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Abstract

Time-frequency analysis deals with signals for which the underlying spectral charac-

teristics change over time. The essential tool is the short-time Fourier transform, which

localizes the Fourier transform in time by means of a window function. In a white noise

model, we derive rate-optimal and adaptive estimators of signals in modulation spaces,

which measure smoothness in terms of decay properties of the short-time Fourier trans-

form. The estimators are based on series expansions by means of Gabor frames and on

thresholding the coefficients. The minimax rates have interesting new features, and the

derivation of the lower bounds requires the use of test functions which approximately

localize both in time and in frequency. Simulations and applications to audio recordings

illustrate the practical relevance of our methods. We also discuss the best N -term approx-

imation and the approximation of variational problems in modulation spaces by Gabor

frame expansions.

Keywords. Gabor frame, minimax estimation, short-time Fourier transform, time-frequency analysis,

thresholding

1 Introduction

Time-frequency analysis allows to deal with signals f for which the underlying frequencies change over

time, as is common in many acoustic signals such as music (Doerfler, 2001) or bird songs (Connor et al.,

2012), as well as in psychoacoustics (Necciari et al., 2012) and wireless communications (Strohmer,

∗Corresponding author. Prof. Dr. Hajo Holzmann, Fachbereich Mathematik und Informatik, Philipps-

Universität Marburg, Hans-Meerweinstr., 35043 Marburg, Germany
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2001). Gröchenig (2013) provides a comprehensive account of the mathematics of time-frequency anal-

ysis. However, despite its major practical importance, the only contribution to a statistical treatment

with the aim of denoising seems to be Wolfe et al. (2004).

The essential tool of time-frequency analysis is the short-time Fourier transform (STFT), which is

defined by

Vh0g(x, ω) =

∫
Rd

g(t)h0(t− x) exp(−2πi 〈ω, t〉) dt, g ∈ L2(Rd), (1)

where h0 ∈ L2(Rd) is the so-called window function. Here, 〈ω, t〉 denotes the Euclidean inner product

of the vectors x and ω ∈ Rd, and z is the complex-conjugate of z ∈ C. The STFT localizes the ordinary

Fourier transform in time x by means of the window function h0.

Modulation spaces measure the smoothness of signals by decay properties of their STFT in both time

x and frequency ω. Similar to Besov spaces and wavelet expansions, signals can be characterized as

elements in modulation spaces by their Gabor frame expansions.

In this paper we investigate estimation of signals f observed in the white noise model

dY (x) = f(x) dx+ εdW (x), x ∈ Rd, (2)

by Gabor frame expansions, where f is element in a suitable modulation space. White noise models

are widely used in statistical analysis as stylized versions of more realistic nonparametric regression

models. Formal approximation results of nonparametric regression by white noise on the rectangle

[0, 1]d are e.g. established in Reiß (2008). In our setting, signals cannot be naturally restricted to

certain domains. A further, more technical reason to use the white noise model on the whole of Rd

is that the theory of Gabor expansions and modulation spaces seems not to be developed fully for

bounded domains as e.g. the theory of wavelet expansions and Besov spaces.

The estimators in (2) that we propose are based on soft and hard thresholding of the Gabor coefficients.

The analysis uses the classical oracle inequalities from Donoho and Johnstone (1994), extended to

complex-valued coefficients. We show that our estimators achieve optimal rates in the minimax sense

up to logarithmic factors for modulation spaces with commonly used weight functions. These rates

appear to be new and not to correspond directly to the known rates over Sobolev or Besov spaces. The

lower bounds rely on Gaussian test functions, which approximately localize simultaneously in time as

well as in frequency. Our contributions are thus complementary to Wolfe, Godsill, and Ng (2004), who

study discrete Gabor expansions and focus on Bayesian regularization and computational aspects.

The structure of the paper is as follows. As motivation, in Section 2 we give an illustration of the

performance of our method on a real-data example. Section 3 then summarizes the main facts on

modulation spaces and Gabor expansions that we shall subsequently require. B-splines are attractive

window functions from a numerical and computational point of view, and we briefly investigate the

theoretical properties of B-spline windows. In Section 4 we introduce the thresholding estimators,

and derive the minimax rates of convergence. Section 5 deals with the best N -term approximation of

functions in modulations spaces by Gabor frame expansions with emphasis on the sparse case. We also

show how to approximate solutions to variational problems in sequence space using Gabor coefficients.

Finally, Section 6 contains the results of extensive numerical experiments. Proofs are deferred to

Section 9.
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2 A real data illustration

For motivation we illustrate our methods on two real-data examples. The first is a 3.46 seconds long

recording of a common blackbird, sampled at 44.1 kHz, resulting in 152,605 samples, the second a

simple melody which we played and recorded on a piano. Figure 1 gives the spectrograms, that is,

time-frequency representations of the signals, with a Gaussian window function and suitable choices

of grid size and window width. We then added Gaussian noise to the signals with various signal-to-

(a) Blackbird (b) Melody

Figure 1: Spectograms of two piano recordings

noise ratios (SNR). For examples of spectrograms of the noisy signals and our reconstructions see the

supplement, Figure 10.

Iterating this procedure 10000 times, we then compared the mean squared errors between the original

signal and the reconstruction based on noisy data for various signal-to-noise ratios, and for recon-

structions both for our Gabor-frame expansion method as well as for wavelet shrinkage. We use hard

thresholding in both cases. The results displayed in Table 1 indicate the superior performance of our

Gabor-frame based method. The various recordings can be found on GitHub1.

3 Modulation spaces and Gabor frames

While Sobolev spaces measure smoothness of a signal f by decay properties of its Fourier transform,

modulation spaces analogously rely on the short time Fourier transform in (1). In this section we

gather the most relevant notions from the expositions of Gröchenig (2013) and Galperin and Samarah

(2004). The formal definition of modulation spaces requires the notion of a weighted Lp-space. The

integer d will denote the dimension of the signal. Since the STFT involves both time and frequency,

we introduce weighted Lp-spaces on R2d. A weight function v : R2d → [0,∞) is submultiplicative if

1Link to recordings on GitHub under https://github.com/ptafo/Statistically-optimal-estimation-of-signals-

in-modulation-spaces-using-Gabor-frames
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Reconstructing the blackbird

SNR Gabor frames bior4.4 Wavelets

-10 66.224 66.884

10 51.997 54.792

30 37.241 39.413

Reconstructing the melody

SNR Gabor frames bior4.4 Wavelets

-10 58.843 65.354

10 47.469 52.525

30 32.580 35.504

Table 1: Mean squared errors of reconstructions by thresholding Gabor or wavelet expansions,

both for the blackbird as well as for the melody. All values in decibel (10 log10 x, dB).

v(z1 + z2) ≤ C v(z1) v(z2), z1, z2 ∈ R2d for some constant C > 0, and m : R2d → [0,∞) is v-moderate

if m(z1 + z2) ≤ C v(z1)m(z2). A standard choice is vs(z) = ms(z) =
(
1 + ‖z‖22

)s/2
for a parameter

s ≥ 0, where ‖ · ‖2 is the Euclidean norm. Given p ∈ (0,∞), the weighted Lp-space, defined by

Lpm = {g : R2d → C measurable | ‖g‖pLpm =

∫
Rd

∫
Rd
|g(x, ω)|pm(x, ω)p dxdω <∞},

is a complete (semi-) normed space for p ≥ 1, and a complete quasi-(semi-) normed space for p ∈ (0, 1),

see e.g. Benedek and Panzone (1961).

The modulation space Mp
m(Rd) with weight function m and parameter p > 0 is defined as the set of

tempered distributions f ∈ S ′(Rd), the dual of the Schwartz space S(Rd), for which Vh0f ∈ Lpm(R2d),

and h0 ∈ S(Rd) is a fixed window function in the Schwartz space. See Gröchenig (2013, Section 11.2)

for the definition of the STFT of a tempered distribution. The modulation (quasi-) norm is given by

‖f‖Mp
m(Rd) = ‖Vh0f‖Lpm(R2d) =

(∫
Rd

∫
Rd
|Vh0f(x, ω)|pm(x, ω)p dxdω

)1/p

.

If the weight function is m = 1 we write Mp
1(Rd) =Mp(Rd) and Lp1(R2d) = Lp(R2d).

It turns out that the definition of the set Mp
m(Rd) is independent of the window function, and the

resulting modulation norms are equivalent, for a wide range of window functions, in particular all

functions in the Schwartz space. See Gröchenig (2013, Theorem 11.3.7 and Proposition 12.1.2) for

p ≥ 1 and Galperin and Samarah (2004, Theorem 3.1) for p ∈ (0, 1). A standard choice is the

Gaussian window function ϕa(x) = exp
(
− π ‖x‖22/a

)
, a > 0. While by definition, modulation spaces

consist of tempered distributions, for the weight functions ms defined above and mu,v in (13) that we

focus on, the modulation space is a subset of a Bessel potential space (Gröchenig, 2013, Proposition

11.3.1) so that its elements actually correspond to functions.

Modulation spaces can be characterized and its elements represented in terms of Gabor frames. A

countable family (eλ)λ∈Λ in a separable Hilbert space (H, ‖ · ‖) is a frame if for all f ∈ H,

A ‖f‖2 ≤
∑
λ∈Λ

∣∣〈f, eλ〉∣∣2 ≤ B ‖f‖2,
where 0 < A < B are the lower and upper frame bounds. The synthesis operator D associated

with the frame is defined by Dc =
∑
λ∈Λ cλ eλ, where c = (cλ)λ∈Λ, and the frame operator S

by Sf =
∑
λ∈Λ 〈f, eλ〉 eλ. The frame operator is a positive, invertible operator on H. The family

(S−1 eλ)λ∈Λ is a frame called the dual frame, and we have the representation f =
∑
λ∈Λ 〈f, S−1 eλ〉 eλ.

4



Given α, β > 0 and a window function h on R, a Gabor frame is the family of functions, indexed by

the lattice Λ = αZd × βZd, defined by

hλ(x) = exp(2πi〈β n, x− αk〉)h(x− αk), λ = (αk, βn) ∈ Λ. (3)

For sufficiently small choices of α, β > 0 and a suitable choice of h (Gröchenig, 2013, Theorem 6.5.1),

(hλ)λ∈Λ is indeed a frame in L2(Rd), and the dual frame is also of the form (3) with the dual window

h̃ = S−1h.

To characterize modulation spaces by Gabor frame expansions, we require the mixed norm sequence

spaces: A sequence c = (cλ)λ∈Λ is in `pm if (Gröchenig, 2013, Def. 11.1.3)

‖c‖p
`pm

=
∑
λ∈Λ

|cλ|pm(λ)p <∞,

where m is the weight function which is used in the definition of the weighted Lp-space. Under

the assumption that the STFT of the window function h is element of a suitable Amalgam space,

see Gröchenig (2013, Theorem 12.2.4), Galperin and Samarah (2004, Theorem 3.6), we have that if

c = (cλ)λ∈Λ ∈ `pm then f =
∑
λ∈Λ cλhλ ∈Mp

m(Rd) and

‖f‖Mp
m(Rd) ≤ const. ‖c‖`pm . (4)

All Schwartz functions are admissible window functions. Moreover, if we let h̃ = S−1h denote the dual

window, for f ∈Mp
m(Rd) we have the expansion

f =
∑
λ∈Λ

〈f, h̃λ〉hλ (5)

and for the canonical coefficients, also called moments, (〈f, h̃λ〉)λ∈Λ we have the bounds

C̃1 ‖f‖Mp
m(Rd) ≤ ‖(〈f, h̃λ〉)λ∈Λ‖`pm ≤ C̃2 ‖f‖Mp

m(Rd), f ∈Mp
m(Rd), (6)

for suitable constants 0 < C̃1 < C̃2. From a numerical and computational perspective, windows

functions with compact support might be more suitable choices. It particular, cardinal B-splines can

be useful as window functions in large-data classification problems, where computation time is an issue

(Heuer et al., 2019). They are defined by convolutions, i.e., starting with N1 = 1[0,1), the convolution

product Nk := Nk−1 ∗ N1 is called the B-spline of order k, k ≥ 2. However, since B-splines are not

contained in the Schwartz space, the question arises which modulation spaces can be characterized

by means of B-spline window functions, i.e., for which range of p (6) still holds. The answer is given

by the following theorem which, to the best of our knowledge, has not been stated explicitly in the

literature before.

Theorem 1. Let d = 1 and let m be a v-moderate weight with v(x, ω) = v(x) depending only on time.

Also, let the window function h be a B-spline of order k. Then, the norm equivalence (6) holds for all

p > 1
k .

The proof is provided at the end of Section 9. We shall investigate the numerical performance of

B-splines as window functions further in the Section 6.
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4 Thresholding estimators, oracle inequalities and rates of

convergence

Let us introduce threshold estimators based on Gabor frame expansions. The white noise model (2)

can be interpreted as a Gaussian process, and by integrating a real-valued function h ∈ L2(Rd) we

observe the Gaussian random variable

Y (h) =

∫
h dY ∼ N

(
〈f, h〉L2 , ε2 ‖h‖2L2

)
, (7)

where N (a, σ2) is the normal distribution with mean a and variance σ2, and Z ∼ N (a, σ2) means

that the random variable Z has the N (a, σ2)-distribution. Furthermore, for h1, . . . , hm ∈ L2(Rd),
the random variables Y (h1), . . . , Y (hm) from (7) are jointly normally distributed with covariance

Cov(Y (hj), Y (hk)) = ε2 〈hj , hk〉.
When applying (7) to a complex-valued square-integrable function g = h1+i h2, where h1, h2 ∈ L2(Rd)
are real-valued, Y (g) = Y (h1) + iY (h2) is a complex-valued normally-distributed random variable,

meaning that (Y (h1), Y (h2))> is bivariate (real-valued) Gaussian. To construct estimators for f in

(2), assume that the window h together with its dual window h̃ are such that (6) holds, and estimate

the coefficient

ϑλ := 〈f, h̃λ〉 by Y (h̃λ).

Note that even if the window h̃ is real-valued, the element of the frame h̃λ in (3) will be complex-valued.

Soft and hard thresholding at level µ > 0 are defined by

ts(v;µ) = sign(v) (|v| − µ) 1(|v| ≥ µ), and th(v;µ) = v 1(|v| ≥ µ),

where v ∈ R and sign(v) is the sign of v. For complex z = u + iv ∈ C, u, v ∈ R we define tj(z;µ) =

tj(u;µ) + i tj(v;µ), j ∈ {h, s}. Then we have the following oracle inequalities, which are extensions to

complex-valued random variables of classic results from Donoho and Johnstone (1994).

Proposition 2. Let Λ0 ⊂ Λ with #Λ0 < ∞. Then, in the Gaussian white noise model (2) we have

for soft thresholding with universal threshold µuni = ε ‖h̃‖L2

√
2 log(#Λ0) that

E
[ ∑
λ∈Λ0

∣∣ts(Y (h̃λ);µuni)− ϑλ
∣∣2] ≤ (4 log(#Λ0) + 2

)(
ε2 ‖h̃‖2L2 +

∑
λ∈Λ0

min(ε2 ‖h̃‖2L2 , |ϑλ|2)
)
. (8)

Similarly, for hard thresholding we have the same estimate with a different leading constant.

For a finite subset Λ0 ⊂ Λ we consider the thresholding estimators

f̂j(·;µ) =
∑
λ∈Λ0

tj(Y (h̃λ);µ)hλ, j ∈ {h, s}. (9)

From boundedness of the synthesis operator Dh (Gröchenig, 2013, Prop. 5.1.1 (b)) we obtain that

‖f̂j(·;µ)− f‖2L2 =
∥∥ ∑
λ∈Λ0

(
tj(Y (h̃λ);µ)− ϑλ

)
hλ −

∑
λ∈Λ{

0

ϑλ hλ
∥∥2

L2

≤ B
( ∑
λ∈Λ0

∣∣tj(Y (h̃λ);µ)− ϑλ
∣∣2 +

∑
λ∈Λ{

0

∣∣ϑλ∣∣2), j ∈ {h, s},
(10)

where B is the upper frame constant of the Gabor frame. In the following, using the oracles inequalities

from Proposition 2 we shall bound (10) for particular choices of the weight function.
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Isotropic weight function

First let us consider an isotropic weight function of the following form. For a parameter s > 0 and

λ = (x>, ω>)> choose the weight function as

ms(λ) = vs(λ) =
(
1 + ‖x‖22 + ‖ω‖22

)s/2
, (11)

and vs = ms, as mentioned in the introduction. Given K > 0 let Λ0,K = {λ ∈ Λ | ‖λ‖2 ≤ K}, and for

large K consider the estimator in (9) which can be written as

f̂j(·;µ) =
∑
‖λ‖2≤K

tj(Y (h̃λ);µ)hλ, j ∈ {s,h}.

Theorem 3. Consider model (2) with f ∈ Mp
ms(R

d) for p ∈ (0, 2]. Choosing the universal threshold

µuni = ε ‖h̃‖L2

√
2 log(#Λ0,K) as well as taking K & ε

− d (2−p)+sp
2 d s+s2 p we have the bound

E
[
‖f̂j(·;µ)− f‖2L2

]
≤ const. · max

(
‖f‖2Mp

ms
, ‖f‖

2 d p
2 d+s p

Mp
ms

)
· log(1/ε) · ε

2 d (2−p)+2sp
2 d+s p , j ∈ {s,h}, (12)

where the constant depends on properties of the frame and the thresholding method.

Remark. Let us discuss the rate obtained in (12). For p = 2 we obtain ε
4s

2 d+2 s up to the logarithmic

factor, which is reminiscent with the rate over Sobolev ellipsoids, but somewhat surprisingly involves

the dimension as 2 d instead of the ordinary d. The reason is that both the dimensions d of time x as

well as of frequency ω influence the rate. As indicated above, the rates obtained in the white noise

model (2) on the whole of Rd cannot be directly compared to rates in the case of compact support.

For small p, that is in the sparse situation the rate in (12) approaches the parametric rate ε2. The

logarithmic factor log(1/ε) is probably not necessary, and could potentially be eliminated by adopting

a more sophisticated thresholding scheme such as SureShrink from Donoho and Johnstone (1995).

Let us complement the result by a lower bound.

Theorem 4. For a constant C > 0 and p ∈ (0, 2] consider the ball in Mp
ms(R

d),

Mp
s,C =

{
f ∈Mp

ms(R
d) | ‖f‖2Mp

ms
≤ C

}
.

Then in model (2) we have that

lim inf
ε↓0

(
ε−

2 d (2−p)+2sp
2 d+s p inf

f̂ε

sup
f∈Mp

s,C

Ef
[
‖f̂ε − f‖2L2

])
> 0,

where f̂ε is any estimator in (2) based on the observation Y , and Ef denotes the expected value if the

underlying parameter in (2) is f .

Remark. While the proof uses standard tools from decision theory such as Fano’s lemma and the

Varshamov-Gilbert bound, see Tsybakov (2009), the issue is to construct the hypothesis functions in

order to obtain the term 2 d which arises in the upper bound. Since there are no integrable functions

which localize sharply - with compact support - in both time and frequency domain (Gröchenig, 2013,

Theorem 2.3.3), we work with Gaussian test functions and estimate the overlaps in time and frequency

domain.
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Anisotropic weight function

Let us consider the more general situation of an anisotropic weight function of the following form. For

0 ≤ u, v ≤ s and λ = (x>, ω>)> choose

mu,v(λ) =
(
1 + ‖x‖22

)u/2 · (1 + ‖ω‖22
)v/2

, (13)

it is then also vs -moderate for vs given in (11). For a constant C > 0 let

Mp
u,v,C =

{
f ∈Mp

mu,v (Rd) | ‖f‖2Mp
mu,v

≤ C
}

denote the ball in Mp
mu,v (Rd).

Theorem 5. Consider model (2) with f ∈Mp
mu,v (Rd) for p ∈ (0, 2]. Choosing the universal threshold

µuni = ε ‖h̃‖L2

√
2 log(#Λ0,K) as well as taking K & ε−

(2−p) d (v+u)+2pvu
min(u,v) (d(v+u)+pvu) we have the upper bound

E
[
‖f̂(·;µ)− f‖2L2

]
≤ const. ·max

(
‖f‖2Mp

mu,v
, ‖f‖

p d (v+u)
d(v+u)+pvu

Mp
mu,v

)
· log(1/ε) · ε

(2−p) d (v+u)+2pvu
d(v+u)+pvu ,

and furthermore the corresponding lower bound

lim inf
ε↓0

(
ε−

(2−p) d (v+u)+2pvu
d(v+u)+pvu inf

f̂ε

sup
f∈Mp

u,v,C

Ef
[
‖f̂ε − f‖2L2

])
> 0.

Remark. If u = v = s in Theorem 5 we recover the result in Theorem 3. On the other hand, if

u = 0 the rate reduces to ε2−p and hence is independent of v, that is, a higher decay in the frequency

(or in time) alone cannot be used in the estimator in the model (2). For the case p = 2, we then do

not obtain a rate. This is somewhat surprising since for u = 0 and p = 2, M2
m0,v

(Rd) corresponds

to a Sobolev space (Gröchenig, 2013, 11.3.1). Here the reason seems to be the choice of the model

(2) on Rd. Indeed, if we assume that the signal f as well as the window h0 have compact support,

then the support of STFT Vh0
f(x, ω) is also uniformly bounded in x for all ω, and hence f belongs

to Mp
mu,v for arbitrarily large u. For p = 2, fixed v and u→∞ we obtain the exponent 4v/(d+ 2v),

corresponding to the Sobolev case on bounded domains. The situation is somewhat reminiscent of

anisotropic multi-index denoising (Kerkyacharian et al., 2001, 2008), though the rates that we obtain

are different.

5 Compression and approximation of variational problems

So far, we have discussed denoising algorithms based on Gabor frames. Another very important task

in signal processing is of course compression. To this end, the signal is decomposed with respect

to the underlying dictionary, the small coefficients are thrown away by thresholding, and then the

signal is reconstructed. These kinds of algorithms are clearly very much related with best N -term

approximation schemes. In this section, we briefly analyze the approximation rate of thresholding

algorithms based on Gabor frames.

Classic results from wavelet theory (DeVore et al., 1992) imply that the convergence rate of best N -

term wavelet approximation schemes depends on the smoothness of the signal under consideration in
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a specific scale of Besov spaces. For functions in modulation spaces, similar results hold true for best

N -term approximations by elements from a Wilson basis, see Gröchenig (2013, Theorem 12.4.2), at

least for non-weighted norms - that is m = 1 - and in the non-sparse case p ≥ 1. Further results which

also treat the case 0 < p but involve a further parameter q > p in the definition of modulation spaces

are presented in Gröchenig and Samarah (2000); Samarah and Al-Sa’di (2006). Here we give a simple

upper bound for p ∈ (0, 2) in terms of Gabor frames. A numerical illustration can be found in Section

6.1.

Theorem 6. Given f ∈ Mp(Rd), p ∈ (0, 2) and µ > 0, setting Iµ = {λ ∈ Λ | |〈f, h̃λ〉| ≥ µ},
Nµ = #Iµ, and

fµ =
∑
λ∈Iµ

〈f, h̃λ〉hλ,

we have that Nµ <∞ and that

‖f − fµ‖2L2 ≤ C̃2
2 ‖f‖2Mp(Rd)N

1−2/p
µ , (14)

where C̃2 is from (6).

Remark 1. To prove this compression rate, we only need the norm equivalence in (6). By Theorem

1, this holds whenever we use a B-spline of order k > 1
p as the window function. Therefore we can

balance the computational complexity and the compression rate by using B-splines of suitable order,

depending on the smoothness of the signal f in the modulation space. In Section 6 we show some

simulations highlighting this effect.

Next, given f ∈ L2(Rd) and a parameter µ > 0, we aim to find g ∈Mp
m(Rd) that solves the variational

problem

min
g∈Mp

m(Rd)

(
‖f − g‖2L2

+ µ‖g‖pMp
m(Rd)

)
. (15)

Variational problems of the form (15) occur in many practical applications. A prominent example

is given by the regularization of inverse problems by means of Tikhonov schemes, see, e.g., Engl

et al. (2000). Usually, the penalty terms are given by smoothness norms such as Sobolev norms.

Quite recently, to improve sparsity, also Besov norms in combination with wavelets have been used

(Daubechies et al., 2004). To the best of our knowledge, Gabor frames and modulation spaces have

only rarely been used in this context.

Therefore, here we show how to balance the mean squared fit ‖f − g‖2L2
of g to the data f and the

smoothness of g as measured by the multiple of the modulation norm, µ‖g‖pMp
m(Rd)

. For smoothness

penalties from Sobolev or Besov norms, solutions of such variational problems have been extensively

studied in terms of orthogonal wavelet expansions, see e.g. DeVore and Lucier (1992); Chambolle et al.

(1998).

Theorem 7. Let p > 0, and suppose that the window h ∈ Mmin(1,p)
v (Rd). There is a constant

C > 0 depending on the upper frame bound of {hλ | λ ∈ Λ} and on the constants in (4) such that if

c = (cλ)λ∈Λ ∈ `pm and hence g =
∑
λ∈Λ cλ hλ ∈Mp

m(Rd) by (4), we have that

‖f − g‖2L2 + µ‖g‖pMp
m(Rd)

≤ C
∑
λ∈Λ

(
(〈f, h̃λ〉 − cλ)2 + µm(λ)p |cλ|p

)
. (16)
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Remark 2. The right-hand side of (16) can be minimized coefficientwise by minimizing

E(c) = (〈f, h̃λ〉 − c)2 + µm(λ)p |c|p

in c for each λ ∈ Λ. Since for the minimizer c̃ = (c̃λ)λ∈Λ, the right-hand side of (16) is finite (it is

finite for the choice cλ = 0), we must have c̃ ∈ `pm. The choice

ĉλ = 〈f, h̃λ〉1|〈f,h̃λ〉|2≥µm(λ)p |〈f,h̃λ〉|p

satisfies E(ĉλ) ≤ 4E(c̃λ), see Chambolle et al. (1998, Section 3, p. 5) hence we also have that ĉ =

(ĉλ)λ∈Λ ∈ `pm.

Remark 3. In contrast to orthogonal wavelet expansions, where the version in terms of the coefficients

is of the same order, here we only have the upper bound as stated in (16). The reason is that when

representing g =
∑
λ∈Λ cλ hλ ∈ Mp

m(Rd) for general frame coefficients (cλ)λ∈Λ, we have the upper

bound in (4) but the upper bound in (6) is only valid for the canonical frame coefficients (〈f, h̃λ〉)λ∈Λ.

Modulation spaces at least for p ≥ 1 can also be characterized in terms of the coefficients of Wilson

basis, see Gröchenig (2013, Theorem 12.3.1). Thus, in this situation solutions to the variational

problem can actually be characterized and not merely bounded up to constants by solutions involving

Wilson basis coefficients. However, in the present paper our particular emphasis is on the sparse case

p < 1.

6 Numerical illustrations

In this section we numerically illustrate our denoising methods from Section 4. We shall consider the

following family of functions of spatially varying frequency

fA,B(t) = sin(2π ·B · t · e−A(t−0.5)2), t ∈ [0, 1], (17)

which resemble the Doppler functions used by Donoho and Johnstone (1994). In particular we consider

the following three signals: firstly, the signal f50,2 with small frequency variation, see Figure 2(a);

secondly, the signal f50000,4 with small time variation, see Figure 2(b); and lastly the signal f40,200

which varies equally in both time and frequency domains, see Figure 2(c).

We investigate the numerical performance of the thresholding estimators in Section 4, and compare

them to wavelet shrinkage methods. We use a B-spline of level 4 as the window function for the Gabor

system and for comparison use wavelet thresholding with the biorthogonal B-spline wavelet of level 4

(’bior4.4’).

Each signal includes frequencies up to 1000 Hz. We generate discrete observations from

Yi = f(i/n) + σεi, i = 1, . . . , n,

with n = 2000 and use a discretized version of the Gabor frames in (3). In repeated simulations we

shall use m = 2000 iterations, e.g. to compute mean squared errors.
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(a) f50,2

‖ · ‖2L2
= 0.2202

(b) f50000,4

‖ · ‖2L2
= 0.00825

(c) f40,200

‖ · ‖2L2
= 0.4269

Figure 2: Signals (upper row) and spectrogram (lower row) of our test signals

(a) f50,2

σ = 0.1484

(b) f50000,4

σ = 0.02873

(c) f40,200

σ = 0.2066

Figure 3: Noisy signals with SNR = 10
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N 2000 400 200 100 50

M 2000 400 200 100 50

α · β 0.0005 0.0125 0.05 0.2 0.8

Table 2: Number of frequency and time bands and the grid density

Effects of window length and grid density

We start by investigating the effects of the window width w = W
n ∈ (0, 1], where W is the number of

observations within the support of the window function, as well as the effect of the grid density α · β
of the frame in (3). In the discrete setting we refer to α = d nN e as the step size in terms of samples in

the time domain and to β = 1
M as the step size in the frequency domain, with M,N ∈ {1, . . . , n}. M

and N respectively represent the number of frequency and time bands considered. This yields a time-

frequency representation of the signal of the size M ×N . A Gabor frame can only exist if the density

satisfies n
N ·M < 1, see Gröchenig (2013)[Theorem 7.5.3]. Here we report results for the case M = N ,

additional results for distinct time - and frequency resolutions can be found in the supplement, Section

9.3. Figure 4 shows the effect of different window lengths and grid densities according to Table 2 on

the mean squared error (MSE) for our three signals for samples of sizes n = 2000, where we use hard

thresholding with an MSE-optimal threshold which was computed over a fine grid of threshold values.

(a) f50,2 (b) f50000,4 (c) f40,200

Figure 4: Effect of the window width w and the grid density with M = N for the three signals

for samples of sizes n = 2000, using hard thresholding with the optimal threshold.

Let us interpret the results. In all three cases, and in particular for f40,200, for suitable values of the

window width the MSE for the density of 0.05 and even of 0.2 is almost as low, or at least of similar

magnitude, than that for the grid with finest resolution 0.0005. Second, for the signals f50000,4 and

f40,200, and also for f50,2 except for a very fine resolution, the MSE increases as the window width is

increased, at least above 0.05 or 0.1. Then, to achieve reasonable computation times and still have

good MSE properties, in all three cases in the following simulations we choose M = N = 100, resulting

in α · β = 0.2, and for the window width we take the following values

12



signal f50,2 f50000,4 f40,200

w 0.1 0.025 0.05

Choice of threshold and thresholding method

Next, in a repeated simulation for various sample sizes we investigate the MSE of soft - and

hard thresholding, both for the universal threshold as well as for an MSE-optimal threshold,

which was computed over a fine grid of threshold values. The results are contained in Figure

5, where the figures in the first row contain the MSE for soft thresholding while those in the

second line have the MSE for hard thresholding. We observe that first, hard thresholding

performs better than soft thresholding, and second, the universal threshold appears to be a

very reasonable choice for hard thresholding.

(a) f50,2 (b) f50000,4 (c) f40,200

Figure 5: Figures in first row: MSE for soft thresholding, optimal threshold versus univer-

sal threshold; Figures in second row: MSE for hard thresholding, optimal threshold versus

universal threshold. Line style −− denotes universal threshold. Various sample sizes are

investigated.

Comparison of Gabor-frame and wavelet-based methods

Next we investigate the reconstruction performance of our thresholding estimators in (9),

compared to wavelet shrinkage methods based on biorthogonal B-splines wavelet of order

4. Due to the previous results we chose to focus on hard thresholding with the universal

threshold. First, for a visual impression, for a particular sample of size n = 2000 we plot the

13



reconstructions of the signals in Figure 6, where the figures in the first row are from wavelet

shrinkage, the figures in the second row from the Gabor-frame based method, and the last

row has the spectrograms of the Gabor-frame based estimates. In particular for the signal

f40,200 the Gabor-frame based method seems to give a better result, whereas for the signal

f50000,4 which consists of a single spike, we expect wavelet shrinkage to perform better. This

is however not yet visible from the plots. Next we compare the MSE of both methods in a

(a) f50,2 (b) f50000,4 (c) f40,200

Figure 6: Reconstructions for a particular sample of size n = 2000 using hard thresholding

with universal threshold. Figures in the first row are from wavelet shrinkage, the figures in

the second row from the Gabor-frame based method, and the last row has the spectrograms

of the Gabor-frame based estimates.

repeated simulation for various sample sizes. The results are given in Figure 7. For the signal

f40,200, our Gabor-frame based method clearly outperforms wavelet shrinkage. This is also

true, though less substantially, for the signal f50,2 except for small sample sizes. Finally, for

the signal f50000,4 wavelet shrinkage seems to be superior, in particular for small and moderate

samples.
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(a) f50,2 (b) f50000,4 (c) f40,200

Figure 7: MSE of the competing methods using universal hard thresholding. −−: Gabor-

frame based method, wavelet-shrinkage.

6.1 Compression rates

In Theorem 6, we have studied the achievable compression rate using the best N -term ap-

proximation with Gabor coefficients. Note that taking logarithms, (14) can be written as

log(‖f − fµ‖2L2) ≤ log(C̃2
2 ‖f‖2Mp(Rd)) + log(Nµ) · (1− 2/p). (18)

We now demonstrate this rate by compressing a synthetic and a real signal with different

window functions and comparing the errors. The complete code is available on GitHub2.

First, we analyse the Gaussian function

f(x) =
1

0.3 · π
exp

(
−1

2

(
x− 0.5

0.15

)2
)
, x ∈ [0, 1],

which is scaled in a way that f is close to zero at the boundary. We sample f at 2000

equidistant time stamps. A synthetic signal like this should be in all modulation spaces

Mp([0, 1]), p > 0. We use a Gabor transformation on this signal and reconstruct it using only

N coefficients, with N being between 5% and 25% of the coefficients. This way, we eliminate

distortions that result from the logarithmic scaling of N in (18) or the good time-frequency

localisation of the signal and only focus on the “main slope” in the results. The exact results

clearly depend on the step sizes in time and frequency and the window lengths of the spline

windows. We found step sizes of 10 samples in time and 10 Hz in frequency as well as a

universal window length of 180 samples for the splines to work fine for this signal. Figure

8 shows the results. Here, we can clearly see the advantage of a smooth window function

if the signal is smooth as well. For the spline windows, we get better compression rates for

higher spline orders. To quantify this, we take (18) and use linear regression on the log-scaled

errors with respect to the log-scaled values for N and calculate p from the slope. In Table

2https://github.com/Heuersv/Compression-Simulations
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Figure 8: Errors for best N -term approximation of synthetic signal with different window

functions.

3 we present the results and compare them to values of p we would expect with the relation

p > 1
k from Theorem 1 in mind. The deviation from the estimated p to 1/k with k equal to

Window function estimated p 1/k, k spline order

Spline order 1 0.9318 1

Spline order 2 0.4538 0.5

Spline order 3 0.4170 0.3333

Spline order 4 0.3068 0.25

Spline order 5 0.2540 0.2

Spline order 6 0.2066 0.1667

Spline order 7 0.1715 0.1429

Spline order 8 0.1366 0.125

Spline order 9 0.1340 0.1111

Spline order 10 0.1147 0.1

Gaussian 0.0569 ≈ 0

Table 3: Values of p from compressing a synthetic signal

the order of the spline is quite small. Additional experiments showed that by modifying the
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window size, the difference could even be further reduced. It should also be noted, that the

simulation with the Gaussian window took 1.66 seconds, while we needed 10.96 seconds for

all ten spline windows. This shows that even with such a small signal (only 2000 samples) we

get a time advantage by using the compactly supported spline windows, but at the expense

of worse compression rates.

We now turn to numerical illustrations using the recording of a common blackbird from Sec-

tion 2. We use the same procedure as for the synthetic signal and only change the parameters

to step sizes of 130 samples in time and 130 Hz in frequency as well as a window length of

800 samples for all splines. The compression results are visualised in Figure 9. Here, we can

Figure 9: Errors for best N -term approximation of blackbird recording with different window

functions.

see the linear dependency in (18) much clearer. We also see that even the B-spline of order 2

already achieves the same compression rate as the Gaussian window function. Calculating p

as before confirms this, see Table 4. We conclude that the signal itself is only in the modula-

tion spaceMp for p > 0.82. Also, for this longer signal the time advantage is very clear: The

simulations with the Gaussian window took 844 seconds or approximately 14 minutes, while

the simulations with all four spline orders together took only 291 seconds or less than five

minutes. This shows how with real signals, using splines of rather low order yields the same

compression rate as using smoother window functions while taking much less computation

time.
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Window function estimated p from compression rate

Spline order 1 0.8844

Spline order 2 0.8322

Spline order 3 0.8317

Spline order 4 0.8207

Gaussian 0.8342

Table 4: Values of p from compressing the blackbird signal

7 Conclusions and outlook

We showed that for signals contained in modulation spaces, shrinkage methods for Gabor

series expansions lead to optimal denoising in a white-noise model in the statistical minimax

sense. While this could basically be expected, our results show interesting new phenomena in

the minimax rates in particular with an unexpected effect of the dimension. We also give rates

for signal compression which cover the sparse case. Here, we highlight how much smoothness

of the window function is required to achieve optimal signal compression. In our numerical

experiments we demonstrate the practical use of our methods for a range of synthetic and real

acoustic signals. In the experiments, we also illustrate the advantage of compactly supported

B-spline window functions in terms of computation time, which becomes relevant for large

scale classification problems of acoustic signals such as bird songs (Heuer et al., 2019).

Extensions of our methods to other statistical estimation problems such as density estimation

or regression on compact domains should be relatively straightforward. On the methodological

side of time-frequency theory, an analysis which covers α-modulation spaces (Dahlke et al.,

2008) with a varying time and frequency resolution should be of theoretical and also of applied

interest. Finally, in classification algorithms based on spectrograms, a thorough theoretical

as well as numerical investigation of the roles of denoising or compression still seems to be

lacking.
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8 Proofs

8.1 Proofs of Proposition 2 and Theorem 3

Proof of Proposition 2. For (8), we show that for µ > 0,

E
[ ∑
λ∈Λ0

∣∣ts(Y (h̃λ);µ)− ϑλ
∣∣2] ≤ ∑

λ∈Λ0

min
(
|ϑλ|2, ε2‖h̃‖2L2 + 2µ2

)
+
(
#Λ0

) ε3 ‖h̃‖3L2

µ
exp

(
− µ2

2 ε2 ‖h̃‖2L2

)
.

(19)

Inserting the universal threshold gives the result.

Since ϑλ := 〈f, h̃λ〉 = 〈f,<(h̃λ)〉+ i〈f,=(h̃λ)〉 we have for j ∈ {s,h} that∑
λ∈Λ0

∣∣tj(Y (h̃λ);µ)− ϑλ
∣∣2

=
∑
λ∈Λ0

((
tj(<(Y (h̃λ)))− 〈f,<(h̃λ)〉

)2
+
(
tj(=(Y (h̃λ)))− 〈f,=(h̃λ)〉

)2)
. (20)

To bound the expected value of (20), we use the following fact, see Donoho and Johnstone (1994) or

Candes (2006, Proof of Theorem 5.1) that for W ∼ N (a, σ2
0) we have that

E
[
(ts(W ;µ)− a)2

]
≤ min(a2, σ2

0 + µ2) + 2
σ3

0

µ
ϕ

(
µ

σ0

)
, (21)

where ϕ is the density of the standard normal distribution. Applying this to (20) we obtain

E
[ ∑
λ∈Λ0

((
ts(<(Y (h̃λ));µ)− 〈f,<(h̃λ)〉

)2
+
(
ts(=(Y (h̃λ));µ)− 〈f,=(h̃λ)〉

)2)]
=
∑
λ∈Λ0

E
[(
ts(<(Y (h̃λ));µ)− 〈f,<(h̃λ)〉

)2]
+
∑
λ∈Λ0

E
[(
ts(=(Y (h̃λ));µ)− 〈f,=(h̃λ)〉

)2]
≤
∑
λ∈Λ0

(
min

(
(<(ϑλ))2, ε2‖<(h̃λ)‖2L2 + µ2

)
+
ε3 ‖<(h̃λ)‖3L2

µ
exp

(
− µ2

2 ε2 ‖<(h̃λ)‖2L2

))
+
∑
λ∈Λ0

(
min

(
(=(ϑλ))2, ε2‖=(h̃λ)‖2L2 + µ2

)
+
ε3 ‖=(h̃λ)‖3L2

µ
exp

(
− µ2

2 ε2 ‖=(h̃λ)‖2L2

))
≤
∑
λ∈Λ0

min
(
|ϑλ|2, ε2‖h̃‖2L2 + 2µ2

)
+
(
#Λ0

) ε3 ‖h̃‖3L2

µ
exp

(
− µ2

2 ε2 ‖h̃‖2L2

)
,

which is (19).

For hard thresholding, for W ∼ N (a, σ2
0) and µ/σ0 > 4, with a suitable constant C > 0 we have that

(Johnstone, 2013, Proposition 8.1)

E
[
(th(W ;µ)− a)2

]
≤ C min(a2, µ2) + C σ0 µϕ(µ/σ0 − 1). (22)

Proceeding from (20), since <(Y (h̃λ)) ∼ N
(
<(ϑ̃λ), ε2 ‖<(h̃λ)‖2L2

)
we have that

E
[ ∑
λ∈Λ0

∣∣th(Y (h̃λ);µ)− ϑλ
∣∣2]

≤ C
∑
λ∈Λ0

(
min

(
(<(ϑλ))2, µ2

)
+ min

(
(=(ϑλ))2, µ2

))
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+ C (#Λ0) ε µ ·
(
‖<(h̃λ)‖L2 ϕ

( µ

ε ‖<(h̃λ)‖L2

− 1
)

+ ‖=(h̃λ)‖L2 ϕ
( µ

ε ‖=(h̃λ)‖L2

− 1
))

≤ C
∑
λ∈Λ0

min
(
|ϑλ|2, 2µ2

)
+ 2 C ε (#Λ0) ‖h̃‖L2 µϕ

( µ

ε ‖h̃‖L2

− 1
)
.

and the bound for hard thresholding follows by inserting the universal threshold.

Proof of Theorem 3. We may bound the second term in the oracle inequality (8) for functions in the

modulation space associated to the weight function in (11) as follows.

Lemma 8. For f ∈Mp
ms(R

d), p ∈ (0, 2] we have the bound∑
‖λ‖2≤K

min(ε2 ‖h̃‖2L2 , |ϑλ|2) ≤ const. · ‖f‖
2 d p

2 d+s p

Mp
ms

ε
2 d (2−p)+2sp

2 d+s p .

Proof of Lemma 8. For notational convenience assume ‖h̃‖2L2 = 1. Since p ∈ (0, 2] have that

min(ε2, |ϑλ|2) ≤ ε2−p |ϑλ|p.

Note that

#Λ0,K ≤ C K2d,

where the constant C depends on α, β and d. Then for 0 < Ks ≤ K we obtain∑
‖λ‖2≤K

min(ε2 , |ϑλ|2) =
∑

‖λ‖2≤Ks

min(ε2 , |ϑλ|2) +
∑

Ks<‖λ‖2≤K

min(ε2 , |ϑλ|2)

≤ ε2 C K2d
s + ε2−p

∑
Ks<‖λ‖2

|ϑλ|p (23)

≤ ε2 C K2d
s + ε2−p (1 +K2

s )−sp/2
∑

Ks<‖λ‖2

ms(λ)p |ϑλ|p

≤ ε2 C K2d
s + ε2−pK−sps C̃p2 ‖f‖

p
Mp

ms

by using ms(λ)p > (1 + K2
s )sp/2 for Ks < ‖λ‖2 in the second last step, and (6) in the last step.

Balancing both terms using

Ks = const. · ‖f‖
p

2 d+s p

Mp
ms

ε−
p

2 d+s p

we get the result.

Now let us estimate the truncation term in (10).

Lemma 9. For f ∈Mp
ms(R

d), p ∈ (0, 2] we have that
∑

K<‖λ‖2

|ϑλ|2 ≤ K−2 s C̃2 ‖f‖2Mp
ms

.

Proof of Lemma 9. Since the p-norm is monotonously decreasing, we have∑
K<‖λ‖2

|ϑλ|2 ≤
( ∑
K<‖λ‖2

|ϑλ|p
)2/p

≤
((

1 +K2
)−s p/2 ∑

K<‖λ‖2

m(λ)p |ϑλ|p
)2/p

.

Applying (6), we obtain the claim.
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To conclude the proof of the theorem we apply the expected value to (10). The first term is bounded

by using the oracle inequality (8) resp. its version for hard thresholding, together with Lemma 8. The

truncation error in (10) is estimated by using Lemma 9 together with the assumption K & ε
d (2−p)+sp
2 d s+s2 p

in the theorem.

8.2 Proof of Theorem 4

Proof of Theorem 4. The proof relies on the lower bound derived from Fano’s lemma, see Tsybakov

(2009, Theorem 2.5). For m ∈ N of order m � ε−
p

ps+2d the task is to construct M ∈ N test functions

fj ∈Mp
s,C , where M � exp(cm2d) for some c > 0, such that

‖fj − fk‖2L2 � ε2m2d, j 6= k. (24)

Then, if Y (j) and Y (k) are the observations in model (2) with f = fj and f = fk, respectively, for the

Kullback-Leibler divergence KL(Y (j), Y (k)) we have that

KL(Y (j), Y (k)) =
‖fj − fk‖2L2

ε2
. log(M),

so that by applying Tsybakov (2009, Theorem 2.5) yields the lower bound of order ε2m2d = ε
2 d (2−p)+2sp

2 d+s p ,

which is the statement of the theorem. Note that we need the upper bound in (24) for bounding the

Kullback-Leibler divergence, and the lower bound for obtaining the rate.

To construct the test functions, we consider the Gaussian function

ϕ(x) = exp
(
− π ‖x‖22

)
.

Given m ∈ N, using the Varshamov-Gilbert bound (Tsybakov, 2009, Lemma 2.9) we may choose

M = exp(c1m
2d), c1 = (log 2)/8 > 0 indices

ι =
(
ι(k1,...,k2d)

)
k1,...,k2d=1,...,m

∈ {0, 1}(m
2d)

of Hamming - distance ‖ι− ι̃‖22 ≥ m2d/8. Note that for vectors ι, ι̃ ∈ {0, }(m2d), the Euclidean distance

‖ι− ι̃‖22 determines at how many positions ι and ι̃ differ, that is, reduces to the Hamming distance.

Recall the translation and modulation operators

Tx f(t) = f(t− x), Mω f(t) = exp
(
2πi 〈ω, t〉

)
f(t), x, ω, t ∈ Rd.

Then, for (large) fixed r > 0 and (small) c > 0 we let

fι = c · ε
m∑

k1,...,k2d=1

ι(k1,...,k2d)> Tr (k1,...,kd)>Mr (kd+1,...,k2d)> ϕ (25)

= c · ε
m∑

k′,k′′

ιk′,k′′ Tr k′Mr k′′ ϕ,

where we denote k′ = (k1, . . . , kd)
> and k′′ = (kd+1, . . . , k2d)

>, and
∑m
k′,k′′ indicates tha the coordi-

nates in k′ and k′′ vary from 0 up to m.
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Lemma 10. We have that(
Vϕfι

)
(x, ω) = c · ε

∑
k′,k′′

ιk′,k′′ exp
(
− 2πi 〈ω, rk′〉

)
2−d/2 exp

(
πi 〈x− rk′, ω − rk′′〉

)
· exp

(
− π‖x− r k′‖22/2

)
exp

(
− π‖ω − r k′′‖22/2

)
.

(26)

Proof of Lemma 10. The short time Fourier transform of the Gaussian function ϕ can be computed

as

Vϕ(ϕ)(x, ω) = 2−d/2 exp
(
− π‖x‖22/2

)
exp

(
πi 〈x, ω〉

)
exp

(
− π‖ω‖22/2

)
.

Moreover, from the relation TxMω = exp
(
− 2πi 〈x, ω〉

)
Mω Tx, from

〈Txf, g〉L2 = 〈f, T−x g〉L2 , 〈Mωf, g〉L2 = 〈f,M−ω g〉L2

and from the representation Vgf(x, ω) = 〈f,Mω Tx g〉L2 we obtain(
Vg(Tsf)

)
(x, ω) = exp

(
− 2πi 〈ω, s〉

)
·
(
Vgf

)
(x− s, ω),(

Vg(Mηf)
)
(x, ω) =

(
Vgf

)
(x, ω − η).

Using these formulas and the linearity of the STFT gives (26).

Bounding the L2-distance

Since ‖Vgf‖L2 = ‖f‖L2 ‖g‖L2 and ‖ϕ‖2L2 = 2−d/2, we obtain

‖fι − fι′‖2L2 = 2−d/2 ‖Vϕ fι − Vϕfι′‖2L2 , ι, ι′ ∈ {0, 1}(m
2d). (27)

Lemma 11. For a sufficiently large (fixed) r > 0 and for ι and ι′ of Hamming distance ‖ι−ι̃‖22 ≥ m2d/8

we have for constants c̃i > 0 that

‖Vϕ fι − Vϕfι′‖2L2 ≥ c̃1 ε2 ‖ι− ι′‖22 ≥ c̃1 ε2m2d/8, (28)

‖Vϕ fι − Vϕfι′‖2L2 ≤ c̃2 ε2 ‖ι− ι′‖22 ≤ c̃2 ε2m2d. (29)

Proof of Lemma 11. First consider the lower bound (28). We have that

∣∣(Vϕfι)− (Vϕfι′)∣∣2 (x, ω) ≥ c2 ε22−d
( m∑
k′,k′′

(ιk′,k′′ − ι′k′,k′′)2 · exp
(
− π‖x− r k′‖22

)
exp

(
− π‖ω − r k′′‖22

)
−

m∑
(k′,k′′)6=(k′1,k

′′
1 )

|ιk′,k′′ − ι′k′,k′′ | |ιk′1,k′′1 − ι
′
k′1,k

′′
1
| · exp

(
− π

2
(‖x− r k′‖22 + ‖x− r k′1‖22)

)
· exp

(
− π

2
(‖ω − r k′′‖22 + ‖ω − r k′′1‖22)

))
. (30)

Lemma 12. Given a, r > 0 with a1/2 · r sufficiently large we have that for all x, ω ∈ Rd,∑
(k′,k′′) 6=(0,0)

exp
(
−a (‖x‖22+‖x−r k′‖22)

)
exp

(
−a (‖ω‖22+‖ω−r k′′‖22)

)
≤ 4 exp

(
−ar

2

8

)
exp

(
−a‖x‖

2
2 + ‖ω‖22

2

)
.

(31)

Here, we let the indices k′ and k′′ in the sum range through Zd.
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Proof of Lemma 12. By rescaling we may assume that a = 1. The left side then reduces to

e−(‖x‖22+‖ω‖22)
∑

(k′,k′′) 6=(0,0)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω − r k′′‖22

)
. (32)

Of course,∑
(k′,k′′)6=(0,0)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω− r k′′‖22

)
≤

∑
(k′,k′′)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω− r k′′‖22

)
,

and we bound the sum on the right side uniformly in x and ω. Indeed, since the function on the right

side has period r in each coordinate of x and ω, it suffices to bound it on [−r/2, r/2]2 d, and we can

bound∑
(k′,k′′)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω − r k′′‖22

)
≤

∑
(k′,k′′)

exp
(
− r2 ‖k′‖22/4

)
exp

(
− r2 ‖k′′‖22/4

)
≤ 2,

(33)

for sufficiently large r.

Now, concerning (32) if ‖x‖2 ≥ r/2 then ‖x‖22 ≥ ‖x‖22/2+r2/8 and hence e−(‖x‖22+‖ω‖22) ≤ e−r2/8 e−(‖x‖22+‖ω‖22)/2,

which together with (33) implies (31). The case |ω| ≥ r/2 is similar.

If both ‖x‖2 ≤ r/2 and ‖ω‖2 ≤ r/2, then if k′ 6= 0,

‖x− r k′‖22 ≥ (r ‖k′‖2 − ‖x‖2) ≥ r2(‖k′‖2 − 1/2)2 ≥ r2 (‖k′‖22/2− 1/4),

and hence in view of (33), and similarly for k′′ 6= 0, and hence we can bound∑
(k′,k′′)6=(0,0)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω − r k′′‖22

)
≤ 4 exp(−r2/4).

We resume the proof of Lemma 11. Using (31) we may upper bound the second term in the bracket

in (30) (which is subtracted) by

m∑
(k′,k′′) 6=(k′1,k

′′
1 )

|ιk′,k′′ − ι′k′,k′′ | |ιk′1,k′′1 − ι
′
k′1,k

′′
1
| · exp

(
− π

2
(‖x− r k′‖22 + ‖x− r k′1‖22)

)
· exp

(
− π

2
(‖ω − r k′′‖22 + ‖ω − r k′′1‖22)

))
≤ 4 exp(−πr2/16)

∑
(k′,k′′)

(ιk′,k′′ − ι′k′,k′′)2 · exp
(
− π

4
‖x− r k′‖22

)
exp

(
− π

2
‖ω − r k′′‖22

)
.

Thus, we may lower bound the difference in brackets in (30) by∑
(k′,k′′)

(ιk′,k′′ − ι′k′,k′′)2 ·
(

exp
(
− π ‖x− r k′‖22

)
exp

(
− π ‖ω − r k′′‖22

)
− 4 exp(−πr2/16) exp

(
− π

4
‖x− r k′‖22

)
exp

(
− π

2
‖ω − r k′′‖22

))
.

Now, the integrals of exp
(
− π ‖x− r k′‖22

)
, exp

(
− π ‖ω − r k′′‖22

)
and exp

(
− π

4 ‖x− r k
′‖22
)
, exp

(
−

π
2 ‖ω − r k

′′‖22
)

are positive and do not depend on r. Thus, by choosing r large enough we obtain the

desired first inequality in (28), while the second follows from the assumption on ι and ι′.
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For the upper bound, we obtain similarly that∑
(k′,k′′)

(ιk′,k′′ − ι′k′,k′′)2 ·
(

exp
(
− π ‖x− r k′‖22

)
exp

(
− π ‖ω − r k′′‖22

)
+ 4 exp(−πr2/16) exp

(
− π

4
‖x− r k′‖22

)
exp

(
− π

2
‖ω − r k′′‖22

))
,

which yields the first inequality in (29), while the second follows from ‖ι− ι′‖22 ≤ m2d.

Bounding the modulation norm

Lemma 13. For the functions defined in (25), we have that

‖fι‖pMp
ms
≤ const. · mps+2d εp,

where the constant can be made small by decreasing the constant c in (25).

Proof. We have that

‖fι‖pMp
ms

=

∫
Rd

∫
Rd
|Vϕfι(x, ω)|pms(x, ω)p dxdω

≤ cp εp
∫
Rd

∫
Rd

( m∑
k′,k′′

exp
(
− π‖x− r k′‖22/2

)
· exp

(
− π‖ω − r k′′‖22/2

))p (
1 + ‖x‖22 + ‖ω‖22

)ps/2
dxdω. (34)

For a, r > 0 with a1/2 · r sufficiently large we have for all t ∈ R that

m∑
j=1

exp
(
− a (t− r j)2

)
≤ 4

(m−1∑
j=2

exp
(
− a (t− r j)2

)
1|t−r j|≤r/2 (35)

+ exp
(
− a (t− r)2

)
1t≤3r/2 + exp

(
− a (t− rm)2

)
1t≥(m−1/2) r

)
.

This follows from

exp(−at2) ≥ 2

∞∑
j=1

exp(−a(t− rj)2), t ≤ r/2,

for a1/2 · r sufficiently large, which is immediate from the geometric series. The functions on the right

of (35) have disjoint support, so that

( m∑
j=1

exp
(
− a (t− r j)2

))p
≤ 4p

(m−1∑
j=2

exp
(
− a p (t− r j)2

)
1|t−r j|≤r/2

+ exp
(
− a p (t− r)2

)
1t≤3r/2 + exp

(
− a p (t− rm)2

)
1t≥(m−1/2) r

)
≤ 4p

m∑
j=1

exp
(
− a p (t− r j)2

)
,
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and inserting this bound in each of the sums in (34) we bound the integral by∫
Rd

∫
Rd

( m∑
k′,k′′

exp
(
− π‖x− r k′‖22/2

)
exp

(
− π‖ω − r k′′‖22/2

))p (
1 + ‖x‖22 + ‖ω‖22

)ps/2
dx dω

≤ const. ·
m∑

k′,k′′

∫
Rd

∫
Rd

exp
(
− p π‖x− r k′‖22/2

)
exp

(
− p π‖ω − r k′′‖22/2

) (
1 + |xps1 |+ . . .+ |xd|ps

+ |ωps1 |+ . . .+ |ωd|ps
)

dxdω.

≤ const. ·
m∑

k′,k′′

∫
Rd

∫
Rd

exp
(
− p π‖x− r k′‖22/2

)
exp

(
− p π‖ω − r k′′‖22/2

) (
1 + ‖x‖22 + ‖ω‖22

)ps/2
dx dω

(36)

Since for b ≥ 0, ∫
R

exp
(
− p πt2

)
|t+ b|ps dx ≤ const. · |b|ps,

we may further bound (36) by

const. ·
m∑

k1,...,k2d=1

(
1 + kps1 + . . .+ kps2d

)
≤ const. · m2d−1 · mps+1

≤ const. · mps+2d,

which together with (34) proves the lemma.

Conclusion of the proof of Theorem 4. From the above paragraph we obtain as condition for fι ∈Mp
s,C

in d = 1 that mps+2 dεp . 1, which leads to m � ε−
p

ps+2d . Now (28) implies (24), and the conclusion

follows as in the first paragraph of the proof.

8.3 Proof of Theorem 5

Proof of Theorem 5. Let us first consider the upper risk bound. We state an extension of Lemma 8.

Lemma 14. For f ∈Mp
mu,v (Rd), p ∈ (0, 2] we have the bound∑

‖λ‖2≤K

min(ε2 ‖h̃‖2L2 , |ϑλ|2) ≤ const. · ‖f‖
p d (v+u)

d(v+u)+pvu

Mp
mu,v

ε
(2−p) d (v+u)+2pvu

d(v+u)+pvu . (37)

Proof of Lemma 14. Again assume ‖h̃‖2L2 = 1 and use that min(ε2, |ϑλ|2) ≤ ε2−p |ϑλ|p. For Ku > 0

and Kv > 0 with a computation similar to (23) we have that∑
‖λ‖2≤K

min(ε2 , |ϑλ|2) ≤
∑

‖x‖2≤Ku,‖ω‖2≤Kv

min(ε2 , |ϑλ|2) +
∑

‖x‖2>Ku

min(ε2 , |ϑλ|2) +
∑

‖ω‖2>Kv

min(ε2 , |ϑλ|2)

≤ ε2 C Kd
v K

d
u + C̃p2 ‖f‖

p
Mp

mu,v
ε2−p (K−upu +K−vpv

)
Balancing the terms with

Kv = const. · ‖f‖
pu

d(v+u)+pvu

Mp
mu,v

ε−
pu

d(v+u)+pvu ,

Ku = const. · ‖f‖
pr

d(v+u)+pvu

Mp
mu,v

ε−
pv

d(v+u)+pvu ,

we get the result.
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Next we extend Lemma 9. The proof is analogous and therefore omitted.

Lemma 15. For f ∈Mp
mu,v (Rd), p ∈ (0, 2] we have that

∑
K<‖λ‖2

|ϑλ|2 ≤ K−2 min(u,v) C̃2 ‖f‖2Mp
mu,v

.

These combine to give the upper risk bound in Theorem 5.

Now let us turn to the lower risk bound. The proof is along the lines of that of Theorem 4. For

m1,m2 ∈ N of order m1 � ε−
pv

d(v+u)+pvu and m2 � ε−
pu

d(v+u)+pvu , we construct M ∈ N test functions

fj ∈Mp
u,v,C , where M � exp(cmd

1 m
d
2) for some c > 0, such that

‖fj − fk‖2L2 � ε2md
1 m

d
2, j 6= k.

The conclusion then follows as in the proof of Theorem 4.

Again we consider the Gaussian function ϕ(x) = exp
(
− π ‖x‖22

)
, and given m1,m2 ∈ N, using

the Varshamov-Gilbert bound (Tsybakov, 2009, Lemma 2.9) we may choose M = exp(c1m
d
1 m

d
2),

c1 = (log 2)/8 > 0 indices

ι =
(
ι(k1,...,k2d)

)
k1,...,kd=1,...,m1,kd+1,...,k2d=1,...m2

∈ {0, 1}(m
d
1 m

d
2)

of Hamming - distance ‖ι − ι̃‖22 ≥ md
1 m

d
2/8. For suitable (large) fixed r > 0 and some (small) fixed

c > 0 we let

fι = c · ε
m1∑

k1,...,k2=1

m2∑
kd+1,...,k2d=1

ι(k1,...,k2d)> Tr (k1,...,kd)>Mr (kd+1,...,k2d)> ϕ (38)

= c · ε
∑
k′,k′′

ιk′,k′′ Tr k′Mr k′′ ϕ,

where we denote k′ = (k1, . . . , kd)
> and k′′ = (kd+1, . . . , k2d)

>.

Bounding the L2-distance

Analoguously to Lemma 11, we have that

Lemma 16. For a sufficiently large (fixed) r > 0 and for ι and ι′ of Hamming distance ‖ι − ι̃‖22 ≥
md

1 m
d
2/8 we have that

‖Vϕ fι − Vϕfι′‖2L2 ≥ c̃1 ε2 ‖ι− ι′‖22 ≥ c̃1 ε2md
1 m

d
2/8,

‖Vϕ fι − Vϕfι′‖2L2 ≤ c̃2 ε2 ‖ι− ι′‖22 ≤ c̃2 ε2md
1 m

d
2.

(39)

Bounding the modulation norm

Lemma 17. For the functions defined in (38), we have that

‖fι‖pMp
mu,v

≤ const. · εp (md
1 m

d
2) (mpu

1 +mpv
2 ) ,

where the constant can be made small by decreasing the constant c in (38).

For the choices m1 and m2 above, the upper bound in Lemma 17 remains bounded, and inserting

these choices in (39) gives the rate.
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8.4 Proofs of Section 5

Proof of Theorem 6. Since
(
〈f, h̃λ〉

)
λ∈Λ
∈ `pm we have that Nµ is finite. By definition of Iµ we have

that

Nµ µ
p ≤

∑
λ∈Iµ

|〈f, h̃λ〉|p ≤
∑
λ∈Λ

|〈f, h̃λ〉|p ≤ C̃p2‖f‖
p
Mp(Rd)

,

where we used (6) in the last step. Hence

µ ≤ N−1/p
µ C̃2 ‖f‖Mp(Rd). (40)

Further, for λ ∈ I{µ we have that

|〈f, h̃λ〉|2 ≤ µ2−p |〈f, h̃λ〉|p (41)

since p ∈ (0, 2). Hence by boundedness of the synthesis operator

‖f − fµ‖2L2 ≤ B
∑
λ∈I{µ

|〈f, h̃λ〉|2

≤ B µ2−p
∑
λ∈I{µ

|〈f, h̃λ〉|p

Using (6) we obtain

‖f − fµ‖2L2 ≤ C̃p2 µ2−p ‖f‖pMp(Rd)

and inserting the bound (40) yields the result.

Proof of Theorem 7. From (4) we have the bound

‖g‖pMp
m(Rd)

≤ C̄ ·
∑
λ∈Λ

|cλ|pm(λ)p.

Further we may write

‖f − g‖2L2 =
∥∥∑
λ∈Λ

(〈f, h̃λ〉 − cλ)hλ
∥∥2

L2

=
∥∥Dh(〈f, h̃λ〉 − cλ)λ∈Λ

∥∥2

L2 ,

where Dh is the Gabor synthesis operator associated with {hλ | λ ∈ Λ}. From Gröchenig (2013,

Prop. 5.1.1 (b)) we obtain the estimate∥∥Dh(〈f, h̃λ〉 − cλ)λ∈Λ

∥∥2

L2 ≤ B ‖(〈f, h̃λ〉 − cλ)λ∈Λ‖2`2 ,

where B is the upper frame bound. Setting C = max(C̃, B) we obtain the result.

9 Proofs

9.1 Proof of Theorem 1

Proof. Following Galperin and Samarah (2004, Theorem 3.1), it is sufficient to show

h ∈
⋃

r,s>1/p
1≤p∗<∞

Mp∗

wr,s
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with

wr,s(x, ω) = v(x, ω)(1 + |x|)r(1 + |ω|)s.

We therefore need Vhh ∈ Lp
∗

wr,s . Since (see, e.g., Gröchenig, 2013, Lemma 3.1.1)

Vgf(x, ω) = e−2πixωVĝ f̂(ω,−x),

we have

|Vhh(x, ω)| =
∣∣∣Vĥĥ(ω,−x)

∣∣∣
=

∣∣∣∣∫
R
ĥ(t)ĥ(t− ω)e2πixtdt

∣∣∣∣
=

∣∣∣∣∣
∫
R
e−it/2+i(t−ω)/2

(
sin(t/2) · sin((t− ω)/2)

t/2 · (t− ω)/2

)k
e2πixtdt

∣∣∣∣∣ .
By defining

fω(t) =

(
sin(t/2) · sin((t− ω)/2)

t/2 · (t− ω)/2

)k
,

we can conclude that

‖Vhh‖p
∗

Lp
∗
wr,s

=

∫
R

∫
R
|Vhh(x, ω)|p

∗
wr,s(x, ω)p

∗
dxdω

=

∫
R

∫
R

∣∣∣f̂ω(−x)
∣∣∣p∗ wr,s(x, ω)p

∗
dxdω

=

∫
R
(1 + |ω|)sp

∗
(∫

R

∣∣∣f̂ω(x)
∣∣∣p∗ v(−x, ω)(1 + |x|)rp

∗
dx

)
dω.

The sinc function sin(t)/t is bandlimited and its translation in time corresponds to a modulation of

its Fourier transform, which keeps its support. Therefore, fω is bandlimited and the support of f̂ω is

independent of ω. Also, we assumed v to be independent of ω as well. This means that we can bound

the weights in the inner integral by some constants and get

‖Vhh‖p
∗

Lp
∗
wr,s

.
∫
R

(1 + |ω|)sp
∗
∥∥∥f̂ω∥∥∥p∗

Lp∗
dω.

Assuming 2 ≤ p∗ <∞ and 1
p∗ + 1

q = 1, we can use the Hausdorff-Young inequality to obtain

‖Vhh‖p
∗

Lp
∗
wr,s

.
∫
R

(1 + |ω|)sp
∗
‖fω‖p

∗

Lq dω. (42)

To bound the norm ‖fω‖Lq we define the set

Nω =

{
t ∈ R

∣∣∣t− ω

2

∣∣∣ ≤ |ω|
4

}
.

For all t ∈ Nω, since |ω|2 − |t| ≤
∣∣t− ω

2

∣∣, we have the inequality |t| ≥ |ω|4 . Therefore

‖fω‖qLq = 2

∫
R

∣∣∣∣ sin tt
∣∣∣∣kq ∣∣∣∣ sin(t− ω/2)

t− ω/2

∣∣∣∣kq dt

≤ 2

∫
Nω

∣∣∣∣1t
∣∣∣∣kq ∣∣∣∣ sin(t− ω/2)

t− ω/2

∣∣∣∣kq dt+ 2

∫
Ncω

∣∣∣∣ sin tt
∣∣∣∣kq ∣∣∣∣ 1

t− ω/2

∣∣∣∣kq dt

≤ 2 · 4kq |ω|−kq
∫
Nω

∣∣∣∣ sin(t− ω/2)

t− ω/2

∣∣∣∣kq dt+ 2 · 4kq |ω|−kq
∫
Ncω

∣∣∣∣ sin tt
∣∣∣∣kq dt

. |ω|−kq ,
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where we used the integrability of
∣∣∣ sin(x)

x

∣∣∣α for α > 1 in the last step.

Inserting this into (42), we get

‖Vhh‖p
∗

Lp
∗
wr,s

.
∫
R

(1 + |ω|)sp
∗
‖fω‖p

∗

Lq dω

.
∫
|ω|>1

(
(1 + |ω|)s

|ω|k

)p∗
dω +

∫
|ω|≤1

(1 + |ω|)sp
∗
‖fω‖p

∗

Lq dω

. 2sp
∗
∫
R

(1 + |ω|)(s−k)p∗dω +

∫
|ω|≤1

(1 + |ω|)sp
∗
‖fω‖p

∗

Lq dω.

In the second summand we integrate a continous function over a compact set, this integral is always

finite. Therefore, we have ‖Vhh‖Lp∗wr,s < ∞, if (s − k)p∗ < −1. Additionally we assumed s > 1/p, so

1/p∗ < k − s < k − 1/p.

Since 2 ≤ p∗ < ∞ can be arbitrarily large, we finally get the norm equivalence (6) for all B-spline

window functions of order k > 1/p.
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Supplement: For review only

9.2 Figures for the blackbird and piano recording

(a) blackbird, noisy recording (b) Melody, noisy recording

(c) blackbird, reconstruction (d) Melody, reconstruction

Figure 10: Spectrograms of blackbirds and piano recording with additive noise and SNR =

30 dB in (a) and (b), and after performing a denoising based on hard-thresholding in (c) and

(d).

9.3 Additional simulations

Effects of window length and grid density

We also analyze the error from an irregular grid, i e. unequal amount of frequency and time

bands, M 6= N . Giving the characteristics of some functions with signals being located in

a single time or frequency fragment, it might be useful to consider an amplification of the
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time-frequency representation in either time or frequency plane. Figure 11 shows the MSE

for four different scenarios according to table 5.

Scenario S1 S2 S3 S4

N 400 400 100 100

M 400 100 400 100

α · β 0.0125 0.05 0.05 0.3125

Table 5: Gabor grid density

(a) f50,2 (b) f50000,4 (c) f40,200

Figure 11: Effect of the window width w and the grid density. For the three signals for

samples of sizes n = 2000, using hard thresholding with the optimal threshold. —S1, – –S2,

–·–S3, · · · S4

For all signals we observe that S2 performs better than S3 for a long window and S3 performs

better than S2 for a short window. An increased discretization of the time domain is required

as the window grows to make up for the loss in time resolution. Similarly, an increased dis-

cretization of the frequency domain is required as the window decreased to make up for the

loss in the frequency resolution. For f50,2, scenario S3 perform as good S1, which means that

the lost of local information in the time domain in S3 does not affect the denoising method

since the signal is located only in a small frequency domain. Scenario S2 and S4 also perform

equal. This means that a gain in local information in the time domain does not improve the

denoising of f50,2.

For f50000,4 we observed opposite results. Scenario S2 performs as good as S1 and better

than S3 which in turn perfoms almost as good as S4. This is not surprising given that the

signal lies in a small time fragment. Therefore an increasing of the local information in the

frequency domain does not lead to better results.
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