2−Js
∗
.

If the entries of A have a sufficiently fast off-diagonal decay, such approximations can
be constructed in a quite generic way, see [9,31,32], and are the central ingredient in
a so-called APPLY routine which realizes an inexact version of the matrix-vector-
multiplication Au(j) in each iteration of (4.3).

In the sequel, we will show that similar to wavelet systems, quarklet frames can
induce compressible stiffness matrices in the aforementioned sense. The most impor-
tant example of a second order elliptic PDE which serves as the standard test case for
numerical algorithms is the Poisson-equation on polygonal or polyhedral domains.
Therefore, in the sequel we will derive detailed compression results in particular for
this case.

Let the domain Ω satisfy the assumptions of Section 3. For a fixed right-hand side
F ∈ H−1(Ω) we want to compute the solution u ∈ H1

0 (Ω) to (4.1), where

(4.4) a(u, v) =

∫
Ω

∇u · ∇v dx =
d∑

k=1

∫
Ω

∂u

∂xk

∂v

∂xk
dx.

In the setting of Section 3, the domain Ω is a hypercube or a union of finitely many
translated copies thereof, and the frame elements ψλ are sums of tensor products
of univariate functions. Therefore, the individual entries a(ψµ,ψλ) of the stiffness
matrix A are sums of products of univariate integrals. Let, for example, Ω = I2, and
{fλ : λ ∈ I} be a frame for L2(I) such that {w−1

λ fλ : λ ∈ I} is a frame for H1
0 (I).

Then,

F :=
{

(w2
λ1

+ w2
λ2

)−1/2fλ1 ⊗ fλ2 : λ1, λ2 ∈ I
}
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is a frame for
H1

0 (I2) = H1
0 (I)⊗ L2(I) ∩ L2(I)⊗H1

0 (I),

and the stiffness matrix A with respect to F is a sum of Kronecker products,

A = D−1
2 (B⊗G + G⊗B)D−1

2 ,

where B = (
∫ 1

0
f ′λf

′
µ dx)λ,µ∈I and G = (

∫ 1

0
fλfµ dx)λ,µ∈I are one-dimensional stiffness

and Gramian matrices, respectively and D2 = (wλ)λ∈I2 , λ = (λ1, λ2), wλ := (w2
λ1

+

w2
λ2

)1/2.
In the light of these tensor product techniques, we will first derive compression

estimates for quarklet discretizations of one-dimensional elliptic equations. After
that, we will show how to generalize them to the multivariate setting discussed in
Section 3.

4.2. Compression. As we have seen in the two-dimensional case, the stiffness ma-
trix of the Poisson equation (4.4) is a sum of Kronecker products of one-dimensional
Laplacian and Gramian matrices. For d ∈ N dimensions this can be generalized
easily to

A = D−1
d (B⊗G⊗ . . .⊗G + . . .+ G⊗ . . .⊗G⊗B)D−1

d .

Hence, to estimate the compressibility properties of the resulting stiffness matrix of
the Laplacian (4.4), we need estimates for the inner products of the basic univariate
quarks and quarklets.

Proposition 4.1. Let m ≥ 3. There exists C = C(m), such that the unweighted
quarks and quarklets satisfy

(4.5)
∣∣〈ψp,j,k, ψp′,j′,k′〉L2(I)

∣∣ ≤ C
(
(p+ 1)(p′ + 1)

)m−1
2−|j−j

′|(m− 1
2

).

Proof. The combination of Lemma 2.5, Proposition 2.4, the definitions (2.21), (2.12),
and (2.2), and for the last step Proposition 2.3 yields∣∣〈ψp,j,k, ψp′,j′,k′〉L2(I)

∣∣ . (p+ 1)−m2−j(m−
1
2

)|ψp′,j′,k′|Wm−1
∞ (supp ψ~σp,j,k)

. (p+ 1)−m2−j(m−
1
2

)(p′ + 1)2(m−1)2j
′(m−1)‖ψp′,j′,k′‖L∞(I)

= (p+ 1)−m2−j(m−
1
2

)(p′ + 1)2(m−1)2j
′(m− 1

2
)‖ϕp′,0‖L∞(I)

. (p+ 1)−m(p′ + 1)m−12(j′−j)(m− 1
2

).

The analogous result holds with interchanged roles of (p, j, k) and (p′, j′, k′). The
minimum over both estimates yields (4.5). �

By following the lines of the proof of Proposition 4.1, a similar estimate for the
derivatives of quarks and quarklets can be derived. We also refer to [16, Proposition
6.1], where an analogous result for the whole real line has been proven.
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Proposition 4.2. Let m ≥ 3. There exists C = C(m), such that the unweighted
quarks and quarklets satisfy

(4.6)
∣∣〈ψ′p,j,k, ψ′p′,j′,k′〉L2(I)

∣∣ ≤ C2j+j
′(

(p+ 1)(p′ + 1)
)m−1

2−|j−j
′|(m− 3

2
).

For the readers’ convenience, we consider the multivariate compression estimates
only on the unit cube, i.e. Ω = �. But let us mention that the results carry over to
the case of general domains, since in this case the amount of cubes where quarklets
have non-trivial support is uniformly bounded by a finite number which only depends
on the space dimension d.

The combination of the last two propositions yields the desired estimate for the
entries of the stiffness matrix of (4.4).

Proposition 4.3. Let m ≥ 3, d ≥ 2. Let the weighted quarklets (wH
1

λ )−1ψσλ ,

(wH
1

λ′ )−1ψσλ′ , λ := (p, j,k), λ′ := (p′, j ′,k′) be defined as in (3.15), and the bilinear
form a as in (4.4). Then it holds

(4.7) |a((wH
1

λ )−1ψσλ , (w
H1

λ′ )−1ψσλ′)| .
d∏
i=1

(
1 + |pi − p′i|

)m−1−δ2/22−|j−j
′|(m−3/2),

with δ2 > 2m− 2.

Proof. There is nothing to prove if suppψσλ ∩ suppψσλ′ = ∅. Otherwise we use the
tensor product structure of the quarklets to obtain

a(ψσλ ,ψ
σ
λ′) =

d∑
i=1

d∏
r=1

〈(
ψσrpr,jr,kr

)(δir) ,
(
ψσrp′r,j′r,k′r

)(δir)
〉
L2(I)

,

where the Kronecker deltas indicate whether the quarklet itself or its first derivative
is concerned. Applying the estimates (4.5) and (4.6) leads to

|a(ψσλ ,ψ
σ
λ′)| ≤

d∑
i=1

d∏
r=1

(
(pr + 1)(p′r + 1)

)m−1+δir2δir(jr+j
′
r)2−|jr−j

′
r|(m−1/2−δir)

≤
d∑
i=1

(
(pi + 1)(p′i + 1)

)
2ji+j

′
i

d∏
r=1

(
(pr + 1)(p′r + 1)

)m−1
2−|jr−j

′
r|(m−3/2).

Estimating the weights wλ, wλ′ defined in (3.16) by the Cauchy-Schwarz inequality,
we obtain

w−1
λ w−1

λ′ ≤

(
d∑
i=1

((pi + 1)(p′i + 1))2+δ1/22(ji+j
′
i)

)−1 d∏
r=1

((pr + 1)(p′r + 1))−δ2/2.
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Combining the previous estimates, we obtain

|a(w−1
λ ψ

σ
λ , w

−1
λ′ ψ

σ
λ′)| ≤

d∏
r=1

((pr + 1)(p′r + 1))m−1−δ2/22−|jr−j
′
r|(m−3/2).

Choosing δ2 > 2m− 2 and using the relation

(p+ 1)(p′ + 1) ≥ 1 + |p− p′|,
we finally get the claim. �

Theorem 4.4. Let m ≥ 3. Let A, defined by (4.2), be the stiffness matrix of the
Poisson equation (4.4) discretized by Ψ1

σ, defined in (3.15). Further, for J ∈ N0,
with λ = (p, j,k),λ′ = (p′, j ′,k′) ∈ ∇σ, define AJ by setting all entries from A to
zero that satisfy

(4.8) a log2(
d∏
i=1

1 + |pi − p′i|) + b|j − j ′| > J,

where a, b > 0. Then, for δ2 > 2m − 2, the maximal number of non-zero entries in
each row and column of AJ is of the order

(4.9)
(
J2d−22

J
a + Jd−12

J
b

){J, a = b,

1, otherwise.

Furthermore, with τ := m− 1− δ2
2

it holds that

(4.10) ‖A−AJ‖L(`2(∇σ)) .
(
Jd−12−(m−2)J

b + J2d−22(1+τ)J
a

){J, a
b

= − 1+τ
m−2

,

1, otherwise.

In particular, A is s∗-compressible with

(4.11) s∗ := min{a, b}min{−1− τ
a

,
m− 2

b
}.

Remark 4.5. In the compression estimate (4.11), the exponential factors do not
depend on the spatial dimension d. In this sense, quarklet frames provide dimension
independent compression rates. For fixed m, τ , in (4.11), the optimal choices of a, b
yield rates

s∗ =

{
−(1 + τ), a

b
∈ [− 1+τ

m−2
, 1),

m− 2, a
b
∈ [1,− 1+τ

m−2
].

The proof of Theorem 4.4 is quite technical. In the course of the proof, we will
use the following facts:
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(i) Let K ∈ N, t ∈ R+. Then,

(4.12)
K∑
n=1

n−t ≤ 1 +

∫ K

1

x−tdx .


K1−t, t < 1,

1 + ln(K), t = 1,

1, t > 1.

(ii) Let K ∈ N, t > 1. Then,

(4.13)
∞∑
n=K

n−t ≤ K−t +

∫ ∞
K

x−tdx . K1−t.

(iii) Let r ∈ N, t ∈ R+, L0 ∈ N0 and L1 := max{L0, r/t− 1}. Then,

∞∑
n=L0

(1 + n)re−tn . (1 + L1)re−tL1 +

∫ ∞
L1

(1 + x)re−txdx

. (1 + L1)re−tL1 .

(4.14)

Proof of Theorem 4.4. First we are going to estimate the number of non-trivial en-
tries, i.e., (4.9). To simplify the notation we assume j0 = 0 for the minimal level in
each coordinate of the quarklet frame Ψ1

σ.
Let λ ∈∇σ be fixed. The number of λ′ ∈∇σ with fixed p′ that fulfill suppψσλ ∩

suppψσλ′ 6= ∅ is of the order
∏d

i=1 max{1, 2j′i−ji} ≤ 2|j−j
′|. Further, |{j ∈ Nd

0 : |j| =

l}| =
(
l+d−1
l

)
. (1 + l)d−1 with a constant depending on d holds. Together, this

implies that the number of entries in the λ-th row of AJ is bounded by

∑
p′∈Nd0∏d

i=1 1+|pi−p′i|≤2
J
a

bJ
b
−a
b

log2(
∏d
i=1 1+|pi−p′i|)c∑
l=0

∑
j′∈Nd0
|j−j′|=l

2|j−j
′|

≤
∑
p′′∈Nd∏d
i=1 p

′′
i ≤2

J
a

bJ
b
−a
b

log2(
∏d
i=1 p

′′
i )c∑

l=0

(
l + d− 1

l

)
2l.
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In the latter term,
(
l+d−1
l

)
can be estimated from above by

(
1 + J

b

)d−1
. Hence,

∑
p′∈Nd0∏d

i=1 1+|pi−p′i|≤2
J
a

bJ
b
−a
b

log2(
∏d
i=1 1+|pi−p′i|)c∑
l=0

∑
j′∈Nd0
|j−j′|=l

2|j−j
′|

.
(J
b

)d−1
2
J
b

∑
p′′∈Nd∏d
i=1 p

′′
i ≤2

J
a

( d∏
i=1

p′′i
)−a

b .

(4.15)

We separate the last component of p′′ to obtain

∑
p′′∈Nd∏d
i=1 p

′′
i ≤2

J
a

( d∏
i=1

p′′i
)−a

b =
∑

p′′∈Nd−1∏d−1
i=1 p

′′
i ≤2

J
a

2
J
a

(∏d−1
i=1 p

′′
i

)−1∑
p′′d=1

( d∏
i=1

p′′i
)−a

b .

Applying (4.12) d times with K = 2J/a, t = a
b

leads to

∑
p′′∈Nd∏d
i=1 p

′′
i ≤2

J
a

( d∏
i=1

p′′i
)−a

b .
∑

p′′∈Nd−1∏d−1
i=1 p

′′
i ≤2

J
a


2
J
a

(1−a
b

)
(∏d−1

i=1 p
′′
i

)−1
, a < b,(

1 + J
a
− ln(

∏d−1
i=1 p

′′
i )
)(∏d−1

i=1 p
′′
i

)−1
, a = b,(∏d−1

i=1 p
′′
i

)−1
, a > b,

.


2
J
a

(1−a
b

)
(
1 + J

a

)d−1
, a < b,(

1 + J
a

)d
, a = b,

1, a > b.

(4.16)

Finally, by the last estimate, (4.15) can be further estimated by

∑
p′′∈Nd∏d
i=1 p

′′
i ≤2

J
a

(J
b

)d−1
2
J
b

( d∏
i=1

p′′i
)−a

b .


(
J
b

)d−1
2
J
a

(
1 + J

a

)d−1
, a < b,(

J
b

)d−1
2
J
b

(
1 + J

a

)d
, a = b,(

J
b

)d−1
2
J
b , a > b,

which implies (4.9).
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Next we will derive the compression result (4.10). As a standard tool for such
estimates we will employ the Schur lemma. It states that

sup
λ∈∇σ

w−1
λ

∑
λ′∈∇σ

|(A)λ,λ′ − (AJ)λ,λ′ |wλ′ ≤ C,

sup
λ′∈∇σ

w−1
λ′

∑
λ∈∇σ

|(A)λ,λ′ − (AJ)λ,λ′|wλ ≤ C

with weights wλ > 0, λ ∈ ∇σ and C > 0 implies ‖A − AJ‖L(`2(∇σ)) ≤ C. The
symmetry of A−AJ implies that it is sufficient to estimate supλ∈∇σ

αλ, where

αλ := w−1
λ

∑
λ′∈∇σ

|(A)λ,λ′ − (AJ)λ,λ′|wλ′ .

We choose weights of the form wλ = 2−|j|/2. In particular, it holds that

d∏
i=1

max{1, 2j′i−ji}(2−|j|/2)−12−|j
′|/2 = 2|j−j

′|/2.

Therefore, our choice for wλ, the cut-off rule (4.8), together with the decay of the

bilinear form (4.7), the definition of x0(p′) := db−1(J − a log2(
∏d

i=1 1 + |pi − p′i|))e
and τ = m− 1− δ2

2
yields

αλ .
∑
p′∈Nd0

( d∏
i=1

(
1 + |pi − p′i|

)τ) ∞∑
l=max{0,x0(p′)}

∑
j′∈Nd0
|j−j′|=l

2−|j−j
′|(m−2).

Estimating the sum involving j ′ leads to

αλ .
∑
p′∈Nd0

( d∏
i=1

(
1 + |pi − p′i|

)τ) ∞∑
l=max{0,x0(p′)}

2−l(m−2)(1 + l)d−1.(4.17)
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Applying (4.14) with L0 = max{0, x0(p′)}, r = d − 1, t = ln(2)(m − 2) and L1 =
x1(p′) := max{0, x0(p′), d−1

ln(2)(m−2)
− 1}, yields

αλ .
∑
p′∈Nd0

( d∏
i=1

(
1 + |pi − p′i|

)τ)
(1 + x1(p′))d−12−(m−2)x1(p′)

.
∑
p′∈Nd0

x0(p′)≤max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(
1 + |pi − p′i|

)τ

+
∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(
1 + |pi − p′i|

)τ
(1 + x0(p′))d−12−(m−2)x0(p′).

(4.18)

First we have a closer look at the first sum of (4.18). By splitting the sum and
setting x := (J − bmax{0, d−1

ln(2)(m−2)
− 1})/a, we get

∑
p′∈Nd0

x0(p′)≤max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(
1 + |pi − p′i|

)τ
=

∑
p′∈Nd0

log2(
∏d
i=1 1+|pi−p′i|)≥x

d∏
i=1

(1 + |pi − p′i|)τ

=
∑

p′∈Nd−1
0

d−1∏
i=1

(1 + |pi − p′i|)τ
∑
p′d∈N0

log2(1+|pd−p′d|)≥x−log2(
∏d−1
i=1 1+|pi−p′i|)

(1 + |pd − p′d|)τ .
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Consequently, with (4.13) with t = −τ , K = 2x−log2(
∏d
i=1 1+|pi−p′i|) we get

∑
p′∈Nd0

x0(p′)≤max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(1 + |pi − p′i|)τ

.
∑

p′∈Nd−1
0

d−1∏
i=1

(1 + |pi − p′i|)τ min{1, 2(1+τ)(x−log2(
∏d−1
i=1 1+|pi−p′i|))}

.
∑

p′∈Nd−1
0

log2(
∏d−1
i=1 1+|pi−p′i|)≥x

d−1∏
i=1

(1 + |pi − p′i|)τ

+
∑

p′∈Nd−1
0

log2(
∏d−1
i=1 1+|pi−p′i|)<x

d−1∏
i=1

(1 + |pi − p′i|)−12(1+τ)x.

It follows by induction and with an estimate similar as in (4.16), that

∑
p′∈Nd0

x0(p′)≤max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(1 + |pi − p′i|)τ . 2(1+τ)x(1 + x)d−1.(4.19)

For the second sum, with the definition of x0(p′) we obtain

∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(
1 + |pi − p′i|

)τ
(1 + x0(p′))d−12−(m−2)x0(p′)

.
∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(
1 + |pi − p′i|

)τ(
1 +

J

b
− a

b
log2

( d∏
i=1

1 + |pi − p′i|
))d−1

· 2−(m−2)
(
J
b
−a
b

log2(
∏d
i=1 1+|pi−p′i|)

)
.
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We further estimate∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(
1 + |pi − p′i|

)τ
(1 + x0(p′))d−12−(m−2)x0(p′)

.
(

1 +
J

b

)d−1

2−(m−2)J
b

∑
p′∈Nd0

log2(
∏d
i=1 1+|pi−p′i|)≤x

d∏
i=1

(
1 + |pi − p′i|

)τ+(m−2)a
b .

Similar estimates as in (4.16) imply∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)

}

d∏
i=1

(
1 + |pi − p′i|

)τ
(1 + x0(p′))d−12−(m−2)x0(p′)

.
(

1 +
J

b

)d−1

2−(m−2)J
b


2(1+τ+(m−2)a

b
)x(1 + x)d−1, τ + (m− 2)a

b
> −1,

(1 + x)d, τ + (m− 2)a
b

= −1,

1, τ + (m− 2)a
b
< −1,

.
((

1 +
J

b

)d−1
2−(m−2)J

b +
(
1 +

J

b

)d−1(
1 +

J

a

)d−1
2(1+τ)J

a

)
·

{
(1 + J

a
), τ + (m− 2)a

b
= −1,

1, otherwise.

(4.20)

Finally, combining (4.18) - (4.20) yields (4.10). �

5. Numerical experiments

For the numerical experiments we consider the Poisson equation with homogeneous
Dirichlet boundary conditions on the L-shaped domain Ω = (−1, 1)2\[0, 1)2. In this
case the bilinear form a : H1

0 (Ω)×H1
0 (Ω) 7→ R in (4.1) is given by

a(u, v) =
2∑

k=1

∫
Ω

∂u

∂xk

∂v

∂xk
dx.

This example is a standard test case for adaptive algorithms, since the reentrant
corner induces certain singular solutions, see, e.g., [25], that have to be resolved by
the numerical method under investigation. To obtain a quarklet frame for Ω we split

the domain as explained in Section 3, into the subdomains Ω
(0)
0 = {(−1, 0)}+(0, 1)2,

Ω
(0)
1 = {(−1,−1)} + (0, 1)2 and Ω

(0)
2 = {(0,−1)} + (0, 1)2. These subdomains with

their incorporated boundary conditions are depicted in Figure 2. The arrows indicate
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the direction of the non-trivial extension. By proceeding this way, conditions (D1)-
(D5) are fulfilled.

Ω
(0)
0

Ω
(0)
1 Ω

(0)
2

Ω

Figure 2. Dotted lines indicate free boundary conditions, straight
lines indicate zero boundary conditions.

We equip Ω
(0)
0 with Ψ1

0 = Ψ1
(1,1)(·+1)×Ψ1

(0,1), Ω
(0)
1 with Ψ1

1 = Ψ1
(1,1)(·+1)×Ψ1

(1,1)(·+
1) and Ω

(0)
2 with Ψ2 = Ψ1

(0,1)×Ψ1
(1,1)(·+1). To obtain a quarklet frame for H1

0 (Ω) we

extend Ψ1
0 and Ψ1

2 as described in Section 3. Essentially this corresponds to reflecting
those quarklets that do not vanish at the boundaries at the dotted lines in Figure
2. After that, we take the union of the two resulting sets of functions with Ψ1

1. For
the one-dimensional reference frame Ψ1

σ in (0, 1) we choose the biorthogonal spline
wavelets of order m = 3 and m̃ = 3 vanishing moments. We choose the right-hand
side in (4.1) in such a way that the exact solution is the sum of sin(2πx) sin(2πy),
(x, y) ∈ Ω and the singularity function

S(r, θ) := 5ζ(r)r2/3 sin

(
2

3
θ

)
,(5.1)

with (r, θ) denoting polar coordinates with respect to the re-entrant corner at the
origin, and where ζ is a smooth truncation function on [0, 1], which is identically
1 on [0, r0] and 0 on [r1, 1], for some 0 < r0 < r1 < 1, see again [25] for details.
Singularity functions of the form (5.1) are typical examples of functions that have
a very high Besov regularity but a very limited L2-Sobolev smoothness due to the
strong gradient at the reentrant corner. Therefore, for this kind of solution it can
be expected that adaptive (h-)algorithms outperform classical uniform schemes. We
refer, e.g., to [12,13] for a detailed discussion of these relationships.

We also expect that the very smooth sinusoidal part of the solution can be very well
approximated by piecewise polynomials of high order. Therefore, our test example
is contained in the class of problems for which we expect a strong performance of
adaptive quarklet schemes.
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Figure 3. Exact solution and right-hand-side.
To solve the problem numerically we utilise an adaptive version of the damped

Richardson iteration as described in (4.3). For details we refer to [10,14,31]. There,
wavelet frames are used to discretize the PDE. But as long as we have compressible
matrices all kinds of frames fit into this framework. Hence, we may apply this
method also in the quarklet setting. In Figures 4-7 one can see approximate solutions
produced by the adaptive scheme after successive iteration steps. In Figure 8 one can
observe the `2-norm of the residual Au(j)−F plotted against the degrees of freedom of
the approximants u(j) and against the spent CPU time. We see that the algorithm
is convergent with convergence order O(N−2). In [13] an adaptive wavelet frame
approach based on overlapping domain decompositions was used to solve a similar
problem. Since the singularity function (5.1) has arbitrary high Besov regularity,
the convergence order of adaptive wavelet schemes only depend on the order of the
underlying spline system. For m = 3, one gets the approximation rate O(N−1), see
again [13, Subsection 6.2] for details. If we compare this to our approach we see that
the adaptive quarklet schemes outperform the adaptive wavelet schemes in terms of
degrees of freedom.

Figure 4. Adaptive solutions after 5, 10 iterations, respectively.
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Figure 5. Adaptive solutions after 20, 30 iterations, respectively.

Figure 6. Adaptive solutions after 50, 100 iterations, respectively.

Figure 7. Adaptive solutions after 200, 359 iterations, respectively.
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Figure 8 also shows that the CPU time that is currently needed might be im-
proved. This observation indicates that maybe the compression estimates outlined
in Section 4 are still suboptimal. Refined compression estimates based, e.g., on
second compression ideas [29] will be the topic of further research.
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Figure 8. Adaptive error asymptotics

In Figures 9–11 the distribution of the coefficients u = {uα}α∈∇ of the approximate

solution
∑
α∈∇ uα(wH1

α )−1ψα are plotted. In every single figure the coefficients for
one fixed polynomial degree p are plotted, with j1 and j2 increasing in horizontal
and vertical direction, respectively. We can see that qualitatively the distribution
of the coefficients behaves as expected in the sense that frame elements with higher
polynomial degree are more used in regions where the solution is very smooth.
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Figure 9. Polynomial degree p = (0, 0).

Figure 10. Polynomial degree p = (1, 0).
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Figure 11. Polynomial degree p = (0, 1).

Appendix A

A.1. Basic frame theory. For the readers’ convenience we collect some basic facts
about frame theory that have been used throughout the paper. For a comprehensive
overview of the topic of frames we refer to [8].

A frame is a stable representation system in a Hilbert space. In contrast to a Riesz
basis it allows for redundancy.

Definition A.1. Let I be a countable index set. A system F = {fλ}λ∈I ⊂ H is a
(Hilbert) frame for a Hilbert space H if there exist constants A,B > 0 such that it
holds

(A.1) A‖f‖2
H ≤ ‖{〈f, fλ〉H}λ∈I ‖

2
`2(I) ≤ B‖f‖2

H

for all f ∈ H. The constants A and B are called lower and upper frame bound,
respectively.

The constant B in (A.1) also is referred to as Bessel bound. To represent a function
via a frame, we introduce the synthesis operator

(A.2) F : `2(I)→ H, c 7→
∑
λ∈I

cλfλ
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and its adjoint

(A.3) F ∗ : H → `2(I), g 7→ {〈f, fλ〉H}λ∈I ,
called the analysis operator. Composing both leads to the so-called frame operator

(A.4) S : H → H, f 7→ Sf := FF ∗g =
∑
λ∈I

〈f, fλ〉Hfλ.

One can show that the frame operator is bounded and invertible and that the sys-
tem F̃ := {f̃λ}λ∈I := {S−1fλ}λ∈I is also a frame for H, called the canonical dual
frame. The canonical dual frame puts us into the position to introduce a frame
decomposition. Due to the fact that SS−1 = S−1S = IdH, we have

(A.5) f =
∑
λ∈I

〈f, f̃λ〉H fλ =
∑
λ∈I

〈f, fλ〉Hf̃λ, for all f ∈ H.

In general, (A.5) is not the only possible decomposition. If there exist other decom-
positions than (A.5) we say that a frame is redundant. Systems G = {gλ}λ∈I 6= F̃ in
H, for which

(A.6) f =
∑
λ∈I

〈f, gλ〉H fλ, for all f ∈ H,

are called non-canonical dual frames or just dual frames. As the name suggests, they
are indeed frames for H.

An alternative characterization of a frame which makes use of the synthesis oper-
ator is given in the next proposition. It is applied throughout the paper as a proof
technique. A proof of it can be found in [36, Proposition 2.2].

Proposition A.2. A system F = {fλ}λ∈I ⊂ H is a frame for H if and only if
closH(span(F)) = H and

(A.7) B−1‖f‖2
H ≤ inf

{c∈`2(I), Fc=f}
‖c‖2

`2(I) ≤ A−1‖f‖2
H, for all f ∈ H.

The constants A and B in (A.7) coincide with the ones used in (A.1). Let us
mention that another criterion for a system F = {fλ}λ∈I ⊂ H to be a frame for H
is that its synthesis operator as defined in (A.2) is a well-defined mapping of `2(I)
onto H, cf. [8, Theorem 5.5.1].

A slightly weaker concept than a frame is a Bessel system for H. We call a system
B = {bλ}λ∈I ⊂ H a Bessel system for H if the right hand side inequality in (A.1)
holds, i.e., there exists a constant B > 0 such that

(A.8) ‖ {〈f, bλ〉H}λ∈I ‖
2
`2(I) ≤ B‖f‖2

H,

for all f ∈ H. Equivalently, a system is a Bessel system if it fulfills the left hand side
inequality in (A.7). The following propositions state some facts about the union of
Bessel systems, frames and Riesz bases.
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Proposition A.3. Let H be a Hilbert space. Then, it holds:

(i) The union of finitely many Bessel systems for H is a Bessel system for H.
(ii) A frame for H united with a Bessel system for H is a frame for H.

(iii) A Bessel system for H which includes a Riesz basis for H is a frame for H.

Proof. To prove (i), we assume Bi = {bλ}λ∈Ii ⊂ H, i = 1, . . . , n, to be Bessel systems
for H with Bessel bounds Bi > 0, i = 1, . . . , n. Let B =

⋃n
i=1 Bi and I =

⋃n
i=1 Ii.

Then, for a constant C > 0 we have

‖ {〈f, bλ〉H}λ∈I ‖
2
`2(I) ≤ C

n∑
i=1

‖ {〈f, bλ〉H}λ∈Ii ‖
2
`2(Ii) ≤ C

n∑
i=1

Bi‖f‖2
H.

For (ii) we assume F = {fλ}λ∈I1 and B = {fλ}λ∈I2 to be a frame and a Bessel system
for H, respectively. As every frame is a Bessel system, the right hand inequality
follows immediately from (i). For the left hand inequality we write

‖ {〈f, fλ〉H}λ∈I1∪I2 ‖
2
`2(I1∪I2) ≥ ‖{〈f, fλ〉H}λ∈I1 ‖

2
`2(I1) ≥ A‖f‖2

H,

with A > 0 a lower frame bound of F . For the proof of part (iii) we consider a Bessel
system B = {bλ}λ∈I for H which contains a Riesz basis R = {bλ}λ∈IR for H. We
only have to show the left-hand side inequality in (A.1). We write

‖ {〈f, bλ〉H}λ∈I ‖
2
`2(I) ≥ ‖{〈f, bλ〉H}λ∈IR ‖

2
`2(IR) ≥ A‖f‖2

H,

with A > 0 a lower Riesz bound of R. To perform the last estimate we used the fact
that every Riesz basis is also a frame, c.f. [8, Theorem 5.4.1]. �

To conclude this subsection we state a proposition which considers the image of
frames, Bessel systems and Riesz bases under certain operators.

Proposition A.4. Let H1 and H2 be Hilbert spaces and U : H1 7→ H2 an operator.
Then, it holds:

(i) If B is a Bessel system for H1 and U is bounded, then UB is a Bessel system
for H2.

(ii) If F is a frame for H1 and U is bounded and surjective, then UF is a frame
for H2.

(iii) If R is a Riesz bases for H1 and U is bounded and invertible, then UR is a
Riesz basis for H2.

Proof. At first, we assume that U is bounded and B = {bλ}λ∈I is a Bessel system for
H1. For g ∈ H2, it is

‖ {〈g, Ubλ〉H2}λ∈I ‖
2
`2(I) = ‖ {〈U∗g, bλ〉H1}λ∈I ‖

2
`2(I) ≤ B‖U∗g‖2

H1
≤ B‖U‖2

H1 7→H2
‖g‖2

H2
.

For the last inequality we used ‖U‖H1 7→H2 = ‖U∗‖H2 7→H1 . For a proof of part (ii) we
refer to [8, Corollary 5.3.2]. To show (iii) we use the fact, that a system R = {rλ}λ∈I
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is a Riesz bases for a Hilbert spaceH if and even if there exists a Hilbert space K with
an orthonormal basis {eλ}λ∈I and a bounded and invertible operator V : K 7→ H,
such that R = {V eλ}λ∈I , cf. [8, Definition 3.6.1]. So let R = {rλ}λ∈I be a Riesz
basis forH1 and U bounded and invertible. As mentioned above, R can be written as
{V eλ}λ∈I , with V : K 7→ H1 bounded and invertible. The composition UV : K 7→ H2

is bounded and invertible as well. Thus, the system UR = {UV eλ}λ∈I is a Riesz
basis for H2. �

A.2. Proofs. In this subsection, we present the proofs of two technical results stated
in Section 2.

Lemma A.5. Let 1 ≤ k ≤ m − 1 and ϕp,0,−m+k a left boundary quark. For every
p ≥ (m− 1)(k − 1) the unique extremal point of ϕp,0,−m+k is located at

(A.9) x̂ =
kp

p+m− 1
.

Proof. Let x ∈ R. At First we have a look at the leftmost quark, i.e. k = 1:

ϕp,0,−m+1(x) =

(
x

−m+ 1 +m

)p
Bm

0,−m+1(x) = xpBm
0,−m+1(x).

Using the differentiation rules and the recursive form of the B-splines, cf. [30, Thm.
4.15, 4.16], we obtain

ϕ′p,0,−m+1(x) = pxp−1Bm
0,−m+1(x) + xpBm′

0,−m+1(x)

= pxp−1Bm
0,−m+1(x)− xp(m− 1)Bm−1

0,−m+2(x)

= pxp−1 t1 − x
t1 − t−m+2

Bm−1
0,−m+2(x)− xp(m− 1)Bm−1

0,−m+2(x)

= xp−1 (p(1− x)− x(m− 1))Bm−1
0,−m+2(x).

We obtain the critical points x = 0, where the B-spline and also the quark is zero,
and x̂ = p

p+m−1
, where |ϕp,0,−m+1| attends its maximum. Now assume m ≥ 3, k ≥ 2

and ϕp,0,−m+k is the k-th left boundary quark.:

ϕp,0,−m+k(x) =

(
x

−m+ k +m

)p
Bm

0,−m+k(x) = k−pxpBm
0,−m+k(x).

The support of ϕp,0,−m+k is the interval [0, k]. In the first step we show that ϕp,0,−m+k

is monotonically increasing on [0, k − 1]. For the first derivative we estimate

ϕ′p,0,−m+k(x) = k−ppxp−1Bm
0,−m+k(x) + k−pxpBm′

0,−m+k(x)

= k−pxp−1
(
pBm

0,−m+k(x) + xBm′
0,−m+k(x)

)
≥ k−pxp−1

(
pBm

0,−m+k(x)−
∣∣xBm′

0,−m+k(x)
∣∣) .
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Again we use the differentiation rules and recursion to derive

ϕ′p,0,−m+k(x) ≥ k−pxp−1

(
pBm

0,−m+k(x)−

∣∣∣∣∣x(m− 1)

(
Bm−1

0,−m+k(x)

k − 1
−
Bm−1

0,−m+k+1(x)

k

)∣∣∣∣∣
)

≥ k−pxp−1

(
pBm

0,−m+k(x)− x(m− 1)

(
Bm−1

0,−m+k(x)

k − 1
+
Bm−1

0,−m+k+1(x)

k

))
.

For x ∈ [0, 1] it holds k − x ≥ x, which yields

ϕ′p,0,−m+k(x) ≥ k−pxp−1

·
(
pBm

0,−m+k(x)− (m− 1)

(
x

k − 1
Bm−1

0,−m+k(x) +
k − x
k

Bm−1
0,−m+k+1(x)

))
= k−pxp−1

(
pBm

0,−m+k(x)− (m− 1)Bm
0,−m+k(x)

)
= k−pxp−1 (p− (m− 1))Bm

0,−m+k(x).

Hence the derivative is non-negative on [0, 1] if p ≥ m − 1. For x ∈ [1, k − 1], it
trivially holds x ≥ 1 and k − x ≥ 1. It follows

ϕ′p,0,−m+k(x) ≥ k−pxp−1
(
pBm

0,−m+k(x)− x
∣∣Bm′

0,−m+k(x)
∣∣)

≥ k−pxp−1
(
pBm

0,−m+k(x)− (k − 1)
∣∣Bm′

0,−m+k(x)
∣∣)

= k−pxp−1

·

(
pBm

0,−m+k(x)− (k − 1)

∣∣∣∣∣(m− 1)

(
Bm−1

0,−m+k(x)

k − 1
−
Bm−1

0,−m+k+1(x)

k

)∣∣∣∣∣
)
.

By the above considerations we can further estimate

ϕ′p,0,−m+k(x)

≥ k−pxp−1

(
pBm

0,−m+k(x)− (k − 1)(m− 1)

∣∣∣∣ 1

k − 1
Bm−1

0,−m+k(x)− 1

k
Bm−1

0,−m+k+1(x)

∣∣∣∣)
≥ k−pxp−1

(
pBm

0,−m+k(x)− (k − 1)(m− 1)

(
1

k − 1
Bm−1

0,−m+k(x) +
1

k
Bm−1

0,−m+k+1(x)

))
≥ k−pxp−1

·
(
pBm

0,−m+k(x)− (k − 1)(m− 1)

(
x

k − 1
Bm−1

0,−m+k(x) +
k − x
k

Bm−1
0,−m+k+1(x)

))
.

By the recursive relation of B-splines we get

ϕ′p,0,−m+k(x) ≥ k−pxp−1
(
pBm

0,−m+k(x)− (k − 1)(m− 1)Bm
0,−m+k(x)

)
= k−pxp−1 (p− (k − 1)(m− 1))Bm

0,−m+k(x).
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Finally we can conclude that for p ≥ (m−1)(k−1) the derivative is non-negative on
[1, k − 1]. So all extremal points are located in [k − 1, k], where we can compute an
explicit form of ϕp,0,−d+k. To do this, we first compute the explicit form of Bd

0,−d+k.
By definition and the recursion for divided differences we get:

Bm
0,−m+k(x) = (t0k − t0−m+k) (· − x)m−1

+ [t0−m+k, . . . , t
0
k]

=
k

k

(
(· − x)m−1

+ [t0−m+k+1, . . . , t
0
k]− (· − x)m−1

+ [t0−m+k, . . . , t
0
k−1]

)
= (· − x)m−1

+ [t0−m+k+1, . . . , t
0
k].

The latter divided difference vanishes, because of x ≥ k−1. On the interval [0, k−1]
the truncated polynomial (· − x)m−1

+ is zero. Hence all of the coefficients of the
interpolating polynomial are zero. By repeating this argument m − k − 1 times we
obtain

Bm
0,−m+k(x) = k−1−(m−k−1)(· − x)m−1

+ [1, . . . , k].

Further k − 1 times iteration gives

Bm
0,−m+k(x) = k−m+k 1

(k − 1)!
(· − x)m−1

+ [k].

We end up with

Bd
0,−m+k|[k−1,k](x) = k−m+k 1

(k − 1)!
(k − x)m−1.

With this representation we compute the derivative ϕ′p,0,−m+k on [k − 1, k]:

ϕ′p,0,−m+k(x) = k−ppxp−1Bm
0,−m+k(x) + k−pxpBm′

0,−m+k(x)

= k−pxp−1

·
(
pk−m+k 1

(k − 1)!
(k − x)m−1 − xk−m+k 1

(k − 1)!
(m− 1)(k − x)m−2

)
= k−p−m+kxp−1 1

(k − 1)!

(
k − x)m−2(p(k − x)− x(m− 1)

)
.

We obtain the critical points x = 0, x = k, where Bm
0,−m+k is zero, and x̂ = kp

p+m−1
,

where |ϕp,0,−m+k| attains its maximum. Indeed x̂ lies in [k − 1, k], because on the
one hand we have

x̂ =
kp

p+ d− 1
≤ kp+ k(d− 1)

p+ d− 1
=
k(p+ d− 1)

p+ d− 1
= k.

On the other hand it holds true that

k−1 = k− k(d− 1)

k(d− 1)
= k− k(d− 1)

(d− 1)(k − 1) + d− 1
≤ k− k(d− 1)

p+ d− 1
=

kp

p+ d− 1
= x̂.
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�

Proposition A.6. Let 1 ≤ k ≤ m − 1 and ϕp,0,−m+k a left boundary quark. For
every 1 ≤ q ≤ ∞ there exist constants c = c(m, k, q) > 0, C = C(m, k, q) > 0, so
that for all p ≥ (m− 1)(k − 1):

(A.10) c(p+ 1)−(m−1+1/q) ≤ ||ϕp,0,−m+k||Lq(R) ≤ C(p+ 1)−(m−1+1/q).

Proof. We show (A.10) for the extremal cases q ∈ {1,∞} and conclude by the Hölder
inequality. To derive the upper bound for q = 1 we use an integration formula for
general B-splines and functions f ∈ Cm([t0−m+k, t

0
k]), cf. [30, Thm. 4.23]:∫ t0k

t0−m+k

Bm
0,−m+k(x)f (m)(x) dx = (t0k − t0−m+k)(m− 1)!f [t0−m+k, . . . , t

0
k].

Choosing f(x) := xp+m 1
(p+m)···(p+1)

we obtain

||ϕp,0,−m+k||L1(R) =

(
1

k

)p ∫ t0k

t0−m+k

Bm
0,−m+k(x)xp dx

=

(
1

k

)p
(k − 0)(m− 1)! (·)p+m[t0−m+k, . . . , t

0
k]

1

(p+m) · · · (p+ 1)

≤
(

1

k

)p−1

(m− 1)! (·)p+m[t0−m+k, . . . , t
0
k](p+ 1)−m.

To estimate the divided difference we use a Leibniz rule with xp+m = xxp+m−1,
cf. [30, Thm. 2.52]:

(·)p+m[t0−m+k, . . . , t
0
k] =

k∑
i=−k+m

(·)1[t0−m+k, . . . , t
0
i ] (·)p+m−1[t0i , . . . , t

0
k].

For the first order polynomial there remains just one non-trivial summand:

(·)p+m[t0−m+k, . . . , t
0
k] = (·)1[t0−m+k] (·)p+m−1[t0−m+k, . . . , t

0
k]

+ (·)1[t0−m+k, t
0
−m+k+1] (·)p+m−1[t0−m+k+1, . . . , t

0
k]

= (·)p+m−1[t0−m+k+1, . . . , t
0
k].

Repeating this argument d− k times we get

(·)p+m[t−m+k, . . . , tk] = (·)p+k[t00, . . . , t0k].
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By eliminating the leading zeros we get equidistant knots and can replace the divided
difference by a forward difference, cf. [30, Thm. 2.57]:

(·)p+m[t0−m+k, ..., t
0
k] =

1

k!
(∆k(·)p+k)(0) =

1

k!

k∑
j=0

(
k
j

)
(−1)k−jjp+k ≤ 1

k!
kp

k∑
j=0

(
k
j

)
jk.

Finally we get the upper estimate with C(m, k) = (m−1)!
(k−1)!

∑k
j=0

(
k
j

)
jk:

(A.11) ||ϕp,0,−m+k||L1(R) ≤ C(p+ 1)−m.

Now let q =∞. We directly compute

||ϕp,0,−m+k||L∞(R) = |ϕp,0,−m+k(x̂)| = k−px̂pk−m+k 1

(k − 1)!
(k − x̂)m−1

=
k−m+k

(k − 1)!

(
p

p+m− 1

)p(
k(m− 1)

p+m− 1

)m−1

.

We get the upper estimate with some constant C(m, k) = k−m+k

(k−1)!
(k(m− 1))m−1:

(A.12) ||ϕp,0,−m+k||L∞(R) ≤ C(p+ 1)−(m−1).

For 1 < q <∞ an application of the Hölder inequality and (A.11), (A.12) yield

||ϕp,0,−m+k||qLq(R) ≤ ||ϕp,0,−m+k||1/qL1(R)||ϕp,0,−m+k||1−1/q
L∞(R)

≤ C(p+ 1)−(m−1−1/q),

which proves the upper estimate. Now we turn over to the lower estimate. Let
q = ∞. From our previous calculations we directly get the lower estimate with

c(m, k) = c̃e1−mk−m+k

(k−1)!
(k(m− 1))m−1, where c̃ > 0 just depends on m:

(A.13) c(p+ 1)−(m−1) ≤ ||ϕp,0,−m+k||L∞(R).

It remains to show the lower estimate for q ∈ N. An elementary estimate leads to

||ϕp,0,−m+k||qLq(R) =

∫ k

0

|ϕp,0,−m+k(x)|q dx ≥
∫ k

k−1

|ϕp,0,−m+k(x)|q dx

=

∫ k

k−1

(x
k

)pq (
Bm

0,−m+k(x)
)q

dx

=

∫ k

k−1

(x
k

)pq (
k−m+k 1

(k − 1)!
(k − x)m−1

)q
dx.
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Substitution leads to

||ϕp,0,−m+k||qLq(R) ≥
1

((k − 1)!)q
k(−m+k)q

∫ k

k−1

(x
k

)pq
(k − x)(m−1)q dx

=
1

((k − 1)!)q
k(−m+k)q

∫ 1

0

(
k − y
k

)pq
y(m−1)q dy

≥ 1

((k − 1)!)q
k(−m+k)q

∫ 1

0

(1− y)pq y(m−1)q dy.

By m(q − 1) times partial integration we obtain∫ 1

0

(1− y)pqy(m−1)q dy =
(m− 1)q

pq + 1

∫ 1

0

(1− y)pq+1y(m−1)q−1 dy

=
((m− 1)q)!

(pq + 1)(pq + 2) · · · (pq +mq − q)
1

pq +mq − q + 1
.

We go on estimating by∫ 1

0

(1− y)pqy(m−1)q dy ≥ ((m− 1)q)!

(c̃(p+ 1))mq−q+1
,

where c̃ > 0 just depends on m and q. Finally we get the lower estimate with

c(m, k, q) = k−m+k

(k−1)!

(
((m−1)q)!

c̃

)1/q

:

(A.14) ||ϕp,0,−m+k||Lq(R) ≥ c(p+ 1)−(m−1+1/q).

For 1 < q < ∞ we again use Hölder’s inequality. First let 1 < q ≤ 2, then by
(A.13),(A.14) it follows

||ϕp,0,−m+k||qLq(R) ≥ ||ϕp,0,−m+k||2/qL2(R)||ϕp,0,−m+k||1−2/q
L∞(R)

≥ c(p+ 1)−(m−1−1/q).

For 2 ≤ q <∞, using (A.14) we have

||ϕp,0,−m+k||qLq(R) ≥ ||ϕp,0,−m+k||2−2/q
L2(R) ||ϕp,0,−m+k||2/q−1

L1(R)

≥ c(p+ 1)−(m−1−1/q),

which completes the proof. �
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