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Abstract
Many problems in optimal control, PDE-constrained optimization, and constrained variational prob-

lems include pointwise bound-constraints on the feasible controls and state variables. Most well-known
approaches for treating such pointwise inequality constraints in numerical methods rely on finite element
discretizations and interpolation arguments. We propose an alternative means of discretizing pointwise
bound-constraints using a wavelet-based discretization. The main results show that the discrete, approxi-
mating sets converge in the sense of Mosco to the original sets. In situations of higher regularity, conver-
gence rates follow immediately from the underlying wavelet theory. The approach exploits the fact that
one can easily transform between a given multiscale wavelet representation and single-scale representa-
tion with linear complexity. This allows, for example, a direct treatment of variational problems involving
fractional operators, without the need for lifting techniques. We demonstrate this fact with several numer-
ical examples of fractional obstacle problems.
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1 Introduction

Due to their many favorable properties, wavelets offer an attractive means of discretizing a wide array of

variational problems and partial differential differential equations (PDEs). This is evidenced by the success

of wavelet-based schemes for treating problems in signal and image processing [35], partial-differential equa-

tions [14, 15], and high-dimensional parametric or random partial differential equations [40], to name just a

few. However, the literature is extremely scarce on wavelet-based approximations for bound-constrained vari-

ational problems such as obstacle problems or PDE-constrained optimization problems with control and/or

state constraints. There is a good reason for this.

As their name suggests, the oscillatory properties of wavelets give rise to basis functions that have vanish-

ing moments. This is in fact part of the reason for their success. However, from the perspective of approxima-

tion of inequality constraints and active-set-based optimization solvers, the undulatory behavior of wavelets

appears to be highly problematic. Consider for example the set:

C :=
{
v ∈ L2(0, 1) | −1 ≤ v(x) ≤ 1 a.e. x ∈ (0, 1)

}
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and suppose we are given v ∈ L2(0, 1) such that v 6∈ C. The L2(Ω)-projection ProjC(v) of v onto C has a

simple well-known formula in the continuous setting:

ProjC(v) = inf
u∈C
‖u− v‖ = v −max(0, v − 1) + max(0,−1− v). (1.1)

This projection operator can then be used in function-space-based optimization algorithms such as projected

gradient/projected Newton [8, 23, 31] or generalized (semismooth) Newton methods and active set strategies

[6, 29, 43]. However, in practice (especially for first-order methods) we may need to calculate ProjC(v)

hundreds of times. For generalized Newton methods, we need to easily and accurately estimate the active and

inactive sets in order to determine a generalized Hessian or Newton derivative.

Since v ∈ L2(0, 1), it admits a multiscale wavelet expansion of the form

v =
∑
j∈N

∑
k∈Λj

〈L2(0,1)v, ψ̃j,k〉ψj,k,

where j ∈ N are the allowable scales and Λj encode the locations of the wavelets for a given scale j.

Without specifying further, we let {ψj,k}j∈N,k∈Λj
, {ψ̃j,k}j∈N,k∈Λj

be a pair of primal and dual wavelets. It is

only important for the current discussion to note that ψj,k by nature oscillates between positive and negative

values. We denote the usual inner product on L2(0, 1) by 〈·, ·〉L2(0,1). Unless otherwise noted, we simply

write 〈·, ·〉. The positive part operator max(0, ·) is denoted by (·)+.

Fixing a maximum allowable scale jmax and returning to (1.1), one might then try to consider a finite-

dimensional approximation of the ProjC(c) suitable for numerical optimization methods by first projecting

v (denoted by vjmax) onto the finite-dimensional subspace (denoted by Vjmax) and then by solving

inf{‖u− vjmax‖ over u ∈ Vjmax

∣∣∣ u =

jmax∑
j=0

∑
k∈Λj

dj,kψj,k, −1 ≤ u ≤ 1 ∀k ∈ Λj}.

This (or any other related schemes directly involving the wavelet basis) will clearly not give good discrete

estimates of the true active sets where ProjC(v) = 1 or −1; not to mention that it is difficult to see whether

the finite dimensional problems converge to the original problem or that the inequality constraints are still

technically understood for all x ∈ (0, 1).

However, vjmax also admits an equivalent single-scale expansion using the generator (scaling) functions

ϕj,k of the form

vjmax =
∑

k∈Λjmax

〈v, ϕ̃j,k〉ϕj,k,

where ϕ̃j,k is the associated dual generator function for the pair (j, k) with k ∈ Λj . Since many generator

functions ϕj,k are non-negative, this opens up a wide variety of possibilities in which we first discretize using

the single-scale expansions in nonnegative basis functions and whenever necessary apply the fast wavelet

transform afterwards to return to the multiscale expansion if desired. This approach represents the basis for

our study.

The desire to return to the multiscale basis mentioned above is again motivated by numerical methods.

The two major advantages of using the multiscale expansion are in sparse representation of functions and pre-

conditioning. For the former, we note that many functions, which are not sparse in the single scale (generator)
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basis, such as piecewise smooth functions, admit a very sparse representation in the multiscale (wavelet) ba-

sis. This is ultimately a direct consequence of the vanishing moments. Moreover, since wavelets characterize

a number of function spaces, such as Sobolev and Besov spaces, the multiscale representation gives rise to

very effiecient preconditioning strategies.

Our goal with this paper is twofold. First, we seek to demonstrate how wavelets admitting non-negative

single-scale bases can be used to approximate bound constraints in certain Lebesgue and Sobolev spaces.

Second, we will demonstrate these approximating sequences of sets converge with respect to an appropriate

notion of set-convergence that is relevant to optimization, optimal control, and constrained variational prob-

lems. These include classical obstacle problems [32, 39], variational approximations of free-discontinuity

problems [1], or constrained problems involving fractional derivatives [41]. In doing so, we hope to reach a

broad set of researchers who either may not be familiar with wavelet-based approximation methods or, alter-

natively, for those who may not be familiar with variational convergence results for constrained minimization

problems.

The rest of the paper is structured as follows. In Section 2, we introduce the necessary definitions arising in

the theory of wavelets needed for our discussions as well as several concepts from set-valued and variational

analysis. In Section 3, we propose a means of approximating bound constraints in L2 using the classical

Haar wavelet. This is particularly relevant for PDE-constrained optimization problems, where these types

of inequalities often arise, see e.g., the well-known monographs [30, 34, 42] and the references therein. For

variational problems in fractional Sobolev spaces, which do not admit embeddings into spaces of continuous

functions, the Haar wavelet is also relevant. Afterwards, in Section 4, we consider a setting in which the

constrained functions have higher regularity, i.e., in Sobolev spaces Hs(Ω) with s > 1/2. This is relevant for

the variational problems mentioned above. In Section 5, we discuss an application of the results to a fractional

obstacle problem and provide the results of several numerical experiments. We conclude with a summary and

outlook on possible future directions.

2 Notation and Preliminary Results

In this section, we provide a quick overview on the construction of wavelets and some of their useful prop-

erties. The presentation closely follows a similar introduction in [18]. Moreover, recall the notion of set

convergence relevant to our study.

2.1 A Brief Primer on Wavelets

Generally speaking, a wavelet basis comprises a collection of scaled, dilated and translated versions of a

function ψ ∈ L2(R), i.e., the set

Ψ = {ψj,k}j,k∈Z, ψj,k(x) := 2j/2ψ(2jx− k) (2.1)

forms a (stable) basis of L2(R). The mother wavelet ψ may be chosen to be exponentially decaying or even

compactly supported. Usually, such a wavelet basis is constructed by means of a multiresolution analysis
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(MRA), which is a nested sequence {Vj}j∈Z of closed linear subspaces of L2(R) whose union is dense

while their intersection is zero. Moreover, the spaces {Vj}j∈Z are related by dyadic dilation, i.e., f ∈ Vj iff

f(2·) ∈ Vj+1. It is furthermore assumed that there exists a function ϕ ∈ V0 with stable integer translates, the

so–called generator, such that V0 := span{ϕ(· − k), k ∈ Z}. The nestedness and stability properties of an

MRA imply that ϕ is refinable, i.e., it satisfies a two–scale relation:

ϕ(x) =
∑
k∈Z

αkϕ(2x− k), (2.2)

with the mask a = {αk}k∈Z ∈ `2(Z).

Because the union of the spaces {Vj}j∈Z is dense in L2(R), it is easy to see that the construction of

a wavelet basis reduces to finding a function whose translates span a complement space W0 of V0 in V1,

V1 = V0⊕W0, W0 = span{ψ(· − k) | k ∈ Z}. Indeed, if we defineWj := {f(·) ∈ L2(R) | f(2−j ·) ∈W0},
it follows that L2(R) =

⊕∞
j=−∞Wj , so that

ψj,k(·) = 2j/2ψ(2j · −k), j, k ∈ Z, (2.3)

forms a wavelet basis of L2(R). It is then perhaps clear that the wavelet ψ can be found by means of a

functional equation of the form

ψ(x) =
∑
k∈Z

bkϕ(2x− k), (2.4)

where the sequence b := {bk}k∈Z has to be judiciously chosen; see, e.g., [13], [21], [36] for details.

In practice, it is of course desirable to construct an orthonormal wavelet basis. This can be achieved if the

integer translates of ψ are pairwise orthogonal and span the orthogonal complement of V0 in V1. However,

it has turned out that the orthonormality requirement is quite restrictive. One possible way out is to use the

biorthogonal approach. Then, for a given wavelet basis {ψj,k}j,k∈Z one is interested in finding a second

system {ψ̃j,k}j,k∈Z satisfying

〈ψj,k(·), ψ̃j′,k′(·)〉L2(R) = δj,j′δk,k′ , j, j′, k, k′ ∈ Z. (2.5)

Then all the computations are as simple as in the orthonormal case, i.e.,

v =
∑
j,k∈Z

〈v, ψ̃j,k〉L2(R)ψj,k =
∑

j′,k′∈Z
〈v, ψj′,k′〉L2(R)ψ̃j′,k′ .

To construct such a biorthogonal system, one needs two sequences of approximation spaces {Vj}j∈Z and

{Ṽj}j∈Z. Once again, one has to find bases for certain algebraic complement spaces W0 and W̃0 satisfying

the biorthogonality conditions V0 ⊥ W̃0, Ṽ0 ⊥W0, V0 ⊕W0 = V1, Ṽ0 ⊕ W̃0 = Ṽ1. This is quite easy if the

two generators ϕ and ϕ̃ form a dual pair,

〈ϕ(·), ϕ̃(· − k)〉L2(R) = δ0,k. (2.6)

Indeed, then two biorthogonal wavelets ψ and ψ̃ can be constructed as

ψ(x) =
∑
k∈Z

(−1)kβ1−kϕ(2x− k), ψ̃(x) =
∑
k∈Z

(−1)kα1−kϕ̃(2x− k) (2.7)

4



where

ϕ(x) =
∑
k∈Z

αkϕ(2x− k), ϕ̃(x) =
∑
k∈Z

βkϕ̃(2x− k). (2.8)

Elegant constructions can be found, e.g., in [16]. In particular, the authors in [16] consider the important case

in which the generator is a cardinal B-spline φ = Nm m ≥ 1.

The most important properties of wavelets can be summarized as follows.

• Polynomial exactness. If ϕ is contained in Cr0(R) := {g | g ∈ Cr(R) and supp g compact}, then

every monomial xα has an expansion of the form

xα =
∑
k∈Z

cαkϕ(x− k), α ≤ r. (2.9)

• Oscillations. If the dual generator ϕ̃ is contained in Cr0(R), then the associated wavelet ψ has vanishing

moments up to order r, i.e., ∫
R

xαψ(x)dx = 0 for all 0 ≤ α ≤ r. (2.10)

• Approximation. For f ∈ Hs(R), 0 < s < r + 1, where r is the order of polynomial exactness in Vj ,

the following Jackson-type inequality holds:

‖f − Pjf‖L2(R) ≤ C2−js|f |Hs , Pjf :=
∑
k∈Z
〈f, ϕ̃j,k〉L2(R)ϕj,k. (2.11)

• Characterization of function spaces. Let ϕ ∈ Hs and suppose that Vj has polynomial exactness r. Then

for all t < min{r + 1, s}

‖f‖Ht h ‖P0f‖L2 + (
∑
j≥0

∑
k∈Z

22tj |〈f, ψ̃j,k〉L2(R)|2)1/2. (2.12)

Here, h, and later ., denote equality (inequality) up to constants.

Remark 1. 1. The construction outlined above can be generalized to L2(Rn). The simplest way is to use

tensor products, but also nonseparabel constructions including general scaling matrices are possible.

Consequently, the number of mother wavelets that are needed depends on the determinant of the scaling

matrix.

2. It is also possible to construct wavelet bases on nontrivial domains. In such situations, of course the

boundary adaptation is a nontrivial task. We refer, e.g., to [19], [20] for details. All the important

properties of wavelets carry over analogously.

3. Given a biorthogonal wavelet basis, any function v ∈ Vj has two equivalent representations, the single

scale representation with respect to the functions ϕj,k(x) = 2j/2ϕ(2jx− k) and the multiscale repre-

sentation which is based on the functions ϕ0,k, ψl,m, k,m ∈ Z, 0 ≤ l < j, ψl,m := 2j/2ψ(2jx −m).
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From the coefficients of v in the single scale representation, the coefficients in the multiscale represen-

tation can easily be obtained by filtering. Indeed, given v =
∑

k∈Z cj,kϕj,k and using the refinement

equation (2.8) and the functional equation (2.7), it turns out that

v =
∑
l∈Z

2−1/2(
∑
k∈Z

βk−2lcj,k)ϕj−1,l +
∑
m∈Z

2−1/2(
∑
k∈Z

(−1)kα1−k−2mcj,k)ψj−1,m. (2.13)

Here, β and α denote the complex conjugates.

From (2.13) we observe that the information corresponding to Vj−1 and the one corresponding to

the wavelet space Wj−1 can be obtained by applying a low–pass filter H and a high–pass filter D,

respectively,
cj−1 = Hcj , cj−1,l =

∑
k∈Z

2−1/2βk−2lcj,k,

dj−1 = Dcj , dj−1
l = 2−1/2

∑
k∈Z

(−1)kα1−k−2lcj,k.
(2.14)

By iterating this decomposition method, we obtain a pyramid algorithm, the so–called fast wavelet

transform:
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A reconstruction algorithm can be obtained in a similar fashion. For numerical computations, the fast

wavelet transform is especially attractive as it can be performed with linear complexity in the length of

the initial single scale signal.

For further information on wavelet analysis, the reader is referred to one of the excellent textbooks on

wavelets which have appeared quite recently [13], [21], [36], [44].

2.2 Set-Convergence

We will primarily work with the notion of set-convergence due to Mosco [37]. This can also be understood

as Painlevé-Kuratowski set-convergence in which the upper/outer-limits are defined using the weak-topology

and the lower/inner-limits are defined using the strong (norm)-topology, see e.g., [4] for details. Since this

notion of convergence is equivalent to Mosco epi-convergence (weak-strong Γ-convergence) of the associated

indicator functionals, it is best suited for approximating optimization and control problems, cf. [2, 3].

Definition 2. Let X be a real reflexive Banach space and let {Cj}, Cj ⊂ X , be a sequence of nonempty,

closed and convex subsets. Then {Cj} is said to converge in the sense of Mosco to the closed convex set

C ⊂ X provided the following two conditions hold:

1. For every x ∈ C, there exists a sequence {xj} such that xj ∈ Cj and xj → x.
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2. C contains the set of all weak accumulation points of sequences {xk}, where xk ∈ Cjk and {Cjk} is a

subsequence of {Cj}.

We use the standard notation→ to denote norm convergence and⇀ to denote weak convergence through-

out the text. We occasionally specifically state the corresponding space for clarity.

3 Bilateral Constraints in L2(Ω)

In this section, we focus on bilateral constraints in the Lebesgue space L2(Ω). This is a general technique

that could also be employed for fractional Sobolev spaces Hs(Ω) when s ∈ (0, 1/2] as the lack of higher

regularity rules out any benefits obtained by employing wavelets with high regularity.

3.1 Approximation by Haar Wavelets

In the following discussion, we will assume that n = 1 and use Haar wavelets, cf. [27, 35], generated by the

usual piecewise constant step functions, which for a given scale j we denote by ϕj,k for k ∈ Λj . Here, Λj is

the j-dependent set of translations. In other words, ϕj,k is the (scaled) characteristic function of a subinterval

of length 2−j , i.e.,

ϕj,k(x) = 2j/2χ[0,1](2
jx− k)

and k ∈ Λj ensures that this subinterval is contained in Ω. To some extent, this setting mirrors the usage of

piecewise constant finite elements to approximate box constraints in the PDE-constrained optimization, see

e.g., [24].

Given ξ0, ξ1 ∈ L2(Ω) such that ξ0 < ξ1 a.e., we define the set C ⊂ L2(Ω) by

C :=
{
v ∈ L2(Ω) | ξ0 ≤ v ≤ ξ1

}
.

We first demonstrate that for each j, we can construct finite dimensional functions that approximately satisfy

the bound constraints in C. Due to the stability of the basis, we will be able to show that these sequences of

“inner approximations” of C admit weakly convergent subsequences whose limit points are elements of C.

For a fixed scale j ≥ 0, we let Vj be the finite dimensional subspace of L2(Ω) generated by the basis of

generator functions ϕj,k, k ∈ Λj . We then define

Cj :=
{
vj :=

∑
k∈Λj

cj,kϕj,k ∈ Vj
∣∣∣ 〈ξ0, ϕj,k〉 ≤ cj,k ≤ 〈ξ1, ϕj,k〉 k ∈ Λj

}
.

In the following discussion, we will prove the convergence of these sets Cj to C as j → +∞ in the sense of

Mosco.

It is important to stress here that the functions vj ∈ Cj are most likely not what would be used in the

discretization of the optimization problems. Instead, using a maximal scale m ∈ N as the desired accuracy of

approximation, we would include the bound constraints in Cj for a collection of scales j ∈ {0, . . . ,m} and

use the multiscale representation of vm given by

vm =
m∑
j=0

∑
k∈Λj

dj,kψj,k,
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where for j ∈ {0, . . . ,m} and k ∈ Λj , ψj,k is the corresponding Haar wavelet and the coefficients {dj,k} are

calculated using the associated {cj,k} the fast wavelet transform.

Remark 3. For the current setting, the smallest scale j = 0 is allowed. However, for some settings, e.g., with

intervals of length less than one, it is necessary to choose j large enough so that the scaled generated function

is fully supported in the given interval.

This brings us to our first result.

Lemma 4. Every sequence {uj} such that uj ∈ Cj for all j ∈ N contains a weakly convergent subsequence

{uj`} such that uj` ⇀ u as `→ +∞. Moreover, we have u ∈ C.

Proof. For a fixed scale j ≥ 0, take uj ∈ Cj and let cj ∈ R|Λj | be the associated coefficients. By definition,

we have

〈ξ0, ϕj,k〉 ≤ cj,k ≤ 〈ξ1, ϕj,k〉 for all k ∈ Λj ,

Since ϕj,k ≥ 0 for every k ∈ Λj , it also holds for a.e. x ∈ Ω that

〈ξ0, ϕj,k〉ϕj,k(x) ≤ cj,kϕj,k(x) ≤ 〈ξ1, ϕj,k〉ϕj,k(x) for all k ∈ Λj ,

Summing over k ∈ Λj we have∑
k∈Λj

〈ξ0, ϕj,k〉ϕj,k ≤
∑
k∈Λj

cj,kϕj,k ≤
∑
k∈Λj

〈ξ1, ϕj,k〉ϕj,k. (3.1)

In fact, the upper and lower bounds are merely the projections Pjξ0 and Pjξ1 of ξ0 and ξ1 onto Vj , cf. (2.11),

respectively. Whence we have

Pjξ0 ≤
∑
k∈Λj

cj,kϕj,k ≤ Pjξ1.

Next, consider that

‖uj‖2L2(Ω) =
∥∥∥ ∑
k∈Λj

cj,kϕj,k

∥∥∥2

L2(Ω)
.
∑
k∈Λj

|cj,k|2

.
∑
k∈Λj

max{|〈ξ0, ϕj,k〉|2, |〈ξ1, ϕj,k〉|2}

.
∑
k∈Λj

|〈ξ0, ϕj,k〉|2 + |〈ξ1, ϕj,k〉|2

. ‖Pjξ0‖2 + ‖Pjξ1‖2

. ‖ξ0‖2L2(Ω) + ‖ξ1‖2L2(Ω).

Therefore, there exists a subsequence {j`} and some u ∈ L2(Ω) such that uj` ⇀ u.

Finally, since Pj`ξ0 → ξ0 and Pj`ξ1 → ξ1, we can show that u ∈ C. To this end, let ϕ ∈ L2(Ω) such that

ϕ ≥ 0 p.a.e. on Ω. Then

0 ≤ 〈Pj`ξ1 − uj` , ϕ〉
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Since Pj`ξ1 − uj` ⇀ ξ1 − u, we conclude that

0 ≤ 〈ξ1 − u, ϕ〉 for all ϕ ∈ L2(Ω) : ϕ ≥ 0.

It follows from the fundamental lemma of calculus of variations, that u ≤ ξ1 p.a.e. on Ω. An analogous

argument shows that u ≥ ξ0 p.a.e. on Ω. This proves the assertion.

Returning to the preceding discussion on the multiscale representation, let {uj`} be the weakly convergent

sequence in the proof of Lemma 4. Then we may also write each uj` via its multiscale representation using

Haar wavelets

uj` =

j∑̀
j=0

∑
k∈Λj

dj,kψj,k,

where, as mentioned above, the dj,k are calculated using the corresponding single scale coefficients cj,k.

As argued in the proof, uj` ∈ Cj` and uj` ⇀ u ∈ C as ` → +∞. Nevertheless, from the perspective of

an active-set-based optimization algorithm, we would not determine, e.g., the upper active sets by checking

where
∑j`

j=0

∑
k∈Λj

dj,kψj,k(x) = ξ1(x). Instead, we use the inequalities on the single-scale coefficients cj,k
for each j ∈ {0, . . . ,m} and k ∈ Λj . If one were to use, e.g., piecewise constant finite elements to discretize

the same set, e.g., as done in [24], then for a fixed mesh size h we would obtain bounds on the coefficients as

well similar to ours. However, the multiscale representation used here brings with it additional benefits such

as compression, preconditioning, and a potentially sparse representation as mentioned in the introduction.

Moreover, in Section 5, we can exploit the norm equivalence to easily solve variational problems in fractional

Sobolev spaces.

We now show that any u ∈ C can be strongly approximated by a sequence of elements uj ∈ Cj (without

resorting to subsequences).

Lemma 5. For every u ∈ C there exists a sequence {uj} such that uj ∈ Cj and uj → u as j → +∞.

Proof. Fix an arbitrary u ∈ C. Then a.e. on Ω, we have ξ0 ≤ u ≤ ξ1. Multiplying the inequality by an

arbitrary generator function ϕj,k and integrating over Ω, we obtain for any k ∈ Λj

〈ξ0, ϕj,k〉 ≤ 〈u, ϕj,k〉 ≤ 〈ξ1, ϕj,k〉.

Consequently, uj = Pju =
∑

k∈Λj
〈u, ϕj,k〉ϕj,k ∈ Cj for every scale j ≥ 0. Since Pju → u as j → +∞,

the assertion holds.

If we once again turn back to the multiscale discussion, then we showed that uj = Pju in the single-

scale sense is feasible for Cj . Alternatively, using the multiscale representation, uj would also be an element

of the feasible set defined by the single scale bounds for the scales 0, . . . , j. Therefore, we can always be

assured that an element u ∈ C can be strongly approximated by a discrete counterpart; regardless of the

representation. We now have our first main result.

Theorem 6. The sequence of convex sets {Cj} ⊂ L2(Ω) converges in the sense of Mosco to C.
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Proof. This is a direct consequence of Lemma 4 and Lemma 5 in light of the Definition 2.

As mentioned in Section 2.2, the Mosco convergence of the sets {Cj} provides us with a variational

convergence result for the associated indicator functions {χCj} to the indicator function χC , where χCj (u) =

0 if u ∈ Cj and +∞, otherwise. Though this is a valuable result, it does not provide us with an a priori rate

of convergence. Nevertheless, we can in fact obtain a rate of convergence once u and the sequence {uj} in

Lemma 5 exhibit even a minimal amount of Sobolev regularity.

Corollary 7. In the context of Lemma 5, suppose that u ∈ C ∩Ht(Ω) and {uj} ⊂ Cj ∩Ht(Ω), then for all

s < t there exists a constant c > 0 such that the following error estimate holds:

‖u− uj‖Hs(Ω) ≤ c2−j(t−s)‖u‖Ht(Ω) (3.2)

In particular, if s = 0 < t, we have ‖u− uj‖L2(Ω) = O(2−jt).

Proof. This is merely an implication of Jackson’s inequality, see e.g., [7], in light of the fact that uj in Lemma

5 is given by uj = Pju.

Remark 8. Note that the error bound in (3.2) is taken from [7], where error bounds of this type are provided

for both the projection operator Pj and the interpolation operator Lj used below.

3.2 Remarks and Extensions

A few remarks are in order. First, the arguments made above would work for any L2-stable generator basis

{ϕj,k}k∈Λj
that contains only non-negative functions ϕj,k which has the property Pju =

∑
k∈Λj
〈u, ϕj,k〉ϕj,k

and Pju → u strongly in L2(D). However, for the arguments used above we are basically limited to Haar

wavelets since the primal and dual generating functions need to be the same. We remedy this with different

arguments in Section 4.

Second, we never really use the fact that D ⊂ R1, so the results could easily be carried over to higher

dimensions provided Ω can be split into a parametric image of hypercubes.

Third, there is a clear link between Cj and the set C ∩ Vj . Indeed, the latter is of the type:

C ∩ Vj = {vj ∈ Vj |ξ0 ≤ vj ≤ ξ1 } ,

where for vj ∈ C ∩ Vj we have ξ0 ≤
∑

k∈Λj
vj,kϕj,k ≤ ξ1 a.e. Ω. Since each pair (ϕj,`, ϕj,m) ∈ {ϕj,k}k∈Λj

is pairwise orthogonal and ‖ϕj,k‖L2(D) = 1, we have

ξ0 ≤
∑
k∈Λj

vj,kϕj,k ≤ ξ1,

and therefore,

〈ξ0, ϕj,`〉 ≤
∑
k∈Λj

vj,k〈ϕj,k, ϕj,`〉 ≤ 〈ξ1, ϕj,`〉

and consequently,

〈ξ0, ϕj,`〉 ≤ vj,` ≤ 〈ξ1, ϕj,`〉.
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Therefore, vj ∈ Cj , i.e., C ∩ Vj ⊂ Cj . However, starting from uj ∈ Cj we initially only have (3.1), which in

this context means ∑
k∈Λj

〈ξ0, ϕj,k〉ϕj,k ≤ uj ≤
∑
k∈Λj

〈ξ1, ϕj,k〉ϕj,k. (3.3)

Clearly, since Pjξi 6= ξi for i = 1, 2 and every j, we cannot conclude that uj ∈ C ∩ Vj . This would require

ξ0 ≤
∑
k∈Λj

〈ξ0, ϕj,k〉ϕj,k and
∑
k∈Λj

〈ξ1, ϕj,k〉ϕj,k ≤ ξ1 (3.4)

for all sufficiently large scales j, which cannot be expected even for simple piecewise linear ξ0, ξ1.

Finally, Corollary 7 provides us with some insight into the case in which we replace L2(Ω) by Hs(Ω)

with s ∈ (0, 1/2). To this aim, let Cs := C ∩ Hs(Ω) and assume that ξ0, ξ1 are such that (3.4) holds for

sufficiently large scales j. As discussed above, this would mean that the finite dimensional counterparts ofCsj ,

j ∈ N, satisfy Csj ⊂ Cs. Since Cs is a nonempty, closed, and convex set in Hs(Ω), this means that all weak

accumulation points obtained from the sequence of sets {Csj } are also contained in Cs. A stronger statement

in the L2(Ω) case is proven in Lemma 4. For the remaining inclusion, i.e., that the strong lower/inner limit

of {Csj } contains C, we note that by Corollary 7, the sequence {uj} as constructed in Lemma 5 converges

strongly to u in Hs′(Ω) with the rate 2−j(s−s
′) for every s′ < s. More importantly, we can also show that

uj converges strongly in Hs(Ω) to u (without a rate) as we do in the following section for the case when

s > 1/2..

4 Bilateral Constraints in Hs(Ω) with s > 1/2

We now move to a setting in which the subsets satisfy C ⊂ Hs(Ω) for s ∈ R, s > 1/2. For s ≤ 1/2, it

does not make sense to approximate the function spaces with wavelets generated by continuous bases, since

(amongst other things) no increase of the approximation rate can be expected. For this case we refer to the

preceding discussion at the end of Section 3.1. Moreover, we note that the interpolation arguments used in

our proof of Mosco convergence require Hs(Ω) to be embedded into the space of continuous functions. This

needs s > 1/2, cf. [22]. Our intention here is to demonstrate how wavelet bases with higher regularity may

also be employed to approximate bound constraints, whenever the sets C are in Sobolev spaces of an order

high enough to guarantee continuity via the Sobolev embedding theorem.

For the approximation procedure here, it is necessary to restrict ourselves to certain classes of bounds

ξ0, ξ1; as opposed to the L2(Ω) in which rather general bounds were allowed. Analogous to the setting with

lower regularity, we define our closed convex set C by

C := {v ∈ Hs(Ω) | ξ0 ≤ v ≤ ξ1 } .

However, we assume here that ξ0, ξ1 ∈ R such that ξ0 < ξ1. We will comment on further generalizations

below.

In the sequel, we will again assume that n = 1, only now we use biorthogonal wavelets generated by

piecewise linear B-splines, which we denote by Nj,k (primal) and Ñj,k (dual) for k ∈ Λj and j ≥ 0 instead
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of the piecewise constant scaling functions used to define Haar wavelets. For any scale j ≥ 0, we consider

the following sets:

Cj :=

u =
∑
k∈Λj

cj,kNj,k

∣∣∣∣∣∣ 〈ξ0, Ñj,k〉 ≤ cj,k ≤ 〈ξ1, Ñj,k〉 ∀k ∈ Λj

 .

Furthermore, we have

〈ξ0, Ñj,k〉 = ξ0

∫
Ω
Ñj,k dx = ξ0

∫
Ω

∑
`∈Λj

2−j/2Nj,`

 Ñj,k dx = ξ02−j/2
∑
`∈Λj

〈Nj,`, Ñj,k〉 = 2−j/2ξ0.

Therefore, Cj can also be written in the case of constant bounds as

Cj :=

u = 2−j/2
∑
k∈Λj

cj,kNj,k

∣∣∣∣∣∣ ξ0 ≤ cj,k ≤ ξ1 ∀k ∈ Λj

 .

For general non-constant continuous bounds ξ0, ξ1 this is obviously not the case unless the ξ0, ξ1 are given by

polynomials that can be reproduced by the generator basis or if a condition such as (3.4) can be guaranteed

for all scales.

Finally, for any function v ∈ Hs(Ω) and s > 1/2, it follows from the Sobolev embedding theorem, that

v admits a continuous representative and can therefore be evaluated at each point xj,k := 2−jk with k ∈ Λj .

We may then define the following interpolation operator Lj by

Ljv := 2−j/2
∑
k∈Λj

vj,kNj,k, (4.1)

where vj,k := v(2−jk). We first prove the following technical lemma for Lj .

Lemma 9. Under the standing assumptions, Ljv → v strongly in Hs(Ω) for every v ∈ Hs(Ω).

Remark 10. In the following proof, we make use of the Jackson inequality for fractional Sobolev spaces

(3.2) (cf. Remark 8) in the context of the interpolation operator Lj (4.1). We refer the reader to [7, Eq. (2.14)]

and the surrounding discussion. In particular, the upper bound of 2 on t arises there.

Proof. Fix u ∈ Hs(Ω) and some real t such that 2 ≥ t > s. Then Lju := 2−j/2
∑

k∈Λj
uj,kNj,k, where

uj,k := u(2−jk). Moreover, Ht(Ω) is continuously embedded into Hs(Ω). Furthermore, by construction,

one readily shows that Ht(Ω) is dense in Hs(Ω). Hence, we have for every ε > 0 a function uε ∈ Ht(Ω)

such that ‖u − uε‖Hs(Ω) < ε. Next, for each scale j ≥ 0, we have by Jackson’s inequality that there exists

Ĉ > 0 such that

‖uε − Ljuε‖Hs(Ω) ≤ Ĉ2−j(t−s)‖uε‖Ht(Ω).

In particular, we can choose jε ≥ 0 such that 2−jε(t−s)‖uε‖Ht(Ω) < ε. Finally, it follows from [7, Eq. (2.14)]

that

‖u− Lju‖Hs(Ω) ≤ C̃‖u‖Hs(Ω),
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where C̃ is independent of j and u. Consequently, we can deduce the inequality

‖Lj(uε − u)‖Hs(Ω) ≤ (1 + C̃)‖uε − u‖Hs(Ω).

It then follows from the triangle inequality that for all ε > 0 there exists jε ≥ 0 such that for every j ≥ jε we

have

‖u− Lju‖Hs(Ω) ≤ (2 + max{C̃, Ĉ})ε;

whence we have the assertion.

We immediately obtain the following.

Lemma 11. The set of all weak accumulation points of sequences {uj}, uj ∈ Cj , is contained in C.

Proof. Since each Nj,k is continuous and piecewise linear, uj ∈ Cj is both Lipschitz and an element of

Hs(Ω) with s < 3/2. As argued at the end of Section 3.2, C is a nonempty, closed, and convex subset of

Hs(Ω) and therefore weakly closed.

Suppose now that uj ∈ Cj . It follows by definition that∑
k∈Λj

〈ξ0, Ñj,k〉Nj,k ≤ uj ≤
∑
k∈Λj

〈ξ1, Ñj,k〉Nj,k.

In addition, we note that ∑
k∈Λj

〈ξ0, Ñj,k〉Nj,k = ξ0

∑
k∈Λj

2−j/2Nj,k = Ljξ0 = ξ0

As a result of this observation, we have for any uj ∈ Cj that

ξ0 ≤ uj ≤ ξ1. (4.2)

It follows then that uj ∈ C for each j. Then since C is weakly closed, any weak accumulation points of the

sequence {uj} with uj ∈ Cj are contained in C, as was to be shown.

Remark 12. We can easily generalize the previous result for more complex upper and lower bounds ξ1, ξ0,

provided ξ1, ξ0 ∈ L2(Ω). In particular, we have Pjξ0 → ξ0 strongly in L2(Ω). This holds analogously for the

upper bound. Now, for any uj ∈ Cj we obtain

Pjξ0 ≤ uj ≤ Pjξ1. (4.3)

This does not guarantee that uj ∈ C. Nevertheless, we define the sequence {uj} such that uj ∈ Cj and

uj ⇀ u (weakly in Hs(Ω)). Clearly, for each j ≥ 0, uj − Pjξ0 and Pjξ1 − uj define bounded linear

functionals on Hs(Ω) via the usual L2(Ω) inner product. Therefore, for any ϕ ∈ Hs(Ω) such that ϕ ≥ 0

(pointwise almost everywhere on Ω), we have the inequalities

0 ≤ 〈uj − Pjξ0, ϕ〉 and 0 ≤ 〈Pjξ1 − uj , ϕ〉.
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Passing to the limit in j, we obtain

0 ≤ 〈u− ξ0, ϕ〉 and 0 ≤ 〈ξ1 − u, ϕ〉.

Consequently, u ∈ C.

Compared to Lemma 4, the statement of Lemma 11 is strictly weaker. However, it suffices to prove Mosco

convergence of the sets {Cj} to C. In order to see the difference in the two statements, consider that

C =
⋃
m∈N

[C ∩ Bm(0)] ,

where Bm(0) is the closed ball of radiusm inHs(Ω). Indeed, let u ∈ C∩Bm(0) for somem, then u ∈ Hs(Ω)

and ξ0 ≤ u ≤ ξ1 (pointwise almost everywhere), i.e., u ∈ C. The union of all such sets is in C. On the other

hand, if u ∈ C, then ξ0 ≤ u ≤ ξ1 and there exists m ∈ N such that ‖u‖Hs(Ω) ≤ m. It follows that

u ∈ C ∩ Bm(0). Following this line of thought, let

Cj,m :=

u =
∑
k∈Λj

cj,kNj,k

∣∣∣∣∣∣ 〈ξ0, Ñj,k〉 ≤ cj,k ≤ 〈ξ1, Ñj,k〉 ∀k ∈ Λj and ‖u‖Hs(Ω) ≤ m

 m ∈ N.

Then, fixing m ∈ N, we have an analogous result to Lemma 4.

Proposition 13. Fix m ∈ N. Then any sequence {uj} such that uj ∈ Cj,m for all j ∈ N contains a weakly

convergent subsequence {uj`} such that uj` ⇀ u as `→ +∞ and u ∈ C ∩ Bm(0), i.e., u ∈ C.

Proof. Any sequence as defined in the hypothesis is automatically bounded uniformly in Hs(Ω). Therefore,

there exists a subsequence of {uj}, denoted still by the index j, that converges weakly in Hs(Ω). Denote the

limit point by u. Due to the weak lower semicontinuity of the Hs(Ω)-norm, we have

‖u‖Hs(Ω) ≤ lim inf
j
‖uj‖Hs(Ω) ≤ m.

Furthermore, since Nj,k ≥ 0, we may proceed as in the proof of Lemma 4 to argue that ξ0 ≤ uj ≤ ξ1. The

rest follows as in the proof of Lemma 11.

Proposition 13 is obviously not the same result as Lemma 4. However, it is impossible to ensure that the

weak derivatives of the uj remain bounded using the bound constraints alone, as there is nothing to ensure

that the uj do not rapidly oscillate with increasing frequency as j → +∞. In the context of optimal control,

optimization or constrained variational problems, it is often possible to obtain an implicit bound on the correct

norm due to the properties of the objective function. We refer the reader to our example in Section 5.

Our next result takes advantage of the higher regularity properties of u in the current setting along with

Jackson’s inequality.

Lemma 14. For every u ∈ C there exists a sequence {uj} such that uj ∈ Cj and uj → u as j → +∞.
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Proof. Let u ∈ C. As we discussed above, since n = 1 and s > 1/2, it follows from the Sobolev embedding

theorem that u is continuous up to the boundary on Ω. Therefore, by taking the sample points 2−jk for k ∈ Λj

we then have

ξ0(2−jk) = ξ0 ≤ u(2−jk) ≤ ξ1 = ξ1(2−jk).

As a result, Lju ∈ Cj for each j. Then by Lemma 9, Lju→ u and the assertion follows.

Theorem 15. The sequence of convex sets {Cj} ⊂ Hs(Ω) converges in the sense of Mosco to C.

Proof. This is a direct consequence of Lemmas 11 and 14.

5 Applications and Experiments

5.1 An Application to a Fractional Obstacle Problem

In this final section, we consider an application of the approximation results to the discretization of a fractional

obstacle problem, cf. [41]. As discussed in [41] and outlined in more detail in [10, 17], the highest expected

value u? of a perpetual American put option, i.e., an open-ended contract that allows you to sell a given

underlying asset at an agreed upon strike price K > 0 from the time of signing until the option is exercised,

can be modeled by the solution of a fractional obstacle problem.

More specifically, we assume that the value of the underlying asset Xt at time t ≥ 0 is real-valued and

driven by an α-stable symmetric Lévy distribution with initial value X0 = x ∈ R. We furthermore assume

that the expected payoff function is given by E[e−tη(Xt)] with η(x) := max(0,K − exp(x)). Then u? is the

unique solution of the variational problem

min

{
1

2
‖u‖2Hs(R) over u ∈ Hs(R) | u(x) ≥ η(x) a.e. x ∈ R

}
,

assuming s = α/2 and that the feasible set is augmented by the condition that lim|x|→+∞ u(x) = 0. If

we were then to modify this problem by making the not too unrealistic assumption that the values of the

underlying are in a bounded interval Ω ⊂ R, then we could consider as an approximation the problem:

min

{
1

2
‖u‖2Hs(Ω) over u ∈ Hs(Ω) | u(x) ≥ η(x) a.e. x ∈ Ω

}
. (5.1)

Even with this modification, the first-order optimality conditions for (5.1) contain the non-local operator

(−∆)s + I . Here, (−∆)s is the (regional) fractional Laplace operator given as the variational derivative of

the (squared) Gagliardo seminorm associated with Hs(Ω).

There are a number of ways to define (−∆)s. One particularly popular way of treating problems in which

(−∆)s arises is to lift the domain Ω and consequently, the entire problem, one dimension higher, see [12].

This removes the non-locality of the differential operator at the price of increasing the underlying dimension

and losing the boundedness of the domain. The new differential operator is now only uniformly elliptic if we

define the problem on a corresponding Muckenhoupt-weighted Sobolev space on the infinite half-cylinder

Ω× R+ \ {0}. In the context of fractional obstacle problems such as (5.1), this is the approach taken for the

numerical approximation by finite elements, see e.g., [38].
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In contrast to the lifting approach, our results from Sections 3 and 4 make it possible to attack (5.1)

directly using wavelet-based discretizations. For the sake of discussion, we let α = 1/2 (and β = 1). These

are specific to the input of the Levy process, and not to be confused with the wavelet discussion in Section

2.1.These constants correspond to the underlyingXt following a standard Lévy distribution. In this case, (5.1)

is to be considered in the spaceH1/4(Ω). This allows us to characterize any feasible function in the continuous

setting directly via its wavelet transform using Haar wavelets. For α > 1, we could use the biorthogonal B-

spline approach. Furthermore, if we fix a maximum scale j ∈ N, then we first can approximate (5.1) in the

single-scale basis using the generator functions {ϕj,k}k∈Λj
. In particular, we approximate the feasible set in

the single-scale j by the constraints:

cj,k ≥ 〈η, ϕj,k〉 k ∈ Λj .

Using these coefficient vectors cj , we could write (5.1) in the space Vj . However, this would be equivalent to a

finite element discretization using piecewise constant finite elements on a uniform (dyadic) grid on Ω, which

would not provide any computational benefits. On the other hand, there exists a linear transformation Wj ,

i.e., the fast wavelet transform, that transforms cj into a set of wavelet, i.e., multiscale coefficients d` ∈ R|Λ`|

for each ` ∈ N, 0 ≤ ` ≤ j − 1. This essential fact provides us with an equivalent objective function via
1

2
‖uj‖2Hs(Ω) h

1

2

∑
0≤`≤j−1

∑
k∈Λ`

22s`|d`,k|2 =
1

2

∑
0≤`≤j−1

∑
k∈Λ`

22s`|Wjcj |2`,k

Consequently, we obtain a family of approximations of (5.1) indexed by the maximum scale j:

min

1

2

∑
0≤`≤j−1

∑
k∈Λ`

2`/2|Wjcj |2`,k over cj ∈ R|Λj |

∣∣∣∣∣∣ cj,k ≥ 〈η, ϕj,k〉 for k ∈ Λj

 . (5.2)

Combining our findings in Sections 3 and 4, we can argue that feasible sets Cj converge in the sense

of Mosco to the original feasible set. Then by classical results on the approximation of elliptic variational

inequalities, see e.g., [25, Theorem 5.2], the unique optimal solution to (5.2) converges strongly in H1/4(Ω)

to the optimal solution of (5.1).

Example 16 (Conic Constraint and Forcing Term). In this first example, we consider a simple modification

of (5.1):

min

{
1

2
‖u‖2Hs(Ω) − 〈f, u〉−s,s over u ∈ Hs(Ω) | u(x) ≥ 0 a.e. x ∈ Ω

}
. (5.3)

Here, we set f := [(−∆)s + I](ϕ)]. For our numerical experiments, we choose two instances of ϕ

ϕ1(x) := max{0,−3(x− 0.5) + 0.25} and ϕ2(x) :=


max{0, 1.0− (0.5− x)(1/9)}, x ∈ [0.25, 0.5)

max{0, 1.0− (x− 0.5)(1/9)}, x ∈ [0.5, 0.75)
0.0, else.

Notice that ϕ1 is globally Lipschitz and piecewise smooth except for two kinks and ϕ2 is piecewise smooth

with two discontinuities and a third non-differentiability at 0.5. Both ϕi, i = 1, 2, are feasible for (5.3) and

both solve the unconstrained problem. Hence, they are exact solutions of (5.3). This allows us to investigate

the rate of convergence.

Example 17 (Pricing a Perpetual American Put Option). In this example, we consider (5.2) using the payoff

η(x) = max{0,K − exp(x)} and strike K = exp(0.5).
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5.2 Numerical Experiments

In this final section, we discuss the the performance of the proposed discretization and optimization algorithm

using Examples 16 and 17 for illustration. We highlight here a few points: The evaluation of the gradient and

discrete projection onto the feasible set has the same (linear) complexity O(|Λj |) as the wavelet transform. The

evaluation of the objective has quadratic complexity O(|Λj |2). Therefore, fast first-order methods of convex

optimization are a viable option to solve (5.2), cf. [5] and the many references therein. As an alternative, one

could solve (5.2) with a semismooth Newton approach as in [29] or [43]. From an implementation standpoint,

this would require matrix slicing and the solution of (sparse) linear systems at each step. For our numerical

experiments, we use a standard projected gradient method with backtracking line search allowing for step

size increases as outlined in [8]. In addition, we use a nested-scale approach by first solving (5.2) for a given

scale j ∈ N and then (via nearest-neighbor interpolation) using the interpolated solution (scaled by 2−1/2)

as a starting point for the subsequent scale j + 1. This has proven to be very effective and requires no linear

system solves.

All experiments were implemented in the Julia language [9] version 1.2.0-1 on a 2016 MackBook Pro

with 3,1 GHz Intel Core i5 processor, 16 GB 2133 MHz LPDDR3 memory, running macOS Version 10.12.6.

All graphics were generated using the GR() backend. In both examples we set Ω = (0, 1) for simplicity.

For ease of discussion, we denote the objective function by f(cj) and the optimal solution c?j . We set

mj := |Λj | for readability and ckj (α) := ProjCj
(ckj − α∇f(ckj )). We recall the sufficient decrease condition

used in the line search: Given the current iterate ckj ∈ Rmj , we set αkl = mlζ, l = 1, 2, ..., until

f(ckj (α
k
l )) ≤ f(ckj )− σ(akl )

−1‖ckj (αkl )− ckj ‖2Rmj ,

at which point we set ck+1
j := ckj (α

k
l ). In our implementation, we always set: σ = 0.1 and m = 0.5.

At the start of a new scale j, we set ζ = 1.0 otherwise we use the previously accepted stepsize αkl . Our

implementation also allows for lengthening the step sizes by using the rule ζ/ml. The line search updates

stop and accept the current step if l = 30 and the overall algorithm was set to stop if k = 5000. We did not

observe either of these behaviors.

The results of our experiments can be seen in Tables 1 and 2 as well as Figures 1, 2, and 3. Starting with

Example 16, we see that the algorithm converges in both cases in less than 200 iterations with the number of

iterations on the highest scale less than 25 iterations in both cases. We calculated the function space norms by

first projecting the solution c?j onto V14, i.e., the finite-dimensional function space spanned by the translated

and dilated generator functions for the scale j = 14. For both the L2- and Hs-norms we exploited the norm

equivalence used in our discretization scheme. This required the calculation of the single-scale coefficients

for the true solutions ϕi. Although the potentially scale-dependent residual ‖cj − ProjRn
+

(cj −∇f(cj))‖Rn

was used as a stopping criterion, we note that the relative rate of change of the objective functions:

fkrate := |f(ck+1
j )− f(ckj )|/|f(c1

j )− f(c0
j )|

appeared independent of scale in the sense that the smallest index k for which this fkrate <1e-3 was only

very mildly dependent on j; increasing by 1-2 iterations on average with each new j. This was consistent in
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both Examples 16 and 17 and is one way of viewing scale (mesh) dependence in optimal control problems

with bound constraints since f is strongly convex, cf. [31]. As expected by the theory, the smoother solution

associated with ϕ1 exhibits a faster rate of convergence than the discontinuous solution for ϕ2, see Figures 1

and 2. This is consistent with the theoretical estimates based on Jackson’s inequality given above.

For Example 17 no explicit solution was available for comparison to obtain a rate of convergence. In

order to remedy this, we used the solution u?14 obtained by projecting c?14 onto V14 and compared the rate

of convergence in the L2-norm. This was done exactly using the properties of the single-scale expansions

and the L2-inner product. See Figure 3. Here, it appears that the rate of convergence is also on the order

of 2−j . The algorithm converged in 264 iterations, but only required 20 iterations on the finest scale. For

j = 1, . . . , 14, fkrate < 1e-3 was reached in no more than 13 iterations for each scale with no indication of

scale dependence. Finally, in contrast to Example 16 it is more difficult to see the true active sets. In order to

remedy this, we included Figure 4, which shows log10 |u?14(x)− η(x)| for sample points xp ∈ [0, 1] such that

xp = p∗1e-5, p = 1, . . . , 1e5. We conclude that any function values less than 1e-4 are most likely active in

the true continuous solution.

total iter jmax iter ‖cj − ProjRn
+

(cj −∇f(cj))‖Rn ‖u?j − ϕi‖L2 ‖u?j − ϕi‖H1/4

ϕ1 111 7 8.8982e-5 7.8025e-5 9.5287e-3

ϕ2 182 23 9.3283e-5 1.2206e-3 5.4127e-2

Table 1: Results for Example 16. “total iter” is the sum total of all iteration counts over the scales from j = 1, . . . , 15.
“jmax iter” is the total number of iterations needed for j = 14. ‖cj − ProjRn

+
(cj −∇f(cj))‖Rn is the Euclidean norm

of the residual at the optimal solution cj . ‖u?j−ϕi‖L2 and ‖u?j−ϕi‖H1/4 are the errors of the projected optimal solution
u?j to the true solution ϕi for j = 14. The algorithm was stopped once ‖ckj − ProjRn

+
(ckj −∇f(ckj ))‖Rn < 1e-4 for the

current iterate ckj .

Figure 1: Plots for Example 16 using ϕ1: (l.) The error ‖u?j − ϕ1‖L2 as a function of scale j. The x-axis corresponds
to scale j, the y-axis is log2-scale. We use γ = 1 for comparison (dashed line, “Rate” in plot). (r.) The estimated
continuous solution u?j obtained by projecting onto the finite dimensional function space using the optimal coefficients
c?j . We use here j = 14.
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Figure 2: Plots for Example 16 using ϕ2: (l.) The error ‖u?j − ϕ2‖L2 as a function of scale j. The x-axis corresponds
to scale j, the y-axis is log2-scale. We use γ = 0.3 for comparison (dashed line, “Rate” in plot). (r.) The estimated
continuous solution u?j obtained by projecting onto the finite dimensional function space using the optimal coefficients
c?j . We use here j = 14.

total iter jmax iter ‖cj − ProjRn
+

(cj −∇f(cj))‖Rn

264 20 8.5174e-5

Table 2: Results for Example 17. “total iter” is the sum total of all iteration counts over the scales from j = 1, . . . , 14.
“jmax iter” is the total number of iterations needed for j = 14. ‖cj − ProjRn

+
(cj −∇f(cj))‖Rn is the Euclidean norm

of the residual at the optimal solution cj . The algorithm was stopped once ‖ckj − ProjRn
+

(ckj −∇f(ckj ))‖Rn < 1e-4 for
the current iterate ckj .

Figure 3: Plots for Example 17: (l.) The error ‖u?j − u?14‖L2 as a function of scale j. The x-axis corresponds to scale
j, the y-axis is log2-scale. We use γ = 1.0 for comparison (dashed line, “Rate” in plot). The true continuous solution
u?14 is estimated by projecting onto the finite dimensional function space using the optimal coefficients c?14. (r.) Optimal
solution u?14 (bold line, “Solution” in plot) versus the payoff obstacle η (dashed line, “Obstacle” in plot).

6 Conclusion

We have shown that it is indeed possible to discretize bound constraints relevant to optimal control, PDE-

constrained optimization, and variational inequalities using wavelet-based methods. Though wavelets have

been used in the context of optimal control before, see e.g., [11, 26, 33], we are only aware of the paper [28],

in which inequality constraints appear in a slightly different, but clearly related context, for a variational prob-
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Figure 4: Estimation of the true active set in Example 17. All values below 1e-4 are most likely active in the true
solution. The y-axis is log10.

lem in negative-order fractional Sobolev spaces. In the theoretical sections, we demonstrated the crucial set

convergence results and provided rates of convergence for situations involving functions with higher regular-

ity. As noted in the remarks above, these arguments can be easily extended to related function spaces, higher

dimensions, and more complex domains, which makes the approach very attractive for practical problems.

In addition, the final section of our paper demonstrated clear computational benefits for using our proposed

scheme to solve variational problems involving non-local operators.
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