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Abstract

The optimal control of partial differential equations (PDEs) driven by non-local operators
presents many numerical challenges. In contrast to the existing methods available in the lit-
erature, we propose a wavelet-based approach. This allows us to directly treat the non-local
operators without the need to extend the underlying PDE into a higher spatial dimension. Due
to their possessing vanishing moments, wavelets offer efficient compression strategies that lead
to O(N )-algorithms for the forward equation, where N is the number of degrees of freedom.
These computational advantages carry over to the solution of the class of control problems under
consideration. The latter are equivalent to a coupled system of nonsmooth operator equations
with non-local operators.
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1 Introduction

The purpose of this study is to propose a wavelet-based approach for the optimal control of a class of
non-local equations. In doing so, we do not strive for the highest form of abstraction, rather we seek
to demonstrate the viability of the approach as an alternative to what can be found in the literature.

We start by briefly introducing the non-local operator equation by following the notation and
definitions employed in [13,14]. Note also that we employ the terminology of optimal control (con-
trol, state, forward problem, etc.) as is often done in the literature, despite the fact that the non-local
equation under consideration is time-independent. To this aim, let Ω ⊂ Rn, n ≥ 1, be an open and
bounded domain and define the operator L for some u : Ω→ R by

(Lu)(x) := 2

∫
Rn

(
u(y)− u(x)

)
κ(x, y)dy, x ∈ Ω.
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Here, the kernel κ : Rn×Rn → R is a non-negative, symmetric mapping, i.e., κ ≥ 0 and κ(x, y) =

κ(y, x). As noted in [13], a special case of L is the fractional Laplacian operator (−∆)s. The non-
local equation of interest in our study is given by

−Lu = Bz + f on Ω,

u = 0 on ΩI ,
(1.1)

where f : Ω → R is a fixed forcing term, z ∈ Z is a decision variable, e.g., control, and B is a
bounded linear operator that maps z into the non-local equation. The set ΩI ⊂ Rn is known as the
“interaction volume” and is assumed to be disjoint from Ω. In particular, it might be also a closed set.
We will specify more details about the underlying spaces and necessary assumptions on κ below.

One concrete message of the paper is that wavelet methods provide important computational
advantages compared to more classical discretization schemes such as finite elements or spectral
methods for (1.1). Indeed, in the finite element setting, the non-locality gives rise to densely pop-
ulated stiffness matrices unless the underlying domain is extended into a higher dimension on an
infinite cylinder; see the seminal papers on the FEM for fractional diffusion [7, 25], which build
on the lifting approach suggested in [6]. Spectral methods can be theoretically used to treat the
fractional Laplacian, but require full knowledge of the spectrum of the Laplacian and thus rule
out nontrivial domains. Furthermore, they are inadequate in a control setting whenever bound con-
straints are present. In contrast, wavelets are oscillating functions with local supports and vanishing
moments. They allow not only a direct treatment of the non-local operators without increasing the
underlying dimension, but also, the vanishing moment property can be used to devise very effi-
cient compression and preconditioning strategies. This leads to sparse well-conditioned stiffness
matrices. Recently, it has also been demonstrated that certain wavelet bases can be used for point-
wise inequality constraints, see [8,17], thus rendering them applicable to bound constrained optimal
control problems.

Treating (1.1) as the forward problem, we consider the following optimization problem:

inf
1

2
‖Cu− ud‖2

H +
ν

2
‖z‖2

Z over (z, u) ∈ Zad × V

s.t. −Lu = Bz + f on Ω,
u = 0 on ΩI .

(1.2)

Here, H and Z are a real Hilbert spaces, Zad ⊂ Z is a nonempty, closed, and convex set, ν > 0,
and C is a bounded linear operator whose image represents the observation of the state u. The state
space V will be introduced below.

Despite exhibiting a familiar structure to classical optimal control of elliptic PDEs, the presence
of the nonlocal operator is a major source of computational challenges. While theoretical issues
such as existence and uniqueness of solutions as well as optimality conditions follow directly from
the standard theory, the numerical solution of (1.2) is nontrivial. We refer the reader to [2, 3] for an
approach using FEM.
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It is worth noting here that we could easily consider more general objective functionals without
major difficulties. On the other hand, introducing state constraints of the type

u(x) ≥ ψ(x), x ∈ Ω, (1.3)

for some sufficiently regular ψ : Ω → R, would represent a major challenge. This is due to the
fact that the solutions u will rarely satisfy the necessary regularity requirements needed to prove
the existence of Lagrange multipliers. This lack of regularity would also significantly complicate
standard relaxation-based approaches, where (1.3) is removed as a constraint and the term

α

2

∫
Ω

max{0, ψ(x)− u(x)}2
+dx

is added to the objective. Indeed, the convergence of these schemes (as α ↑ ∞) requires a uniform
bound on the approximating adjoint states. However, the latter also requires a regularity condition.
Despite this, there has been some major progress in this area when L is the fractional Laplacian
[1, 4].

Returning to the non-local equation, we now specify the assumptions on the kernel and define
the state space V . Let s ∈ (0, 1) be a fixed real number and σ : Rn × Rn → R a function for which
there exist constants γ1, γ2 > 0 such that

γ1 ≤ σ(x, y) ≤ γ2 for all (x, y) ∈ Rn × Rn

and

κ(x, y) :=
σ(x, y)

|y − x|n+2s
(1.4)

is symmetric. Note that the symmetry properties imply that L itself is a symmetric operator. A much
broader class of kernels is possible, cf. [13, 14], however, this will suffice for our discussion. Fol-
lowing [13, 14], we assume that Ω,ΩI , and Ω ∪ ΩI are bounded with piecewise smooth boundaries
and satisfy the interior cone condition. Next, we define the energy norm

|||v||| :=
(

1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

(
u(y)− u(x)

)
κ(x, y)

(
u(y)− u(x)

)
dydx

)1/2

.

As demonstrated in [14], this is an equivalent norm on the Sobolev-Slobodeckij space Hs(Ω∪ΩI).
Consequently, the space

V := {v ∈ Hs(Ω ∪ ΩI) : v = 0 on ΩI}

is a Hilbert space when equipped with the energy norm |||·|||. In order to highlight the dependence
on the kernel κ, we denote the inner product on V by:

(u, v)κ :=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

(
u(y)− u(x)

)
κ(x, y)

(
v(y)− v(x)

)
dydx
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and set

‖u‖κ := |||u||| =
√

(u, u)κ.

These facts allow us to more concretely define what is meant by a solution to the forward problem.
In fact, the proofs of existence and uniqueness of optimal controls z? as well as the derivation of
optimality conditions reduces to the classical approach as detailed in the seminal work [24]. We
collect these results in Theorem 1 below. For readability, we use a slight abuse of notation and let
Lκ be the uniformly V -elliptic bounded linear operator defined by the inner product (·, ·)κ, i.e., we
let Lκ : V → V ∗ (the topological dual for V ) be defined by

〈−Lκu, v〉 = (u, v)κ.

It then follows from the Lax-Milgram lemma that the solution operator for (1.1) is given by

u = S(z) := (−Lκ)−1(Bz + f), z ∈ Z.

Clearly, S : Z → V is continuously Fréchet differentiable and affine in z.

Theorem 1. Under the standing assumptions, the optimal control problem (1.2) admits a unique
solution z? ∈ Zad. Furthermore, there exists an adjoint state λ? ∈ V such that

−Lκu? = BP
(
− 1

ν
B∗λ?

)
, (1.5a)

−Lκλ? = C∗(ud − Cu?). (1.5b)

Here, P : Z → Zad is the usual metric projection onto the closed convex set Zad.

Proof. Cf. [24, Chap. 2].

Note that in some cases there are potentially nontrivial Riesz mappings involved with theH- and
Z-norms, e.g., if H involves either a trace or differential operator. If this were the case, then these
must be included in the optimality system (1.5). In particular, if ΛH is the canonical isomorphism
of H into H∗ and and ΛZ is the canonical isomorphism of Z into Z∗, then (1.5) becomes

−Lκu? = BP
(
− 1

ν
Λ−1
Z B∗λ?

)
, (1.6a)

−Lκλ? = C∗ΛH(ud − Cu?). (1.6b)

Taking these arguments into consideration, we see that the solution of (1.5) reduces to the so-
lution of a coupled set of smooth and nonsmooth non-local equations. We thus turn our focus to
the development of function-space algorithms, e.g., a generalized Newton solver in this non-local
setting, and an efficient numerical discretization. To the best of our knowledge our study is the first
of its kind for a system of nonsmooth, nonlocal equations.
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We will assume in the sequel that the interaction volume ΩI encloses the domain Ω such that
ΩI ∪ Ω is a simply connected domain and Ω b Ω ∪ ΩI , see also Figure 1 for an illustration.
Consequently, we deduce that

V ∼= Hs(Ω)/R for 0 < s <
1

2

and

V ∼= Hs
0(Ω) for

1

2
< s < 1.

In the limit case s = 1/2, it holds V ∼= H
1/2
00 (Ω), see [6].

Ω

ΩI

Figure 1: The domains Ω and ΩI .

The rest of the paper is organized as follows. In Section 2 we briefly recall the basic concepts
from wavelet analysis as far as it is needed for our purpose. Following this, we discuss the cru-
cial components of wavelet matrix compression in Section 3, which are exploited in our numeri-
cal method. Section 4 contains the numerical results of the proposed method for an unconstrained
(Zad = L2(Ω ∪ ΩI) and pointwise bilateral constraints (Zad ( L2(Ω ∪ ΩI)). These numerical
experiments clearly demonstrate the computational advantages and applicability of the approach.

2 Wavelets and Multiresolution Analysis

The construction of wavelet bases starts with a so-called multiresolution analysis. In general, a
multiresolution analysis is a sequence of hierarchical trial spaces

{0} = V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ L2(Ω ∪ ΩI), (2.1)

each spanned by trial functions:

Vj = span Φj, where Φj = {ϕj,k : k ∈ ∆j}.
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Here, ∆j is an index set for the single-scale basis of the space Vj with cardinality |∆j| ∼ 2jn. A final
requirement is that the bases Φj are uniformly stable, i.e., the function vj =

∑
k∈∆j

vkϕj,k ∈ Vj

satisfies
‖vj‖2

L2(Ω∪ΩI) ∼
∑
k∈∆j

|vk|2.

Notice that the single-scale bases have local supports, which satisfy

diam suppϕj,k ∼ 2−j.

Additional properties of the spaces Vj are required for using them as trial spaces in a Galerkin
scheme. More specifically, the trial spaces are required to have approximation order d ∈ N and
regularity γ > 0, where

γ = sup{t ∈ R : Vj ⊂ H t(Ω ∪ ΩI)},

d = sup
{
t ∈ R : inf

vj∈Vj
‖v − vj‖L2(Ω∪ΩI) . 2−jt‖v‖Ht(Ω∪ΩI)

}
.

(2.2)

The parameter d corresponds to the order of polynomials that can be represented locally. For ansatz
spaces based on smoothest splines, we have γ = d − 1/2, since they are globally Cd−1-smooth,
whereas using Lagrangian finite element shape functions leads to γ = 3/2, since these are globally
continuous. Note especially that conformity of the Galerkin scheme induces γ > s, which means
that the wavelets are required to be globally continuous if s ≥ 1/2.

Instead of using only a single-scale j, the idea of wavelet concepts is to keep track of the incre-
ment of information between two adjacent scales j − 1 and j. Since Vj−1 ⊂ Vj , one decomposes
Vj = Vj−1⊕Wj with some complementary space Wj , not necessarily orthogonal to Vj−1. Recursive
splitting of the trial spaces leads to the wavelet decomposition VJ =

⊕J
j=0 Wj .

Of practical interest are the bases of the complementary spaces Wj in Vj

Ψj = {ψj,k : k ∈ ∇j := ∆j \∆j−1}.

It is supposed that the collections Φj−1 ∪Ψj are also uniformly stable bases of Vj . If Ψ =
⋃
j≥0 Ψj ,

where Ψ0 := Φ0, is a Riesz-basis of L2(Ω ∪ ΩI), then it is called a wavelet basis. For any function
v ∈ L2(Ω ∪ ΩI), we have the mutliscale wavelet expansion

v =
∞∑
j=0

∑
k∈∆j

vj,kψj,k

and hence

‖v‖2
L2(Ω∪ΩI) ∼

∞∑
j=0

∑
k∈∇j

|vj,k|2. (2.3)

In particular, this estimate implies the wavelets are normalized

‖ψj,k‖L2(Ω∪ΩI) ∼ 1.
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We shall further assume that the functions ψj,k are also local with respect to the corresponding scale,

diam suppψj,k ∼ 2−j.

This ensures that the fast wavelet transform. i.e., the change between the single-scale basis and the
wavelet basis can be performed in linear complexity.

At first glance it would be very convenient to deal with a single orthonormal system of wavelets.
However, it was shown in [10, 12, 28] that orthogonal wavelets are not completely appropriate for
the efficient compression of non-local operators. For this reason, we employ biorthogonal wavelet
bases. More specifically, we have a biorthogonal, or dual, multiresolution analysis, i.e., dual single-
scale bases Φ̃j = {ϕ̃j,k : k ∈ ∆j} and wavelets Ψ̃j = {ψ̃j,k : k ∈ ∇j} that are coupled to the
primal ones via

(Φj, Φ̃j)L2(Ω∪ΩI) = I and (Ψj, Ψ̃j)L2(Ω∪ΩI) = I.

Therefore, the associated spaces Ṽj := span Φ̃j and W̃j := span Ψ̃j satisfy

Vj−1 ⊥ W̃j and Ṽj−1 ⊥ Wj. (2.4)

Analogously to (2.2), the dual spaces provide some approximation order d̃ ∈ N and regularity
γ̃ > 0, as well. The relation (2.4) implies that the wavelets provide vanishing moments of order d̃∣∣(v, ψj,k)L2(Ω∪ΩI)

∣∣ . 2−j(n/2+d̃)|v|
W d̃,∞(suppψj,k)

. (2.5)

Here |v|
W d̃,∞(Ω)

:= sup|α|=d̃ ‖∂αv‖L∞(Ω) denotes the semi-norm in W d̃,∞(Ω). We refer to [9] for
further details.

Finally, it turns out that properly scaled versions of these wavelets constitute Riesz bases for a
whole scale of Sobolev spaces. In fact, in accordance with [9, 16], we have the well known norm
equivalences

‖v‖2
Ht(Ω∪ΩI) ∼

∞∑
j=0

22jt
∑
k∈∇j

|vj,k|2, t ∈ (−γ̃, γ). (2.6)

These are essential to develop optimal compression and preconditioning strategies, see [10]. As a
last remark, we note that piecewise constant and bilinear wavelets on arbitrary domains or surfaces,
which provide the above properties, have been constructed in [18, 20].

3 Wavelet matrix compression

The main component needed for wavelet matrix compression relies on the smoothness of the kernel
κ. To this end, we will henceforth assume that the function σ(x, y) in (1.4) is (sufficiently) smooth.
As a result, the kernel κ(x, y) is smooth except for the singularity along the diagonal x = y. In
addition, we obtain the following crucial estimate of decay based on mixed partial derivatives of κ:∣∣∂αx ∂βy κ(x, y)

∣∣ ≤ cα,β
|x− y|n+2s+|α|+|β| , x 6= y, (3.1)

7



provided we have
|α|+ |β| > n+ 2s.

The estimate (3.1) is the key building block for the wavelet matrix compression.
In view of the wavelets’ vanishing moments (2.5), the decay estimate (3.1) implies the following

estimate for the matrix coefficients of the discrete non-local operator:

(Lψj,k, ψj′,k′)L2(Ω∪ΩI) .
2−(j+j′)(n/2+d̃)

dist(Ωj,k,Ωj′,k′)n+2s+2d̃
. (3.2)

Here, we use the abbreviation Ωj,k := suppψj,k and Ωj′,k′ := suppψj′,k′ for the support of the
wavelets ψj,k and ψj′,k′ , respectively.

Estimate (3.2) implies that the discrete operator becomes quasi-sparse in wavelet coordinates
and is the main foundation of the compression estimates derived in [10]. Based on (3.2), we can set
all matrix entries to zero, for which the distance of the supports between the associated trial and test
functions is larger than a level dependent cut-off parameter Bj,j′ .

Further compression, reflected by a cut-off parameter BSj,j′ , is achieved by neglecting some of
those matrix entries, for which the corresponding trial and test functions have overlapping supports.
We refer to compression with respect to the Bj,j′ ,BSj,j′ parameters as “a priori compression.”

To formulate this result, we introduce the abbreviation ΩSj,k := sing suppψj,k, which denotes the
singular support of the wavelet ψj,k, i.e., that subset of Ωj,k where the wavelet ψj,k is not smooth.

Theorem 2 (A-priori compression [10]). Let Ωj,k and ΩSj,k be given as above and define the com-
pressed system matrix LJ , corresponding to the non-local operator L, by

[LψJ ](j,k),(j′,k′) :=



0, dist(Ωj,k,Ωj′,k′) > Bj,j′ and j, j′ > 0,

0, dist(Ωj,k,Ωj′,k′) ≤ 2−min{j,j′} and
dist(ΩSj,k,Ωj′,k′) > BSj,j′ if j′ > j ≥ 0,

dist(Ωj,k,Ω
S
j′,k′) > BSj,j′ if j > j′ ≥ 0,

(Lψj′,k′ , ψj,k)L2(Ω∪ΩI), otherwise.

(3.3)

Fixing
a > 1, d < δ < d̃+ 2s, (3.4)

the cut-off parameters Bj,j′ and BSj,j′ are set as follows

Bj,j′ = a max

{
2−min{j,j′}, 2

2J(δ−s)−(j+j′)(δ+d̃)
2(d̃+s)

}
,

BSj,j′ = amax

{
2−max{j,j′}, 2

2J(δ−s)−(j+j′)δ−max{j,j′}d̃
d̃+2s

}
.

(3.5)

As a consequence, the system matrix LψJ has only O(NJ) nonzero coefficients, where NJ = 2Jn

denotes the degrees of freedom in the space VJ . Moreover, the error estimate

‖u− uJ‖H2s−d(Ω∪ΩI) . 2−2J(d−s)‖u‖Hd(Ω∪ΩI) (3.6)
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Figure 2: Compression pattern in case of an interval (left) and a square (right).

holds for the solution uJ of the compressed Galerkin system provided that u, Ω, and ΩI are suffi-
ciently regular.

The compressed system matrix can be assembled in linear complexity if one employs the ex-
ponentially convergent hp–quadrature method proposed in [19]. Moreover, for performing faster
matrix-vector multiplications, an additional a-posteriori compression might be applied which re-
duces again the number of nonzero coefficients by a factor 2–5 [10]. The pattern of the compressed
system matrix exhibit the typical finger structure, compare Figure 2.

Since the boundary integral operator L has an order s different from 0, the compressed system
matrix LJ becomes more and more ill-conditioned when the level J increases. More precisely, the
condition number of the system matrix will asymptotically grow like 22J |s| as the level J increases.
However, as an immediate consequence of the norm equivalences (2.6) of wavelet bases, normaliz-
ing the wavelets relative to the energy norm leads to uniformly bounded condition numbers.

Theorem 3 (Preconditioning [11, 28]). Let the diagonal matrix Dr
J be defined by[

Dr
J

]
(j,k),(j′,k′)

= 2rjδ(j,k),(j′,k′) for all k ∈ ∇j, k
′ ∈ ∇j′ , 0 ≤ j, j′ ≤ J.

Then, if the regularity γ̃ of the dual wavelets satisfies γ̃ > −s, the diagonal matrix D2s
J defines an

asymptotically optimal preconditioner to LJ , i.e.,

cond`2(D
−s
J LψJD

−s
J ) ∼ 1.

Remark 4. The entries on the main diagonal of LJ satisfy

(Lψj,k, ψj,k)L2(Ω∪ΩI) ∼ 22|s|j.
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Therefore, the above preconditioning can be replaced by a diagonal scaling. Indeed, the diagonal
scaling improves and even simplifies the standard wavelet preconditioning.

4 Numerical results

4.1 Set-up and implementation

Our realization is based on piecewise constant wavelets in two spatial dimensions. We are hence
able to cover the range of parameters 0 < s < 1/2. Since the fractional Laplacian is of positive
order, we can simply choose Haar wavelets for the discretization, which implies d = d̃ = 1 in (3.4).
In particular, Haar wavelets are orthonormal, which implies that the primal wavelets {ψj,k} and the
dual wavelets {ψ̃j,k} coincide.

-

6

x1

x
2

scaling function

?

+1

wavelet of type one

?

−1

+1

wavelet of type two

?

+1 −1

wavelet of type three

?

+1

−1

−1

+1

Figure 3: Illustration of the Haar basis in two spatial dimensions.

Haar wavelets on the unit square can easily constructed recursively by starting on the fine grid
j. Having there 2j × 2j piecewise constant ansatz functions {ϕj,k}, one gets the basis functions
for level j − 1 as the piecewise constant ansatz functions {ϕj−1,k} and the corresponding wavelets
{ψj,k} on level j by simple agglomeration of four fine grid functions each, see Figure 3. Having
wavelets on the unit square, one can define wavelets on arbitrary domains via parametrization by
quadrangular patches, see [18] for the details. For our numerical experiments, we consider the unit
circle which is parametrized by five patches as seen in Figure 4.

The implementation of the wavelet matrix compression basically follows [19]. Singular integrals
are treated by the Duffy trick, cf. [15,27], but we can only get analytical integrands in case of kernel
singularities with integer exponent. Therefore, we always refine quasi-singular integrals until we
are on the finest level J . This ensures an accurate quadrature while the over-all complexity of the
wavelet matrix compression still scales linearly in the number of degrees of freedom.
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Figure 4: The parametrization of the unit circle by five patches and mesh on level j = 4.

4.2 Compression rates

Our first numerical tests are concerned with the compression rates of the wavelet matrix compres-
sion. We compute for different values of the parameter s the compression rates by the ratio of
the number of nonzero matrix coefficients and the square of the number of degrees of freedom
NJ , corresponding to the number of coefficients in the uncompressed system matrix. These num-
bers, specified in percent, are tabulated in Table 1 for both, the a-priori compression (the respective
columns are entitled “a-priori”) and for the a-posteriori compression (the respective columns are
entitled “a-posteriori”).

degrees of compression rates
freedom s = 1/8 s = 1/4 s = 3/8

J NJ a-priori a-posteriori a-priori a-posteriori a-priori a-posteriori
1 20 100 58.5 100 54.5 100 57.5
2 80 55.4 40.2 54.3 36.6 52.8 33.4
3 320 22.5 12.9 21.1 14.5 19.9 13.3
4 1280 7.92 4.63 7.12 3.81 6.55 4.44
5 5120 2.61 1.37 2.24 1.19 1.93 0.98
6 20480 0.82 0.40 0.66 0.31 0.54 0.28
7 81920 0.25 0.12 0.19 0.09 0.15 0.08
8 327680 0.07 0.03 0.05 0.02 0.04 0.02

Table 1: A-priori and a-posteriori compression rates for different choices of s on the unit circle.

We observe that the a-priori compression becomes better as s increases. This results from the
fact that the best possible convergence rate decreases as s increases and, hence, the accuracy re-
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quirements are reduced. We also deduce from Table 1 that the a-posteriori compression improves
the compression rate at least by a factor 2.

4.3 Preconditioning

We briefly discuss the wavelet preconditioning approach used in our optimization solver here. For
different values of the parameter s and discretization levels J , we compute the `2-condition numbers
of the system matrix with and without diagonal scaling. Since the constant functions lie in the
operator’s kernel and, hence, the smallest eigenvalue is zero, we compute the `2-condition numbers
of the modified system matrix LψJ + 11ᵀ, where 1 corresponds to the discretization of the function
f(x) ≡ 1.

degrees of condition numbers
freedom s = 1/8 s = 1/4 s = 3/8
J NJ unscaled scaled unscaled scaled unscaled scaled
1 20 10.4 6.74 15.4 9.44 24.0 14.0
2 80 16.5 7.31 27.4 10.8 48.6 17.1
3 320 28.4 7.73 52.0 11.8 104 19.9
4 1280 42.9 8.02 93.6 12.9 203 22.7
5 5120 60.2 8.25 149 13.6 377 25.3
6 20480 80.5 8.42 234 14.3 751 29.0

Table 2: Condition numbers of the system matrix with respect to the fractional Laplacian with and
without preconditioning.

As can be seen from Table 2, the condition of the unscaled system matrix (the respective columns
are entitled “unscaled”) indeed grows approximately like 22sJ when increasing the discretization
level J . In contrast, we observe that the condition numbers of the diagonally scaled system matrices
(the respective columns are entitled “scaled”) seem to stay bounded by a constant; though the latter
does in fact depend on the order 2s of the fractional Laplacian.

4.4 An unconstrained optimal control problem: Zad = L2(Ω ∪ ΩI)

We solve the optimal control problem (1.2) subject to (1.1) for different values of the parameter s
and Ω being the unit circle. The observation operator C under consideration is the projection of a
given function f ∈ L2(Ω) onto the square� := (− 1√

2
, 1√

2
)2, which coincides with the central patch

of our parametrization, see Figure 4. The operator B is chosen as the identity operator and thus
preserves the regularity of λ∗.

We directly exploit the solution formulae (1.5a) and (1.5b) to compute the optimal solution of
the problem under consideration. The desired function ud is chosen to be ud(x1, x2) = x1x2 and ν
is set to 10−3. We discretize u and z by Haar wavelets and exploit the fact that λ? = −νz?. The
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Figure 5: The desired state ud(x, y) = xy on the � := (− 1√
2
, 1√

2
)2.

discretized optimality system now becomes the following linear system of equations after applying
the compression strategies: [

LψJ −Mψ
J

Nψ
J νLψJ

] [
uψJ
zψJ

]
=

[
0

uψJ,d

]
. (4.1)

Figure 6: The optimal states u (first row) and controls z (second row) in case of s = 1/8 (left
column), s = 1/4 (middle column), and s = 3/8 (right column).

In (4.1), LψJ denotes the compressed system matrix with respect to the fractional Laplacian while

Mψ
J =

[ ∫
Ω

ψj,k(x)ψj′,k′(x) dx

]
(j,k),(j′,k′)

, Nψ
J =

[ ∫
�
ψj,k(x)ψj′,k′(x) dx

]
(j,k),(j′,k′)

,

are the mass matrix and the truncated mass matrix, respectively. Note that we do not compute these
mass matrices in practice since they are more dense than the corresponding matrices with respect
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to single-scale ansatz functions. Therefore, by using the corresponding matrices with respect to
classical piecewise constant ansatz functions

Mϕ
J =

[ ∫
Ω

ϕJ,k(x)ϕJ,k′(x) dx

]
(J,k),(J,k′)

, Nϕ
J =

[ ∫
�
ϕJ,k(x)ϕJ,k′(x) dx

]
(J,k),(J,k′)

,

we find
Mψ

J = Tϕ→ψ
J Mϕ

JT
ψ→ϕ
J , Nψ

J = Tϕ→ψ
J Nϕ

JT
ψ→ϕ
J

with Tϕ→ψ
J and Tψ→ϕ

J being the fast wavelet transform and its inverse. The wavelet transform has
linear complexity and, hence, the matrix-vector product Mψ

Jx is computable also in linear com-
plexity. In the current setting, we have the advantageous fact that (Tϕ→ψ

J )ᵀ = Tψ→ϕ
J , which is a

consequence of the fact that Haar wavelets constitute an orthonormal basis.
Likewise, we derive the right hand side uψd . Instead of computing

vψJ =

[ ∫
�
ud(x)ψj,k(x) dx

]
(j,k)

and solving
Mψ

Ju
ψ
J,d = vψJ ,

we directly compute the data vector with respect to the classical single-scale basis

vϕJ =

[ ∫
�
ud(x)ϕJ,k(x) dx

]
(J,k)

to get
uψJ,d = Tϕ→ψ

J

(
Mϕ

J

)−1
vϕJ .

Here, we exploited that the mass matrix Mϕ
J is a diagonal matrix and hence easily invertible.

We use a diagonal scaling as preconditioner of the linear system of equations (4.1). It greatly
reduces the number of iterations required by the GMRES-method, compare [26]. Indeed, we only
need about 40 iterations of GMRES to reduce the `2-norm of the residuum to being smaller than
10−8, basically independent of the discretization level J .

In Figure 6, we visualized the optimal states u and optimal controls z for s = 1/8, s = 1/4, and
s = 3/8 for discretization level J = 7, which corresponds to NJ = 81920 degrees of freedom for
both, the state and the control. One observes that u corresponds well with the desired function ud
on the square �. Outside this square, it rapidly tends to zero, where we find that the decay becomes
slower as s grows.

4.5 Pointwise Bilateral Constraints: Zad ( L2(Ω ∪ ΩI)

In contrast to the previous section, we consider pointwise bound constraints on the control of the
type:

zmin ≤ z ≤ zmax on Ω. (4.2)
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In order to solve the respective constraint optimization problem, we apply the primal-dual active
set strategy as introduced in [5, 22, 23]. The essential idea of this iterative strategy is to replace
successively the inequality constraints by the related equality constraints for all the indices where
the constraint becomes active. This strategy has the advantage that, although initially introduced as
an active set strategy, it can be reinterpreted as a semi-smooth Newton method and converges thus
superlinearly, see [21].

An important observation for realizing the active set strategy in the context of a wavelet dis-
cretization is that the wavelets are oscillating functions. Hence, we have to switch to the single-scale
basis to compare two functions. We first introduce the discrete bounds

zϕJ,min :=
(
Mϕ

J

)−1
[ ∫
�
zmin(x)ϕJ,k(x) dx

]
(J,k)

,

zϕJ,max :=
(
Mϕ

J

)−1
[ ∫
�
zmax(x)ϕJ,k(x) dx

]
(J,k)

.

This leads to the discrete analogue of the box constraint (4.2) for the discrete control zϕJ :

zϕJ,min ≤ zϕJ ≤ zϕJ,max,

where the inequality relation for vectors has to be understood componentwise.
In the `-th iteration step, given the iterate (u

ϕ,(`)
J , z

ϕ,(`)
J ) and the Lagrange multipliers (µ

ϕ,(`)
J,min,µ

ϕ,(`)
J,max),

we compute the active sets

I(`) :=
{
k ∈ ∆J : c

(
z
ϕ,(`)
J,k − z

ϕ,(`)
min,(J,k)

)
+ µ

ϕ,(`)
min,(J,k) < 0

}
,

J(`) :=
{
k ∈ ∆J : c

(
z
ϕ,(`)
J,k − z

ϕ,(`)
max,(J,k)

)
+ µ

ϕ,(`)
max,(J,k) > 0

}
,

where c > 0 is an appropriately chosen parameter (we choose c = 10−4 in our experiments). The
sets I(`) and J(`) contain the indices of all coefficients for which the lower and upper box constraints
become active, respectively. Therefore, we have to solve the saddle point problem

LψJ −Mψ
J

Nψ
J νLψJ Tϕ→ψ

J II(`) Tϕ→ψ
J IJ(`)

IᵀI(`)T
ψ→ϕ
J

IᵀJ(`)T
ψ→ϕ
J




u
ψ,(`+1)
J

z
ψ,(`+1)
J

µ
ϕ,(`+1)

J,min,I(`)

µ
ϕ,(`+1)

J,max,J(`)

 =


0

uψJ,d
zϕ
J,min,I(`)

zϕ
J,max,J(`)

 . (4.3)

Here, the matrices II(`) ∈ RNJ×|I(`)| and IJ(`) ∈ RNJ×|J(`)| are obtained from the identity matrix in
RNJ by removing those columns whose indices are not contained in the index sets I(`) and J(`),
respectively. Likewise, the vectors µϕ,(`+1)

J,min,I(`) ∈ R|I(`)| and µ
ϕ,(`+1)

J,max,J(`) ∈ R|J(`)| consist only of those

components of µϕ,(`+1)
J,min and µ

ϕ,(`+1)
J,max which are contained in the index sets I(`) and J(`), respectively.

The same holds true for zϕ
J,min,I(`) and zϕ

J,max,I(`) .
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For all inactive indices, the box constraints will be ignored and the associated components of the
Lagrange multipliers are set to 0:

µ
ϕ,(`+1)
min,(J,k) := 0 for all k ∈ ∆J \ I(`),

µ
ϕ,(`+1)
max,(J,k) := 0 for all k ∈ ∆J \ J(`).

Finally, the iteration index is increased ` 7→ `+ 1 and the loop restarted.

Figure 7: The optimal states u (first row) and controls z (second row) in case of s = 1/8 (left
column), s = 1/4 (middle column), and s = 3/8 (right column).

We consider again the optimal control problem from Subsection 4.4, but impose the box con-
straints (4.2) with zmin ≡ −0.1 and zmax ≡ 0.1 to the control. The discretization level is J = 7,
corresponding to NJ = 81920 piecewise constant ansatz functions each to discretize the state and
the control. The active set strategy is started with I(0) = J(0) = ∅. In each iteration of the active set
strategy, the resulting saddle point problem (4.3) is solved by the GMRES-method, where we use
again the diagonal as preconditioner for the blocks corresponding to the primal variables while for
the dual variables no preconditioner is applied. Note that the active set strategy never needs more
than five iterations. The computed controls and states for s = 1/8, s = 1/4, and s = 3/8 are found
in Figure 7, where we observe in any case that the box constraints become active.

5 Conclusion and Outlook

Our study is the first of its kind to present a wavelet-based approach for the solution of a semismooth
system of equations with non-local operators. In addition, it provides a roadmap for the application
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of wavelets for other bound-constrained optimal control problems with local partial differential op-
erators, as well. The approach has the advantage that the non-local operators can be treated directly,
without the need to transform the forward problem. In fact, the wavelet characterization of Sobolev
spaces allows us to apply the method for Lκ = (−∆)s for any s ∈ (0, 1], even below the criti-
cal threshold of 1/2. As expected, the solver behaved scale-independently (cf. mesh-independence
when using FEM), and a full theoretical proof will be the subject of future research.
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