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Abstract

Recently an adaptive wavelet scheme could be proved to be asymptotically opti-
mal for a wide class of elliptic operator equations in the sense that the error achieved
by an adaptive approximate solution stays proportional to the smallest possible er-
ror that can be realized by any linear combination of the corresponding number of
wavelets. On one hand, the results are purely asymptotic. On the other hand, the
analysis suggests new algorithmic ingredients for which no prototypes seem to exist
vet. It is therefore the objective of this paper to develop suitable data structures
for the new algorithmic components and to obtain a quantitative validation of the
theoretical results. We briefly review first the main theoretical facts, give a detailed
description of the algorithm, highlight the essential data structures and illustrate
the results by one and two dimensional numerical examples.
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1 Introduction

The development of adaptive numerical methods is of enormous current interest. Although
such concepts have not entered yet industrial applications at large, current research de-
velopments for instance in a finite element context indicate their very promising potential
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(2, 3,4,5, 9,10, 11, 12, 48, 49]. Such hopes and numerical experiences are, however,
contrasted by negative statements proved in the context of complexity theory. In fact,
on a rigorous level not much has been proved about the efficiency of adaptive finite ele-
ment schemes in comparison with a-priorily fixed meshes. Only recently, in the context of
wavelet discretizations it could be shown in [24] that a certain adaptive scheme converges
for a wide class of elliptic operator equations without any a-priori assumptions on the un-
known solution such as the saturation property. Aside from the guaranteed convergence
it is interesting that the scheme works for differential opertors as well as for singular inte-
gral operators. A comparable result in the finite element context concerns a much smaller
scope of problems, namely bivariate piecewise linear finite element discretizations for Pois-
son’s equation [39]. However, in either case nothing can be said about the actual speed
of convergence so that conclusions on the efficiency compared with a-priorily fixed dis-
cretizations remain open. Here speed means to relate the number of degrees of freedom
invoked by the adaptive scheme to the achieved accuracy of the solution. Substantial
progress could be accomplished then in [18] in the following sense. There an adaptive
wavelet scheme has been developed which is shown to be asymptotically optimal. This
means that it produces the same rate of convergence as a best N—term approzimation for
the same class of elliptic operator equations referred to above. Moreover, the number of
floating point operations required to compute the approximate solution stays proportional
to the number N of wavelets needed to approximate the solution at that level of accuracy.
The proof of the latter fact is constructive in the sense that the algorithm is described to
the level of detail that the number of arithmetic operations can be rigorously estimated.

The result is interesting from two points of view. Since the rate of best N-term ap-
proximation can be characterized by Besov regularity [25] one can see that, in principle,
such an adaptive scheme is asymptotically more efficient then uniform schemes exactly
when the solution lacks Sobolev regularity relative to Besov regularity. On the other hand,
the results are asymptotic while a more quantitative assessment of the performance is of
equal interest in practical applications. Moreover, the analysis of the scheme suggests
new algorithmic ingredients centering on an approximate fast matrix/vector multiplica-
tion combined with sorting entries of sequences. Therefore the efficient realization of these
ingredients and the development of suitable data structures that support best the con-
ceptual strenght of the scheme in practical realizations is a challenging task. In fact, the
realization of that task seems to be essential for a quantitative validation of the theoretical
results which after all are phrased in a necessarily simplified computational model.

This report is to describe the developments of such algorithmic ingredients and corre-
sponding data structures. It is organized as follows. In Section 2, we briefly review the
main theoretical facts needed for the understanding of the algorithm. So far, we have
assumed that the wavelets have certain properties, namely they are local, they induce
isomorphisms between certain sequence and function spaces and they have certain can-
cellation properties. We are able to extract from theory the essential requirements on
implementation. It is worth stressing that a fairly large part of data structure, namely
everything concerned with sorting and organizing arrays, can be kept independently of
the particular application. Section 3 is devoted to a brief outline of these structures. The
main interface to a special application resides on a proper encoding of the wavelet index
sets which implicitly also encodes the topology of the domain. This part of the implemen-



tation is tied to the type of application treated in Section 4. There we describe the type
of boundary value problems in one and two spatial dimensions, that we are concerned
with. In each case we briefly indicate which type of wavelets can be used to an extent
needed to see the requirements on the encoding of indices. The examples are designed to
bring out the effects of different sources of singularities whose occurrence, according to the
theoretical part, makes adaptive schemes more efficient than nonadaptive ones. While in
the 1D cases the singularity is induced by the right hand side data we consider in the 2D
case a problem with smooth right hand side where the singularity in the solution comes
from the shape of the domain. Moreover, we outline the problem dependent algorithmic
ingredients.

2 Theoretical Background

2.1 The Problem

Suppose that H is a Hilbert space with norm || - ||z induced by the inner product (-,-)
and that the selfadjoint operator A : H — H', where H' is the normed dual of H, is
H-elliptic, i.e.,

a(v,w) = (Av,w) < |lvllullwllz and a(v,v) ~ o] (2.1)

Here a < b means that a can be uniformly bounded by a constant multiple of b and
vice versa independent of any parameters on which ¢ and b may depend. a 2 b is to be
understood in the analogous fashion and a@ ~ b means that a < band a 2 b. . Clearly
(2.1) means that A is an isomorphism from H to H', i.e.,

[Av|lmr ~ ol v € H. (2.2)

Thus the equation
Au=f (2.3)

has for any f € H' a unique solution which will always be denoted by u. Typical examples
are second order elliptic boundary value problems with Dirichlet boundary conditions
on some open domain Q@ C IR?. In this case H = H}(Q) and H' = H~'(Q). Other
examples are obtained by turning an exterior boundary value problem into a singular
integral equation on the boundary I' of the domain. For a formulation in terms of the
single layer potential operator one obtains for instance H = H~Y*(I') and H' = HY*(I),
see [20, 45] for details. Thus H is typically a Sobolev space and

HclL,cH o H CL,CH.

We sometimes write then H = H' to indicate the Sobolev regularity although often a
closed subspace of the full Sobolev space determined by boundary conditions is meant.
H™"is always the dual of this particular subspace. One further property of A will matter
unless A is a differential operator with regular coefficients. Whenever A has a global
Schwartz kernel K, i.e.,

(Av)(e) = [ K(z,y)o(y)dy, (2.4)



we will assume in addition that when (2.1) holds for H = H' then

DOVK (2,y)| < dist(w,y) D, (2.5)

We hasten to add though that A need not be a scalar equation but could as well represent
a system in which case H is typically a product of Sobolev spaces.

We are interested in solving (2.3) approximately with the aid of a Galerkin method,
i.e., we pick some finite dimensional space S C H and search for ug € S such that

(Aug,v) = (f,v), ©ve€S, (2.6)

where (-, -) denotes the standard Ly—inner product.

2.2 Wavelet Bases and Isomorphisms

In our context the trial spaces S in (2.6) will be spanned by elements of a wavelet basis
U ={y):Ae T} for H. We will postpone at this point any technical description of the
basis W (which necessarily depends on the particular setting at hand) but will only list
those properties that will be relevant in the following. Later in connection with concrete
applications we will describe W in more detail. The indices A € J typically encode several
types of information, namely the scale often denoted by |A|, the spatial location and also
the type of the wavelet. Recall that in a classical setting a tensor product construction
yields 27 — 1 types of wavelets [34, 46]. For instance, for wavelets on the real line X can be
identified with (7, k), where j = |A| denotes the dyadic refinement level and 277k signifies
the location of the wavelet. In fact, we will require the wavelets to be local in the sense
that

diam (supp ¢,) ~ 27 Ne J. (2.7)

What matters here is that any v € Ly has a unique expansion

v=Y dpy =:d"V
AT

and that these expansions induce an isomorphism between H and /5 in the following
sense: There exists a diagonal matriz D = diag (w) : A € J} such that

IDdlle, ) ~ [d" ]| (2.8)
Denoting by U the dual basis to U, i.e.,
(Va,thy) = brpe AV ET, (2.9)
(2.8) implies the dual relation
D™ ey ~ [ld" 0|17 (2.10)

Similar relations are also known to hold for Sobolev spaces in L, for p # 2. Moreover,
interpolation between such spaces provides norm equivalences for a whole range of Besov



spaces B(L,) [26, 38, 40, 46]. In the present context we will have to make use of the
following special case

dle, ) ~ ||l d" Y| Ber,), (2.11)
where the smoothness index « and the integrability index 7 are related by
1 a 1
= T5 2.12
T d + 2 ( )

2.3 Cancellation Property

The second main requirement on the wavelet bases is that integration of a function against
a wavelet annihilates the smooth part of the function, i.e.,

(o, )] < 27 O*E) o) ym (2.13)

supp ¥ )»

where the positive integer i is related to the dual basis W. In the classical case i is the
order of vanishing polynomial moments, see [27]. Property (2.13) will ensure later that
matrix representations of operators of the type (2.4) are almost sparse.

2.4 An Equivalent (,-Problem

Once a basis with the above properties is given, it is natural to transform the operator
equation (2.3) over a function space H into a matriz equation over the corresponding
sequence space. The matrix in question is the representation of the operator with respect
to the chosen wavelet basis. More precisely, the relation (2.8) suggests a special scaling
of the basis which leads to

A =D W AVD ™ = (wy'w, (, Av,)) (2.14)

AveT
Specifically, when H = H' an admissible choice for the diagonal weights is wy, = 2.
The crucial point is that the norm equivalence (2.8) in conjunction with ellipticity (2.2)

implies that the (infinite) matrix A defined by (2.14) is now an automorphism on (3,
(27, 29].

Theorem 2.1 The function u = d* ¥ € H solves the original operator equation (2.3) if
and only if the sequence

u:=Dd (2.15)
solves the matrix equation
Au = f, (2.16)
where £ := D™V, f).
Moreover, denoting by || - || the spectral norm on {3, the matriv A defined by (2.14)
satisfies
A, [ATH] < oo (2.17)

As an immediate consequence there exists a finite number x such that all finite sections

Ay = (wglw;%;/)A,A;/)y})A’ . ANC T,

veA’



have uniformly bounded condition numbers
condy(Ap) <k, ACJ. (2.18)

Hence the original problem has been reduced to an equivalent well-posed problem in /5.
This fact will be crucial for what follows.

Moreover, an economic treatment of this /,—problem is partly due to the following
consequence of the cancellation property (2.13). It can be shown that when H = H*
suitable choices of W entail the following decay of the entries of A, [24, 29].

Theorem 2.2 Suppose that for operators of the form (2.4) property (2.5) holds. Then
for H = H' one has

, 91N = I\l
—(]A A
27 VDY Ay, 90)] < (1 d(x, ) yFemeae (2.19)
where .
d(\, XY = 2minALVD Qist (0, ), (2.20)

Q) :=supp ¥y and o > d/2 depends on the reqularity of the wavelets 1.

It is important to note, however, that (2.19) is only a sufficient condition for the following
compression property of A that will be needed later. The following fact has been proved
in [18].

Proposition 2.3 Let
. . fo 1 2t42m
§ :=min {E_§7T}
Then for every s < s* there exists a positive summable sequence (o;);j>0 and for every
J > 0 there exists a matric A; with at most 2’ «; nonzero entries per row and column

such that

(2.21)

|4, - All 5 a2, (2.22)

The class of matrices with the property (2.22) is called A;. For matrices with the
particular decay properties (2.19) concrete truncation rules can be given [18]. The first
step is a truncation in scale: Given j, set

v ||A] — <j/d,
S v R )

0, else,

followed by a spatial truncation

ary, d(Xv) <20/ IN=WI~ (X = |v]]),
i) B dA) S V(1A= 1)) 220
0, else,
Here y(n) is any summable sequence, e.g., v(n) := (1 4 n)~%/%.
One should note that because of (2.7) the first truncation (2.23) already suffices for
local operators A.



2.5 The Basic Paradigm

The practical realization of adaptive approximations to (2.3) in a finite element context
is to refine step by step a given mesh according to a posteriori local error indicators.
The point of view taken by wavelet schemes is somewhat different. Trial spaces are
refined directly by incorporating additional basis functions whose selection depends on
the previous step. Specifically, setting for any finite subset A C J

Sh :=span{¥, : A € A},

and denoting by us € Si always the Galerkin solution determined by (2.6), we start with
some small index set Ag (possibly the empty set) and proceed as follows:

Given A and uy; and some fixed 6 € (0,1), find Aj41 D A; as small as possible such
that the new error u — ua,,, n the energy norm is at most 0 times the previous error.
Obviously, iteration of this step entails convergence of the resulting sequence of approxi-
mations in the energy norm.

Successively growing index sets in this way, one hopes to track the most significant
coefficients in the true wavelet expansion d” W of the unknown solution u. The error at
each step is naturally measured in the energy norm, see (2.1),

v]|* == a(v,v). (2.25)

But then (2.8) suggests to work directly on the discrete side, noting that by Theorem 2.1
up solves (2.6) for S = S, if and only if uy solves

AAUA = fA = f|A, (226)

and wuy is related to up by

UA = Z w;l (UA)/\ 77/)/\. (227)

AEA
Note that uy € IR* is a finite vector. It will sometimes be convenient to view uy as a
sequence in {5, 1.e., all components of u, outside A are understood to be zero. Since it
will be always clear from the context which interpretation is meant we will not introduce
any notational distinction between the finite vector u, and its canonical injection in /5.
Likewise for v € /5 its restriction to A is denoted by v|;. Thus an equivalent formulation
of (2.26) is
(AUA — f) |A =0.

Defining now in analogy to (2.25) the discrete energy norm
|v|[* ;== viAv =: a(v, V), (2.28)

(2.17) in Theorem 2.1 says that
-~ e (2.29)

We can now detail the above adaptive paradigm as follows:



Given A C J, find a possibly small index set A D A such that
Ju—uif] < Oflu —ual. (2.30)

Of course, neither side of (2.30) can be evaluated. In order to still find a suitable expanded
set A one tries to find A such that for some B e(0,1)

Jug —uall = Blju —uall, (2.31)

le., A should be large enough to be sufficiently closer to the true solution. At least the
left hand side is, in principle, computable.

Remark 2.4 In fact, since uy is the orthogonal projection of u onto IR*", it immediately
follows from Pythagoras™ Theorem that (2.31) implies (2.30) with

0:=/1- 32 (2.32)

The strategy to accomplish (2.31) has been used already earlier in the finite element
context, see e.g. [12, 39]. It was also the starting point in [24]. Nevertheless, the problem
remains to actually verify (2.31) since still the unknown sequence u is involved. Therefore
in most treatments it is assumed that for some fized refinement of the old trial space
a relation like (2.31) holds. This is usually referred to as the saturation assumption.
However, in [24] and before for a much more specialized situation in [39] an adaptive
refinement scheme was designed which guarantees (2.31) without an a—priori assumption
like the saturation property.

In neither case though it was possible to derive a concrete convergence rate, i.e., to
relate the error |[u — uy,|| to the number of degrees of freedom N; = #A;. But such a
relation would eventually be needed for appraising the performance of an adaptive scheme
in comparison with any schemes using preassigned discretizations.

2.6 Best N-Term Approximation

Before proceeding a few comments of conceptual nature are in order. To obtain a bench
mark it 1s important to clarify first what the optimal outcome of an adaptive scheme
might be. The answer is readily given by Theorem 2.1 and (2.29). Suppose for a moment
that we have complete knowledge of u, i.e., we know all components in u. Then we could
choose N coefficients of u so that the corresponding finite vector approximates u best in
the energy norm (2.28). The function u” defined in analogy to (2.27) approximates, in
view of (2.8), u, up to a uniform constant, best in the continuous energy norm or in . u®
is called a best N—term approzimation. Clearly the selection of such best coefficients is a
nonlinear process. Best N-term approximation is therefore a special instance of nonlinear
approximation, see [36].

Even when knowing u it is not clear what the most significant coefficients are that
minimize the error in the energy norm among any possible selection of N terms. At this
point the norm equivalence (2.8) in the form (2.29) comes into play. In fact, the best
N—-term approximation to u with respect to the energy norm || - || produces an error



which is up to uniform constants equivalent to the best N-term approximation of u in
the Euclidean norm. Best N-term approximation in {3, in turn, is well understood, a
fact that will be heavily exploited later. Nevertheless, since u is not known even the best
N-term approximation of u in /3 is not available.

In summary, the best that could be achieved by an adaptive scheme is to produce
errors that stay proportional to best N—term approximation in {5. Suppose for a moment
that an adaptive scheme matches this rate of best N-term approximation. The question
remains: what is the potential gain over linear methods, i.e, methods for which the trial
spaces are a—priorily prescribed? Thus one ultimately has to face the following questions:

e How does the performance of a concrete adaptive scheme compare with best N-term
approximation in f57

e When is the performance of such an adaptive method better than that of linear
schemes?

The first question essentially concerns approximation in f3. The second question will
be seen to draw in reqularity theory of solutions to elliptic problems in certain non—classical
scales of function spaces. These are function spaces that can be (nearly) characterized
by best N—term approximation. The answer to both questions has only recently be given
in [18]. We will proceed now with a brief review of these results that lead to concrete
adaptive schemes.

2.7 An Adaptive Strategy

Our goal is to realize an estimate of the type (2.31). Again this will rely crucially on
(2.29) (and hence on (2.8) and (2.2)) which, in particular means that

VI~ d[ville, ~ AV~ [[AV]e- (2.33)
In fact, for any A D A one has
Jug —wall 2 [[A(ug —un)lle, = [[A(ug —un)lzlle
= [[A(u—up)lille-

Thus defining
ry = A(u—uy) =f — Au,,

the above estimate says that for some constant ¢; € (0,1) depending only on the constants
in (2.33)
Jug —uall = erflealille- (2.34)

Key Idea: ]fA can be chosen such that

[ralalle, = allealle, (2.35)

holds for some fixed a € (0,1) then again (2.33) combined with (2.34) yields a constant
B € (0,1) such that (2.31) and hence, by Remark 2.4, also (2.30)

Jug —ufl < Ofjup —ul



holds.

Thus the reduction of the error has been reduced to catching the bulk of the residual
ra. This is a principal improvement since the residual involves only known quantities
like the right hand side f and the current solution u,. A second glance, however, damps
optimism since among other things the realization of (2.35), i.e., catching the bulk of the
current residual requires knowing all coefficients of the infinite sequence ry. Nevertheless,
it will pay to neglect these issues for a moment and adhere to the above idea. Thus, as-
suming for the moment that A satisfies (2.35), a core ingredient of the refinement strategy
can be summarized in the following (idealized) routine:

A~

GROW (A, up) — (A uy)
Given (A uy) find the smallest A D A such that ||ral;]le, > allrale,-

On the other hand, even if one is able to perform GROW 1t is by no means clear that
such an algorithm is asymptotically optimal in the sense of best N—term approximation.
Roughly speaking, the inversion of A that leads from rjy to u — uy may in quantitative
terms smear too much. This will be explained later in more detail. However, it is shown
in [18] that optimality can indeed be restored by a clean up step. This simply means
that after several applications of GROW one has to discard all coefficients in the current
approximation uy whose modulus is below a certain threshold. This threshold is chosen
so that the current error is at most multiplied by a fixed uniform constant. While thereby
the error gets only worse by a little this will turn out to have an essential effect on the
behavior of the residual with respect to certain norms that are somewhat stronger than
the /o—norm. More details will be given later. We summarize this clean up or thresholding
step again in an idealized form as follows:

THRESH (A, uy) — (A, uj;)

If |lu — unplly, < € find smallest A C A such that |lua — ualzlle, < 4e.
Note that both routines will ultimately require sorting coefficients.
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2.8 An Optimal (Idealized) Algorithm

We next give a rough idealized version of an adaptive wavelet scheme whose practical
counterpart will turn out to be optimal with respect to convergence rates as well as work
count.

ALGORITHM

[ Ao = @, | f7 €0 1= Hbe

o Ior j =0,1,2,... determine (Aj;,un,,,) from (A;,un,) such that
Hu — Ua,; Hb < 5]/2 =i
as follows:

Set Ajo:=Aj, uj0 = uy;
For k =1,2,..., K apply
GROW (A]‘7k_1 R uAJVk_l) — (A]‘J“ uAM)
(HrAj,k—l |A],k Hb > %HrA],k—l Hfz);

Apply THRESH (ALKv uA],K) — (Aj+17 uA]+1)

The maximal number K of applications of GROW can be shown to be uniformly
bounded depending only on the constants in (2.33). Moreover, a detailed description

of fully computable version ALGORITHMY® of the above algorithm is given in [18] to

which the following result refers.

Theorem 2.5 The computable version ALGORITHM?S always produces a solution with
the desired accuracy after a finite number of steps.

Moreover, assume that A € A, for 0 < s < s*, recall Proposition 2.3. If the solution
u to the operator equation (2.3) has the property that for some s < s*

on(u):= inf ||u — Z dn]] < N7°,

dy,ANEAFALN Aer
then ALGORITHMY generates a sequence up; of Galerkin solutions to (2.6) satisfying

[ —unll S (F#A) (2.36)

Moreover, # of arithmetic operations needed to compute up, stays proportional to

#A;. The number of sorts stays bounded by (#A;)log (#A;).

It is important to note the above algorithm does not require any a—priori knowledge
about the rate of N-term approximability of the solution. It is shown to automatically
match the rate of best N-term approximation for a certain asymptotic range depending
on the operator and the chosen basis.

11



2.9 When Does Adaptivity Pay?

Before turning to the discussion of realizing the actual ingredients of the above scheme a
few comments on principal implications of Theorem 2.5 are in order. In particular, this
will guide the selection of test examples.

First of all the theorem says that whenever the best possible rate of convergence in
the given framework of wavelet expansions decays in a certain range with a power of the
used degrees of freedom then the adaptive scheme matches this convergence rate and up
to the number of involved sorts the computational work stays proportional to the number
of degrees of freedom. That range of validity depends on the operator and the chosen
wavelet basis.

The first question in Section 2.6 has now a positive answer in that the scheme realizes
the best possible accuracy at a given allowance of degrees of freedom at nearly minimal
cost.

As for the second question, the first remark is that such a polynomial decay N~ of
the error is in fact the relevant setting. Recall that spectral methods may even exhibit
exponential decay but only when the solution is arbitrarily smooth throughout the do-
main. In the present setting we expect to deal with solutions with singularities. For
any approximation scheme that is local in the sense that one can arrange only finitely
many basis functions to overlap at a given point convergence rates are generally satu-
rated, 1.e., there is some maximal number « such that, regardless of the smoothness of the
approximant, the error of best approximation decays at best like N7 when N is again
the number of degrees of freedom in the respective trial space. Multiresolution spaces
and classical hierarchies of finite element spaces fall into this category. To make this a
bit more concrete let us quickly review the following classical situation. Suppose that we
have a nested sequence of (in the above sense) local approximation spaces S; whose union
exhausts Ly(2), Q C IR say. Examples are sequences of finite element spaces obtained
by uniformly halving the meshsize at each step and likewise any classical multiresolution
analysis. Suppose that h; is the meshsize associated with S;. The approximation errors
behave then as

inf o= vl € Bl v € HQ), (2.37)
Uy &y
where r is limited by the maximal order of exactness of the trial spaces. Here 5; is
called exact of order m if all polynomials (of total degree) can be represented (locally)
by elements in S;. Any smoothness beyond m does not help decreasing the asymptotic
error. Of course, thinking of uniform mesh refinements one has
m —-m/d
hit~ N; 0,
where N; := dim 5; and the constants in this relation depend only on the domain. In
terms of the above theorem, the best rate that could be achieved by such a preassigned
sequence of trial spaces S; is N™% with s = m/d provided that the solution has enough
Sobolev regularity!
Can one do better by an adaptive scheme based on the same type of multiresolution
sequences, 1.e, by working with progressively chosen subsets of the full spaces 5; as indi-
cated above? It is important to stress first that the optimal rate N="/¢ by itself cannot

12



be improved! However, the upshot is that such a good rate can be preserved by adaptive
or best N—term approximation even when the approximated function lacks the Sobolev
regularity needed to ensure the validity of an estimate like (2.37). The point here is that
best N—term approximation can be (nearly) used to characterize spaces from another
regularity scale, namely certain Besov spaces, see [37, 38, 36]. The type of result needed
here can be formulated as follows [23]. Suppose again that H = H' for simplicity and
define

ong) = inf{Hg N dallge dy ERNEAC T, #A = N} ,
AEA

Let v > 0 denote the supremum of all  such that ¥ C H®. Then the following holds

[23].

Proposition 2.6 Assume that o« —t < v and let fort < «

1._a_t+1 (238)
™ d 2 .

Then one has

(N oy (g)) < oo (2.39)

n=1

if and only if g € B2.(L+(2)).

Of course, (2.39) implies that the best N-term approximation in H' (and hence the
near best N—term approximation with respect to the energy norm) oy :(g) decays at least
like N~=9/4 provided that g isin B%(L.+(9)). Note that (2.38) means that B (L.«(Q))
is just embedded in H' but need not have any excess Sobolev regularity beyond the energy
space. Thus B2 (L.«(Q)) is significantly larger than the Sobolev space H* (). So exactly
when the solution of (2.3) has a higher Besov regularity in the scale B%(L.«(£)) than
in the Sobolev scale, the above adaptive scheme produces an asymptotically better error
decay in terms of the used unknowns than linear methods. It is important to stress
here asymptotic. The implementation of adaptive schemes will always cause significant
overhead and an error reduction by merely a constant factor might now pay off when
comparing the overall work with the result. For large scale problems a better asymptotics
will eventually pay off and justifies efforts for realizing adaptive schemes.

Therefore the next natural question is, does it occur in the context of elliptic problems
that the solution has deficient Sobolev regularity compared with the scale B2 (L.«(9))?
The answer is yes as shown, e.g., in [21, 25]. So there is a scope of problems where
the above adaptive scheme would do better than linear methods. As an example, let us
discuss a typical result in this direction which is concerned with Poisson’s equation in a
Lipschitz domain Q ¢ R,

—Au = f in 9, (2.40)
u|ag = 0

In this case, A = —A is an isomorphism from Hj(Q2) onto H~(f2), so that it is natural to
consider the best N—term approximation in H'({)). Based on the investigations in [25],
the following theorem was established in [23].
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Theorem 2.7 Let Q be a bounded Lipschitz domain in IR®. Let u denote the solution of
(2.40) with f € BY ' (Ly(Q)) for some pu > 1. Then the following holds:

1 -1 1 ) d +1
uEBf*(LT*(Q)),F:<ad —|—§)7 0<oz<mm{2(al_1),(/ML3 )}—I—l.

Due to singularities near the boundary, the Sobolev regularity of the solution w may
not be very high, even for smooth right-hand sides. In fact, it is well-known that in
general u € H*(Q), a < 3/2, see, e.g., [41, 42] for details. Therefore Theorem 2.7 implies
that for © > 1/2 the Besov regularity of u is in fact much higher than its Sobolev regularity
so that adaptive methods should provide better asymptotic accuracy.

On the other hand, it should be kept in mind that the above dividing line depending
on the different regularity scales is based on purely asymptotic reasoning and therefore
may offer only a rather incomplete picture from a practical point of view. To obtain
a more quantitative assessment of the error one should note that, in view of (2.37), for
uniform refinements the size of the respective Sobolev norm matters while the error of best
N-term approximation involves a Besov norm. So in spite of arbitrarily high pointwise
smoothness it could well happen that the Besov norm of a function is much smaller than
the Sobolev norm. In such a case the gain of efficiency accomplished by adaptive schemes
could still be substantial in spite of high pointwise regularity.

2.10 Why GROW and THRESH?

A little more background information about the above ALGORITHMYS is helpful for
identifying the computational tasks. Let us begin with GROW. Obviously, choosing A
such that ||ry —ralille < %HI'AH&) would imply |[ralzlle, > %HI'AH&)- Thus we essentially
have to find a sequence in f5 with possibly small support that approximates the true
residual as well as possible in /5 — again the task of best N-term approximation. Specif-
ically, given € := Z||ra|ls,, what is the smallest N such that the error of best N-term
approximation stays below ¢? To derive quantitative error estimates requires identify-
ing suitable compactly embedded subspaces of /5. The subspaces that are characterized
by best N-term approximation in /5 are well-known [36, 18]. They are special cases of
Lorentz sequence spaces defined as follows. Let for v € /5 the nonincreasing rearrange-
ment of v be denoted by v* = {v,}new, ie., v} > vi; and v} = [vy| for some A € 7,
(which is not unique, but terms with equal modulus can be ordered arbitrarily). Let for
0<rT <2

Vies o= sup n el VIl = IVl + Ml 2.41)

It is easy to see that
IVl[ew < 2[[vlle,, (2.42)

so that by Jensen’s inequality, in particular, £ C /(. Moreover, let vy denote the
restriction of v to its N largest terms (the first N terms in v*). Clearly, |[v — vul|s,
realizes the error of best N—term approximation to v in /5. The following characterization

can be shown [18, 36].
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Proposition 2.8 Let
L + ! (2.43)
—=s+g :

then
vely < |v—-vxll, <

~

N[V e (2.44)

Remark 2.9 Note that in these terms the assumption in Theorem 2.5 on w is equivalent
to sayingu € (Y. This can be viewed as a regularity assumption. In fact, by (2.42) u € (;
implies u € (Y. But recall from (2.11) and (2.12) that u € {, means that uI ¥ € B*(L,)
for s and 7 related through (2.43). Thus when H = H' this means for Dy = 21, on
account of (2.15), u € B:™(L.), recall Proposition 2.6.

Thus the N needed to ensure |[v—vn|ls, < € is of the order N ~ 5_1/5HVH%S. Applying
this to the above task of approximating the residual r,, one finds

1/s

A FAllew

#(A\A) ~ (H | T) . (2.45)
[ealle;

Since, by (2.33) |lu — ual| ~ ||ralle, the error would exhibit the right relation to #A

provided that ||ra||e stays uniformly bounded. This is therefore the key requirement to be

satisfied.

2.11 How to Bound |rp||e?

We now turn to the routine THRESH. Looking at the definition of || - |[;» one realizes
that this norm will tend to become large when the sequence has many entries of more or
less equal but small modulus. Thus, removing these entries would not increase the error
in ¢, very much but may reduce the || - ||ew significantly. Hence thresholding may help.
However, since not all entries of ry are accessible we cannot work directly on ry. The key
observation here is that only thresholding the current approrimate Galerkin solution uy
will control |[ral|e.
At this point the compressibility of A, recall Proposition 2.3, comes into play.

Proposition 2.10 [18] Any A in A, is not only bounded on {5 but also on (¥, i.c.,
[AV]lew < [IV][e- (2.46)

Thus it suffices to control |[ua|lew in order to keep |[ry|le» uniformly bounded. This in
turn has been shown in [18] to be possible by thresholding the current Galerkin solution
uy. To this end, define the thresholding operator

(Tov), vy il |oa| >
VAP
0 if |U/\| <n.

The fact that the right amount of thresholding keeps the || - |[;»-norm small while
preserving the order of the {y-error is based on the following observations from [18].
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Lemma 2.11 For any A C J one has
Jualley < llulley + (#A)[Ju — ualle, (2.47)
Lemma 2.12 Given w € (] and assume that v € {5 satisfies

[V —wlle, <e. (2.48)

1/s7

Then, setting n := €'/°7, one has

1 Tov — wlle, < ce|lwl7d”.

and

#{A €T (Tv)a # 0} < e Vo[l (2.49)

In particular, this will be applied to w = u and v = u, (but also to various other
instances caused by inexact computations). In fact, substituting the bound on #A from
(2.49) in the right hand side of (2.47) shows, in view of (2.48), that |[ua||q and hence,
by Proposition 2.10 also ||ry|[e stays indeed bounded. This explains the relevance of the
routine THRESH.

Proposition 2.10 can be proved with the aid of Proposition 2.8. In fact, it suffices to
exhibit a sufficiently good approximation to the matrix vector product Av involving only
N terms. This is a further ingredient of central importance and will be explained below.

2.12 Fast Approximate Matrix/Vector Multiplication
The following fact is proved in [18].

Proposition 2.13 Defining vij := vy (best N-term approzimation for N = 27) and
wW; = AJ‘V[O] + Aj_l(V[l] - V[O]) + -4 AO(V[j] - V[j_l]), (250)

then
AV —wille, <

~

27| (2.51)

As a consequence the computational work CW(n) needed to realize an approximation
w, to Av such that |Av — w, ||, <7 is of the order

CW () ~ #suppw, < 0~ /7|lv]le’, (2.52)

~

which is again of the right form.
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2.13 Computational Tasks

We are now in a position to identify the concrete computational tasks required by a
computable version of ALGORITHM. A detailed account of these routines can be found
in [18] where, in particular, various parameters are identified that steer the refinement
process. Here we focus on principle issues arising in the implementation of these routines.
Of course, the central issue is to determine the bulk of ry or, equivalently, to find a good
approximation to rj in /5. In this context one faces the following obvious obstructions:

(i) One has to determine first the Galerkin solution ua. Even if uy could be determined
exactly one cannot compute the infinite vector Au, to determine the residual.

(ii) In order stay within the promised bounds of computational complexity the cor-
responding linear systems cannot be solved exactly. Instead one obtains only an
approximation u, to up. Again one cannot compute the infinite vector Auy

Thus at each stage of the ALGORITHM one has to be content with an approzimation
to the residual and its bulk. The errors incurred in such approximations are as follows:

I'A:fn—Wn—I-f—fn—I-A(flA—uA)—l-Wn—AflA. (253)

error

At each stage of the ALGORITHM this error has to be kept below a certain level n
say, specified in [18]. This amounts to the following tasks:

1) Determine a sufficiently good approximation f,.

2) Determine uy by an iterative scheme. This requires repeated matrix/vector multi-
plications.

3) Compute an approximation w, to Au,.

4) Find a best N-term approximation to the resulting approximation (2.53) (or keep
it as it is).

5) Threshold the current approximate Galerkin solution.

Clearly 2) and 3) will heavily rely on the above matriz/vector multiplication (2.50).
The estimates from previous sections will ultimately ensure that only a finite uniformly
bounded number of iterations will be needed at each stage to fulfill the accuracy require-
ments for the next step. In particular, (2.52) will guarantee that the computational work
stays in the desired bounds.

Note next that 1), 4) and 5) involve thresholding of a known array, at least conceptually.
The way it is needed here is to discard the largest possible number of small entries so that
a desired accuracy is preserved by this perturbation. The core task there is to first sort
the arrays and then sum successively entries in increasing order. This is also used in the
error control of the fast matrix/vector multiplication because the algorithm should at no
stage use any a-priori assumption about the membership of u in any of the £ spaces.
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These remarks shed some light on the role of sorting and the fast matriz/vector mul-
tiplication in the whole context. In the following we will discuss some consequences of
these facts. In particular, it will be seen that most of the data structures needed here can
be designed independently of the particular application and even of the particular wavelet
basis. The special application enters primarily through calling the significant entries in
the columns of A when performing (2.50). This will be exemplified later in connection
with applications.

3 Documentation and Related Issues

One key ingredient for the realization of the adaptive algorithm presented above is the
organization of the data, i.e., how to store the active coefficients. The data must be
organized in such a way, that the benefits of the adaptive method predicted by the theory
is not wasted by a large overhead of data management. Clearly, a certain overhead can not
be circumvented: for uniform methods the number of unknowns is a priorily known (each
level has fixed number of unknowns), they can be organized in static vectors containing
all coefficients. Scalar products for example of these vectors are fast on modern computer
architectures since the optimizer of the compiler can use the floating point unit of the
computer in the most efficient way. Of course, this is no longer the case for adaptive
methods: the number of active unknowns is determined during the algorithm.

Therefore suitable data structures providing flexible and efficient storage and allowing
fast sorting have to be used. In contrast to uniform methods based on level wise oriented
structures, i.e., using vectors, we have to use data structures focusing on individual coef-
ficients. This has to be done ensuring that the overhead produced by the data structures
is much smaller than the gain of efficiency by using the adaptive method.

3.1 Key—Based Data Structures

The type of data structures which fits our purpose best are key based data structures: the
data are divided into two parts, namely the key, for example for the wavelets the index
A, and the value, i.e., the entry dy. So every item forms a pair (key,value). Formally
we can view this kind of data structure as a mapping from the set of keys to the set of
admissible values:

map : key € Keys — value € Values. (3.1)

As long as the key is unique this is sufficient. For our wavelet expansion uy = dy ¥, we
assume that every A € A is unique, otherwise one would combine two coefficients to one.
So this expansion reads like

mapp : A € A — dy € IR. (3.2)

The function map becomes a sorted map whenever we have some ordering on the Keys,
i.e., there exists a transitive relation

less := {(key, keys) € Keys x Keys : keyy < keya} C Keys x Keys. (3.3)
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The index set A allows several possibilities of ordering among which we chose the following:
first level wise, then by each wavelet type, then by subdomain and within each subdomain
by a lexicographical ordering of the translation index.

So the definition of our data structure map relies on having

e a unique encryption for A € A,
e and a relation [ess for these keys.

The data structure realizing map must meet the following requirements with respect to
the size N = |Keys|:

e complexity to find/erase an individual element is at most logarithmic,

o logarithmic complexity for insertion of a new element, so the overall time for build-
ing/sorting the map is at most N log(N).

The data structure map from the Standard Template Library, STL, see [47], matches
exactly these requirements. In addition, it is a generic class like most of the classes in the
STL. This means, that the type of the key and the type of the values are arbitrary, they
serve as parameters only. So the data structure is independent of the type of wavelets one
uses. Only the key representing the wavelet has to fulfill the requirements above. In C++
generic classes are provided by templates, classes with types as parameters. These classes
are called containers, classes containing some elements of some type. Typical examples
of containers are vectors, lists or maps. To define a map for our problem reads like

coeff_sorted_by_index := map<index, double, index::less_than>,

i.e., it is a map, where the key is given by a class index, the values are double precision
real numbers and the ordering is given by the less_than function of the class index.

During the execution of the algorithm for estimating the residual, the coefficients need
to be sorted according to their absolute value. So if we think of interchanging the role of
the key and the value of our map, we loose uniqueness, because several coefficients may
have the same value. There is no unique mapping from the values of the coefficients to
the indices carrying these values. A slightly more general class multimap from the STL
is suitable for this case. For a multimap the uniqueness of the key is not necessary, so the
sorting is also not unique any more. If N = |Keys| and n = Number of elements with the
same key the complexities of the required operations in multimap are

e log(N) + n time to find or erase all elements with this key,
e insertion of a new element requires log(/N') operations.
In our case the definition reads like
coeff_sorted_by_value := multimap<double, index, less_absolute>,

where the coefficients are sorted with respect to the function less_absolute which com-
pares the absolute values.
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3.2 Generic Algorithms

To actually work with these classes one has to understand the concept of iterators, some-
times also called generalized pointers. Next to the templates iterators are a core ingredi-
ent making the STL independent of the data used. Every container class has a function
begin() returning an iterator pointing to the first entry of the container. Addressing
each element of the container amounts to incrementing the iterator until the last element
of the container is reached.

All routines have to use this concept of iterators for those parts which do not depend
on the type of wavelets used. As an example we show a key ingredient of the adaptive
algorithm in more detail, namely the fast matrix/vector multiplication defined in Section
2.12:

w; = Byvio + Bj-1(viy = Vo) + -+ 4+ Bo(vp — vij-1p)- (3.4)

The vectors v[; were defined by retaining from the decreasing rearrangement of v* only
the first 2¢ entries. Therefore the sorted vector v[;) can be written as
T T T
Vi = (Vigps (Vo = Vie) s -+ (Vi = V1)) (3.5)
L.e., V[;;—V[;—1) can be seen as a section of the vector vi;; with size 2i=1 The implementation
of the fast matrix vector multiplication reads as follows:

void FastMatVecMult (map<index, double, index::less_than> &w_j,
const multimap<double, index, less_absolute> v_lambda,
const stiffnessmatrix &A,

int j)
{
int jj = 0, count = 0;
multimap<double, index, less_absolute>::iterator nu;
for (nu = v_lambda.begin(); nu '= v_lambda.end() && jj<=j; nu++)
{
map<index, double, index::less_than> Column;
Column = ColumnSet ( (*nu).second, j-jj);
map<index, double, index::less_than>::iterator mu;
for (mu = Column.begin(); mu != Column.end(); mu++)
w_jL(kmu) .first] += A((kmu) .first, (*nu).second) * (*knu).first;
count++;
jj = int(log(count)/log(2)) + 1;
}
}
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The function FastMatVecMult consists of two iterations: the outer iteration on nu iterates
through the elements of the vector v_lambda. This vector is of type
multimap<double, index, less_absolute> and therefore sorted in a decreasing order.
For one entry of the vector, (*nu) . second denotes the wavelet index of this entry, whereas
(*nu) . first the wavelet coefficient. For this index the function Columnset computes the
set A(v, 7 — jj) defined in (2.23), (2.24).

Now the inner iteration on mu iterates through this set, adding up the products of the
vector element v with the corresponding matrix element. To take the correct B; in the
sum (3.4) we have to know the section of lambda_v we are working with. This amounts
to taking the log, of the variable count.

For the whole routine only two functions are specific to the problem at hand, namely
the routine ColumnSet providing the index set A(k,,J,,j — jj) and the evaluation of the
inner product a(¢,,,) for two wavelets.

3.3 Discussion of Various Specific Routines

In this section we want to briefly discuss other routines needed for our adaptive algorithm.
A detailed description of these routines is given in [18]. To this end we start with

Convert
A coeff_sorted_by_value can be converted into a coeff_sorted_by_index and vice
versa. The amount of work is N log N, where N is the size, since reading the elements is
of constant time and the building of the new type is N log N.

For the following routines we assume the input to be of coeff_sorted_by_value,

otherwise use Convert.

Best N—term approximation, see Section 2.6
Building the best N—term approximation amounts to erasing all but the first NV elements.

Threshold, see Section 2.7
Starts with the first element of u,, iterate until value is less than the prescribed tolerance
and erase all following elements.

Bulk
Start with the first entry of u,, insert it into an empty coeff_sorted_by_value and
calculate its norm. Proceed analogously until it is larger than the given bound.

APPLYA, see Section 2.12
The application of the fast matrix/vector multiplication APPLYA consists of calculating j
needed in (3.4) and calling the function FastMatVecMult.

NRESIDUAL
NRESIDUAL calls APPLYA and subtracts an approximation of the righthand side.

NGALERKIN
For the Galerkin solver we used an ordinary conjugent gradient solver where we replaced
each matrix—vector multiplication by FastMatVecMult. Again see [18] for the algorithmic
details.
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NGROW, see Section 2.7
First call the function NCOARSE is called for the righthand side, afterwards in a loop first
NRESIDUAL to estimate the current residual, use Bulk to take a fixed portion and compute
for this new index set the approximate solution with NGALERKIN.

ColumnSet
In FastMatVecMult we used the function ColumnSet. This function computes the set
A(X,J) in (2.23), (2.24). For our example of the second order differential operator these
are the coefficients of those functions, whose support intersect the support of the given
function, i.e., whose entries in the stiffness matrix do not vanish, along with a cut—of
criterion of level differences. In fact, for an index A = (j, k) we define

AT = {v = (7. K) € Visuppdn Nsupp s, # 0, [ — 5| < T} (3.6)

Of course, this function differs significantly for the one dimensional and the two dimen-
sional case. In the one dimensional case this is a tedious but straight forward calculation.
The supports of the functions are given by scaling and translation of the support of one
generator and one wavelet. This leads to some simple calculation of which translates for
which level has to be taken. The most difficult part is to catch the appropriate functions
near the boundary, because their support differs from the general formula.

The problem is much more involved for the 2D—case. While simple again in the interior
of a subdomain where we can use a tensor product version of the one dimensional routine,
it becomes very delicate near the interior boundaries, where functions are supported on
more than one subdomain. For our test problem we designed a very simple geometry
representation containing information about the connectivity of the subdomains. Up to
now it is restricted to parametric mappings consisting of translations of the reference
domain.

With this information it is possible to identify for each function 'near’ the boundary
those functions on other subdomains with intersecting supports. There are some cases
which have to be taken care of: a function is supported near an interior boundary but
within one subdomain. Nevertheless its support is overlapped by the support of both
those functions living on the boundary and those wavelets in the neighboring subdomain
overlapping the boundary.

If the function itself is a wavelet overlapping an interior boundary not only those
functions living on the other side of the boundary and overlap the boundary must be
considered but also those functions which are fully supported inside the other subdomain
but whose support is overlapped by the support of the considered wavelet.

This is especially difficult at the corner where the three subdomains meet: here sup-
ports of functions overlap, where the subdomains are no neighbors in the sense that they
have a common boundary. At this point the function ColumnSet is not general but in
some sense restricted to the case of the L—shaped domain. Of course it will be another
task for the future to overcome this restriction.

To give an impression on the difficulty of identifying all these cases: this part of
the code takes about 1700 lines, whereas the complete adaptive algorithm including this
part takes about 4000 lines only. These numbers of course do not include the complete
construction of the wavelets and the other routines which existed before.
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The classes matrix_column and smatrix
These two classes are designed to contain entries of the stiffness matrix, calculated during
the adaptive algorithm. The class smatrix representing the stiffness matrix is organized
as a map of matrix_columns. Since our set A(A,.J) is based on level differences the
class matrix_column consists of a dynamical array of coeff_sorted_by_index. For each
active coefficient A the corresponding matrix_column contains all entries of the stiffness
matrix with respect to A(X,J), ie., all v € A(X, J),a(eh,,¢0y) # 0. If J changes, the

needed levels of coeflicients are added.

Calculation of the entries in the stiffness matrix
The major obstacle of our current realization is the computation of the entries of the
stiffness matrix, i.e., the evaluation of the bilinear form « from (2.1) for two wavelets:

Ay = a(¢u7¢u)' (37)

In our example this amounts to the integration of the product of two wavelets and their
derivatives. For scaling functions this is very easy whereas for wavelets this is not so clear
how to realize. In the uniform case one can use a simple trick: to set up the stiffness
matrix in the single scale basis as a sparse matrix, and use the fact, that one can represent
the stiffness matrix in the multiscale basis as the product of the entire stiffness matrix
with respect to the single scale basis with the multiscale transformation matrices for the
change of basis between single scale and multiscale representation.

Since in a uniform method we don’t need individual entries of the matrix, but for the
linear solver only the action of the stiffness matrix on a vector, this can be realized effi-
ciently, namely by first using the fast transformation from multiscale to single scale basis,
multiplicate with the (sparse) single scale stiffness matrix and use the fast transformation
back to the multiscale representation.

In our context this clearly is no suitable strategy. We plan to compute the entries
by numerical integration as it is already done for boundary integral equations, see [44].
Promising efforts to adapt the routines presented there are currently made.

But for the moment we still have to use the following provisional alternative: those
columns of the stiffness matrix needed during the adaptive algorithm are computed by
using the uniform method for the corresponding unit vector. The result is stored for
future use. Of course this leads to quite a limitation, both on the refinement depth
we can use and the time and memory consumption, which both are dominated by this
alternative. Nevertheless the adaptive algorithm proves to produce good approximations
and we believe it will show its full power when combined with an appropriate computation
of the bilinear form.

The class Problem

The class Problem is designed to define the problem we want to solve, i.e., the operator,
the domain, the righthand side, the type of wavelets used. It estimates the various
constants needed in the algorithm. Functions operating on this class are defined virtual,
i.e., they can be redefined in an inherited class. This makes it possible to have a common
interface, whereas the specific implementation can be changed. Therefore all functions
concerning the adaptive algorithm are implemented (with still some exceptions, of course)
independently of the specific problem at hand.
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4 Numerical Tests

We are now prepared to begin with first realizations of the above adaptive scheme. A few
introductory comments in this regard are in order. It is clear from the above developments
that a full exploitation of the conceptual power requires new algorithmic ingredients partly
designed from scratch. Specifically, for the problem dependent part little can be borrowed
from existing software. Consequently not all parts of the whole construction site could
be brought to a mature state so that we are still far from having a complete picture.
Nevertheless, we think that we have reached a stage where first conclusions are justified
even when accepting certain compromises to be detailed later in connection with concrete
cases. In fact, such a summary of affairs will provide valuable guidelines for further
developments.

Concerning the principal range of applicability, recall that a wide scope of problems is
covered including boundary value problems on open domains in Euclidean space as well
as boundary integral equations on closed manifolds. However, to keep the demands on
sophisticated geometry representations at a minimum we will confine here the discussion
to second order elliptic boundary value problems in one and two spatial dimensions. These
examples are simple but nevertheless very instructive. Recall that adaptivity is expected
to pay off best when the solution exhibits singularities. First we consider one 1D—model
problem where the singularities of the solution are only caused by strong gradients of the
right—hand side. To our knowledge, most of the earlier studies of adaptive wavelet schemes
are concerned with periodic problems in order to avoid the more complicated construction
of wavelets for domains. In this setting one can only expect data induced singularities
and we wish to confirm that the present scheme lives up to theoretical predictions in this
case as well. A detailed documentation will be given in Section 4.2.

The second class of examples is concerned with more sophisticated problems on non-
smooth domains in IR?. In these cases, there occur also singularities which are not gen-
erated by the right—hand sides but by the shape of the domain. Such examples have not
been studied before in the wavelet context. Therefore, the quantitative performance of
the scheme should be very instructive. In order to validate the results we will exploit the
theoretical knowledge about singularity solutions that is available for polygonal domains.
The algorithm, of course, does not assume any of such information as input. A detailed
description will be presented in Section 4.3.

Finally, the type of test problems also determines the demands on the central tools,
namely the wavelets. The prize that has to be paid for a relatively far reaching analysis
is to employ bases with sophisticated properties as detailed in Sections 2.2 and 2.3. It
is meanwhile understood how to construct wavelet bases with the desired properties for
essentially all cases of interest. Roughly speaking the treatment of operators of order
less than or equal to —1/2 requires a little more sophisticated constructions [32, 30].
For the situation considered here more candidates are available and the constructions in
[14, 15, 19, 31] would work equally well. They form all Riesz bases in L(f2) and induce
isomorphisms of the type (2.8) for Sobolev spaces H® for —1/2 < s < 3/2 well covering
the relevant case H' in the present context. For the particular implementation discussed
below we have chosen the construction form [31]. It is conceptually fairly transparent so
that the relevant information concerning the data structures is not too hard to extract.
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4.1 The Construction Principle

The construction of the wavelets in all subsequent applications is based on a common
principle which we will sketch first. It consists of three steps:

a) Construct dual pairs of generator bases
®; = {gjn:ke€A;}, & ={du:ke A},
ie.
(@, 0;) := (<¢j,k7§gj,l>)j7leA] =1L (4.1)
whose elements have local support
diam (supp ¢, x) ~ 277,  diam (supp qg]k) ~ 27, (4.2)

such that their spans

S(®;) :=span ;, S(&)j) = span ®;,

are nested ) )
S(0) C S(®s41), S(8)) C S(dy0). (43)

Si(®;), Sj(&)j) are referred to as primal and dual multiresolution spaces.
b) Find a stable basis \le of some complement S(\le) of S(®;) in S(P;41), i.e.,
S(®j41) = S(@)) @ S(¥y),  j = jo. .. (4.4)

c¢) Given such an initial decomposition project the initial basis \T/j into a basis W; which
is perpendicular to S(®;). The union ¥ := &; UU:Z, ¥; will be the final primal
wavelet basis satisfying the requirements from Sections 2.2 and 2.3.

This program can be carried out for various types of domains. We will use it for ) =
(0,1), the unit 2-cube and for domains 2 that are disjoint unions of smooth parametric
images of the unit cube (where in this order each stage builds upon the preceding one).
The point is that only steps a) and b) depend on the particular situation at hande while ¢)
can be achieved by a general mechanism which we briefly describe now. To this end, note
that (4.3) states that each coarse scaling function can be written as a linear combination
of fine scale basis functions. Viewing the bases as vectors whose components are the
individual scaling functions (4.3) is equivalent to saying that there must be #A;1; X A;
matrices M o, Mj,o such that

of =0T M, o = oF M, (4.5)

j+1 JENEALNE

Likewise there must be #A ;11 X (#A,41 —#A;) matrices Mﬂ such that \TIJT = CI)]THMM

and the stability of \le required in step b) is equivalent to saying that the composed
- v y o -1
matrices M ; := (Mo, M ;,) are invertible and both |[M;|| and |[M; || are uniformly
bounded. In this latter case Mﬂ is called a stable completion of M ;o [16].
Given a dual pair of generator bases ®;, ®; as above and some initial stable comple-

tions Mﬂ, biorthogonal wavelet bases can be obtained as follows [16].

25



Proposition 4.1 For ®;, Cf)j as above and some stable completion Mj,l of M ;¢ let éj =
o -1

M. . Then

J

~ T o
M]‘J = (I — ijoMj,O)ijl (46)
is also a stable completion and G; = Mj_1 has the form
~ T
G, - (]‘?J%O) . (4.7)
il

Moreover, the collections

~ ~ T ~
Uji=Mj @, W= M9, (4.8)
form biorthogonal systems,
(U, W5) =1, (¥;,0;) = (®;,¥;) =0, (4.9)
i.€. . . .
.= (I)jo U U \I/]‘, .= (I)jo U U \I/]‘, (410)
J>jo J>jo

are biorthogonal wavelet bases of the type needed in Sections 2.2, 2.3.

In practice, one needs not to perform the global matrix multiplications reflected by
4.6) to compute the entries of M ;. In fact, one can derive an alternative representation
p 3, ) p

[16]

¥

M]‘J — M]‘J —|— .2\4-]‘701—1]‘7 (411)

where the entries of L; can be individually identified as inner products of generator basis
functions, see (3.3) and (3.32) in [16].

In all applications step b) of the above road map will turn out to be easy, so that,
in summary, the main burden of the construction is shifted to the construction of dual
generator bases. In particular, all geometric information can be incorporated in this step.
The identification of the corresponding wavelets reduces to an evaluation of a relation like

(4.6).

4.2 1D—-Examples

As a first simple example we consider the second order boundary value problem

—% = f onQ=(0,1), (4.12)
u(0)=wu(l) = 0.

We have tested this example for two different right—hand sides. In the first case, f is
designed such that the exact solution is

u(:z;) _ 6—100(90—0.5)2 (4‘13)
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which, up to the numerical precision, indeed satisfies the Dirichlet boundary conditions.
In the second case, we choose f corresponding to the solution

w(e) =45 (1— e‘”’—l)7 (4.14)

e — 1

which also satisfies the boundary conditions. For our tests, we choose ¢ = 5.0 (although
other values for a are clearly possible). According to (2.6) we will be concerned with the
weak formulation

(', 0"y = (f,v), forall ve HLO,1). (4.15)

In the light of the discussion in Section 2.9 the following points should be kept in
mind when interpreting the numerical results to be reported on later. The solution has in
this case arbitrarily high pointwise smoothness and therefore has arbitrarily high Sobolev
regularity. Therefore one might conclude from the remarks in Section 2.9 at the first
glance that adaptive schemes may not work well in this. However, as also explained
in Section 2.9, adaptivity may pay off for functions having a very large Sobolev norm
while the relevant Besov norm is of moderate size. This present examples are expected
to be of this type. Due to the strong gradients of the solutions wu, their Sobolev norms
||u||gr increase dramatically as r grows. As we shall see later on, at least for the second
example the corresponding Besov norms turn out to be indeed significantly smaller. Some
quantitative estimates comparing Besov and Sobolev norms will be given in Section 4.2.2.

4.2.1 Wavelets on the Interval

Let us consider the interval @ = (0,1). The construction of wavelets on the interval is
meanwhile well understood, see, e.g., [1, 13, 28]. Here we refer to the construction in [28].
According to the above comments we mainly have to explain the construction of suitable
dual pairs of generator bases.

The common strategy is to start with a biorthogonal multiresolution analysis on IR.
Specifically we choose here a biorthogonal system from the family constructed in [17]
where the primal scaling functions consist of cardinal B—splines. For j > jo, where jo is
fixed (sufficiently large to disentangle end point effects) one builds ®; by keeping those
translates 2//2¢(27 - —k), k € Z, that are fully supported in [0, 1]. These will be referred to
as interior basis functions. For B-splines of order m one adds at each end of the interval
m fixed linear combinations of the 27/24(27- —k) in such a way that the resulting collection
®; spans all polynomials of order m on (0,1). One proceeds in the same way with the
dual scaling functions restoring the original order of polynomial exactness while keeping
#®. = #&;. At this point one can verify (4.2), (4.3) and (4.5), i.e., nestedness, locality
and refinability. However, only the interior basis functions inherit the biorthogonality
from the line whereas the boundary modifications have perturbed biorthogonality. One
can show though that in this spline family of dual multiresolution sequences one can
always biorthogonalize [28] ending up with pairs of generator bases ®;, Ci)j satisfying all
the properties mentioned in Section 4.1. In fact, there are additional noteworthy features
which we record now for later use.
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(i) Exploiting symmetry properties of the original scaling functions one can arrange
the bases to be invariant under the transformation * — 1 — z, a fact that will be
very useful in the bivariate case.

(ii) Ome can arrange that only a single primal and dual basis function differs from zero
at the end points of the interval.

(iii) According to the above comments, the bases ¢, Ci)j always consist of three parts
signified by the index sets Af, AJI, Af (and similarly for the dual collections) identi-
fying the left boundary, interior and right boundary basis functions. Only the size of
the interior sets AJI depends on 7. The number of boundary functions stays always
the same. Moreover, for each end point one has a fixed finite number (namely m
for the primal respectively m for the dual side) of scaling relations which can be
computed a—priorily and stored. The interior basis functions satisfy, of course, the
classical stationary refinement rule from the line case.

The following properties of the corresponding refinement matrices M ;o and Mj,o from
(4.5) can be inferred from the above facts.

1) It follows from (i) that the matrices M j,, Mj,o are invariant under reversing the
order of rows and columns.

2) The refinement matrices have fixed upper left and lower right blocks with the above
symmetry properties. Only the stationary interior block changes its size with grow-
ing level 7, see Figure 1.

My,

1‘1/’[]‘70 = A]

M R

Figure 1: Structure of refinement matrices for spline wavelets on the interval.

A detailed description of the software for constructing wavelets on the interval can be
found in [8]. It is based on the Multilevel Library presented in [6] and [7].

For the treatment of problem (4.15) the wavelet basis has to satisfy (2.8) at least for
H = H'(0,1). Therefore we choose the cardinal B-splines and their duals both of order
m,m > 2,

0 := Np(x), @:= Npam(z), (4.16)



as the starting point of the construction. Recall from (4.15) that the trial functions have to
satisfy homogeneous Dirichlet boundary conditions. There are two ways of incorporating
such boundary conditions that suggest themselves.

(I) In view of property (ii) above one can simply remove those basis functions from the

generator bases ®;, ®; that do not vanish at the end points of the interval. Obviously,
the resulting collections are still biorthogonal and span appropriate subspaces of

HL(0,1), see [19, 15, 31].

(IT) Following [31], remove the two end point boundary functions from ®; that do not
vanish at 0 and 1 but discard two interior basis functions from the dual collection
&)j. It can be shown that the resulting sets can again be biorthogonalized retaining
all the above properties [33]. Note that now only ®; C Hj(0,1) while S(&)j) still
contains all polynomials of order m on the whole interval (0,1).

To construct now wavelets for either choice one can apply the recipe from Section
4.1. In fact, one easily identifies an initial stable completion that works in both cases
simultaneously. One can just take as a complement basis the hat functions corresponding
to new knots on the next refinement level. This is often referred to as hierarchical basis
[51]. The matrices Mj,l and the inverses éj are very sparse and explicitly given. The
point is the following

Property B: The initial complement basis functions ;ZVJM vanish at the end points of (0,1).

Biorthogonal wavelets are then obtained for (I) and (II) by (4.6) in Proposition 4.1.
Again the realization of boundary conditions is completely reduced to the construction of
generator bases only.

Remark 4.2 In both cases (1) and (II) it is easy to determine the adapted refinement
matrices which retain the above mentioned properties. The modification of M ;¢ is simply
discarding the first and last rows and columns. Thus the effect of either option on the
corresponding biorthogonal wavelets is the use of the respective versions of Mj,o in (4.6).

While (I) is most simple and immediate, the option (II) appears to be conceptually
preferable for the following reasons. Quite in line with the structure of the dual H~*(0,1)
of H3(0,1), the functionals on HJ(0, 1) should not be constrained at the end points. This is
supported by the following simple observation. Biorthogonality of the wavelets combined
with the fact that in (II) the dual system retains full polynomial exactness immediately
ensure that the wavelets have vanishing moments of order m on all of (0,1)

(Pjr) =0, P €lly. (4.17)

Hence when the right-hand side is very simple, e.g., f = 1 on (0, 1), all right hand-side
data (f, ;) arising in the Galerkin scheme except on the scaling function level j, vanish
in the case (II) while infinitely many wavelet coefficients build up in the case (I) even if
f is very smooth near the end points. For a detailed discussion of related effects we refer
to [24]. Therefore we used (II) in the present tests.
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Remark 4.3 Since in the present case H = H}(0,1) the diagonal matriz in (2.8) can
be chosen as wy := 2™ We have to verify norm equivalences of the form (2.8) in the
presence of boundary conditions, but the results in [33] e.g. imply that the wavelet bases
for either choice (I) or (1) satisfy the norm equivalence (2.8) for D as above. Moreover,
for (II) the cancellation properties (2.13) holds for m = 2 throughout (0,1). The fact
that these cancellation properties deteriorate somewhat near the end points for option (I)
should, however, not destroy the overall compressibility property (2.22).

Moreover, the following fact established in [31] will be useful.

Remark 4.4 The wavelet bases can be arranged to share the symmetry properties (i) of
the generator bases.

One can see from (4.6) that the two scale matrices M, Mj,l in the definition of
the biorthogonal wavelets have the same principal 3-block structure as the corresponding
refinement matrices shown in Figure 1.

In Figure 2, we have depicted two members of the resulting set of scaling functions
and wavelets, respectively, one in the interior and one which intersects the boundary.

(N
N

Figure 2: An interior and the at the border non vanishing function, for scaling functions
and wavelets.

4.2.2 Discussion of Results

To be able to interpret the results, we have to identify first the range of asymptotic opti-
mality permitted by the above choice of bases. Theorem 2.5 implies that the asymptotic
behavior depends on the compressibility of the matrix A. In particular, the parameter s*
defined in (2.21) would provide a range where optimality is guaranteed. However, in the
present situation this criterion is too weak. In fact, we know from [24] that the parameter
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o in (2.19) must satisfy ¢ + o < v where v bounds the Sobolev regularity of the wavelets.
In this case t = 1,7 = m — 1/2 which gives 0 = m — 3/2, i.e., s* = m — 2. Therefore, in
the case ¢ = Ny, we end up with s* = 0 which is clearly useless. Of course, the condi-
tion (2.21) is only sufficient and in this case a more detailed analysis of the compression
properties is necessary. In fact, for our special case, a sharper result can be shown.

Lemma 4.5 Let A denote the stiffness matriz to (4.12) obtained by B-spline wavelets of
order m as basis functions. Then for any € > 0 the following compression estimate holds:

A — Ayl < 2770329 ¢

Y

. A e A forall s <m—3/2. (4.18)

Proof:  Eq. (4.18) can be established directly by using a version of the Schur lemma:
if for the matrix B = (b n/)x ves there is a sequence wy, A € J and a positive constant ¢
such that
Z |b/\7/\/|u)/\/ < cw, and Z |b/\7/\/|u)/\ < cwyr, )\, = j, (419)
NeT \eT
then |B|| < ¢. We want to use (4.19) for the sequence wy = 1 for all A € J. Let us briefly
sketch the arguments. The first step is to estimate the entries in the stiffness matrix
corresponding to (4.15). Ignoring for the moment the boundary effects, recalling that
derivatives of wavelets are again wavelets, see e.g. [27], and using the vanishing moment
property of wavelets, we obtain for any polynomial Py, on )/ of degree < m — 1 and

iz

dpy diby,
<%7 dl‘ > - P/\'? dl‘ >

- oo
mm Tl
d
-
dz La(@y)

Since %@ZJA € H°, s <m —3/2, a classical Whitney type estimate yields therefore

<%7d%’> < 9i'9=i'(m=3/2-¢) )

dr = dx ~ dz Fpm—32—e
< 2T
< 97 9=5'(m=3/2=€)9j(m—1/2=¢)
< (=1 (m=3/2=) 95 +7"

so that, taking the preconditioning matrix D into account, we get
x| g 20T s (4.20)
The case j' < j can be treated analogously,

|ay | < 20 m=3/2-9) J <. (4.21)

Y
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However, the crude estimates (4.20) and (4.21) do not tell the whole truth. Indeed, if
we combine the fact that the generator is a cardinal B—spline with the vanishing moment
property of the wavelet basis, we see that for fixed values of |A|, || a lot of entries |ay |
are zero. Roughly speaking, the non vanishing entries correspond only to the wavelets ¢/
whose supports intersect the singular support of ¢,. It can be shown that the number of
these entries does not depend on the refinement level. Consequently, we get

ST Jayy| g 27lEdlm=s/2me) (4.22)
V=5

According to (2.23) and (4.19), we have to show that

S law] g 27, (4.23)

li=d'|>J |N]=4"

Let us again first consider the case j' > j. By using (4.22), we obtain

S Y Ja < i QU= m=3/2m6) < 9ilm=3/2=0)g=(H4i)m=3/2=0) < g=Tm=3/2=0),
J=i>J | N|=5' 7=5+J
(4.24)
The case j* < j can be treated analogously. The second condition in (4.19) can be checked
in a similar fashion and (4.18) is established. .

In view of the pivotal role of the approximate fast matrix/vector multiplication, we
begin with some tests of this ingredient. Of course, accessing efficiently the relevant matrix
entries when performing the telescoping expansion (2.50) is one of the central problem
dependent interfaces. In order to obtain a quick impression of the quantitative behavior
of such a routine we have employed a very provisional strategy, namely to precompute
a possibly large section of the infinite matrix A from (2.14). This can be done by first
determining a full scaling function representation of the stiffness matrix followed by a
wavelet transform. We can then simply call the entries needed in (2.50). Of course, this
is a preliminary step that allows us to quickly check accuracy. The error estimate (2.51)
indicates that the approximation power of the fast/matrix multiplication is determined by
the parameter s* which, according to (4.18), is given by s* = m — 3/2. This is confirmed
by our numerical tests. In Figure 3, the error ||[Av — w;]||s, is plotted in a logarithmic
scale. We see that the slope of the resulting curve is indeed approximately m — 3/2.

According to Theorem 2.5 we can expect that the error in approximating the solution
u to (4.15) decays at best like N=0"=3/2) This is confirmed by the numerical results
displayed in the figures below. The first pictures in Figure 4 and 5 show the current
Galerkin approximation u, and the corresponding error u — u, for the first example
(4.13) for the wavelet basis associated with ¢ = Ny, ¢ = NZ?- One can see that the
error decreases very rapidly, as expected. In the following pictures in Figure 6, the sets
of wavelets selected at the respective stage by the adaptive algorithm are plotted. These
wavelets are sometimes called the active ones. We should mention, that here we have
chosen as Ag the set of indices of all scaling functions on the coarsest level, because this
case shows some instructive effects in the later choice of indices by the algorithm. Its
qualitative performance when choosing Ag = () however, is the same.
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Error of Fast Matrix-Vector Multiplication

5 T T T T T T T T
*
0 - -
d=2,dt=4, s=-0.59
*
*
N
= &
i
5 st f
=<
o
o
d=3,dt=3, s=-1.6
=10 d=4,dt=4, s=-2.3
_15 | | | | | | | |
0 1 2 3 4 5 6 7 8 9

Figure 3: The slope of error reduction.

A few further details shed some light on the way the scheme works. We see that
although the problem and the wavelet basis is symmetric with respect to the point x = 0.5,
sometimes the wavelets on a given refinement level are chosen in a non symmetric way. If
for example all coefficients are equal, the N largest coefficients are not uniquely determined
and the best N-term approximation is realized by different possible choices, see Figure 6.
Also sometimes a dyadic level is skipped when expanding the set of active wavelets. In
the course of further refinements, however, symmetrization and filling of ‘gaps’ gradually
takes place.

One more comment concerning the behavior of the adaptive scheme is in order. We
see that the adaptive algorithm in fact observes the strong gradient of the solution u and
adds wavelet coefficients in these regions. Therefore the location of the significant wavelet
coefficients of the approximate solution adequately reflects the features of the right—hand
side. Consequently, the active wavelets are by no means equally distributed.
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Figure 4: The first three approximate solutions and differences to
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Figure 5: The next three approximate solutions and differences to exact solution.
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Figure 6: The sets of active indices for the first six iterations.
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Index set of the solution

Figure 7: Index set of the exact solution

We expect that the performance of the adaptive scheme can be improved dramatically
by increasing the smoothness of the wavelet basis. Indeed, since o in (2.21) is directly
related with the regularity of the basis, the parameter s* which determines the perfor-
mance of the algorithm can be made larger in this way, compare again with (4.18). At
this point, we want to emphazise that in contrary to linear schemes the approximation
order of the adaptive scheme is not given by the polynomial exactness of the multireso-
lution analysis. We have also made some quantitative tests with smoother wavelet bases.
From Theorem 2.5 we know that for s < s* the algorithm should perform with the same
order of approximation as the corresponding best N—term approximation. In Figure 8
we have depicted the error for both, the best N—term approximation (continuous line)
and the adaptive algorithm (diamond-shaped line), as N increases, in a logarithmic scale.
We see that both errors show almost the same behaviour. We also see that the adaptive
algorithm indeed performs better for smoother wavelet bases (i.e., for larger values of s*),
as it should.

We performed similar numerical tests also for the second example. The results are
depicted in the Figures 9 and 10. As before, the pictures show the current Galerkin ap-
proximation u, and the corresponding error u —u,. We used the wavelet basis associated
with ¢ = N3, @ = N373. We see that again the error decreases very rapidly as expected.
The reader should note that the errors are depicted in different scales!
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adaptive algorithm vs. best N-term approximation
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Figure 8: Error of the adaptive algorithm and the best N-term approximation .
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Figure 9: The first three approximate solutions and differences to exact solution, second
example
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Figure 10: The next three approximate solutions and differences to exact solution, second
example
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Figure 11: The sets of active indices for the first six iterations.
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In Figure 12, the performance of the adaptive algorithm compared with the best N—
term approximation is illustrated. Again both algorithms show almost the same behavior.
We also observe that the performance of the algorithm gets better as the smoothness of
the wavelets increases.

Adaptive algorithm vs. Best N-term approximation
10 T T T T

— m=mt=2 |

— m=mt=3 ]

107° . M | . | .
10 10 10 10

Figure 12: Comparison between best N-term approximation and adaptive algorithm.

Let us end this section with some remarks concerning the comparison of adaptive and
nonadaptive schemes. As we have already seen, for both examples studied above, the
wavelet coefficients chosen by the adaptive algorithm are by no means equally distrib-
uted. This indicates that for these example we indeed gain efficiency by adaptive schemes
although the solutions are arbitrary smooth in the Sobolev scale. As already stated above,
the order of approximation that can be achieved is limited by the parameter s*, and the
best we can expect in our case is an estimate of the form

lu —ua, || < (FA;) 72,

For a uniform refinement scheme we obtain the same order of approximation for functions

in H™=12(0,1), i.e.,

inf o —villm@ < N0l o, (4.25)

v €S ~ J

compare with (2.37). We therefore gain efficiency if the H™~'/2-norm of the solution u is
large when compared with the corresponding norm in the Besov space Bfi_l/z(LT*(Q)),

/7" =m —3/2+1/2 = m — 1. For the first example, it turns out that these two norms
are only slightly different, whereas in the second example, they differ dramatically.
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The norms of the latter case are depicted in the following figure:

m | Y2 B (L))
151673 | 6.73
2 1394 | 145
2.5 | 240 A7.8

3 1617 275

We have estimated the norms by employing the norm equivalences (2.11), i.e., by com-
puting weighted sequence norms of wavelet expansions. The difference between Sobolev
and Besov norms gets plausible if we take a look at the right—hand side and the exact
solution for the second example, see Figure 13:

u ~ (exp(ax)-1) * (1 - (exp(ax)-1)/(exp(a)-1) ), a=5.0
1 T T T T T

091

0.8

0.7

0.6

0.5F

0.4

0.3

0.2~

0.1

0 T I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f ~ exp(ax) * (4*exp(ax)-1-exp(a)), a=5.0
350 T T T T T

300

250

200

150

100~

50

ok

-50 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 13: The exact solution and the right—hand side for the second example

In contrary to the first example, the right-hand side of the second example does not
satisfy the Dirichlet boundary conditions. This causes the boundary layer of the solution
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u. This layer increases the Sobolev norm but does not influence the (weaker) Besov norm
too much.

The above comparison of Sobolev and Besov norms indicates that there is indeed some
gain of efficiency for adaptive schemes possible for this example. Therefore we made some
numerical tests in which we compared our adaptive algorithm with a uniform scheme.
The result is depicted in Figure 14.

Adaptive algorithm vs. uniform refinement, m=mt=3

10° ¢ " T " T "
f —— N-term approximation |1
[ ¢ adaptive algorithm
X b * uniform refinement
100 ¢
10° |
107
lO_Zg
1073?
1074?
10°F
10’6 . . N | . . A | -
10° 10 10° 10°

Figure 14: Comparison between adaptive algorithm / uniform refinement.

As one would expect, the slope of the curves is indeed the same. Nevertheless, since
the norms differ so much, the line corresponding to the linear scheme lies high above the
one corresponding to the adaptive scheme. Therefore we have indeed a spectacular gain
of efficiency.
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4.3 2D—-Examples

Our next test case is the classical Poisson equation on an L-shaped domain Q in IR?,

—Au = f on £, (4.26)
ulpa = 0,

as shown in Figure 15.
This problem is interesting because now the solution may exhibit singularities solely

2

-
J

N

23

Figure 15: The L-shaped domain.

caused by the shape of the domain even for smooth right hand sides. In order to be able
to validate later the numerical results we start by briefly recalling some basic facts on the
regularity theory of (4.26).

4.3.1 Regularity Theory for Polygonal Domains

It is well-known that the solution u to (4.26) on a polygonal domain may exhibit singu-
larities in the vicinity of the vertices, especially when the domain is not convex. Therefore
the Sobolev regularity of the solution will not be very high, even if the right-hand side
f 1s smooth. According to the discussion in Section 2.9 this is a situation when adaptive
schemes are potentially superior to preset discretizations. In fact, since € is obviously
a Lipschitz domain, Theorem 2.7 tells us that the regularity of w in the specific Besov
scale B (L.+(Q)), 1/7* = (a—1)/2 + 1/2, will in general be higher than in the Sobolev
scale. Moreover, for this specific model problem, much more can be said. In fact, for
polygonal domains in IR?, the singular parts of the solutions which are responsible for
the decreasing Sobolev regularity can be classified. The first results in this direction were
proved by Kondrat’ev [43], see also [41] and [35].

Let © be a simply connected polygonal domain in IR?. The segments of 9 are denoted
by Iy, Iy open, [ = 1,..., N, numbered in positive orientation. Furthermore, V; denotes
the endpoint of I'; and w; denotes the measure of the interior angle at V;. Moreover, we
introduce polar coordinates (r,6;) in the vicinity of each vertex V. Finally, (; denotes a
suitable C'*° truncation function. The following theorem is quoted from [41].
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Theorem 4.6 Suppose that the right-hand side f in (4.26) is contained in H"(Q) for
some > —1. Furthermore, let us assume that mm[w; # p+1 for alll =1,..., N, m > 1.

Then the solution u to (4.26) has an expansion u = ugr + ugs, where ugp € H***(Q) and

N
us =2, Y, CuSims A= mr/w, (4.27)

J=1 0<Al,m<ﬂ'+1

where the functions Sy, are given by

Sim(r,0) = Q(rl)r;l’m sin(mmf/w), when A, s not an integer, (4.28)
Sim(r,0) = Q(rl)r?l’m[logrl sin(mmf;/w;) + 6; cos(mmb;/w)] otherwise.(4.29)

We see that the solution can be decomposed into two parts. The regular part ug only
depends on the right—hand side and can be made arbitrarily smooth by increasing the
smoothness of f. By using suitable embeddings, it turns out that ugr € BX%(L.+()), 1/7* =
(o = 1)/24+1/2, a < g+ 2. On the other hand, the singular part ug does not depend
on f but describes the influence of the domain, and we see that the order of convergence
that can be achieved by an adaptive scheme essentially depends on the Besov regularity
of ug. From Theorem 2.7 we already know that this regularity is high enough to justify
adaptive schemes. Nevertheless, for our special case, a much sharper result is available.
Quite surprisingly, it turns out that ug has arbitrarily high smoothness in the nonlinear
approximation scale of Besov spaces [22].

Theorem 4.7 Any function S, defined by (4.28) satisfies

1 -1 1
Sim € BA(Ln(Q),  for all a>0,—::<a2 +§). (4.30)
T
By combining Theorem 4.6 and Theorem 4.7 we therefore obtain for f € H*(Q)
1 -1 1
w€ BL(L+(R), O<a<p+2,  —= (ag +§), (4.31)
T

see again [22] for details. The relations in (4.31) imply that for sufficiently smooth right—
hand sides adaptive schemes can in principle perform with an arbitrarily high order of
convergence — which again calls for high order wavelets!

Motivated by these observations, in our tests the right-hand side f is designed in such
a way that the solution w is exactly the ‘worst’ singularity function which, in the case of
the L—shaped domain, is obtained by inserting m = 1, w = 37/2 into (4.28), i.e.,

u=381(r0) = §(r)r2/3 sin(260/3). (4.32)
It remains to fix the truncation function (. We set
eV it r >0,
0 else,

and define (3/4 B )
C“%:w@—1mymmw4—m‘

The resulting singularity function is depicted in Figure 16.

46



Figure 16: The solution to our model problem.

The corresponding right-hand side is constructed by applying the Laplacian to w.
Observe that the function u is harmonic in the vicinity of the critical vertex. Therefore
the right—hand side does not ‘see’ the strong gradient of u near this vertex which confirms
that the singularities of u are in fact partially generated by the shape of the domain, see
Figure 17. To our knowledge so far adaptive wavelet schemes have not been applied yet

to situations of this type.

Figure 17: The right—hand side.
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4.3.2 The Composite Wavelet Basis

The problem dependent part of the implementation requires again choosing suitable
wavelet bases. In principle, several constructions are meanwhile available [19, 14, 31, 32]
which qualify for the case at hand. Here we use the so—called composite wavelet basis from
[31] because of a few technical conveniences.

It is clear that tensor products of wavelets on the interval yield wavelet bases on
O :=(0,1)%. In our situation, the domain is a union of cubes which fits into the following
framework.

A typical way to construct wavelets on more complicated domains is to use a do-
main decomposition technique: the domain ) of interest is divided into non overlapping
subdomains £);

=

Q=1JQ, unQ; =0,i#7. (4.33)

=1

Here each €, is a smooth parametric image €; = x,(0) of the unit cube where in general
ford <d
kIR — RY : 0 = Q.

Moreover, suppose that ['; ; := 0, N, is the common interface of ; and ;. For the later
construction of global wavelet bases on () the parametric mappings x; have to satisfy the
continuity conditions

w7 (Lig) = p(s7 (D), (4.34)

where p is a rotation.

In order to construct wavelet bases on ) we follow the recipe from Section 4.1, i.e., we
have to construct first dual pairs of biorthogonal generator bases on the composite domain
Q. This in turn is fairly easy by stitching together parametric liftings of generator bases on
the unit cube. This is essentially due to two facts. Firstly, the boundary properties (ii) of
the univariate ingredients in Section 4.2.1 confine the gluing process to very few functions
associated with the domain. Secondly, the symmetry properties from Remark 4.4 and (i)
in Section 4.2.1 leaves convenient flexibility concerning invariance under rotations in the
parametric mappings £;. We will detail this a bit by the following remarks.

To avoid confusion we will use the superscript O to denote functions on 0. As men-
tioned before, on the reference domain we use tensor products of the wavelets and scaling
functions constructed in Section 4.2.1.

We use multiindices k = (ki1,. .., kq) to describe the scaling functions

i =ik O @iy, kel;j:=1 x--- x Iy, (4.35)

on 0.
The next task is to assemble dual pairs of generator bases on the domain by com-
posing those on the subdomains. Defining

(@) = 0T (@), @ e (1.36)

we have to glue those scaling functions across interfaces of subdomains which do not
vanish on these interfaces. To identify these functions it is
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P

Figure 18: Matched and rescaled scaling functions at the interface.

convenient to associate grid points with the indices of our scaling functions. This can
be done by defining for k € I; and some 0 < xj < 1:

0, ¢;k(0)#0,
q(k) = { 1, %‘,k(ll) # 0, (4.37)
and for k € I,
q(k) = (q(kr).. .. q(ka)). (4.38)

Thus a function goék is supported inside a single subdomain €, if and only if ;(¢(k)) €
Q;\ 09;.

The corresponding grid points on the global domain are now defined using the para-
metric mappings and the grid points defined before:

€= €(i,k) = rilq(k)). (1.39)

For all points £ on a common boundary of more than one subdomain, this { has several
representations. If r(¢) is the number of subdomains §2; where ¢ belongs to, we have

€ = raq(k) = ... = ryey (k). (4.40)

The idea is best illustrated in the univariate case. In fact, in the example presented in
Figure 18, where ki(2) :=  — 1 and k2(2) = = we have 0 = £ = k1(1) = £2(0) and
r(§) = 2. At this point essential use is made of the property (ii) in Section 4.2.1 according
to which for both ends of the interval only one function does not vanish on the boundary.
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Moreover, the symmetry property (i) ensures compatibility of these matchings, recall
(4.34).

The same principle works for matching across multivariate cubical subdomains. The
scaling functions on the domain ) are now defined as follows:

pie(@) = ()P pl(), we (4.41)

The analogous construction holds for the dual system providing the global generator
bases CI)?, &)? on ) which are globally continuous and hence suitable for the Galerkin
discretization of the present second order problem.

The resulting system is biorthogonal with respect to the modified inner product

N

(v,w) 1= (vok;,wo k). (4.42)

=1

In fact, biorthogonality in the interior of each subdomain is trivially retained. Using an
appropriate scaling of those functions glued across an interface or around a vertex (e.g.
by r(€)7Y? where r(€) is the number of subdomains overlapped by the basis function
associated with £) biorthogonality is restored for those basis functions as well [31], compare
Figure 2 and Figure 18. In Figure 19 we present a typical scaling function overlapping
the common boundary of two subdomains. One can see that for this case the function
is the tensor product of the usual hat function (in y—direction) with the matched one
dimensional function in z—direction shown in Figure 18.

Note that, on account of the assumptions on the parametric mappings x;, the modified
inner product (4.42) is equivalent to the canonical inner product on € in the sense that

) ~ (). (4.43)

The Gramians of the mappings «; allow us of course to identify an explicit Riesz map
R: Ly(2) — Lo(R2) such that the pairs CI)?, R&)? are now biorthogonal on € with respect
to the standard inner product (-, -). The fact that this Riesz map is a multiplication by a
piecewise smooth but in general globally discontinuous function explains why these bases
are less suitable for operators of order < —1/2 where constructions like [32, 30] still work.

So far we have accomplished step a) in Section 4.1. Step b) consists of identifying a
suitable stable completion along with the corresponding two-scale matrices. There are
several possibilities described in [31] which work for generator bases of any order. For
simplicity our first tests will be based again on tensor products of piecewise linear trial
functions and corresponding duals of lowest possible order, see Section 4.2.1. In this case
the initial stable completion can again be based on hierarchical complement functions.
What matters, in view of £4.34),v is Property B which now facilitates an easy identification
of the initial ingredients M ;;, G, for initial stable completions on (2, retaining the favor-
able symmetry properties as in Remark 4.4. Corresponding biorthogonal wavelets (with
respect to the modified inner product (4.42)) are then again obtained by (4.6) or (4.11).

Of course, again homogeneous Dirichlet boundary conditions have to be incorporated
in the trial spaces. As before we have the options (I), (II) described earlier. Recall that
the effect on the wavelet bases is merely a different choice of Mj,o in (4.6). As in the
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Figure 19: Scaling function supported in two subdomains.

1D—case wy = 21 is a suitable choice for the diagonal scaling matrix D in (2.8). Using
the results in [31, 33] ensures that then the norm equivalence (2.8) holds for H = HJ(Q).
Moreover, concerning the cancellation properties and the compressibility of the operator
representation A the same statements as in the 1D-case apply so that the bases satisfy
all the requirements from Sections 2.2 and 2.3. One should note though that when the &;
are not just translations and rotations the cancellation properties (2.13) would deteriorate
near the subdomain interfaces due to the modification of inner products. To avoid that
one can use the constructions from [32, 30] which realize biorthogonality with respect to
the standard inner product. In particular, in [32] conditions like (4.34) are not needed.

Note that all geometric information has been absorbed in the construction of the gen-
erator bases CI)?, &)? The wavelets are obtained by an evaluation, in principle, without
a need to discuss different types of vertex situations in the partition of 2. This together
with a stronger exploitation of symmetry (to cope with (4.34)) distinguishes the construc-
tion in [31] from [14], say. In either case, the principal situation from the univariate case
persists, although with significant technical complications. The local index sets entering
the encoding of the global index sets (which in turn provide the links to the STL libraries)
consist now of more distinct groups depending on the multiplicities r(¢).

In all applications it is of great importance not to destroy the tensor product structure,
because exploiting this structure can significantly reduce computational costs compared to
non tensor product structures. Computing the entries of the stiffness matrix for example
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would only be possible for one or two wavelet levels because for larger levels the memory
consumption would have been too large. Using the tensor product structure we are able
to compute up to level nine which corresponds to a uniform grid of 784385 unknowns.

For the L—shaped domain the routines for constructing the wavelets are implemented
by Vorloeper and described in detail in [50].

4.3.3 Discussion of Results

The test case described above is interesting for the following reason. Starting with the
emty set, the residual in the first step is only influenced by the wavelet coefficients of the
right—hand side. These wavelet coefficients are small near the vertex, due to the fact that
u is harmonic there. Now in the next steps the adaptive scheme has to ‘recognize’ this
deficiency and add wavelet coefficients at the ‘right” places, namely in the vicinity of the
vertex to resolve the there strong gradient of the solution appropriately.

Remark 4.8 Recall that u has arbitrary high regularity in the Besov scale whereas for the
Sobolev scale a direct verification shows that w € H*(), a < 5/3. Consequently, uniform
grids yield at best a convergence rate N~>/6.

In the Figures 20 and 21 we have depicted both, the approximate solution and the
error to the exact solution. It can be seen that the adaptive algorithm indeed behaves
like expected. First coefficients are added to reduce the error where strong gradients are
induced by the right-hand side whereas in the subsequent iterations the error is reduced
near the vertex, so that after five iterations the error is equally distributed. We see that
similar to the 1D test problem the error again decreases very rapidly. In Figure 22 we have
also depicted the sets of active wavelet coefficients corresponding to the fifth iteration of
the adaptive algorithm. The first picture shows the set of coefficients corresponding to the
scaling functions whereas in the remaining three we have treated the three different types
of wavelets separately. It is shown in detail which coefficients are added on each refinement
level. We see that the symmetry of the exact solution is reflected by the similarity of the
pictures in the upper right and lower left corner. These two pictures clearly correspond to
tensor product functions of wavelet/generator and generator/wavelet type, respectively.

Finally, we have also compared the performance of the adaptive algorithm with the
best N—term approximation which can be computed very easily by collecting the N biggest
wavelet coefficients. In Figure 23, we have depicted the errors as N increases. The con-
tinuous line corresponds to the best N—term approximation. We see that the matching
between N-term and adaptive approximation is already pretty good. Indeed, the per-
formance is in some sense better than expected. Observe that the wavelet basis is not
very smooth so that no meaningful predictions can be made from the theoretical point
of view. Again we expect that the approximation rate of the adaptive scheme can be
dramatically increased by using smoother wavelet bases, for then the parameter s* which
determines the order of approximation grows. In fact, since in our case the solution u has
arbitrary high Besov regularity, the order of convergence can also be made arbitrary high
by increasing the smoothness of the wavelet basis. This topic will be studied in the near
future.
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discrete solution (adaptive), N = 24 diff

of i solution (adaptive), N = 24

- 0s 06 04 02 0

discrete solution (adaptive), N = 75 diff

of i solution (adaptive), N = 75

0.35

discrete solution (adaptive), N = 208 diffe of i solution i N =208
0.6,
0.35
0.5,
0.3
0.25
0.2

Figure 20: The first three approximate solutions and differences to exact solution.
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discrete solution (adaptive), N = 446 diffe of i solution il N = 446

0.35
0.3

0.25

discrete solution (adaptive), N = 776 diffe of i solution i N=776

0.35
0.3
0.25

discrete solution (adaptive), N = 1188 diffe of i solution 0 N=1188

0.35
0.3
0.25

Figure 21: The next three approximate solutions and differences to exact solution.
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Figure 22: Index sets for the fifth iteration.
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Error of best N-term approximation / adaptive algorithm
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Figure 23: Comparison of best N—term approximation and adaptive algorithm.
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