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[2, 3, 4, 5, 9, 10, 11, 12, 48, 49℄. Suh hopes and numerial experienes are, however,ontrasted by negative statements proved in the ontext of omplexity theory. In fat,on a rigorous level not muh has been proved about the eÆieny of adaptive �nite ele-ment shemes in omparison with a-priorily �xed meshes. Only reently, in the ontext ofwavelet disretizations it ould be shown in [24℄ that a ertain adaptive sheme onvergesfor a wide lass of ellipti operator equations without any a-priori assumptions on the un-known solution suh as the saturation property. Aside from the guaranteed onvergeneit is interesting that the sheme works for di�erential opertors as well as for singular inte-gral operators. A omparable result in the �nite element ontext onerns a muh smallersope of problems, namely bivariate pieewise linear �nite element disretizations for Pois-son's equation [39℄. However, in either ase nothing an be said about the atual speedof onvergene so that onlusions on the eÆieny ompared with a-priorily �xed dis-retizations remain open. Here speed means to relate the number of degrees of freedominvoked by the adaptive sheme to the ahieved auray of the solution. Substantialprogress ould be aomplished then in [18℄ in the following sense. There an adaptivewavelet sheme has been developed whih is shown to be asymptotially optimal. Thismeans that it produes the same rate of onvergene as a best N{term approximation forthe same lass of ellipti operator equations referred to above. Moreover, the number ofoating point operations required to ompute the approximate solution stays proportionalto the number N of wavelets needed to approximate the solution at that level of auray.The proof of the latter fat is onstrutive in the sense that the algorithm is desribed tothe level of detail that the number of arithmeti operations an be rigorously estimated.The result is interesting from two points of view. Sine the rate of best N -term ap-proximation an be haraterized by Besov regularity [25℄ one an see that, in priniple,suh an adaptive sheme is asymptotially more eÆient then uniform shemes exatlywhen the solution laks Sobolev regularity relative to Besov regularity. On the other hand,the results are asymptoti while a more quantitative assessment of the performane is ofequal interest in pratial appliations. Moreover, the analysis of the sheme suggestsnew algorithmi ingredients entering on an approximate fast matrix/vetor multiplia-tion ombined with sorting entries of sequenes. Therefore the eÆient realization of theseingredients and the development of suitable data strutures that support best the on-eptual strenght of the sheme in pratial realizations is a hallenging task. In fat, therealization of that task seems to be essential for a quantitative validation of the theoretialresults whih after all are phrased in a neessarily simpli�ed omputational model.This report is to desribe the developments of suh algorithmi ingredients and orre-sponding data strutures. It is organized as follows. In Setion 2, we briey review themain theoretial fats needed for the understanding of the algorithm. So far, we haveassumed that the wavelets have ertain properties, namely they are loal, they indueisomorphisms between ertain sequene and funtion spaes and they have ertain an-ellation properties. We are able to extrat from theory the essential requirements onimplementation. It is worth stressing that a fairly large part of data struture, namelyeverything onerned with sorting and organizing arrays, an be kept independently ofthe partiular appliation. Setion 3 is devoted to a brief outline of these strutures. Themain interfae to a speial appliation resides on a proper enoding of the wavelet indexsets whih impliitly also enodes the topology of the domain. This part of the implemen-2



tation is tied to the type of appliation treated in Setion 4. There we desribe the typeof boundary value problems in one and two spatial dimensions, that we are onernedwith. In eah ase we briey indiate whih type of wavelets an be used to an extentneeded to see the requirements on the enoding of indies. The examples are designed tobring out the e�ets of di�erent soures of singularities whose ourrene, aording to thetheoretial part, makes adaptive shemes more eÆient than nonadaptive ones. While inthe 1D ases the singularity is indued by the right hand side data we onsider in the 2Dase a problem with smooth right hand side where the singularity in the solution omesfrom the shape of the domain. Moreover, we outline the problem dependent algorithmiingredients.2 Theoretial Bakground2.1 The ProblemSuppose that H is a Hilbert spae with norm k � kH indued by the inner produt h�; �iand that the selfadjoint operator A : H ! H 0, where H 0 is the normed dual of H, isH-ellipti, i.e., a(v;w) := hAv;wi <� kvkHkwkH and a(v; v) � kvk2H: (2.1)Here a <� b means that a an be uniformly bounded by a onstant multiple of b andvie versa independent of any parameters on whih a and b may depend. a >� b is to beunderstood in the analogous fashion and a � b means that a <� b and a >� b. . Clearly(2.1) means that A is an isomorphism from H to H 0, i.e.,kAvkH 0 � kvkH; v 2 H: (2.2)Thus the equation Au = f (2.3)has for any f 2 H 0 a unique solution whih will always be denoted by u. Typial examplesare seond order ellipti boundary value problems with Dirihlet boundary onditionson some open domain 
 � IRd. In this ase H = H10 (
) and H 0 = H�1(
). Otherexamples are obtained by turning an exterior boundary value problem into a singularintegral equation on the boundary � of the domain. For a formulation in terms of thesingle layer potential operator one obtains for instane H = H�1=2(�) and H 0 = H1=2(�),see [20, 45℄ for details. Thus H is typially a Sobolev spae andH � L2 � H 0 or H 0 � L2 � H:We sometimes write then H = H t to indiate the Sobolev regularity although often alosed subspae of the full Sobolev spae determined by boundary onditions is meant.H�t is always the dual of this partiular subspae. One further property of A will matterunless A is a di�erential operator with regular oeÆients. Whenever A has a globalShwartz kernel K, i.e., (Av)(x) = Z K(x; y)v(y)dy; (2.4)3



we will assume in addition that when (2.1) holds for H = H t then�����x��yK(x; y)��� <� dist(x; y)�(d+2t+j�j+j�j): (2.5)We hasten to add though that A need not be a salar equation but ould as well representa system in whih ase H is typially a produt of Sobolev spaes.We are interested in solving (2.3) approximately with the aid of a Galerkin method,i.e., we pik some �nite dimensional spae S � H and searh for uS 2 S suh thathAuS ; vi = hf; vi; v 2 S; (2.6)where h�; �i denotes the standard L2{inner produt.2.2 Wavelet Bases and IsomorphismsIn our ontext the trial spaes S in (2.6) will be spanned by elements of a wavelet basis	 = f � : � 2 J g for H. We will postpone at this point any tehnial desription of thebasis 	 (whih neessarily depends on the partiular setting at hand) but will only listthose properties that will be relevant in the following. Later in onnetion with onreteappliations we will desribe 	 in more detail. The indies � 2 J typially enode severaltypes of information, namely the sale often denoted by j�j, the spatial loation and alsothe type of the wavelet. Reall that in a lassial setting a tensor produt onstrutionyields 2d�1 types of wavelets [34, 46℄. For instane, for wavelets on the real line � an beidenti�ed with (j; k), where j = j�j denotes the dyadi re�nement level and 2�jk signi�esthe loation of the wavelet. In fat, we will require the wavelets to be loal in the sensethat diam(supp �) � 2�j�j; � 2 J : (2.7)What matters here is that any v 2 L2 has a unique expansionv = X�2J d� � =: dT	and that these expansions indue an isomorphism between H and `2 in the followingsense: There exists a diagonal matrix D = diag (!� : � 2 J g suh thatkDdk`2(J ) � kdT	kH: (2.8)Denoting by ~	 the dual basis to 	, i.e.,h �; ~ �i = Æ�;�; �; � 2 J ; (2.9)(2.8) implies the dual relation kD�1dk`2(J ) � kdT ~	kH 0: (2.10)Similar relations are also known to hold for Sobolev spaes in Lp for p 6= 2. Moreover,interpolation between suh spaes provides norm equivalenes for a whole range of Besov4



spaes B�q (Lp) [26, 38, 40, 46℄. In the present ontext we will have to make use of thefollowing speial ase kdk`� (J ) � kdT	kB�� (L� ); (2.11)where the smoothness index � and the integrability index � are related by1� = �d + 12 : (2.12)2.3 Canellation PropertyThe seond main requirement on the wavelet bases is that integration of a funtion againsta wavelet annihilates the smooth part of the funtion, i.e.,jhv;  �ij <� 2�j�j( ~m+ d2 )kvkW ~m1(supp �); (2.13)where the positive integer ~m is related to the dual basis ~	. In the lassial ase ~m is theorder of vanishing polynomial moments, see [27℄. Property (2.13) will ensure later thatmatrix representations of operators of the type (2.4) are almost sparse.2.4 An Equivalent `2-ProblemOne a basis with the above properties is given, it is natural to transform the operatorequation (2.3) over a funtion spae H into a matrix equation over the orrespondingsequene spae. The matrix in question is the representation of the operator with respetto the hosen wavelet basis. More preisely, the relation (2.8) suggests a speial salingof the basis whih leads toA := D�1h	; A	iD�1 := �!�1� !�1� h �; A �i��;�2J : (2.14)Spei�ally, when H = H t an admissible hoie for the diagonal weights is !� = 2tj�j.The ruial point is that the norm equivalene (2.8) in onjuntion with elliptiity (2.2)implies that the (in�nite) matrix A de�ned by (2.14) is now an automorphism on `2,[27, 29℄.Theorem 2.1 The funtion u = dT	 2 H solves the original operator equation (2.3) ifand only if the sequene u := Dd (2.15)solves the matrix equation Au = f ; (2.16)where f := D�1h	; fi.Moreover, denoting by k � k the spetral norm on `2, the matrix A de�ned by (2.14)satis�es kAk; kA�1k <1: (2.17)As an immediate onsequene there exists a �nite number � suh that all �nite setionsA� := �!�1� !�1� h �; A �i��;�2� ; � � J ;5



have uniformly bounded ondition numbersond2(A�) � �; � � J : (2.18)Hene the original problem has been redued to an equivalent well{posed problem in `2.This fat will be ruial for what follows.Moreover, an eonomi treatment of this `2{problem is partly due to the followingonsequene of the anellation property (2.13). It an be shown that when H = H tsuitable hoies of 	 entail the following deay of the entries of A, [24, 29℄.Theorem 2.2 Suppose that for operators of the form (2.4) property (2.5) holds. Thenfor H = H t one has 2�(j�0j+j�j)tjhA �0;  �ij <� 2�jj�j�j�0jj�(1 + d(�; �0))d+2 ~m+2t ; (2.19)where d(�; �0) := 2min(j�j;j�0j) dist(
�;
�0); (2.20)
� := supp � and � > d=2 depends on the regularity of the wavelets  �.It is important to note, however, that (2.19) is only a suÆient ondition for the followingompression property of A that will be needed later. The following fat has been provedin [18℄.Proposition 2.3 Let s� := min ��d � 12 ; 2t+ 2 ~md � : (2.21)Then for every s < s� there exists a positive summable sequene (�j)j�0 and for everyj � 0 there exists a matrix Aj with at most 2j�j nonzero entries per row and olumnsuh that kAj �Ak <� �j2�sj : (2.22)The lass of matries with the property (2.22) is alled As. For matries with thepartiular deay properties (2.19) onrete trunation rules an be given [18℄. The �rststep is a trunation in sale: Given j, set~a�;� := 8><>: a�;�; jj�j � j�jj � j=d;0; else; (2.23)followed by a spatial trunationa0�;� := 8><>: ~a�;�; d(�; �) � 2j=d�jj�j�j�jj(jj�j � j�jj);0; else; (2.24)Here (n) is any summable sequene, e.g., (n) := (1 + n)�2=d.One should note that beause of (2.7) the �rst trunation (2.23) already suÆes forloal operators A. 6



2.5 The Basi ParadigmThe pratial realization of adaptive approximations to (2.3) in a �nite element ontextis to re�ne step by step a given mesh aording to a posteriori loal error indiators.The point of view taken by wavelet shemes is somewhat di�erent. Trial spaes arere�ned diretly by inorporating additional basis funtions whose seletion depends onthe previous step. Spei�ally, setting for any �nite subset � � JS� := span f � : � 2 �g;and denoting by u� 2 S� always the Galerkin solution determined by (2.6), we start withsome small index set �0 (possibly the empty set) and proeed as follows:Given �j and u�j and some �xed � 2 (0; 1), �nd �j+1 � �j as small as possible suhthat the new error u � u�j+1 in the energy norm is at most � times the previous error.Obviously, iteration of this step entails onvergene of the resulting sequene of approxi-mations in the energy norm.Suessively growing index sets in this way, one hopes to trak the most signi�antoeÆients in the true wavelet expansion dT	 of the unknown solution u. The error ateah step is naturally measured in the energy norm, see (2.1),kvk2 := a(v; v): (2.25)But then (2.8) suggests to work diretly on the disrete side, noting that by Theorem 2.1u� solves (2.6) for S = S� if and only if u� solvesA�u� = f� := f j�; (2.26)and u� is related to u� by u� = X�2�!�1� (u�)�  �: (2.27)Note that u� 2 IR#� is a �nite vetor. It will sometimes be onvenient to view u� as asequene in `2, i.e., all omponents of u� outside � are understood to be zero. Sine itwill be always lear from the ontext whih interpretation is meant we will not introdueany notational distintion between the �nite vetor u� and its anonial injetion in `2.Likewise for v 2 `2 its restrition to � is denoted by vj�. Thus an equivalent formulationof (2.26) is (Au� � f) j� = 0:De�ning now in analogy to (2.25) the disrete energy normkvk2 := vTAv =: a(v;v); (2.28)(2.17) in Theorem 2.1 says that k � k � k � k`2 : (2.29)We an now detail the above adaptive paradigm as follows:7



Given � � J , �nd a possibly small index set �̂ � � suh thatku� u�̂k � �ku� u�k: (2.30)Of ourse, neither side of (2.30) an be evaluated. In order to still �nd a suitable expandedset �̂ one tries to �nd �̂ suh that for some � 2 (0; 1)ku�̂ � u�k � �ku� u�k; (2.31)i.e., �̂ should be large enough to be suÆiently loser to the true solution. At least theleft hand side is, in priniple, omputable.Remark 2.4 In fat, sine u� is the orthogonal projetion of u onto IR#�, it immediatelyfollows from Pythagoras' Theorem that (2.31) implies (2.30) with� := q1� �2: (2.32)The strategy to aomplish (2.31) has been used already earlier in the �nite elementontext, see e.g. [12, 39℄. It was also the starting point in [24℄. Nevertheless, the problemremains to atually verify (2.31) sine still the unknown sequene u is involved. Thereforein most treatments it is assumed that for some �xed re�nement of the old trial spaea relation like (2.31) holds. This is usually referred to as the saturation assumption.However, in [24℄ and before for a muh more speialized situation in [39℄ an adaptivere�nement sheme was designed whih guarantees (2.31) without an a{priori assumptionlike the saturation property.In neither ase though it was possible to derive a onrete onvergene rate, i.e., torelate the error ku � u�jk to the number of degrees of freedom Nj = #�j. But suh arelation would eventually be needed for appraising the performane of an adaptive shemein omparison with any shemes using preassigned disretizations.2.6 Best N-Term ApproximationBefore proeeding a few omments of oneptual nature are in order. To obtain a benhmark it is important to larify �rst what the optimal outome of an adaptive shememight be. The answer is readily given by Theorem 2.1 and (2.29). Suppose for a momentthat we have omplete knowledge of u, i.e., we know all omponents in u. Then we ouldhoose N oeÆients of u so that the orresponding �nite vetor approximates u best inthe energy norm (2.28). The funtion uN de�ned in analogy to (2.27) approximates, inview of (2.8), u, up to a uniform onstant, best in the ontinuous energy norm or inH. uNis alled a best N{term approximation. Clearly the seletion of suh best oeÆients is anonlinear proess. Best N{term approximation is therefore a speial instane of nonlinearapproximation, see [36℄.Even when knowing u it is not lear what the most signi�ant oeÆients are thatminimize the error in the energy norm among any possible seletion of N terms. At thispoint the norm equivalene (2.8) in the form (2.29) omes into play. In fat, the bestN{term approximation to u with respet to the energy norm k � k produes an error8



whih is up to uniform onstants equivalent to the best N{term approximation of u inthe Eulidean norm. Best N{term approximation in `2, in turn, is well understood, afat that will be heavily exploited later. Nevertheless, sine u is not known even the bestN{term approximation of u in `2 is not available.In summary, the best that ould be ahieved by an adaptive sheme is to produeerrors that stay proportional to best N{term approximation in `2. Suppose for a momentthat an adaptive sheme mathes this rate of best N{term approximation. The questionremains: what is the potential gain over linear methods, i.e, methods for whih the trialspaes are a{priorily presribed? Thus one ultimately has to fae the following questions:� How does the performane of a onrete adaptive sheme ompare with best N{termapproximation in `2?� When is the performane of suh an adaptive method better than that of linearshemes?The �rst question essentially onerns approximation in `2. The seond question willbe seen to draw in regularity theory of solutions to ellipti problems in ertain non{lassialsales of funtion spaes. These are funtion spaes that an be (nearly) haraterizedby best N{term approximation. The answer to both questions has only reently be givenin [18℄. We will proeed now with a brief review of these results that lead to onreteadaptive shemes.2.7 An Adaptive StrategyOur goal is to realize an estimate of the type (2.31). Again this will rely ruially on(2.29) (and hene on (2.8) and (2.2)) whih, in partiular means thatkvk � kvk`2 � kAvk � kAvk`2: (2.33)In fat, for any �̂ � � one hasku�̂ � u�k >� kA(u�̂ � u�)k`2 � kA(u�̂ � u�)j�̂k`2= kA(u� u�)j�̂k`2:Thus de�ning r� := A(u � u�) = f �Au�;the above estimate says that for some onstant 1 2 (0; 1) depending only on the onstantsin (2.33) ku�̂ � u�k � 1kr�j�̂k`2: (2.34)Key Idea: If �̂ an be hosen suh thatkr�j�̂k`2 � akr�k`2 (2.35)holds for some �xed a 2 (0; 1) then again (2.33) ombined with (2.34) yields a onstant� 2 (0; 1) suh that (2.31) and hene, by Remark 2.4, also (2.30)ku�̂ � uk � �ku� � uk9



holds.Thus the redution of the error has been redued to athing the bulk of the residualr�. This is a prinipal improvement sine the residual involves only known quantitieslike the right hand side f and the urrent solution u�. A seond glane, however, dampsoptimism sine among other things the realization of (2.35), i.e., athing the bulk of theurrent residual requires knowing all oeÆients of the in�nite sequene r�. Nevertheless,it will pay to neglet these issues for a moment and adhere to the above idea. Thus, as-suming for the moment that �̂ satis�es (2.35), a ore ingredient of the re�nement strategyan be summarized in the following (idealized) routine:GROW (�;u�)! (�̂;u�̂)Given (�;u�) �nd the smallest �̂ � � suh that kr�j�̂k`2 � akr�k`2 .On the other hand, even if one is able to performGROW it is by no means lear thatsuh an algorithm is asymptotially optimal in the sense of best N{term approximation.Roughly speaking, the inversion of A that leads from r� to u � u� may in quantitativeterms smear too muh. This will be explained later in more detail. However, it is shownin [18℄ that optimality an indeed be restored by a lean up step. This simply meansthat after several appliations of GROW one has to disard all oeÆients in the urrentapproximation u� whose modulus is below a ertain threshold. This threshold is hosenso that the urrent error is at most multiplied by a �xed uniform onstant. While therebythe error gets only worse by a little this will turn out to have an essential e�et on thebehavior of the residual with respet to ertain norms that are somewhat stronger thanthe `2{norm. More details will be given later. We summarize this lean up or thresholdingstep again in an idealized form as follows:THRESH (�;u�)! (~�;u~�)If ku� u�k`2 � � �nd smallest ~� � � suh that ku� � u�j~�k`2 � 4�.Note that both routines will ultimately require sorting oeÆients.
10



2.8 An Optimal (Idealized) AlgorithmWe next give a rough idealized version of an adaptive wavelet sheme whose pratialounterpart will turn out to be optimal with respet to onvergene rates as well as workount.ALGORITHM� �0 = ;, r�0 = f , "0 := kfk`2� For j = 0; 1; 2; : : : determine (�j+1;u�j+1) from (�j;u�j) suh thatku� u�j+1k`2 � "j=2 := "j+1as follows:Set �j;0 := �j, uj;0 := uj;For k = 1; 2; : : : ;K applyGROW (�j;k�1;u�j;k�1)! (�j;k;u�j;k )(kr�j;k�1 j�j;kk`2 � 12kr�j;k�1k`2);Apply THRESH (�j;K;u�j;K )! (�j+1;u�j+1)The maximal number K of appliations of GROW an be shown to be uniformlybounded depending only on the onstants in (2.33). Moreover, a detailed desriptionof fully omputable version ALGORITHM of the above algorithm is given in [18℄ towhih the following result refers.Theorem 2.5 The omputable version ALGORITHM always produes a solution withthe desired auray after a �nite number of steps.Moreover, assume that A 2 As for 0 � s < s�, reall Proposition 2.3. If the solutionu to the operator equation (2.3) has the property that for some s < s��N(u) := infd�;�2�;#��N ku�X�2� d� �k <� N�s;then ALGORITHM generates a sequene u�j of Galerkin solutions to (2.6) satisfyingku� u�jk <� (#�j)�s : (2.36)Moreover, # of arithmeti operations needed to ompute u�j stays proportional to#�j. The number of sorts stays bounded by (#�j) log (#�j).It is important to note the above algorithm does not require any a{priori knowledgeabout the rate of N{term approximability of the solution. It is shown to automatiallymath the rate of best N -term approximation for a ertain asymptoti range dependingon the operator and the hosen basis. 11



2.9 When Does Adaptivity Pay?Before turning to the disussion of realizing the atual ingredients of the above sheme afew omments on prinipal impliations of Theorem 2.5 are in order. In partiular, thiswill guide the seletion of test examples.First of all the theorem says that whenever the best possible rate of onvergene inthe given framework of wavelet expansions deays in a ertain range with a power of theused degrees of freedom then the adaptive sheme mathes this onvergene rate and upto the number of involved sorts the omputational work stays proportional to the numberof degrees of freedom. That range of validity depends on the operator and the hosenwavelet basis.The �rst question in Setion 2.6 has now a positive answer in that the sheme realizesthe best possible auray at a given allowane of degrees of freedom at nearly minimalost.As for the seond question, the �rst remark is that suh a polynomial deay N�s ofthe error is in fat the relevant setting. Reall that spetral methods may even exhibitexponential deay but only when the solution is arbitrarily smooth throughout the do-main. In the present setting we expet to deal with solutions with singularities. Forany approximation sheme that is loal in the sense that one an arrange only �nitelymany basis funtions to overlap at a given point onvergene rates are generally satu-rated, i.e., there is some maximal number � suh that, regardless of the smoothness of theapproximant, the error of best approximation deays at best like N�� when N is againthe number of degrees of freedom in the respetive trial spae. Multiresolution spaesand lassial hierarhies of �nite element spaes fall into this ategory. To make this abit more onrete let us quikly review the following lassial situation. Suppose that wehave a nested sequene of (in the above sense) loal approximation spaes Sj whose unionexhausts L2(
), 
 � IRd say. Examples are sequenes of �nite element spaes obtainedby uniformly halving the meshsize at eah step and likewise any lassial multiresolutionanalysis. Suppose that hj is the meshsize assoiated with Sj . The approximation errorsbehave then as infvj2Sj kv � vjkL2(
) <� hrjkvkHr(
); v 2 Hr(
); (2.37)where r is limited by the maximal order of exatness of the trial spaes. Here Sj isalled exat of order m if all polynomials (of total degree) an be represented (loally)by elements in Sj. Any smoothness beyond m does not help dereasing the asymptotierror. Of ourse, thinking of uniform mesh re�nements one hashmj � N�m=dj ;where Nj := dimSj and the onstants in this relation depend only on the domain. Interms of the above theorem, the best rate that ould be ahieved by suh a preassignedsequene of trial spaes Sj is N�s with s = m=d provided that the solution has enoughSobolev regularity!Can one do better by an adaptive sheme based on the same type of multiresolutionsequenes, i.e, by working with progressively hosen subsets of the full spaes Sj as indi-ated above? It is important to stress �rst that the optimal rate N�m=d by itself annot12



be improved! However, the upshot is that suh a good rate an be preserved by adaptiveor best N{term approximation even when the approximated funtion laks the Sobolevregularity needed to ensure the validity of an estimate like (2.37). The point here is thatbest N{term approximation an be (nearly) used to haraterize spaes from anotherregularity sale, namely ertain Besov spaes, see [37, 38, 36℄. The type of result neededhere an be formulated as follows [23℄. Suppose again that H = H t for simpliity andde�ne �N;t(g) := inf8<:kg �X�2� d� �kHt : d� 2 IR; � 2 � � J ; #� = N9=; :Let  > 0 denote the supremum of all � suh that 	 � H�. Then the following holds[23℄.Proposition 2.6 Assume that � � t <  and let for t � �1� � := �� td + 12 : (2.38)Then one has 1Xn=1 �N (��t)=d�N;t(g)��� <1 (2.39)if and only if g 2 B���(L��(
)).Of ourse, (2.39) implies that the best N{term approximation in H t (and hene thenear best N{term approximation with respet to the energy norm) �N;t(g) deays at leastlikeN�(��t)=d, provided that g is inB���(L��(
)). Note that (2.38) means that B���(L��(
))is just embedded in H t but need not have any exess Sobolev regularity beyond the energyspae. Thus B���(L��(
)) is signi�antly larger than the Sobolev spae H�(
). So exatlywhen the solution of (2.3) has a higher Besov regularity in the sale B���(L��(
)) thanin the Sobolev sale, the above adaptive sheme produes an asymptotially better errordeay in terms of the used unknowns than linear methods. It is important to stresshere asymptoti. The implementation of adaptive shemes will always ause signi�antoverhead and an error redution by merely a onstant fator might now pay o� whenomparing the overall work with the result. For large sale problems a better asymptotiswill eventually pay o� and justi�es e�orts for realizing adaptive shemes.Therefore the next natural question is, does it our in the ontext of ellipti problemsthat the solution has de�ient Sobolev regularity ompared with the sale B���(L��(
))?The answer is yes as shown, e.g., in [21, 25℄. So there is a sope of problems wherethe above adaptive sheme would do better than linear methods. As an example, let usdisuss a typial result in this diretion whih is onerned with Poisson's equation in aLipshitz domain 
 � IRd; �4u = f in 
; (2.40)uj�
 = 0:In this ase, A = �4 is an isomorphism from H10 (
) onto H�1(
), so that it is natural toonsider the best N{term approximation in H1(
). Based on the investigations in [25℄,the following theorem was established in [23℄.13



Theorem 2.7 Let 
 be a bounded Lipshitz domain in IRd: Let u denote the solution of(2.40) with f 2 B��12 (L2(
)) for some � � 1: Then the following holds:u 2 B���(L��(
)); 1� � = ��� 1d + 12� ; 0 < � < min( d2(d � 1) ; (�+ 1)3 )+ 1:Due to singularities near the boundary, the Sobolev regularity of the solution u maynot be very high, even for smooth right{hand sides. In fat, it is well{known that ingeneral u 2 H�(
); � � 3=2, see, e.g., [41, 42℄ for details. Therefore Theorem 2.7 impliesthat for � > 1=2 the Besov regularity of u is in fat muh higher than its Sobolev regularityso that adaptive methods should provide better asymptoti auray.On the other hand, it should be kept in mind that the above dividing line dependingon the di�erent regularity sales is based on purely asymptoti reasoning and thereforemay o�er only a rather inomplete piture from a pratial point of view. To obtaina more quantitative assessment of the error one should note that, in view of (2.37), foruniform re�nements the size of the respetive Sobolev norm matters while the error of bestN -term approximation involves a Besov norm. So in spite of arbitrarily high pointwisesmoothness it ould well happen that the Besov norm of a funtion is muh smaller thanthe Sobolev norm. In suh a ase the gain of eÆieny aomplished by adaptive shemesould still be substantial in spite of high pointwise regularity.2.10 Why GROW and THRESH?A little more bakground information about the above ALGORITHM is helpful foridentifying the omputational tasks. Let us begin with GROW. Obviously, hoosing �̂suh that kr� � r�j�̂k`2 � 12kr�k`2 would imply kr�j�̂k`2 � 12kr�k`2. Thus we essentiallyhave to �nd a sequene in `2 with possibly small support that approximates the trueresidual as well as possible in `2 { again the task of best N{term approximation. Speif-ially, given � := 12kr�k`2 , what is the smallest N suh that the error of best N -termapproximation stays below �? To derive quantitative error estimates requires identify-ing suitable ompatly embedded subspaes of `2. The subspaes that are haraterizedby best N{term approximation in `2 are well{known [36, 18℄. They are speial ases ofLorentz sequene spaes de�ned as follows. Let for v 2 `2 the noninreasing rearrange-ment of v be denoted by v� = fvngn2IN , i.e., v�n � v�n+1 and v�n = jv�j for some � 2 J ,(whih is not unique, but terms with equal modulus an be ordered arbitrarily). Let for0 < � < 2 jvj`w� := supn2IN n1=� jv�nj; kvk`w� := kvk`2 + jvj`w� : (2.41)It is easy to see that kvk`w� � 2kvk`� ; (2.42)so that by Jensen's inequality, in partiular, `w� � `2. Moreover, let vN denote therestrition of v to its N largest terms (the �rst N terms in v�). Clearly, kv � vNk`2realizes the error of best N{term approximation to v in `2. The following haraterizationan be shown [18, 36℄. 14



Proposition 2.8 Let 1� = s+ 12 ; (2.43)then v 2 `w� () kv� vNk`2 <� N�skvk`w� : (2.44)Remark 2.9 Note that in these terms the assumption in Theorem 2.5 on u is equivalentto saying u 2 `w� . This an be viewed as a regularity assumption. In fat, by (2.42) u 2 `�implies u 2 `w� . But reall from (2.11) and (2.12) that u 2 `� means that uT	 2 Bsd� (L� )for s and � related through (2.43). Thus when H = H t this means for D�;� = 2tj�j, onaount of (2.15), u 2 Bsd+t� (L� ), reall Proposition 2.6.Thus theN needed to ensure kv�vNk`2 � " is of the order N � "�1=skvk1=s`w� . Applyingthis to the above task of approximating the residual r�, one �nds#(�̂ n �) �  kr�k`w�kr�k`2 !1=s : (2.45)Sine, by (2.33) ku � u�k � kr�k`2 the error would exhibit the right relation to #�provided that kr�k`w� stays uniformly bounded. This is therefore the key requirement to besatis�ed.2.11 How to Bound kr�k`w� ?We now turn to the routine THRESH. Looking at the de�nition of k � k`w� one realizesthat this norm will tend to beome large when the sequene has many entries of more orless equal but small modulus. Thus, removing these entries would not inrease the errorin `2 very muh but may redue the k � k`w� signi�antly. Hene thresholding may help.However, sine not all entries of r� are aessible we annot work diretly on r�. The keyobservation here is that only thresholding the urrent approximate Galerkin solution u�will ontrol kr�k`w� .At this point the ompressibility of A, reall Proposition 2.3, omes into play.Proposition 2.10 [18℄ Any A in As is not only bounded on `2 but also on `w� , i.e.,kAvk`w� <� kvk`w� : (2.46)Thus it suÆes to ontrol ku�k`w� in order to keep kr�k`w� uniformly bounded. This inturn has been shown in [18℄ to be possible by thresholding the urrent Galerkin solutionu�. To this end, de�ne the thresholding operator(T�v)� := 8><>: v� if jv�j � �;0 if jv�j < �:The fat that the right amount of thresholding keeps the k � k`w� -norm small whilepreserving the order of the `2-error is based on the following observations from [18℄.15



Lemma 2.11 For any � � J one hasku�k`w� <� kuk`w� + (#�)sku� u�k`2 : (2.47)Lemma 2.12 Given w 2 `�w and assume that v 2 `2 satis�eskv�wk`2 � �: (2.48)Then, setting � := �1=s� , one haskT�v�wk`2 � �kwk�=2`w� ;and #f� 2 J : (T�v)� 6= 0g � ��1=skuk�̀w� : (2.49)In partiular, this will be applied to w = u and v = u� (but also to various otherinstanes aused by inexat omputations). In fat, substituting the bound on #� from(2.49) in the right hand side of (2.47) shows, in view of (2.48), that ku�k`w� and hene,by Proposition 2.10 also kr�k`w� stays indeed bounded. This explains the relevane of theroutine THRESH.Proposition 2.10 an be proved with the aid of Proposition 2.8. In fat, it suÆes toexhibit a suÆiently good approximation to the matrix vetor produt Av involving onlyN terms. This is a further ingredient of entral importane and will be explained below.2.12 Fast Approximate Matrix/Vetor MultipliationThe following fat is proved in [18℄.Proposition 2.13 De�ning v[j℄ := v2j (best N-term approximation for N = 2j) andwj := Ajv[0℄ +Aj�1(v[1℄ � v[0℄) + � � �+A0(v[j℄ � v[j�1℄); (2.50)then kAv �wjk`2 <� 2�sjkvk`w� : (2.51)As a onsequene the omputational work CW(�) needed to realize an approximationw� to Av suh that kAv �w�k`2 � � is of the orderCW(�) � #suppw� <� ��1=skvk1=s`w� ; (2.52)whih is again of the right form.
16



2.13 Computational TasksWe are now in a position to identify the onrete omputational tasks required by aomputable version ofALGORITHM. A detailed aount of these routines an be foundin [18℄ where, in partiular, various parameters are identi�ed that steer the re�nementproess. Here we fous on priniple issues arising in the implementation of these routines.Of ourse, the entral issue is to determine the bulk of r� or, equivalently, to �nd a goodapproximation to r� in `2. In this ontext one faes the following obvious obstrutions:(i) One has to determine �rst the Galerkin solution u�. Even if u� ould be determinedexatly one annot ompute the in�nite vetor Au� to determine the residual.(ii) In order stay within the promised bounds of omputational omplexity the or-responding linear systems annot be solved exatly. Instead one obtains only anapproximation �u� to u�. Again one annot ompute the in�nite vetor A�u�Thus at eah stage of theALGORITHM one has to be ontent with an approximationto the residual and its bulk. The errors inurred in suh approximations are as follows:r� = f� �w� + f � f� +A(�u� � u�) +w� �A�u�| {z }error : (2.53)At eah stage of the ALGORITHM this error has to be kept below a ertain level �say, spei�ed in [18℄. This amounts to the following tasks:1) Determine a suÆiently good approximation f�.2) Determine �u� by an iterative sheme. This requires repeated matrix/vetor multi-pliations.3) Compute an approximation w� to A�u�:4) Find a best N -term approximation to the resulting approximation (2.53) (or keepit as it is).5) Threshold the urrent approximate Galerkin solution.Clearly 2) and 3) will heavily rely on the above matrix/vetor multipliation (2.50).The estimates from previous setions will ultimately ensure that only a �nite uniformlybounded number of iterations will be needed at eah stage to ful�ll the auray require-ments for the next step. In partiular, (2.52) will guarantee that the omputational workstays in the desired bounds.Note next that 1), 4) and 5) involve thresholding of a known array, at least oneptually.The way it is needed here is to disard the largest possible number of small entries so thata desired auray is preserved by this perturbation. The ore task there is to �rst sortthe arrays and then sum suessively entries in inreasing order. This is also used in theerror ontrol of the fast matrix/vetor multipliation beause the algorithm should at nostage use any a-priori assumption about the membership of u in any of the `w� spaes.17



These remarks shed some light on the role of sorting and the fast matrix/vetor mul-tipliation in the whole ontext. In the following we will disuss some onsequenes ofthese fats. In partiular, it will be seen that most of the data strutures needed here anbe designed independently of the partiular appliation and even of the partiular waveletbasis. The speial appliation enters primarily through alling the signi�ant entries inthe olumns of A when performing (2.50). This will be exempli�ed later in onnetionwith appliations.3 Doumentation and Related IssuesOne key ingredient for the realization of the adaptive algorithm presented above is theorganization of the data, i.e., how to store the ative oeÆients. The data must beorganized in suh a way, that the bene�ts of the adaptive method predited by the theoryis not wasted by a large overhead of data management. Clearly, a ertain overhead an notbe irumvented: for uniform methods the number of unknowns is a priorily known (eahlevel has �xed number of unknowns), they an be organized in stati vetors ontainingall oeÆients. Salar produts for example of these vetors are fast on modern omputerarhitetures sine the optimizer of the ompiler an use the oating point unit of theomputer in the most eÆient way. Of ourse, this is no longer the ase for adaptivemethods: the number of ative unknowns is determined during the algorithm.Therefore suitable data strutures providing exible and eÆient storage and allowingfast sorting have to be used. In ontrast to uniform methods based on level wise orientedstrutures, i.e., using vetors, we have to use data strutures fousing on individual oef-�ients. This has to be done ensuring that the overhead produed by the data struturesis muh smaller than the gain of eÆieny by using the adaptive method.3.1 Key{Based Data StruturesThe type of data strutures whih �ts our purpose best are key based data strutures: thedata are divided into two parts, namely the key, for example for the wavelets the index�, and the value, i.e., the entry d�. So every item forms a pair (key; value). Formallywe an view this kind of data struture as a mapping from the set of keys to the set ofadmissible values: map : key 2 Keys! value 2 V alues: (3.1)As long as the key is unique this is suÆient. For our wavelet expansion u� = d�	� weassume that every � 2 � is unique, otherwise one would ombine two oeÆients to one.So this expansion reads like map� : � 2 �! d� 2 IR: (3.2)The funtion map beomes a sorted map whenever we have some ordering on the Keys,i.e., there exists a transitive relationless := f(key1; key2) 2 Keys�Keys : key1 < key2g � Keys�Keys: (3.3)18



The index set � allows several possibilities of ordering among whih we hose the following:�rst level wise, then by eah wavelet type, then by subdomain and within eah subdomainby a lexiographial ordering of the translation index.So the de�nition of our data struture map relies on having� a unique enryption for � 2 �,� and a relation less for these keys.The data struture realizing map must meet the following requirements with respet tothe size N = jKeysj:� omplexity to �nd/erase an individual element is at most logarithmi,� logarithmi omplexity for insertion of a new element, so the overall time for build-ing/sorting the map is at most N log(N).The data struture map from the Standard Template Library, STL, see [47℄, mathesexatly these requirements. In addition, it is a generi lass like most of the lasses in theSTL. This means, that the type of the key and the type of the values are arbitrary, theyserve as parameters only. So the data struture is independent of the type of wavelets oneuses. Only the key representing the wavelet has to ful�ll the requirements above. In C++generi lasses are provided by templates, lasses with types as parameters. These lassesare alled ontainers, lasses ontaining some elements of some type. Typial examplesof ontainers are vetors, lists or maps. To de�ne a map for our problem reads likeoeff_sorted_by_index := map<index, double, index::less_than>,i.e., it is a map, where the key is given by a lass index, the values are double preisionreal numbers and the ordering is given by the less_than funtion of the lass index.During the exeution of the algorithm for estimating the residual, the oeÆients needto be sorted aording to their absolute value. So if we think of interhanging the role ofthe key and the value of our map, we loose uniqueness, beause several oeÆients mayhave the same value. There is no unique mapping from the values of the oeÆients tothe indies arrying these values. A slightly more general lass multimap from the STLis suitable for this ase. For a multimap the uniqueness of the key is not neessary, so thesorting is also not unique any more. If N = jKeysj and n = Number of elements with thesame key the omplexities of the required operations in multimap are� log(N) + n time to �nd or erase all elements with this key,� insertion of a new element requires log(N) operations.In our ase the de�nition reads likeoeff_sorted_by_value := multimap<double, index, less_absolute>,where the oeÆients are sorted with respet to the funtion less_absolute whih om-pares the absolute values. 19



3.2 Generi AlgorithmsTo atually work with these lasses one has to understand the onept of iterators, some-times also alled generalized pointers. Next to the templates iterators are a ore ingredi-ent making the STL independent of the data used. Every ontainer lass has a funtionbegin() returning an iterator pointing to the �rst entry of the ontainer. Addressingeah element of the ontainer amounts to inrementing the iterator until the last elementof the ontainer is reahed.All routines have to use this onept of iterators for those parts whih do not dependon the type of wavelets used. As an example we show a key ingredient of the adaptivealgorithm in more detail, namely the fast matrix/vetor multipliation de�ned in Setion2.12: wj := Bjv[0℄ +Bj�1(v[1℄ � v[0℄) + � � �+B0(v[j℄ � v[j�1℄): (3.4)The vetors v[i℄ were de�ned by retaining from the dereasing rearrangement of v� onlythe �rst 2i entries. Therefore the sorted vetor v[j℄ an be written asv[j℄ = (vT[0℄; (v[1℄ � v[0℄)T ; : : : ; (v[j℄ � v[j�1℄)T ); (3.5)i.e., v[i℄�v[i�1℄ an be seen as a setion of the vetor v[j℄ with size 2i�1. The implementationof the fast matrix vetor multipliation reads as follows:void FastMatVeMult(map<index, double, index::less_than> &w_j,onst multimap<double, index, less_absolute> v_lambda,onst stiffnessmatrix &A,int j){ int jj = 0, ount = 0;multimap<double, index, less_absolute>::iterator nu;for (nu = v_lambda.begin(); nu != v_lambda.end() && jj<=j; nu++){ map<index, double, index::less_than> Column;Column = ColumnSet ( (*nu).seond, j-jj);map<index, double, index::less_than>::iterator mu;for (mu = Column.begin(); mu != Column.end(); mu++)w_j[(*mu).first℄ += A((*mu).first, (*nu).seond) * (*nu).first;ount++;jj = int(log(ount)/log(2)) + 1;}} 20



The funtion FastMatVeMult onsists of two iterations: the outer iteration on nu iteratesthrough the elements of the vetor v_lambda. This vetor is of typemultimap<double, index, less_absolute> and therefore sorted in a dereasing order.For one entry of the vetor, (*nu).seonddenotes the wavelet index of this entry, whereas(*nu).first the wavelet oeÆient. For this index the funtion Columnset omputes theset �(�; j � jj) de�ned in (2.23), (2.24).Now the inner iteration on mu iterates through this set, adding up the produts of thevetor element � with the orresponding matrix element. To take the orret Bi in thesum (3.4) we have to know the setion of lambda_v we are working with. This amountsto taking the log2 of the variable ount.For the whole routine only two funtions are spei� to the problem at hand, namelythe routine ColumnSet providing the index set �(k� ; j� ; j � jj) and the evaluation of theinner produt a( �;  �) for two wavelets.3.3 Disussion of Various Spei� RoutinesIn this setion we want to briey disuss other routines needed for our adaptive algorithm.A detailed desription of these routines is given in [18℄. To this end we start withConvertA oeff_sorted_by_value an be onverted into a oeff_sorted_by_index and vieversa. The amount of work is N logN , where N is the size, sine reading the elements isof onstant time and the building of the new type is N logN .For the following routines we assume the input to be of oeff_sorted_by_value,otherwise use Convert.Best N{term approximation, see Setion 2.6Building the best N{term approximation amounts to erasing all but the �rst N elements.Threshold, see Setion 2.7Starts with the �rst element of u�, iterate until value is less than the presribed toleraneand erase all following elements.BulkStart with the �rst entry of u�, insert it into an empty oeff_sorted_by_value andalulate its norm. Proeed analogously until it is larger than the given bound.APPLYA, see Setion 2.12The appliation of the fast matrix/vetor multipliation APPLYA onsists of alulating jneeded in (3.4) and alling the funtion FastMatVeMult.NRESIDUALNRESIDUAL alls APPLYA and subtrats an approximation of the righthand side.NGALERKINFor the Galerkin solver we used an ordinary onjugent gradient solver where we replaedeah matrix{vetor multipliation by FastMatVeMult. Again see [18℄ for the algorithmidetails. 21



NGROW, see Setion 2.7First all the funtion NCOARSE is alled for the righthand side, afterwards in a loop �rstNRESIDUAL to estimate the urrent residual, use Bulk to take a �xed portion and omputefor this new index set the approximate solution with NGALERKIN.ColumnSetIn FastMatVeMult we used the funtion ColumnSet. This funtion omputes the set�(�; J) in (2.23), (2.24). For our example of the seond order di�erential operator theseare the oeÆients of those funtions, whose support interset the support of the givenfuntion, i.e., whose entries in the sti�ness matrix do not vanish, along with a ut{ofriterion of level di�erenes. In fat, for an index � = (j; k) we de�ne�(�; J) := n� = (j0; k0) 2 r : supp � \ supp � 6= ;; jj � j0j � Jo: (3.6)Of ourse, this funtion di�ers signi�antly for the one dimensional and the two dimen-sional ase. In the one dimensional ase this is a tedious but straight forward alulation.The supports of the funtions are given by saling and translation of the support of onegenerator and one wavelet. This leads to some simple alulation of whih translates forwhih level has to be taken. The most diÆult part is to ath the appropriate funtionsnear the boundary, beause their support di�ers from the general formula.The problem is muhmore involved for the 2D{ase. While simple again in the interiorof a subdomain where we an use a tensor produt version of the one dimensional routine,it beomes very deliate near the interior boundaries, where funtions are supported onmore than one subdomain. For our test problem we designed a very simple geometryrepresentation ontaining information about the onnetivity of the subdomains. Up tonow it is restrited to parametri mappings onsisting of translations of the referenedomain.With this information it is possible to identify for eah funtion 'near' the boundarythose funtions on other subdomains with interseting supports. There are some aseswhih have to be taken are of: a funtion is supported near an interior boundary butwithin one subdomain. Nevertheless its support is overlapped by the support of boththose funtions living on the boundary and those wavelets in the neighboring subdomainoverlapping the boundary.If the funtion itself is a wavelet overlapping an interior boundary not only thosefuntions living on the other side of the boundary and overlap the boundary must beonsidered but also those funtions whih are fully supported inside the other subdomainbut whose support is overlapped by the support of the onsidered wavelet.This is espeially diÆult at the orner where the three subdomains meet: here sup-ports of funtions overlap, where the subdomains are no neighbors in the sense that theyhave a ommon boundary. At this point the funtion ColumnSet is not general but insome sense restrited to the ase of the L{shaped domain. Of ourse it will be anothertask for the future to overome this restrition.To give an impression on the diÆulty of identifying all these ases: this part ofthe ode takes about 1700 lines, whereas the omplete adaptive algorithm inluding thispart takes about 4000 lines only. These numbers of ourse do not inlude the ompleteonstrution of the wavelets and the other routines whih existed before.22



The lasses matrix_olumn and smatrixThese two lasses are designed to ontain entries of the sti�ness matrix, alulated duringthe adaptive algorithm. The lass smatrix representing the sti�ness matrix is organizedas a map of matrix_olumns. Sine our set �(�; J) is based on level di�erenes thelass matrix_olumn onsists of a dynamial array of oeff_sorted_by_index. For eahative oeÆient � the orresponding matrix_olumn ontains all entries of the sti�nessmatrix with respet to �(�; J), i.e., all � 2 �(�; J); a( �;  �) 6= 0. If J hanges, theneeded levels of oeÆients are added.Calulation of the entries in the sti�ness matrixThe major obstale of our urrent realization is the omputation of the entries of thesti�ness matrix, i.e., the evaluation of the bilinear form a from (2.1) for two wavelets:a�;� := a( �;  �): (3.7)In our example this amounts to the integration of the produt of two wavelets and theirderivatives. For saling funtions this is very easy whereas for wavelets this is not so learhow to realize. In the uniform ase one an use a simple trik: to set up the sti�nessmatrix in the single sale basis as a sparse matrix, and use the fat, that one an representthe sti�ness matrix in the multisale basis as the produt of the entire sti�ness matrixwith respet to the single sale basis with the multisale transformation matries for thehange of basis between single sale and multisale representation.Sine in a uniform method we don't need individual entries of the matrix, but for thelinear solver only the ation of the sti�ness matrix on a vetor, this an be realized eÆ-iently, namely by �rst using the fast transformation from multisale to single sale basis,multipliate with the (sparse) single sale sti�ness matrix and use the fast transformationbak to the multisale representation.In our ontext this learly is no suitable strategy. We plan to ompute the entriesby numerial integration as it is already done for boundary integral equations, see [44℄.Promising e�orts to adapt the routines presented there are urrently made.But for the moment we still have to use the following provisional alternative: thoseolumns of the sti�ness matrix needed during the adaptive algorithm are omputed byusing the uniform method for the orresponding unit vetor. The result is stored forfuture use. Of ourse this leads to quite a limitation, both on the re�nement depthwe an use and the time and memory onsumption, whih both are dominated by thisalternative. Nevertheless the adaptive algorithm proves to produe good approximationsand we believe it will show its full power when ombined with an appropriate omputationof the bilinear form.The lass ProblemThe lass Problem is designed to de�ne the problem we want to solve, i.e., the operator,the domain, the righthand side, the type of wavelets used. It estimates the variousonstants needed in the algorithm. Funtions operating on this lass are de�ned virtual,i.e., they an be rede�ned in an inherited lass. This makes it possible to have a ommoninterfae, whereas the spei� implementation an be hanged. Therefore all funtionsonerning the adaptive algorithm are implemented (with still some exeptions, of ourse)independently of the spei� problem at hand.23



4 Numerial TestsWe are now prepared to begin with �rst realizations of the above adaptive sheme. A fewintrodutory omments in this regard are in order. It is lear from the above developmentsthat a full exploitation of the oneptual power requires new algorithmi ingredients partlydesigned from srath. Spei�ally, for the problem dependent part little an be borrowedfrom existing software. Consequently not all parts of the whole onstrution site ouldbe brought to a mature state so that we are still far from having a omplete piture.Nevertheless, we think that we have reahed a stage where �rst onlusions are justi�edeven when aepting ertain ompromises to be detailed later in onnetion with onreteases. In fat, suh a summary of a�airs will provide valuable guidelines for furtherdevelopments.Conerning the prinipal range of appliability, reall that a wide sope of problems isovered inluding boundary value problems on open domains in Eulidean spae as wellas boundary integral equations on losed manifolds. However, to keep the demands onsophistiated geometry representations at a minimum we will on�ne here the disussionto seond order ellipti boundary value problems in one and two spatial dimensions. Theseexamples are simple but nevertheless very instrutive. Reall that adaptivity is expetedto pay o� best when the solution exhibits singularities. First we onsider one 1D{modelproblem where the singularities of the solution are only aused by strong gradients of theright{hand side. To our knowledge, most of the earlier studies of adaptive wavelet shemesare onerned with periodi problems in order to avoid the more ompliated onstrutionof wavelets for domains. In this setting one an only expet data indued singularitiesand we wish to on�rm that the present sheme lives up to theoretial preditions in thisase as well. A detailed doumentation will be given in Setion 4.2.The seond lass of examples is onerned with more sophistiated problems on non-smooth domains in IR2. In these ases, there our also singularities whih are not gen-erated by the right{hand sides but by the shape of the domain. Suh examples have notbeen studied before in the wavelet ontext. Therefore, the quantitative performane ofthe sheme should be very instrutive. In order to validate the results we will exploit thetheoretial knowledge about singularity solutions that is available for polygonal domains.The algorithm, of ourse, does not assume any of suh information as input. A detaileddesription will be presented in Setion 4.3.Finally, the type of test problems also determines the demands on the entral tools,namely the wavelets. The prize that has to be paid for a relatively far reahing analysisis to employ bases with sophistiated properties as detailed in Setions 2.2 and 2.3. Itis meanwhile understood how to onstrut wavelet bases with the desired properties foressentially all ases of interest. Roughly speaking the treatment of operators of orderless than or equal to �1=2 requires a little more sophistiated onstrutions [32, 30℄.For the situation onsidered here more andidates are available and the onstrutions in[14, 15, 19, 31℄ would work equally well. They form all Riesz bases in L2(
) and indueisomorphisms of the type (2.8) for Sobolev spaes Hs for �1=2 < s < 3=2 well overingthe relevant ase H1 in the present ontext. For the partiular implementation disussedbelow we have hosen the onstrution form [31℄. It is oneptually fairly transparent sothat the relevant information onerning the data strutures is not too hard to extrat.24



4.1 The Constrution PrinipleThe onstrution of the wavelets in all subsequent appliations is based on a ommonpriniple whih we will sketh �rst. It onsists of three steps:a) Construt dual pairs of generator bases�j = f�j;k : k 2 �jg; ~�j = f~�j;k : k 2 �jg;i.e., h�j ; ~�ji := �h�j;k; ~�j;li�j;l2�j = I; (4.1)whose elements have loal supportdiam(supp �j;k) � 2�j ; diam(supp ~�j;k) � 2�j ; (4.2)suh that their spans S(�j) := span�j ; S(~�j) := span ~�j;are nested S(�j) � S(�j+1); S(~�j) � S(~�j+1): (4.3)Sj(�j), Sj(~�j) are referred to as primal and dual multiresolution spaes.b) Find a stable basis �	j of some omplement S( �	j) of S(�j) in S(�j+1), i.e.,S(�j+1) = S(�j)� S( �	j); j = j0; : : : : (4.4)) Given suh an initial deomposition projet the initial basis �	j into a basis 	j whihis perpendiular to S(~�j). The union 	 := �j0 [ S1j=j0 	j will be the �nal primalwavelet basis satisfying the requirements from Setions 2.2 and 2.3.This program an be arried out for various types of domains. We will use it for 
 =(0; 1), the unit 2-ube and for domains 
 that are disjoint unions of smooth parametriimages of the unit ube (where in this order eah stage builds upon the preeding one).The point is that only steps a) and b) depend on the partiular situation at hande while )an be ahieved by a general mehanism whih we briey desribe now. To this end, notethat (4.3) states that eah oarse saling funtion an be written as a linear ombinationof �ne sale basis funtions. Viewing the bases as vetors whose omponents are theindividual saling funtions (4.3) is equivalent to saying that there must be #�j+1 ��jmatriesM j;0, ~M j;0 suh that�Tj = �Tj+1M j;0; ~�Tj = ~�Tj+1 ~M j;0: (4.5)Likewise there must be #�j+1�(#�j+1�#�j) matries �M j;1 suh that �	Tj = �Tj+1 �M j;1and the stability of �	j required in step b) is equivalent to saying that the omposedmatries �M j := (M j;0; �M j;1) are invertible and both jj �M j jj and jj �M�1j jj are uniformlybounded. In this latter ase �M j;1 is alled a stable ompletion ofM j;0 [16℄.Given a dual pair of generator bases �j , ~�j as above and some initial stable omple-tions �M j;1, biorthogonal wavelet bases an be obtained as follows [16℄.25



Proposition 4.1 For �j, ~�j as above and some stable ompletion �M j;1 ofM j;0 let �Gj :=�M�1j . Then M j;1 := (I �M j;0 ~MTj;0) �M j;1 (4.6)is also a stable ompletion and Gj =M�1j has the formGj =  ~MTj;0�Gj;1 ! : (4.7)Moreover, the olletions 	j :=MTj;1�j+1; ~	j := ~MTj;1~�j+1 (4.8)form biorthogonal systems,h	j ; ~	ji = I; h	j ; ~�ji = h�j ; ~	ji = 0; (4.9)i.e., 	 := �j0 [ [j�j0 	j; ~	 := ~�j0 [ [j�j0 ~	j; (4.10)are biorthogonal wavelet bases of the type needed in Setions 2.2, 2.3.In pratie, one needs not to perform the global matrix multipliations reeted by(4.6) to ompute the entries ofM j;1. In fat, one an derive an alternative representation[16℄ M j;1 = �M j;1 +M j;0Lj; (4.11)where the entries of Lj an be individually identi�ed as inner produts of generator basisfuntions, see (3.3) and (3.32) in [16℄.In all appliations step b) of the above road map will turn out to be easy, so that,in summary, the main burden of the onstrution is shifted to the onstrution of dualgenerator bases. In partiular, all geometri information an be inorporated in this step.The identi�ation of the orresponding wavelets redues to an evaluation of a relation like(4.6).4.2 1D{ExamplesAs a �rst simple example we onsider the seond order boundary value problem�d2udx2 = f on 
 = (0; 1); (4.12)u(0) = u(1) = 0:We have tested this example for two di�erent right{hand sides. In the �rst ase, f isdesigned suh that the exat solution isu(x) = e�100(x�0:5)2 (4.13)26



whih, up to the numerial preision, indeed satis�es the Dirihlet boundary onditions.In the seond ase, we hoose f orresponding to the solutionu(x) = 4eax � 1ea � 1 �1 � eax � 1ea � 1 � ; (4.14)whih also satis�es the boundary onditions. For our tests, we hoose a = 5:0 (althoughother values for a are learly possible). Aording to (2.6) we will be onerned with theweak formulation hu0; v0i = hf; vi; for all v 2 H10 (0; 1): (4.15)In the light of the disussion in Setion 2.9 the following points should be kept inmind when interpreting the numerial results to be reported on later. The solution has inthis ase arbitrarily high pointwise smoothness and therefore has arbitrarily high Sobolevregularity. Therefore one might onlude from the remarks in Setion 2.9 at the �rstglane that adaptive shemes may not work well in this. However, as also explainedin Setion 2.9, adaptivity may pay o� for funtions having a very large Sobolev normwhile the relevant Besov norm is of moderate size. This present examples are expetedto be of this type. Due to the strong gradients of the solutions u, their Sobolev normskukHr inrease dramatially as r grows. As we shall see later on, at least for the seondexample the orresponding Besov norms turn out to be indeed signi�antly smaller. Somequantitative estimates omparing Besov and Sobolev norms will be given in Setion 4.2.2.4.2.1 Wavelets on the IntervalLet us onsider the interval 
 = (0; 1). The onstrution of wavelets on the interval ismeanwhile well understood, see, e.g., [1, 13, 28℄. Here we refer to the onstrution in [28℄.Aording to the above omments we mainly have to explain the onstrution of suitabledual pairs of generator bases.The ommon strategy is to start with a biorthogonal multiresolution analysis on IR.Spei�ally we hoose here a biorthogonal system from the family onstruted in [17℄where the primal saling funtions onsist of ardinal B{splines. For j � j0 where j0 is�xed (suÆiently large to disentangle end point e�ets) one builds �j by keeping thosetranslates 2j=2�(2j ��k); k 2 ZZ, that are fully supported in [0; 1℄. These will be referred toas interior basis funtions. For B-splines of order m one adds at eah end of the intervalm �xed linear ombinations of the 2j=2�(2j ��k) in suh a way that the resulting olletion�j spans all polynomials of order m on (0; 1). One proeeds in the same way with thedual saling funtions restoring the original order of polynomial exatness while keeping#�j = #~�j . At this point one an verify (4.2), (4.3) and (4.5), i.e., nestedness, loalityand re�nability. However, only the interior basis funtions inherit the biorthogonalityfrom the line whereas the boundary modi�ations have perturbed biorthogonality. Onean show though that in this spline family of dual multiresolution sequenes one analways biorthogonalize [28℄ ending up with pairs of generator bases �j; ~�j satisfying allthe properties mentioned in Setion 4.1. In fat, there are additional noteworthy featureswhih we reord now for later use. 27



(i) Exploiting symmetry properties of the original saling funtions one an arrangethe bases to be invariant under the transformation x ! 1 � x, a fat that will bevery useful in the bivariate ase.(ii) One an arrange that only a single primal and dual basis funtion di�ers from zeroat the end points of the interval.(iii) Aording to the above omments, the bases �j ; ~�j always onsist of three partssigni�ed by the index sets �Lj ;�Ij ;�Rj (and similarly for the dual olletions) identi-fying the left boundary, interior and right boundary basis funtions. Only the size ofthe interior sets �Ij depends on j. The number of boundary funtions stays alwaysthe same. Moreover, for eah end point one has a �xed �nite number (namely mfor the primal respetively ~m for the dual side) of saling relations whih an beomputed a{priorily and stored. The interior basis funtions satisfy, of ourse, thelassial stationary re�nement rule from the line ase.The following properties of the orresponding re�nement matriesM j;0 and ~M j;0 from(4.5) an be inferred from the above fats.1) It follows from (i) that the matries M j;0; ~M j;0 are invariant under reversing theorder of rows and olumns.2) The re�nement matries have �xed upper left and lower right bloks with the abovesymmetry properties. Only the stationary interior blok hanges its size with grow-ing level j, see Figure 1.
Mj;0 := ML Aj MRFigure 1: Struture of re�nement matries for spline wavelets on the interval.A detailed desription of the software for onstruting wavelets on the interval an befound in [8℄. It is based on the Multilevel Library presented in [6℄ and [7℄.For the treatment of problem (4.15) the wavelet basis has to satisfy (2.8) at least forH = H1(0; 1): Therefore we hoose the ardinal B{splines and their duals both of orderm; ~m � 2, ' := Nm(x); ~' := ~Nm; ~m(x); (4.16)28



as the starting point of the onstrution. Reall from (4.15) that the trial funtions have tosatisfy homogeneous Dirihlet boundary onditions. There are two ways of inorporatingsuh boundary onditions that suggest themselves.(I) In view of property (ii) above one an simply remove those basis funtions from thegenerator bases �j; ~�j that do not vanish at the end points of the interval. Obviously,the resulting olletions are still biorthogonal and span appropriate subspaes ofH10 (0; 1), see [19, 15, 31℄.(II) Following [31℄, remove the two end point boundary funtions from �j that do notvanish at 0 and 1 but disard two interior basis funtions from the dual olletion~�j. It an be shown that the resulting sets an again be biorthogonalized retainingall the above properties [33℄. Note that now only �j � H10 (0; 1) while S(~�j) stillontains all polynomials of order ~m on the whole interval (0; 1).To onstrut now wavelets for either hoie one an apply the reipe from Setion4.1. In fat, one easily identi�es an initial stable ompletion that works in both asessimultaneously. One an just take as a omplement basis the hat funtions orrespondingto new knots on the next re�nement level. This is often referred to as hierarhial basis[51℄. The matries �M j;1 and the inverses �Gj are very sparse and expliitly given. Thepoint is the followingProperty B: The initial omplement basis funtions � j;k vanish at the end points of (0; 1).Biorthogonal wavelets are then obtained for (I) and (II) by (4.6) in Proposition 4.1.Again the realization of boundary onditions is ompletely redued to the onstrution ofgenerator bases only.Remark 4.2 In both ases (I) and (II) it is easy to determine the adapted re�nementmatries whih retain the above mentioned properties. The modi�ation ofM j;0 is simplydisarding the �rst and last rows and olumns. Thus the e�et of either option on theorresponding biorthogonal wavelets is the use of the respetive versions of ~M j;0 in (4.6).While (I) is most simple and immediate, the option (II) appears to be oneptuallypreferable for the following reasons. Quite in line with the struture of the dual H�1(0; 1)ofH10 (0; 1), the funtionals onH10 (0; 1) should not be onstrained at the end points. This issupported by the following simple observation. Biorthogonality of the wavelets ombinedwith the fat that in (II) the dual system retains full polynomial exatness immediatelyensure that the wavelets have vanishing moments of order ~m on all of (0; 1)hP; j;ki = 0; P 2 � ~m: (4.17)Hene when the right{hand side is very simple, e.g., f = 1 on (0; 1), all right hand{sidedata hf;  j;ki arising in the Galerkin sheme exept on the saling funtion level j0 vanishin the ase (II) while in�nitely many wavelet oeÆients build up in the ase (I) even iff is very smooth near the end points. For a detailed disussion of related e�ets we referto [24℄. Therefore we used (II) in the present tests.29



Remark 4.3 Sine in the present ase H = H10 (0; 1) the diagonal matrix in (2.8) anbe hosen as !� := 2j�j. We have to verify norm equivalenes of the form (2.8) in thepresene of boundary onditions, but the results in [33℄ e.g. imply that the wavelet basesfor either hoie (I) or (II) satisfy the norm equivalene (2.8) for D as above. Moreover,for (II) the anellation properties (2.13) holds for ~m = 2 throughout (0; 1). The fatthat these anellation properties deteriorate somewhat near the end points for option (I)should, however, not destroy the overall ompressibility property (2.22).Moreover, the following fat established in [31℄ will be useful.Remark 4.4 The wavelet bases an be arranged to share the symmetry properties (i) ofthe generator bases.One an see from (4.6) that the two sale matries M j;1, ~M j;1 in the de�nition ofthe biorthogonal wavelets have the same prinipal 3-blok struture as the orrespondingre�nement matries shown in Figure 1.In Figure 2, we have depited two members of the resulting set of saling funtionsand wavelets, respetively, one in the interior and one whih intersets the boundary.
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Figure 2: An interior and the at the border non vanishing funtion, for saling funtionsand wavelets.4.2.2 Disussion of ResultsTo be able to interpret the results, we have to identify �rst the range of asymptoti opti-mality permitted by the above hoie of bases. Theorem 2.5 implies that the asymptotibehavior depends on the ompressibility of the matrix A. In partiular, the parameter s�de�ned in (2.21) would provide a range where optimality is guaranteed. However, in thepresent situation this riterion is too weak. In fat, we know from [24℄ that the parameter30



� in (2.19) must satisfy t+ � <  where  bounds the Sobolev regularity of the wavelets.In this ase t = 1;  = m� 1=2 whih gives � = m� 3=2, i.e., s� = m� 2. Therefore, inthe ase ' = N2; we end up with s� = 0 whih is learly useless. Of ourse, the ondi-tion (2.21) is only suÆient and in this ase a more detailed analysis of the ompressionproperties is neessary. In fat, for our speial ase, a sharper result an be shown.Lemma 4.5 Let A denote the sti�ness matrix to (4.12) obtained by B{spline wavelets oforder m as basis funtions. Then for any � > 0 the following ompression estimate holds:kA �AJk <� 2�J(m�3=2��); i.e., A 2 As for all s < m� 3=2: (4.18)Proof: Eq. (4.18) an be established diretly by using a version of the Shur lemma:if for the matrix B = (b�;�0)�;�02J there is a sequene !�; � 2 J and a positive onstant suh that X�02J jb�;�0j!�0 � !� and X�2J jb�;�0j!� � !�0; �; �0 2 J ; (4.19)then kBk � :We want to use (4.19) for the sequene !� = 1 for all � 2 J . Let us brieysketh the arguments. The �rst step is to estimate the entries in the sti�ness matrixorresponding to (4.15). Ignoring for the moment the boundary e�ets, realling thatderivatives of wavelets are again wavelets, see e.g. [27℄, and using the vanishing momentproperty of wavelets, we obtain for any polynomial P�0 on 
�0 of degree < m � 1 andj0 � j hd �dx ; d �0dx i = hd �dx � P�0; d �0dx i� d �dx � P�0L2(
�0 ) 2j0 d �0dx L2<� d �dx � P�0L2(
�0 ) :Sine ddx � 2 Hs; s < m� 3=2; a lassial Whitney type estimate yields thereforehd �dx ; d �0dx i <� 2j02�j0(m�3=2��) �����d �dx �����Hm�3=2��<� 2j02�j0(m�3=2��)j �jHm�1=2��<� 2j02�j0(m�3=2��)2j(m�1=2��)<� 2(j�j0)(m�3=2��)2j+j0 ;so that, taking the preonditioning matrix D into aount, we getja�;�0j <� 2(j�j0)(m�3=2��); j0 � j: (4.20)The ase j0 < j an be treated analogously,ja�;�0j <� 2(j0�j)(m�3=2��); j0 < j: (4.21)31



However, the rude estimates (4.20) and (4.21) do not tell the whole truth. Indeed, ifwe ombine the fat that the generator is a ardinal B{spline with the vanishing momentproperty of the wavelet basis, we see that for �xed values of j�j; j�0j a lot of entries ja�;�0jare zero. Roughly speaking, the non vanishing entries orrespond only to the wavelets  �0whose supports interset the singular support of  �. It an be shown that the number ofthese entries does not depend on the re�nement level. Consequently, we getXj�0j=j0 ja�;�0j <� 2�jj�j0 j(m�3=2��): (4.22)Aording to (2.23) and (4.19), we have to show thatXjj�j0j>J Xj�0j=j0 ja�;�0j <� 2�J(m�3=2��): (4.23)Let us again �rst onsider the ase j0 > j: By using (4.22), we obtainXj0�j>J Xj�0j=j0 ja�;�0j <� 1Xj0=j+J 2(j�j0)(m�3=2��) <� 2j(m�3=2��)2�(J+j)(m�3=2��) <� 2�J(m�3=2��):(4.24)The ase j0 � j an be treated analogously. The seond ondition in (4.19) an be hekedin a similar fashion and (4.18) is established.In view of the pivotal role of the approximate fast matrix/vetor multipliation, webegin with some tests of this ingredient. Of ourse, aessing eÆiently the relevant matrixentries when performing the telesoping expansion (2.50) is one of the entral problemdependent interfaes. In order to obtain a quik impression of the quantitative behaviorof suh a routine we have employed a very provisional strategy, namely to preomputea possibly large setion of the in�nite matrix A from (2.14). This an be done by �rstdetermining a full saling funtion representation of the sti�ness matrix followed by awavelet transform. We an then simply all the entries needed in (2.50). Of ourse, thisis a preliminary step that allows us to quikly hek auray. The error estimate (2.51)indiates that the approximation power of the fast/matrix multipliation is determined bythe parameter s� whih, aording to (4.18), is given by s� = m� 3=2: This is on�rmedby our numerial tests. In Figure 3, the error kAv � wjk`2 is plotted in a logarithmisale. We see that the slope of the resulting urve is indeed approximately m� 3=2.Aording to Theorem 2.5 we an expet that the error in approximating the solutionu to (4.15) deays at best like N�(m�3=2). This is on�rmed by the numerial resultsdisplayed in the �gures below. The �rst pitures in Figure 4 and 5 show the urrentGalerkin approximation u� and the orresponding error u � u� for the �rst example(4.13) for the wavelet basis assoiated with ' = N2; ~' = ~N2;2: One an see that theerror dereases very rapidly, as expeted. In the following pitures in Figure 6, the setsof wavelets seleted at the respetive stage by the adaptive algorithm are plotted. Thesewavelets are sometimes alled the ative ones. We should mention, that here we havehosen as �0 the set of indies of all saling funtions on the oarsest level, beause thisase shows some instrutive e�ets in the later hoie of indies by the algorithm. Itsqualitative performane when hoosing �0 = ; however, is the same.32
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Figure 4: The �rst three approximate solutions and di�erenes to exat solution.34
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In Figure 12, the performane of the adaptive algorithm ompared with the best N{term approximation is illustrated. Again both algorithms show almost the same behavior.We also observe that the performane of the algorithm gets better as the smoothness ofthe wavelets inreases.
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Figure 12: Comparison between best N-term approximation and adaptive algorithm.Let us end this setion with some remarks onerning the omparison of adaptive andnonadaptive shemes. As we have already seen, for both examples studied above, thewavelet oeÆients hosen by the adaptive algorithm are by no means equally distrib-uted. This indiates that for these example we indeed gain eÆieny by adaptive shemesalthough the solutions are arbitrary smooth in the Sobolev sale. As already stated above,the order of approximation that an be ahieved is limited by the parameter s�; and thebest we an expet in our ase is an estimate of the formku� u�jk <� (#�j)�(m�3=2):For a uniform re�nement sheme we obtain the same order of approximation for funtionsin Hm�1=2(0; 1), i.e., infvj2Sj kv � vjkH1(
) <� N�(m�3=2)j kvkHm�1=2(
); (4.25)ompare with (2.37). We therefore gain eÆieny if the Hm�1=2{norm of the solution u islarge when ompared with the orresponding norm in the Besov spae Bm�1=2�� (L��(
));1=� � = m� 3=2 + 1=2 = m� 1: For the �rst example, it turns out that these two normsare only slightly di�erent, whereas in the seond example, they di�er dramatially.42



The norms of the latter ase are depited in the following �gure:m Hm�1=2 B(m�1)(m�1)�1(L(m�1)�1)1.5 6:73 6:732 39:4 14:52.5 240 47:83 1617 275We have estimated the norms by employing the norm equivalenes (2.11), i.e., by om-puting weighted sequene norms of wavelet expansions. The di�erene between Sobolevand Besov norms gets plausible if we take a look at the right{hand side and the exatsolution for the seond example, see Figure 13:
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Figure 13: The exat solution and the right{hand side for the seond exampleIn ontrary to the �rst example, the right{hand side of the seond example does notsatisfy the Dirihlet boundary onditions. This auses the boundary layer of the solution43



u. This layer inreases the Sobolev norm but does not inuene the (weaker) Besov normtoo muh.The above omparison of Sobolev and Besov norms indiates that there is indeed somegain of eÆieny for adaptive shemes possible for this example. Therefore we made somenumerial tests in whih we ompared our adaptive algorithm with a uniform sheme.The result is depited in Figure 14.
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44



4.3 2D{ExamplesOur next test ase is the lassial Poisson equation on an L{shaped domain 
 in IR2,�4u = f on 
; (4.26)uj�
 = 0;as shown in Figure 15.This problem is interesting beause now the solution may exhibit singularities solely
Figure 15: The L{shaped domain.aused by the shape of the domain even for smooth right hand sides. In order to be ableto validate later the numerial results we start by briey realling some basi fats on theregularity theory of (4.26).4.3.1 Regularity Theory for Polygonal DomainsIt is well{known that the solution u to (4.26) on a polygonal domain may exhibit singu-larities in the viinity of the verties, espeially when the domain is not onvex. Thereforethe Sobolev regularity of the solution will not be very high, even if the right{hand sidef is smooth. Aording to the disussion in Setion 2.9 this is a situation when adaptiveshemes are potentially superior to preset disretizations. In fat, sine 
 is obviouslya Lipshitz domain, Theorem 2.7 tells us that the regularity of u in the spei� Besovsale B���(L��(
)); 1=� � = (�� 1)=2 + 1=2; will in general be higher than in the Sobolevsale. Moreover, for this spei� model problem, muh more an be said. In fat, forpolygonal domains in IR2, the singular parts of the solutions whih are responsible forthe dereasing Sobolev regularity an be lassi�ed. The �rst results in this diretion wereproved by Kondrat'ev [43℄, see also [41℄ and [35℄.Let 
 be a simply onneted polygonal domain in IR2. The segments of �
 are denotedby �l; �l open, l = 1; : : : ; N; numbered in positive orientation. Furthermore, Vl denotesthe endpoint of �l and !l denotes the measure of the interior angle at Vl. Moreover, weintrodue polar oordinates (rl; �l) in the viinity of eah vertex Vl. Finally, �l denotes asuitable C1 trunation funtion. The following theorem is quoted from [41℄.45



Theorem 4.6 Suppose that the right{hand side f in (4.26) is ontained in H�(
) forsome � � �1: Furthermore, let us assume that m�=!l 6= �+1 for all l = 1; : : : ; N; m � 1:Then the solution u to (4.26) has an expansion u = uR + uS; where uR 2 H�+2(
) anduS = NXj=1 X0<�l;m<�+1 l;mSl;m; �l;m := m�=!l; (4.27)where the funtions Sl;m are given bySl;m(rl; �l) = �l(rl)r�l;ml sin(m��l=!l); when �l;m is not an integer, (4.28)Sl;m(rl; �l) = �l(rl)r�l;ml [log rl sin(m��l=!l) + �l os(m��l=!l)℄ otherwise:(4.29)We see that the solution an be deomposed into two parts. The regular part uR onlydepends on the right{hand side and an be made arbitrarily smooth by inreasing thesmoothness of f:By using suitable embeddings, it turns out that uR 2 B���(L��(
)); 1=� � =(� � 1)=2 + 1=2; � < � + 2. On the other hand, the singular part uS does not dependon f but desribes the inuene of the domain, and we see that the order of onvergenethat an be ahieved by an adaptive sheme essentially depends on the Besov regularityof uS: From Theorem 2.7 we already know that this regularity is high enough to justifyadaptive shemes. Nevertheless, for our speial ase, a muh sharper result is available.Quite surprisingly, it turns out that uS has arbitrarily high smoothness in the nonlinearapproximation sale of Besov spaes [22℄.Theorem 4.7 Any funtion Sl;m de�ned by (4.28) satis�esSl;m 2 B���(L��(
)); for all � > 0; 1� � = �� � 12 + 12� : (4.30)By ombining Theorem 4.6 and Theorem 4.7 we therefore obtain for f 2 H�(
)u 2 B���(L��(
)); 0 < � < �+ 2; 1� � = ��� 12 + 12� ; (4.31)see again [22℄ for details. The relations in (4.31) imply that for suÆiently smooth right{hand sides adaptive shemes an in priniple perform with an arbitrarily high order ofonvergene { whih again alls for high order wavelets!Motivated by these observations, in our tests the right{hand side f is designed in suha way that the solution u is exatly the `worst' singularity funtion whih, in the ase ofthe L{shaped domain, is obtained by inserting m = 1; ! = 3�=2 into (4.28), i.e.,u = S1;1(r; �) = �(r)r2=3 sin(2�=3): (4.32)It remains to �x the trunation funtion �. We setw(r) := 8><>: e�1=r2 if r > 0;0 else;and de�ne �(r) := w(3=4 � r)w(r � 1=2) + w(3=4 � r) :The resulting singularity funtion is depited in Figure 16.46



Figure 16: The solution to our model problem.The orresponding right{hand side is onstruted by applying the Laplaian to u.Observe that the funtion u is harmoni in the viinity of the ritial vertex. Thereforethe right{hand side does not `see' the strong gradient of u near this vertex whih on�rmsthat the singularities of u are in fat partially generated by the shape of the domain, seeFigure 17. To our knowledge so far adaptive wavelet shemes have not been applied yetto situations of this type.
Figure 17: The right{hand side.47



4.3.2 The Composite Wavelet BasisThe problem dependent part of the implementation requires again hoosing suitablewavelet bases. In priniple, several onstrutions are meanwhile available [19, 14, 31, 32℄whih qualify for the ase at hand. Here we use the so{alled omposite wavelet basis from[31℄ beause of a few tehnial onvenienes.It is lear that tensor produts of wavelets on the interval yield wavelet bases on2 := (0; 1)d. In our situation, the domain is a union of ubes whih �ts into the followingframework.A typial way to onstrut wavelets on more ompliated domains is to use a do-main deomposition tehnique: the domain 
 of interest is divided into non overlappingsubdomains 
i �
 = N[i=1 �
i; 
i \ 
j = ;; i 6= j: (4.33)Here eah 
i is a smooth parametri image 
i = �i(2) of the unit ube where in generalfor d � d0 �i : IRd ! IRd0 : 2! 
i:Moreover, suppose that �i;l := �
i\ �
l is the ommon interfae of 
i and 
l. For the lateronstrution of global wavelet bases on 
 the parametri mappings �i have to satisfy theontinuity onditions ��1i (�i;l) = �(��1l (�i;l); (4.34)where � is a rotation.In order to onstrut wavelet bases on 
 we follow the reipe from Setion 4.1, i.e., wehave to onstrut �rst dual pairs of biorthogonal generator bases on the omposite domain
. This in turn is fairly easy by stithing together parametri liftings of generator bases onthe unit ube. This is essentially due to two fats. Firstly, the boundary properties (ii) ofthe univariate ingredients in Setion 4.2.1 on�ne the gluing proess to very few funtionsassoiated with the domain. Seondly, the symmetry properties from Remark 4.4 and (i)in Setion 4.2.1 leaves onvenient exibility onerning invariane under rotations in theparametri mappings �i. We will detail this a bit by the following remarks.To avoid onfusion we will use the supersript 2 to denote funtions on 2. As men-tioned before, on the referene domain we use tensor produts of the wavelets and salingfuntions onstruted in Setion 4.2.1.We use multiindies k = (k1; : : : ; kd) to desribe the saling funtions'2j;k := 'j;k1 
 � � � 
 'j;kd ; k 2 I j := I1 � � � � � Id; (4.35)on 2.The next task is to assemble dual pairs of generator bases on the domain 
 by om-posing those on the subdomains. De�ning'ij;k(x) := '2j;k(��1i (x)); x 2 
i: (4.36)we have to glue those saling funtions aross interfaes of subdomains whih do notvanish on these interfaes. To identify these funtions it is48
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Figure 18: Mathed and resaled saling funtions at the interfae.onvenient to assoiate grid points with the indies of our saling funtions. This anbe done by de�ning for k 2 Ij and some 0 < xk < 1:q(k) := 8><>: 0; 'j;k(0) 6= 0;1; 'j;k(1) 6= 0;xk; else; (4.37)and for k 2 I j q(k) := �q(k1); : : : ; q(kd)�: (4.38)Thus a funtion 'ij;k is supported inside a single subdomain 
i, if and only if �i(q(k)) 2
i n �
i.The orresponding grid points on the global domain are now de�ned using the para-metri mappings and the grid points de�ned before:� := �(i; k) := �i(q(k)): (4.39)For all points � on a ommon boundary of more than one subdomain, this � has severalrepresentations. If r(�) is the number of subdomains �
i where � belongs to, we have� = �i1(q(k1)) = : : : = �r(�)(q(kr(�))): (4.40)The idea is best illustrated in the univariate ase. In fat, in the example presented inFigure 18, where �1(x) := x � 1 and �2(x) = x we have 0 = � = �1(1) = �2(0) andr(�) = 2. At this point essential use is made of the property (ii) in Setion 4.2.1 aordingto whih for both ends of the interval only one funtion does not vanish on the boundary.49



Moreover, the symmetry property (i) ensures ompatibility of these mathings, reall(4.34).The same priniple works for mathing aross multivariate ubial subdomains. Thesaling funtions on the domain 
 are now de�ned as follows:'j;�(x) := r(�)�1=2'ij;k(x); x 2 
i: (4.41)The analogous onstrution holds for the dual system providing the global generatorbases �
j , ~�
j on 
 whih are globally ontinuous and hene suitable for the Galerkindisretization of the present seond order problem.The resulting system is biorthogonal with respet to the modi�ed inner produt(v;w) := NXi=1hv Æ �i; w Æ �ii: (4.42)In fat, biorthogonality in the interior of eah subdomain is trivially retained. Using anappropriate saling of those funtions glued aross an interfae or around a vertex (e.g.by r(�)�1=2 where r(�) is the number of subdomains overlapped by the basis funtionassoiated with �) biorthogonality is restored for those basis funtions as well [31℄, ompareFigure 2 and Figure 18. In Figure 19 we present a typial saling funtion overlappingthe ommon boundary of two subdomains. One an see that for this ase the funtionis the tensor produt of the usual hat funtion (in y{diretion) with the mathed onedimensional funtion in x{diretion shown in Figure 18.Note that, on aount of the assumptions on the parametri mappings �i, the modi�edinner produt (4.42) is equivalent to the anonial inner produt on 
 in the sense thatk � k2L2(
) � (�; �): (4.43)The Gramians of the mappings �i allow us of ourse to identify an expliit Riesz mapR : L2(
)! L2(
) suh that the pairs �
j ; R~�
j are now biorthogonal on 
 with respetto the standard inner produt h�; �i. The fat that this Riesz map is a multipliation by apieewise smooth but in general globally disontinuous funtion explains why these basesare less suitable for operators of order � �1=2 where onstrutions like [32, 30℄ still work.So far we have aomplished step a) in Setion 4.1. Step b) onsists of identifying asuitable stable ompletion along with the orresponding two-sale matries. There areseveral possibilities desribed in [31℄ whih work for generator bases of any order. Forsimpliity our �rst tests will be based again on tensor produts of pieewise linear trialfuntions and orresponding duals of lowest possible order, see Setion 4.2.1. In this asethe initial stable ompletion an again be based on hierarhial omplement funtions.What matters, in view of (4.34), is Property B whih now failitates an easy identi�ationof the initial ingredients �M j;1, �Gj for initial stable ompletions on 
, retaining the favor-able symmetry properties as in Remark 4.4. Corresponding biorthogonal wavelets (withrespet to the modi�ed inner produt (4.42)) are then again obtained by (4.6) or (4.11).Of ourse, again homogeneous Dirihlet boundary onditions have to be inorporatedin the trial spaes. As before we have the options (I), (II) desribed earlier. Reall thatthe e�et on the wavelet bases is merely a di�erent hoie of ~M j;0 in (4.6). As in the50
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j , ~�
j . The wavelets are obtained by an evaluation, in priniple, withouta need to disuss di�erent types of vertex situations in the partition of 
. This togetherwith a stronger exploitation of symmetry (to ope with (4.34)) distinguishes the onstru-tion in [31℄ from [14℄, say. In either ase, the prinipal situation from the univariate asepersists, although with signi�ant tehnial ompliations. The loal index sets enteringthe enoding of the global index sets (whih in turn provide the links to the STL libraries)onsist now of more distint groups depending on the multipliities r(�).In all appliations it is of great importane not to destroy the tensor produt struture,beause exploiting this struture an signi�antly redue omputational osts ompared tonon tensor produt strutures. Computing the entries of the sti�ness matrix for example51



would only be possible for one or two wavelet levels beause for larger levels the memoryonsumption would have been too large. Using the tensor produt struture we are ableto ompute up to level nine whih orresponds to a uniform grid of 784385 unknowns.For the L{shaped domain the routines for onstruting the wavelets are implementedby Vorloeper and desribed in detail in [50℄.4.3.3 Disussion of ResultsThe test ase desribed above is interesting for the following reason. Starting with theemty set, the residual in the �rst step is only inuened by the wavelet oeÆients of theright{hand side. These wavelet oeÆients are small near the vertex, due to the fat thatu is harmoni there. Now in the next steps the adaptive sheme has to `reognize' thisde�ieny and add wavelet oeÆients at the `right' plaes, namely in the viinity of thevertex to resolve the there strong gradient of the solution appropriately.Remark 4.8 Reall that u has arbitrary high regularity in the Besov sale whereas for theSobolev sale a diret veri�ation shows that u 2 H�(
); � < 5=3: Consequently, uniformgrids yield at best a onvergene rate N�5=6.In the Figures 20 and 21 we have depited both, the approximate solution and theerror to the exat solution. It an be seen that the adaptive algorithm indeed behaveslike expeted. First oeÆients are added to redue the error where strong gradients areindued by the right{hand side whereas in the subsequent iterations the error is reduednear the vertex, so that after �ve iterations the error is equally distributed. We see thatsimilar to the 1D test problem the error again dereases very rapidly. In Figure 22 we havealso depited the sets of ative wavelet oeÆients orresponding to the �fth iteration ofthe adaptive algorithm. The �rst piture shows the set of oeÆients orresponding to thesaling funtions whereas in the remaining three we have treated the three di�erent typesof wavelets separately. It is shown in detail whih oeÆients are added on eah re�nementlevel. We see that the symmetry of the exat solution is reeted by the similarity of thepitures in the upper right and lower left orner. These two pitures learly orrespond totensor produt funtions of wavelet/generator and generator/wavelet type, respetively.Finally, we have also ompared the performane of the adaptive algorithm with thebest N{term approximation whih an be omputed very easily by olleting theN biggestwavelet oeÆients. In Figure 23, we have depited the errors as N inreases. The on-tinuous line orresponds to the best N{term approximation. We see that the mathingbetween N{term and adaptive approximation is already pretty good. Indeed, the per-formane is in some sense better than expeted. Observe that the wavelet basis is notvery smooth so that no meaningful preditions an be made from the theoretial pointof view. Again we expet that the approximation rate of the adaptive sheme an bedramatially inreased by using smoother wavelet bases, for then the parameter s� whihdetermines the order of approximation grows. In fat, sine in our ase the solution u hasarbitrary high Besov regularity, the order of onvergene an also be made arbitrary highby inreasing the smoothness of the wavelet basis. This topi will be studied in the nearfuture. 52
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