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[2, 3, 4, 5, 9, 10, 11, 12, 48, 49℄. Su
h hopes and numeri
al experien
es are, however,
ontrasted by negative statements proved in the 
ontext of 
omplexity theory. In fa
t,on a rigorous level not mu
h has been proved about the eÆ
ien
y of adaptive �nite ele-ment s
hemes in 
omparison with a-priorily �xed meshes. Only re
ently, in the 
ontext ofwavelet dis
retizations it 
ould be shown in [24℄ that a 
ertain adaptive s
heme 
onvergesfor a wide 
lass of ellipti
 operator equations without any a-priori assumptions on the un-known solution su
h as the saturation property. Aside from the guaranteed 
onvergen
eit is interesting that the s
heme works for di�erential opertors as well as for singular inte-gral operators. A 
omparable result in the �nite element 
ontext 
on
erns a mu
h smallers
ope of problems, namely bivariate pie
ewise linear �nite element dis
retizations for Pois-son's equation [39℄. However, in either 
ase nothing 
an be said about the a
tual speedof 
onvergen
e so that 
on
lusions on the eÆ
ien
y 
ompared with a-priorily �xed dis-
retizations remain open. Here speed means to relate the number of degrees of freedominvoked by the adaptive s
heme to the a
hieved a

ura
y of the solution. Substantialprogress 
ould be a

omplished then in [18℄ in the following sense. There an adaptivewavelet s
heme has been developed whi
h is shown to be asymptoti
ally optimal. Thismeans that it produ
es the same rate of 
onvergen
e as a best N{term approximation forthe same 
lass of ellipti
 operator equations referred to above. Moreover, the number of
oating point operations required to 
ompute the approximate solution stays proportionalto the number N of wavelets needed to approximate the solution at that level of a

ura
y.The proof of the latter fa
t is 
onstru
tive in the sense that the algorithm is des
ribed tothe level of detail that the number of arithmeti
 operations 
an be rigorously estimated.The result is interesting from two points of view. Sin
e the rate of best N -term ap-proximation 
an be 
hara
terized by Besov regularity [25℄ one 
an see that, in prin
iple,su
h an adaptive s
heme is asymptoti
ally more eÆ
ient then uniform s
hemes exa
tlywhen the solution la
ks Sobolev regularity relative to Besov regularity. On the other hand,the results are asymptoti
 while a more quantitative assessment of the performan
e is ofequal interest in pra
ti
al appli
ations. Moreover, the analysis of the s
heme suggestsnew algorithmi
 ingredients 
entering on an approximate fast matrix/ve
tor multipli
a-tion 
ombined with sorting entries of sequen
es. Therefore the eÆ
ient realization of theseingredients and the development of suitable data stru
tures that support best the 
on-
eptual strenght of the s
heme in pra
ti
al realizations is a 
hallenging task. In fa
t, therealization of that task seems to be essential for a quantitative validation of the theoreti
alresults whi
h after all are phrased in a ne
essarily simpli�ed 
omputational model.This report is to des
ribe the developments of su
h algorithmi
 ingredients and 
orre-sponding data stru
tures. It is organized as follows. In Se
tion 2, we brie
y review themain theoreti
al fa
ts needed for the understanding of the algorithm. So far, we haveassumed that the wavelets have 
ertain properties, namely they are lo
al, they indu
eisomorphisms between 
ertain sequen
e and fun
tion spa
es and they have 
ertain 
an-
ellation properties. We are able to extra
t from theory the essential requirements onimplementation. It is worth stressing that a fairly large part of data stru
ture, namelyeverything 
on
erned with sorting and organizing arrays, 
an be kept independently ofthe parti
ular appli
ation. Se
tion 3 is devoted to a brief outline of these stru
tures. Themain interfa
e to a spe
ial appli
ation resides on a proper en
oding of the wavelet indexsets whi
h impli
itly also en
odes the topology of the domain. This part of the implemen-2



tation is tied to the type of appli
ation treated in Se
tion 4. There we des
ribe the typeof boundary value problems in one and two spatial dimensions, that we are 
on
ernedwith. In ea
h 
ase we brie
y indi
ate whi
h type of wavelets 
an be used to an extentneeded to see the requirements on the en
oding of indi
es. The examples are designed tobring out the e�e
ts of di�erent sour
es of singularities whose o

urren
e, a

ording to thetheoreti
al part, makes adaptive s
hemes more eÆ
ient than nonadaptive ones. While inthe 1D 
ases the singularity is indu
ed by the right hand side data we 
onsider in the 2D
ase a problem with smooth right hand side where the singularity in the solution 
omesfrom the shape of the domain. Moreover, we outline the problem dependent algorithmi
ingredients.2 Theoreti
al Ba
kground2.1 The ProblemSuppose that H is a Hilbert spa
e with norm k � kH indu
ed by the inner produ
t h�; �iand that the selfadjoint operator A : H ! H 0, where H 0 is the normed dual of H, isH-ellipti
, i.e., a(v;w) := hAv;wi <� kvkHkwkH and a(v; v) � kvk2H: (2.1)Here a <� b means that a 
an be uniformly bounded by a 
onstant multiple of b andvi
e versa independent of any parameters on whi
h a and b may depend. a >� b is to beunderstood in the analogous fashion and a � b means that a <� b and a >� b. . Clearly(2.1) means that A is an isomorphism from H to H 0, i.e.,kAvkH 0 � kvkH; v 2 H: (2.2)Thus the equation Au = f (2.3)has for any f 2 H 0 a unique solution whi
h will always be denoted by u. Typi
al examplesare se
ond order ellipti
 boundary value problems with Diri
hlet boundary 
onditionson some open domain 
 � IRd. In this 
ase H = H10 (
) and H 0 = H�1(
). Otherexamples are obtained by turning an exterior boundary value problem into a singularintegral equation on the boundary � of the domain. For a formulation in terms of thesingle layer potential operator one obtains for instan
e H = H�1=2(�) and H 0 = H1=2(�),see [20, 45℄ for details. Thus H is typi
ally a Sobolev spa
e andH � L2 � H 0 or H 0 � L2 � H:We sometimes write then H = H t to indi
ate the Sobolev regularity although often a
losed subspa
e of the full Sobolev spa
e determined by boundary 
onditions is meant.H�t is always the dual of this parti
ular subspa
e. One further property of A will matterunless A is a di�erential operator with regular 
oeÆ
ients. Whenever A has a globalS
hwartz kernel K, i.e., (Av)(x) = Z K(x; y)v(y)dy; (2.4)3



we will assume in addition that when (2.1) holds for H = H t then�����x��yK(x; y)��� <� dist(x; y)�(d+2t+j�j+j�j): (2.5)We hasten to add though that A need not be a s
alar equation but 
ould as well representa system in whi
h 
ase H is typi
ally a produ
t of Sobolev spa
es.We are interested in solving (2.3) approximately with the aid of a Galerkin method,i.e., we pi
k some �nite dimensional spa
e S � H and sear
h for uS 2 S su
h thathAuS ; vi = hf; vi; v 2 S; (2.6)where h�; �i denotes the standard L2{inner produ
t.2.2 Wavelet Bases and IsomorphismsIn our 
ontext the trial spa
es S in (2.6) will be spanned by elements of a wavelet basis	 = f � : � 2 J g for H. We will postpone at this point any te
hni
al des
ription of thebasis 	 (whi
h ne
essarily depends on the parti
ular setting at hand) but will only listthose properties that will be relevant in the following. Later in 
onne
tion with 
on
reteappli
ations we will des
ribe 	 in more detail. The indi
es � 2 J typi
ally en
ode severaltypes of information, namely the s
ale often denoted by j�j, the spatial lo
ation and alsothe type of the wavelet. Re
all that in a 
lassi
al setting a tensor produ
t 
onstru
tionyields 2d�1 types of wavelets [34, 46℄. For instan
e, for wavelets on the real line � 
an beidenti�ed with (j; k), where j = j�j denotes the dyadi
 re�nement level and 2�jk signi�esthe lo
ation of the wavelet. In fa
t, we will require the wavelets to be lo
al in the sensethat diam(supp �) � 2�j�j; � 2 J : (2.7)What matters here is that any v 2 L2 has a unique expansionv = X�2J d� � =: dT	and that these expansions indu
e an isomorphism between H and `2 in the followingsense: There exists a diagonal matrix D = diag (!� : � 2 J g su
h thatkDdk`2(J ) � kdT	kH: (2.8)Denoting by ~	 the dual basis to 	, i.e.,h �; ~ �i = Æ�;�; �; � 2 J ; (2.9)(2.8) implies the dual relation kD�1dk`2(J ) � kdT ~	kH 0: (2.10)Similar relations are also known to hold for Sobolev spa
es in Lp for p 6= 2. Moreover,interpolation between su
h spa
es provides norm equivalen
es for a whole range of Besov4



spa
es B�q (Lp) [26, 38, 40, 46℄. In the present 
ontext we will have to make use of thefollowing spe
ial 
ase kdk`� (J ) � kdT	kB�� (L� ); (2.11)where the smoothness index � and the integrability index � are related by1� = �d + 12 : (2.12)2.3 Can
ellation PropertyThe se
ond main requirement on the wavelet bases is that integration of a fun
tion againsta wavelet annihilates the smooth part of the fun
tion, i.e.,jhv;  �ij <� 2�j�j( ~m+ d2 )kvkW ~m1(supp �); (2.13)where the positive integer ~m is related to the dual basis ~	. In the 
lassi
al 
ase ~m is theorder of vanishing polynomial moments, see [27℄. Property (2.13) will ensure later thatmatrix representations of operators of the type (2.4) are almost sparse.2.4 An Equivalent `2-ProblemOn
e a basis with the above properties is given, it is natural to transform the operatorequation (2.3) over a fun
tion spa
e H into a matrix equation over the 
orrespondingsequen
e spa
e. The matrix in question is the representation of the operator with respe
tto the 
hosen wavelet basis. More pre
isely, the relation (2.8) suggests a spe
ial s
alingof the basis whi
h leads toA := D�1h	; A	iD�1 := �!�1� !�1� h �; A �i��;�2J : (2.14)Spe
i�
ally, when H = H t an admissible 
hoi
e for the diagonal weights is !� = 2tj�j.The 
ru
ial point is that the norm equivalen
e (2.8) in 
onjun
tion with ellipti
ity (2.2)implies that the (in�nite) matrix A de�ned by (2.14) is now an automorphism on `2,[27, 29℄.Theorem 2.1 The fun
tion u = dT	 2 H solves the original operator equation (2.3) ifand only if the sequen
e u := Dd (2.15)solves the matrix equation Au = f ; (2.16)where f := D�1h	; fi.Moreover, denoting by k � k the spe
tral norm on `2, the matrix A de�ned by (2.14)satis�es kAk; kA�1k <1: (2.17)As an immediate 
onsequen
e there exists a �nite number � su
h that all �nite se
tionsA� := �!�1� !�1� h �; A �i��;�2� ; � � J ;5



have uniformly bounded 
ondition numbers
ond2(A�) � �; � � J : (2.18)Hen
e the original problem has been redu
ed to an equivalent well{posed problem in `2.This fa
t will be 
ru
ial for what follows.Moreover, an e
onomi
 treatment of this `2{problem is partly due to the following
onsequen
e of the 
an
ellation property (2.13). It 
an be shown that when H = H tsuitable 
hoi
es of 	 entail the following de
ay of the entries of A, [24, 29℄.Theorem 2.2 Suppose that for operators of the form (2.4) property (2.5) holds. Thenfor H = H t one has 2�(j�0j+j�j)tjhA �0;  �ij <� 2�jj�j�j�0jj�(1 + d(�; �0))d+2 ~m+2t ; (2.19)where d(�; �0) := 2min(j�j;j�0j) dist(
�;
�0); (2.20)
� := supp � and � > d=2 depends on the regularity of the wavelets  �.It is important to note, however, that (2.19) is only a suÆ
ient 
ondition for the following
ompression property of A that will be needed later. The following fa
t has been provedin [18℄.Proposition 2.3 Let s� := min ��d � 12 ; 2t+ 2 ~md � : (2.21)Then for every s < s� there exists a positive summable sequen
e (�j)j�0 and for everyj � 0 there exists a matrix Aj with at most 2j�j nonzero entries per row and 
olumnsu
h that kAj �Ak <� �j2�sj : (2.22)The 
lass of matri
es with the property (2.22) is 
alled As. For matri
es with theparti
ular de
ay properties (2.19) 
on
rete trun
ation rules 
an be given [18℄. The �rststep is a trun
ation in s
ale: Given j, set~a�;� := 8><>: a�;�; jj�j � j�jj � j=d;0; else; (2.23)followed by a spatial trun
ationa0�;� := 8><>: ~a�;�; d(�; �) � 2j=d�jj�j�j�jj
(jj�j � j�jj);0; else; (2.24)Here 
(n) is any summable sequen
e, e.g., 
(n) := (1 + n)�2=d.One should note that be
ause of (2.7) the �rst trun
ation (2.23) already suÆ
es forlo
al operators A. 6



2.5 The Basi
 ParadigmThe pra
ti
al realization of adaptive approximations to (2.3) in a �nite element 
ontextis to re�ne step by step a given mesh a

ording to a posteriori lo
al error indi
ators.The point of view taken by wavelet s
hemes is somewhat di�erent. Trial spa
es arere�ned dire
tly by in
orporating additional basis fun
tions whose sele
tion depends onthe previous step. Spe
i�
ally, setting for any �nite subset � � JS� := span f � : � 2 �g;and denoting by u� 2 S� always the Galerkin solution determined by (2.6), we start withsome small index set �0 (possibly the empty set) and pro
eed as follows:Given �j and u�j and some �xed � 2 (0; 1), �nd �j+1 � �j as small as possible su
hthat the new error u � u�j+1 in the energy norm is at most � times the previous error.Obviously, iteration of this step entails 
onvergen
e of the resulting sequen
e of approxi-mations in the energy norm.Su

essively growing index sets in this way, one hopes to tra
k the most signi�
ant
oeÆ
ients in the true wavelet expansion dT	 of the unknown solution u. The error atea
h step is naturally measured in the energy norm, see (2.1),kvk2 := a(v; v): (2.25)But then (2.8) suggests to work dire
tly on the dis
rete side, noting that by Theorem 2.1u� solves (2.6) for S = S� if and only if u� solvesA�u� = f� := f j�; (2.26)and u� is related to u� by u� = X�2�!�1� (u�)�  �: (2.27)Note that u� 2 IR#� is a �nite ve
tor. It will sometimes be 
onvenient to view u� as asequen
e in `2, i.e., all 
omponents of u� outside � are understood to be zero. Sin
e itwill be always 
lear from the 
ontext whi
h interpretation is meant we will not introdu
eany notational distin
tion between the �nite ve
tor u� and its 
anoni
al inje
tion in `2.Likewise for v 2 `2 its restri
tion to � is denoted by vj�. Thus an equivalent formulationof (2.26) is (Au� � f) j� = 0:De�ning now in analogy to (2.25) the dis
rete energy normkvk2 := vTAv =: a(v;v); (2.28)(2.17) in Theorem 2.1 says that k � k � k � k`2 : (2.29)We 
an now detail the above adaptive paradigm as follows:7



Given � � J , �nd a possibly small index set �̂ � � su
h thatku� u�̂k � �ku� u�k: (2.30)Of 
ourse, neither side of (2.30) 
an be evaluated. In order to still �nd a suitable expandedset �̂ one tries to �nd �̂ su
h that for some � 2 (0; 1)ku�̂ � u�k � �ku� u�k; (2.31)i.e., �̂ should be large enough to be suÆ
iently 
loser to the true solution. At least theleft hand side is, in prin
iple, 
omputable.Remark 2.4 In fa
t, sin
e u� is the orthogonal proje
tion of u onto IR#�, it immediatelyfollows from Pythagoras' Theorem that (2.31) implies (2.30) with� := q1� �2: (2.32)The strategy to a

omplish (2.31) has been used already earlier in the �nite element
ontext, see e.g. [12, 39℄. It was also the starting point in [24℄. Nevertheless, the problemremains to a
tually verify (2.31) sin
e still the unknown sequen
e u is involved. Thereforein most treatments it is assumed that for some �xed re�nement of the old trial spa
ea relation like (2.31) holds. This is usually referred to as the saturation assumption.However, in [24℄ and before for a mu
h more spe
ialized situation in [39℄ an adaptivere�nement s
heme was designed whi
h guarantees (2.31) without an a{priori assumptionlike the saturation property.In neither 
ase though it was possible to derive a 
on
rete 
onvergen
e rate, i.e., torelate the error ku � u�jk to the number of degrees of freedom Nj = #�j. But su
h arelation would eventually be needed for appraising the performan
e of an adaptive s
hemein 
omparison with any s
hemes using preassigned dis
retizations.2.6 Best N-Term ApproximationBefore pro
eeding a few 
omments of 
on
eptual nature are in order. To obtain a ben
hmark it is important to 
larify �rst what the optimal out
ome of an adaptive s
hememight be. The answer is readily given by Theorem 2.1 and (2.29). Suppose for a momentthat we have 
omplete knowledge of u, i.e., we know all 
omponents in u. Then we 
ould
hoose N 
oeÆ
ients of u so that the 
orresponding �nite ve
tor approximates u best inthe energy norm (2.28). The fun
tion uN de�ned in analogy to (2.27) approximates, inview of (2.8), u, up to a uniform 
onstant, best in the 
ontinuous energy norm or inH. uNis 
alled a best N{term approximation. Clearly the sele
tion of su
h best 
oeÆ
ients is anonlinear pro
ess. Best N{term approximation is therefore a spe
ial instan
e of nonlinearapproximation, see [36℄.Even when knowing u it is not 
lear what the most signi�
ant 
oeÆ
ients are thatminimize the error in the energy norm among any possible sele
tion of N terms. At thispoint the norm equivalen
e (2.8) in the form (2.29) 
omes into play. In fa
t, the bestN{term approximation to u with respe
t to the energy norm k � k produ
es an error8



whi
h is up to uniform 
onstants equivalent to the best N{term approximation of u inthe Eu
lidean norm. Best N{term approximation in `2, in turn, is well understood, afa
t that will be heavily exploited later. Nevertheless, sin
e u is not known even the bestN{term approximation of u in `2 is not available.In summary, the best that 
ould be a
hieved by an adaptive s
heme is to produ
eerrors that stay proportional to best N{term approximation in `2. Suppose for a momentthat an adaptive s
heme mat
hes this rate of best N{term approximation. The questionremains: what is the potential gain over linear methods, i.e, methods for whi
h the trialspa
es are a{priorily pres
ribed? Thus one ultimately has to fa
e the following questions:� How does the performan
e of a 
on
rete adaptive s
heme 
ompare with best N{termapproximation in `2?� When is the performan
e of su
h an adaptive method better than that of linears
hemes?The �rst question essentially 
on
erns approximation in `2. The se
ond question willbe seen to draw in regularity theory of solutions to ellipti
 problems in 
ertain non{
lassi
als
ales of fun
tion spa
es. These are fun
tion spa
es that 
an be (nearly) 
hara
terizedby best N{term approximation. The answer to both questions has only re
ently be givenin [18℄. We will pro
eed now with a brief review of these results that lead to 
on
reteadaptive s
hemes.2.7 An Adaptive StrategyOur goal is to realize an estimate of the type (2.31). Again this will rely 
ru
ially on(2.29) (and hen
e on (2.8) and (2.2)) whi
h, in parti
ular means thatkvk � kvk`2 � kAvk � kAvk`2: (2.33)In fa
t, for any �̂ � � one hasku�̂ � u�k >� kA(u�̂ � u�)k`2 � kA(u�̂ � u�)j�̂k`2= kA(u� u�)j�̂k`2:Thus de�ning r� := A(u � u�) = f �Au�;the above estimate says that for some 
onstant 
1 2 (0; 1) depending only on the 
onstantsin (2.33) ku�̂ � u�k � 
1kr�j�̂k`2: (2.34)Key Idea: If �̂ 
an be 
hosen su
h thatkr�j�̂k`2 � akr�k`2 (2.35)holds for some �xed a 2 (0; 1) then again (2.33) 
ombined with (2.34) yields a 
onstant� 2 (0; 1) su
h that (2.31) and hen
e, by Remark 2.4, also (2.30)ku�̂ � uk � �ku� � uk9



holds.Thus the redu
tion of the error has been redu
ed to 
at
hing the bulk of the residualr�. This is a prin
ipal improvement sin
e the residual involves only known quantitieslike the right hand side f and the 
urrent solution u�. A se
ond glan
e, however, dampsoptimism sin
e among other things the realization of (2.35), i.e., 
at
hing the bulk of the
urrent residual requires knowing all 
oeÆ
ients of the in�nite sequen
e r�. Nevertheless,it will pay to negle
t these issues for a moment and adhere to the above idea. Thus, as-suming for the moment that �̂ satis�es (2.35), a 
ore ingredient of the re�nement strategy
an be summarized in the following (idealized) routine:GROW (�;u�)! (�̂;u�̂)Given (�;u�) �nd the smallest �̂ � � su
h that kr�j�̂k`2 � akr�k`2 .On the other hand, even if one is able to performGROW it is by no means 
lear thatsu
h an algorithm is asymptoti
ally optimal in the sense of best N{term approximation.Roughly speaking, the inversion of A that leads from r� to u � u� may in quantitativeterms smear too mu
h. This will be explained later in more detail. However, it is shownin [18℄ that optimality 
an indeed be restored by a 
lean up step. This simply meansthat after several appli
ations of GROW one has to dis
ard all 
oeÆ
ients in the 
urrentapproximation u� whose modulus is below a 
ertain threshold. This threshold is 
hosenso that the 
urrent error is at most multiplied by a �xed uniform 
onstant. While therebythe error gets only worse by a little this will turn out to have an essential e�e
t on thebehavior of the residual with respe
t to 
ertain norms that are somewhat stronger thanthe `2{norm. More details will be given later. We summarize this 
lean up or thresholdingstep again in an idealized form as follows:THRESH (�;u�)! (~�;u~�)If ku� u�k`2 � � �nd smallest ~� � � su
h that ku� � u�j~�k`2 � 4�.Note that both routines will ultimately require sorting 
oeÆ
ients.
10



2.8 An Optimal (Idealized) AlgorithmWe next give a rough idealized version of an adaptive wavelet s
heme whose pra
ti
al
ounterpart will turn out to be optimal with respe
t to 
onvergen
e rates as well as work
ount.ALGORITHM� �0 = ;, r�0 = f , "0 := kfk`2� For j = 0; 1; 2; : : : determine (�j+1;u�j+1) from (�j;u�j) su
h thatku� u�j+1k`2 � "j=2 := "j+1as follows:Set �j;0 := �j, uj;0 := uj;For k = 1; 2; : : : ;K applyGROW (�j;k�1;u�j;k�1)! (�j;k;u�j;k )(kr�j;k�1 j�j;kk`2 � 12kr�j;k�1k`2);Apply THRESH (�j;K;u�j;K )! (�j+1;u�j+1)The maximal number K of appli
ations of GROW 
an be shown to be uniformlybounded depending only on the 
onstants in (2.33). Moreover, a detailed des
riptionof fully 
omputable version ALGORITHM
 of the above algorithm is given in [18℄ towhi
h the following result refers.Theorem 2.5 The 
omputable version ALGORITHM
 always produ
es a solution withthe desired a

ura
y after a �nite number of steps.Moreover, assume that A 2 As for 0 � s < s�, re
all Proposition 2.3. If the solutionu to the operator equation (2.3) has the property that for some s < s��N(u) := infd�;�2�;#��N ku�X�2� d� �k <� N�s;then ALGORITHM
 generates a sequen
e u�j of Galerkin solutions to (2.6) satisfyingku� u�jk <� (#�j)�s : (2.36)Moreover, # of arithmeti
 operations needed to 
ompute u�j stays proportional to#�j. The number of sorts stays bounded by (#�j) log (#�j).It is important to note the above algorithm does not require any a{priori knowledgeabout the rate of N{term approximability of the solution. It is shown to automati
allymat
h the rate of best N -term approximation for a 
ertain asymptoti
 range dependingon the operator and the 
hosen basis. 11



2.9 When Does Adaptivity Pay?Before turning to the dis
ussion of realizing the a
tual ingredients of the above s
heme afew 
omments on prin
ipal impli
ations of Theorem 2.5 are in order. In parti
ular, thiswill guide the sele
tion of test examples.First of all the theorem says that whenever the best possible rate of 
onvergen
e inthe given framework of wavelet expansions de
ays in a 
ertain range with a power of theused degrees of freedom then the adaptive s
heme mat
hes this 
onvergen
e rate and upto the number of involved sorts the 
omputational work stays proportional to the numberof degrees of freedom. That range of validity depends on the operator and the 
hosenwavelet basis.The �rst question in Se
tion 2.6 has now a positive answer in that the s
heme realizesthe best possible a

ura
y at a given allowan
e of degrees of freedom at nearly minimal
ost.As for the se
ond question, the �rst remark is that su
h a polynomial de
ay N�s ofthe error is in fa
t the relevant setting. Re
all that spe
tral methods may even exhibitexponential de
ay but only when the solution is arbitrarily smooth throughout the do-main. In the present setting we expe
t to deal with solutions with singularities. Forany approximation s
heme that is lo
al in the sense that one 
an arrange only �nitelymany basis fun
tions to overlap at a given point 
onvergen
e rates are generally satu-rated, i.e., there is some maximal number � su
h that, regardless of the smoothness of theapproximant, the error of best approximation de
ays at best like N�� when N is againthe number of degrees of freedom in the respe
tive trial spa
e. Multiresolution spa
esand 
lassi
al hierar
hies of �nite element spa
es fall into this 
ategory. To make this abit more 
on
rete let us qui
kly review the following 
lassi
al situation. Suppose that wehave a nested sequen
e of (in the above sense) lo
al approximation spa
es Sj whose unionexhausts L2(
), 
 � IRd say. Examples are sequen
es of �nite element spa
es obtainedby uniformly halving the meshsize at ea
h step and likewise any 
lassi
al multiresolutionanalysis. Suppose that hj is the meshsize asso
iated with Sj . The approximation errorsbehave then as infvj2Sj kv � vjkL2(
) <� hrjkvkHr(
); v 2 Hr(
); (2.37)where r is limited by the maximal order of exa
tness of the trial spa
es. Here Sj is
alled exa
t of order m if all polynomials (of total degree) 
an be represented (lo
ally)by elements in Sj. Any smoothness beyond m does not help de
reasing the asymptoti
error. Of 
ourse, thinking of uniform mesh re�nements one hashmj � N�m=dj ;where Nj := dimSj and the 
onstants in this relation depend only on the domain. Interms of the above theorem, the best rate that 
ould be a
hieved by su
h a preassignedsequen
e of trial spa
es Sj is N�s with s = m=d provided that the solution has enoughSobolev regularity!Can one do better by an adaptive s
heme based on the same type of multiresolutionsequen
es, i.e, by working with progressively 
hosen subsets of the full spa
es Sj as indi-
ated above? It is important to stress �rst that the optimal rate N�m=d by itself 
annot12



be improved! However, the upshot is that su
h a good rate 
an be preserved by adaptiveor best N{term approximation even when the approximated fun
tion la
ks the Sobolevregularity needed to ensure the validity of an estimate like (2.37). The point here is thatbest N{term approximation 
an be (nearly) used to 
hara
terize spa
es from anotherregularity s
ale, namely 
ertain Besov spa
es, see [37, 38, 36℄. The type of result neededhere 
an be formulated as follows [23℄. Suppose again that H = H t for simpli
ity andde�ne �N;t(g) := inf8<:kg �X�2� d� �kHt : d� 2 IR; � 2 � � J ; #� = N9=; :Let 
 > 0 denote the supremum of all � su
h that 	 � H�. Then the following holds[23℄.Proposition 2.6 Assume that � � t < 
 and let for t � �1� � := �� td + 12 : (2.38)Then one has 1Xn=1 �N (��t)=d�N;t(g)��� <1 (2.39)if and only if g 2 B���(L��(
)).Of 
ourse, (2.39) implies that the best N{term approximation in H t (and hen
e thenear best N{term approximation with respe
t to the energy norm) �N;t(g) de
ays at leastlikeN�(��t)=d, provided that g is inB���(L��(
)). Note that (2.38) means that B���(L��(
))is just embedded in H t but need not have any ex
ess Sobolev regularity beyond the energyspa
e. Thus B���(L��(
)) is signi�
antly larger than the Sobolev spa
e H�(
). So exa
tlywhen the solution of (2.3) has a higher Besov regularity in the s
ale B���(L��(
)) thanin the Sobolev s
ale, the above adaptive s
heme produ
es an asymptoti
ally better errorde
ay in terms of the used unknowns than linear methods. It is important to stresshere asymptoti
. The implementation of adaptive s
hemes will always 
ause signi�
antoverhead and an error redu
tion by merely a 
onstant fa
tor might now pay o� when
omparing the overall work with the result. For large s
ale problems a better asymptoti
swill eventually pay o� and justi�es e�orts for realizing adaptive s
hemes.Therefore the next natural question is, does it o

ur in the 
ontext of ellipti
 problemsthat the solution has de�
ient Sobolev regularity 
ompared with the s
ale B���(L��(
))?The answer is yes as shown, e.g., in [21, 25℄. So there is a s
ope of problems wherethe above adaptive s
heme would do better than linear methods. As an example, let usdis
uss a typi
al result in this dire
tion whi
h is 
on
erned with Poisson's equation in aLips
hitz domain 
 � IRd; �4u = f in 
; (2.40)uj�
 = 0:In this 
ase, A = �4 is an isomorphism from H10 (
) onto H�1(
), so that it is natural to
onsider the best N{term approximation in H1(
). Based on the investigations in [25℄,the following theorem was established in [23℄.13



Theorem 2.7 Let 
 be a bounded Lips
hitz domain in IRd: Let u denote the solution of(2.40) with f 2 B��12 (L2(
)) for some � � 1: Then the following holds:u 2 B���(L��(
)); 1� � = ��� 1d + 12� ; 0 < � < min( d2(d � 1) ; (�+ 1)3 )+ 1:Due to singularities near the boundary, the Sobolev regularity of the solution u maynot be very high, even for smooth right{hand sides. In fa
t, it is well{known that ingeneral u 2 H�(
); � � 3=2, see, e.g., [41, 42℄ for details. Therefore Theorem 2.7 impliesthat for � > 1=2 the Besov regularity of u is in fa
t mu
h higher than its Sobolev regularityso that adaptive methods should provide better asymptoti
 a

ura
y.On the other hand, it should be kept in mind that the above dividing line dependingon the di�erent regularity s
ales is based on purely asymptoti
 reasoning and thereforemay o�er only a rather in
omplete pi
ture from a pra
ti
al point of view. To obtaina more quantitative assessment of the error one should note that, in view of (2.37), foruniform re�nements the size of the respe
tive Sobolev norm matters while the error of bestN -term approximation involves a Besov norm. So in spite of arbitrarily high pointwisesmoothness it 
ould well happen that the Besov norm of a fun
tion is mu
h smaller thanthe Sobolev norm. In su
h a 
ase the gain of eÆ
ien
y a

omplished by adaptive s
hemes
ould still be substantial in spite of high pointwise regularity.2.10 Why GROW and THRESH?A little more ba
kground information about the above ALGORITHM
 is helpful foridentifying the 
omputational tasks. Let us begin with GROW. Obviously, 
hoosing �̂su
h that kr� � r�j�̂k`2 � 12kr�k`2 would imply kr�j�̂k`2 � 12kr�k`2. Thus we essentiallyhave to �nd a sequen
e in `2 with possibly small support that approximates the trueresidual as well as possible in `2 { again the task of best N{term approximation. Spe
if-i
ally, given � := 12kr�k`2 , what is the smallest N su
h that the error of best N -termapproximation stays below �? To derive quantitative error estimates requires identify-ing suitable 
ompa
tly embedded subspa
es of `2. The subspa
es that are 
hara
terizedby best N{term approximation in `2 are well{known [36, 18℄. They are spe
ial 
ases ofLorentz sequen
e spa
es de�ned as follows. Let for v 2 `2 the nonin
reasing rearrange-ment of v be denoted by v� = fvngn2IN , i.e., v�n � v�n+1 and v�n = jv�j for some � 2 J ,(whi
h is not unique, but terms with equal modulus 
an be ordered arbitrarily). Let for0 < � < 2 jvj`w� := supn2IN n1=� jv�nj; kvk`w� := kvk`2 + jvj`w� : (2.41)It is easy to see that kvk`w� � 2kvk`� ; (2.42)so that by Jensen's inequality, in parti
ular, `w� � `2. Moreover, let vN denote therestri
tion of v to its N largest terms (the �rst N terms in v�). Clearly, kv � vNk`2realizes the error of best N{term approximation to v in `2. The following 
hara
terization
an be shown [18, 36℄. 14



Proposition 2.8 Let 1� = s+ 12 ; (2.43)then v 2 `w� () kv� vNk`2 <� N�skvk`w� : (2.44)Remark 2.9 Note that in these terms the assumption in Theorem 2.5 on u is equivalentto saying u 2 `w� . This 
an be viewed as a regularity assumption. In fa
t, by (2.42) u 2 `�implies u 2 `w� . But re
all from (2.11) and (2.12) that u 2 `� means that uT	 2 Bsd� (L� )for s and � related through (2.43). Thus when H = H t this means for D�;� = 2tj�j, ona

ount of (2.15), u 2 Bsd+t� (L� ), re
all Proposition 2.6.Thus theN needed to ensure kv�vNk`2 � " is of the order N � "�1=skvk1=s`w� . Applyingthis to the above task of approximating the residual r�, one �nds#(�̂ n �) �  kr�k`w�kr�k`2 !1=s : (2.45)Sin
e, by (2.33) ku � u�k � kr�k`2 the error would exhibit the right relation to #�provided that kr�k`w� stays uniformly bounded. This is therefore the key requirement to besatis�ed.2.11 How to Bound kr�k`w� ?We now turn to the routine THRESH. Looking at the de�nition of k � k`w� one realizesthat this norm will tend to be
ome large when the sequen
e has many entries of more orless equal but small modulus. Thus, removing these entries would not in
rease the errorin `2 very mu
h but may redu
e the k � k`w� signi�
antly. Hen
e thresholding may help.However, sin
e not all entries of r� are a

essible we 
annot work dire
tly on r�. The keyobservation here is that only thresholding the 
urrent approximate Galerkin solution u�will 
ontrol kr�k`w� .At this point the 
ompressibility of A, re
all Proposition 2.3, 
omes into play.Proposition 2.10 [18℄ Any A in As is not only bounded on `2 but also on `w� , i.e.,kAvk`w� <� kvk`w� : (2.46)Thus it suÆ
es to 
ontrol ku�k`w� in order to keep kr�k`w� uniformly bounded. This inturn has been shown in [18℄ to be possible by thresholding the 
urrent Galerkin solutionu�. To this end, de�ne the thresholding operator(T�v)� := 8><>: v� if jv�j � �;0 if jv�j < �:The fa
t that the right amount of thresholding keeps the k � k`w� -norm small whilepreserving the order of the `2-error is based on the following observations from [18℄.15



Lemma 2.11 For any � � J one hasku�k`w� <� kuk`w� + (#�)sku� u�k`2 : (2.47)Lemma 2.12 Given w 2 `�w and assume that v 2 `2 satis�eskv�wk`2 � �: (2.48)Then, setting � := �1=s� , one haskT�v�wk`2 � 
�kwk�=2`w� ;and #f� 2 J : (T�v)� 6= 0g � 
��1=skuk�̀w� : (2.49)In parti
ular, this will be applied to w = u and v = u� (but also to various otherinstan
es 
aused by inexa
t 
omputations). In fa
t, substituting the bound on #� from(2.49) in the right hand side of (2.47) shows, in view of (2.48), that ku�k`w� and hen
e,by Proposition 2.10 also kr�k`w� stays indeed bounded. This explains the relevan
e of theroutine THRESH.Proposition 2.10 
an be proved with the aid of Proposition 2.8. In fa
t, it suÆ
es toexhibit a suÆ
iently good approximation to the matrix ve
tor produ
t Av involving onlyN terms. This is a further ingredient of 
entral importan
e and will be explained below.2.12 Fast Approximate Matrix/Ve
tor Multipli
ationThe following fa
t is proved in [18℄.Proposition 2.13 De�ning v[j℄ := v2j (best N-term approximation for N = 2j) andwj := Ajv[0℄ +Aj�1(v[1℄ � v[0℄) + � � �+A0(v[j℄ � v[j�1℄); (2.50)then kAv �wjk`2 <� 2�sjkvk`w� : (2.51)As a 
onsequen
e the 
omputational work CW(�) needed to realize an approximationw� to Av su
h that kAv �w�k`2 � � is of the orderCW(�) � #suppw� <� ��1=skvk1=s`w� ; (2.52)whi
h is again of the right form.
16



2.13 Computational TasksWe are now in a position to identify the 
on
rete 
omputational tasks required by a
omputable version ofALGORITHM. A detailed a

ount of these routines 
an be foundin [18℄ where, in parti
ular, various parameters are identi�ed that steer the re�nementpro
ess. Here we fo
us on prin
iple issues arising in the implementation of these routines.Of 
ourse, the 
entral issue is to determine the bulk of r� or, equivalently, to �nd a goodapproximation to r� in `2. In this 
ontext one fa
es the following obvious obstru
tions:(i) One has to determine �rst the Galerkin solution u�. Even if u� 
ould be determinedexa
tly one 
annot 
ompute the in�nite ve
tor Au� to determine the residual.(ii) In order stay within the promised bounds of 
omputational 
omplexity the 
or-responding linear systems 
annot be solved exa
tly. Instead one obtains only anapproximation �u� to u�. Again one 
annot 
ompute the in�nite ve
tor A�u�Thus at ea
h stage of theALGORITHM one has to be 
ontent with an approximationto the residual and its bulk. The errors in
urred in su
h approximations are as follows:r� = f� �w� + f � f� +A(�u� � u�) +w� �A�u�| {z }error : (2.53)At ea
h stage of the ALGORITHM this error has to be kept below a 
ertain level �say, spe
i�ed in [18℄. This amounts to the following tasks:1) Determine a suÆ
iently good approximation f�.2) Determine �u� by an iterative s
heme. This requires repeated matrix/ve
tor multi-pli
ations.3) Compute an approximation w� to A�u�:4) Find a best N -term approximation to the resulting approximation (2.53) (or keepit as it is).5) Threshold the 
urrent approximate Galerkin solution.Clearly 2) and 3) will heavily rely on the above matrix/ve
tor multipli
ation (2.50).The estimates from previous se
tions will ultimately ensure that only a �nite uniformlybounded number of iterations will be needed at ea
h stage to ful�ll the a

ura
y require-ments for the next step. In parti
ular, (2.52) will guarantee that the 
omputational workstays in the desired bounds.Note next that 1), 4) and 5) involve thresholding of a known array, at least 
on
eptually.The way it is needed here is to dis
ard the largest possible number of small entries so thata desired a

ura
y is preserved by this perturbation. The 
ore task there is to �rst sortthe arrays and then sum su

essively entries in in
reasing order. This is also used in theerror 
ontrol of the fast matrix/ve
tor multipli
ation be
ause the algorithm should at nostage use any a-priori assumption about the membership of u in any of the `w� spa
es.17



These remarks shed some light on the role of sorting and the fast matrix/ve
tor mul-tipli
ation in the whole 
ontext. In the following we will dis
uss some 
onsequen
es ofthese fa
ts. In parti
ular, it will be seen that most of the data stru
tures needed here 
anbe designed independently of the parti
ular appli
ation and even of the parti
ular waveletbasis. The spe
ial appli
ation enters primarily through 
alling the signi�
ant entries inthe 
olumns of A when performing (2.50). This will be exempli�ed later in 
onne
tionwith appli
ations.3 Do
umentation and Related IssuesOne key ingredient for the realization of the adaptive algorithm presented above is theorganization of the data, i.e., how to store the a
tive 
oeÆ
ients. The data must beorganized in su
h a way, that the bene�ts of the adaptive method predi
ted by the theoryis not wasted by a large overhead of data management. Clearly, a 
ertain overhead 
an notbe 
ir
umvented: for uniform methods the number of unknowns is a priorily known (ea
hlevel has �xed number of unknowns), they 
an be organized in stati
 ve
tors 
ontainingall 
oeÆ
ients. S
alar produ
ts for example of these ve
tors are fast on modern 
omputerar
hite
tures sin
e the optimizer of the 
ompiler 
an use the 
oating point unit of the
omputer in the most eÆ
ient way. Of 
ourse, this is no longer the 
ase for adaptivemethods: the number of a
tive unknowns is determined during the algorithm.Therefore suitable data stru
tures providing 
exible and eÆ
ient storage and allowingfast sorting have to be used. In 
ontrast to uniform methods based on level wise orientedstru
tures, i.e., using ve
tors, we have to use data stru
tures fo
using on individual 
oef-�
ients. This has to be done ensuring that the overhead produ
ed by the data stru
turesis mu
h smaller than the gain of eÆ
ien
y by using the adaptive method.3.1 Key{Based Data Stru
turesThe type of data stru
tures whi
h �ts our purpose best are key based data stru
tures: thedata are divided into two parts, namely the key, for example for the wavelets the index�, and the value, i.e., the entry d�. So every item forms a pair (key; value). Formallywe 
an view this kind of data stru
ture as a mapping from the set of keys to the set ofadmissible values: map : key 2 Keys! value 2 V alues: (3.1)As long as the key is unique this is suÆ
ient. For our wavelet expansion u� = d�	� weassume that every � 2 � is unique, otherwise one would 
ombine two 
oeÆ
ients to one.So this expansion reads like map� : � 2 �! d� 2 IR: (3.2)The fun
tion map be
omes a sorted map whenever we have some ordering on the Keys,i.e., there exists a transitive relationless := f(key1; key2) 2 Keys�Keys : key1 < key2g � Keys�Keys: (3.3)18



The index set � allows several possibilities of ordering among whi
h we 
hose the following:�rst level wise, then by ea
h wavelet type, then by subdomain and within ea
h subdomainby a lexi
ographi
al ordering of the translation index.So the de�nition of our data stru
ture map relies on having� a unique en
ryption for � 2 �,� and a relation less for these keys.The data stru
ture realizing map must meet the following requirements with respe
t tothe size N = jKeysj:� 
omplexity to �nd/erase an individual element is at most logarithmi
,� logarithmi
 
omplexity for insertion of a new element, so the overall time for build-ing/sorting the map is at most N log(N).The data stru
ture map from the Standard Template Library, STL, see [47℄, mat
hesexa
tly these requirements. In addition, it is a generi
 
lass like most of the 
lasses in theSTL. This means, that the type of the key and the type of the values are arbitrary, theyserve as parameters only. So the data stru
ture is independent of the type of wavelets oneuses. Only the key representing the wavelet has to ful�ll the requirements above. In C++generi
 
lasses are provided by templates, 
lasses with types as parameters. These 
lassesare 
alled 
ontainers, 
lasses 
ontaining some elements of some type. Typi
al examplesof 
ontainers are ve
tors, lists or maps. To de�ne a map for our problem reads like
oeff_sorted_by_index := map<index, double, index::less_than>,i.e., it is a map, where the key is given by a 
lass index, the values are double pre
isionreal numbers and the ordering is given by the less_than fun
tion of the 
lass index.During the exe
ution of the algorithm for estimating the residual, the 
oeÆ
ients needto be sorted a

ording to their absolute value. So if we think of inter
hanging the role ofthe key and the value of our map, we loose uniqueness, be
ause several 
oeÆ
ients mayhave the same value. There is no unique mapping from the values of the 
oeÆ
ients tothe indi
es 
arrying these values. A slightly more general 
lass multimap from the STLis suitable for this 
ase. For a multimap the uniqueness of the key is not ne
essary, so thesorting is also not unique any more. If N = jKeysj and n = Number of elements with thesame key the 
omplexities of the required operations in multimap are� log(N) + n time to �nd or erase all elements with this key,� insertion of a new element requires log(N) operations.In our 
ase the de�nition reads like
oeff_sorted_by_value := multimap<double, index, less_absolute>,where the 
oeÆ
ients are sorted with respe
t to the fun
tion less_absolute whi
h 
om-pares the absolute values. 19



3.2 Generi
 AlgorithmsTo a
tually work with these 
lasses one has to understand the 
on
ept of iterators, some-times also 
alled generalized pointers. Next to the templates iterators are a 
ore ingredi-ent making the STL independent of the data used. Every 
ontainer 
lass has a fun
tionbegin() returning an iterator pointing to the �rst entry of the 
ontainer. Addressingea
h element of the 
ontainer amounts to in
rementing the iterator until the last elementof the 
ontainer is rea
hed.All routines have to use this 
on
ept of iterators for those parts whi
h do not dependon the type of wavelets used. As an example we show a key ingredient of the adaptivealgorithm in more detail, namely the fast matrix/ve
tor multipli
ation de�ned in Se
tion2.12: wj := Bjv[0℄ +Bj�1(v[1℄ � v[0℄) + � � �+B0(v[j℄ � v[j�1℄): (3.4)The ve
tors v[i℄ were de�ned by retaining from the de
reasing rearrangement of v� onlythe �rst 2i entries. Therefore the sorted ve
tor v[j℄ 
an be written asv[j℄ = (vT[0℄; (v[1℄ � v[0℄)T ; : : : ; (v[j℄ � v[j�1℄)T ); (3.5)i.e., v[i℄�v[i�1℄ 
an be seen as a se
tion of the ve
tor v[j℄ with size 2i�1. The implementationof the fast matrix ve
tor multipli
ation reads as follows:void FastMatVe
Mult(map<index, double, index::less_than> &w_j,
onst multimap<double, index, less_absolute> v_lambda,
onst stiffnessmatrix &A,int j){ int jj = 0, 
ount = 0;multimap<double, index, less_absolute>::iterator nu;for (nu = v_lambda.begin(); nu != v_lambda.end() && jj<=j; nu++){ map<index, double, index::less_than> Column;Column = ColumnSet ( (*nu).se
ond, j-jj);map<index, double, index::less_than>::iterator mu;for (mu = Column.begin(); mu != Column.end(); mu++)w_j[(*mu).first℄ += A((*mu).first, (*nu).se
ond) * (*nu).first;
ount++;jj = int(log(
ount)/log(2)) + 1;}} 20



The fun
tion FastMatVe
Mult 
onsists of two iterations: the outer iteration on nu iteratesthrough the elements of the ve
tor v_lambda. This ve
tor is of typemultimap<double, index, less_absolute> and therefore sorted in a de
reasing order.For one entry of the ve
tor, (*nu).se
onddenotes the wavelet index of this entry, whereas(*nu).first the wavelet 
oeÆ
ient. For this index the fun
tion Columnset 
omputes theset �(�; j � jj) de�ned in (2.23), (2.24).Now the inner iteration on mu iterates through this set, adding up the produ
ts of theve
tor element � with the 
orresponding matrix element. To take the 
orre
t Bi in thesum (3.4) we have to know the se
tion of lambda_v we are working with. This amountsto taking the log2 of the variable 
ount.For the whole routine only two fun
tions are spe
i�
 to the problem at hand, namelythe routine ColumnSet providing the index set �(k� ; j� ; j � jj) and the evaluation of theinner produ
t a( �;  �) for two wavelets.3.3 Dis
ussion of Various Spe
i�
 RoutinesIn this se
tion we want to brie
y dis
uss other routines needed for our adaptive algorithm.A detailed des
ription of these routines is given in [18℄. To this end we start withConvertA 
oeff_sorted_by_value 
an be 
onverted into a 
oeff_sorted_by_index and vi
eversa. The amount of work is N logN , where N is the size, sin
e reading the elements isof 
onstant time and the building of the new type is N logN .For the following routines we assume the input to be of 
oeff_sorted_by_value,otherwise use Convert.Best N{term approximation, see Se
tion 2.6Building the best N{term approximation amounts to erasing all but the �rst N elements.Threshold, see Se
tion 2.7Starts with the �rst element of u�, iterate until value is less than the pres
ribed toleran
eand erase all following elements.BulkStart with the �rst entry of u�, insert it into an empty 
oeff_sorted_by_value and
al
ulate its norm. Pro
eed analogously until it is larger than the given bound.APPLYA, see Se
tion 2.12The appli
ation of the fast matrix/ve
tor multipli
ation APPLYA 
onsists of 
al
ulating jneeded in (3.4) and 
alling the fun
tion FastMatVe
Mult.NRESIDUALNRESIDUAL 
alls APPLYA and subtra
ts an approximation of the righthand side.NGALERKINFor the Galerkin solver we used an ordinary 
onjugent gradient solver where we repla
edea
h matrix{ve
tor multipli
ation by FastMatVe
Mult. Again see [18℄ for the algorithmi
details. 21



NGROW, see Se
tion 2.7First 
all the fun
tion NCOARSE is 
alled for the righthand side, afterwards in a loop �rstNRESIDUAL to estimate the 
urrent residual, use Bulk to take a �xed portion and 
omputefor this new index set the approximate solution with NGALERKIN.ColumnSetIn FastMatVe
Mult we used the fun
tion ColumnSet. This fun
tion 
omputes the set�(�; J) in (2.23), (2.24). For our example of the se
ond order di�erential operator theseare the 
oeÆ
ients of those fun
tions, whose support interse
t the support of the givenfun
tion, i.e., whose entries in the sti�ness matrix do not vanish, along with a 
ut{of
riterion of level di�eren
es. In fa
t, for an index � = (j; k) we de�ne�(�; J) := n� = (j0; k0) 2 r : supp � \ supp � 6= ;; jj � j0j � Jo: (3.6)Of 
ourse, this fun
tion di�ers signi�
antly for the one dimensional and the two dimen-sional 
ase. In the one dimensional 
ase this is a tedious but straight forward 
al
ulation.The supports of the fun
tions are given by s
aling and translation of the support of onegenerator and one wavelet. This leads to some simple 
al
ulation of whi
h translates forwhi
h level has to be taken. The most diÆ
ult part is to 
at
h the appropriate fun
tionsnear the boundary, be
ause their support di�ers from the general formula.The problem is mu
hmore involved for the 2D{
ase. While simple again in the interiorof a subdomain where we 
an use a tensor produ
t version of the one dimensional routine,it be
omes very deli
ate near the interior boundaries, where fun
tions are supported onmore than one subdomain. For our test problem we designed a very simple geometryrepresentation 
ontaining information about the 
onne
tivity of the subdomains. Up tonow it is restri
ted to parametri
 mappings 
onsisting of translations of the referen
edomain.With this information it is possible to identify for ea
h fun
tion 'near' the boundarythose fun
tions on other subdomains with interse
ting supports. There are some 
aseswhi
h have to be taken 
are of: a fun
tion is supported near an interior boundary butwithin one subdomain. Nevertheless its support is overlapped by the support of boththose fun
tions living on the boundary and those wavelets in the neighboring subdomainoverlapping the boundary.If the fun
tion itself is a wavelet overlapping an interior boundary not only thosefun
tions living on the other side of the boundary and overlap the boundary must be
onsidered but also those fun
tions whi
h are fully supported inside the other subdomainbut whose support is overlapped by the support of the 
onsidered wavelet.This is espe
ially diÆ
ult at the 
orner where the three subdomains meet: here sup-ports of fun
tions overlap, where the subdomains are no neighbors in the sense that theyhave a 
ommon boundary. At this point the fun
tion ColumnSet is not general but insome sense restri
ted to the 
ase of the L{shaped domain. Of 
ourse it will be anothertask for the future to over
ome this restri
tion.To give an impression on the diÆ
ulty of identifying all these 
ases: this part ofthe 
ode takes about 1700 lines, whereas the 
omplete adaptive algorithm in
luding thispart takes about 4000 lines only. These numbers of 
ourse do not in
lude the 
omplete
onstru
tion of the wavelets and the other routines whi
h existed before.22



The 
lasses matrix_
olumn and smatrixThese two 
lasses are designed to 
ontain entries of the sti�ness matrix, 
al
ulated duringthe adaptive algorithm. The 
lass smatrix representing the sti�ness matrix is organizedas a map of matrix_
olumns. Sin
e our set �(�; J) is based on level di�eren
es the
lass matrix_
olumn 
onsists of a dynami
al array of 
oeff_sorted_by_index. For ea
ha
tive 
oeÆ
ient � the 
orresponding matrix_
olumn 
ontains all entries of the sti�nessmatrix with respe
t to �(�; J), i.e., all � 2 �(�; J); a( �;  �) 6= 0. If J 
hanges, theneeded levels of 
oeÆ
ients are added.Cal
ulation of the entries in the sti�ness matrixThe major obsta
le of our 
urrent realization is the 
omputation of the entries of thesti�ness matrix, i.e., the evaluation of the bilinear form a from (2.1) for two wavelets:a�;� := a( �;  �): (3.7)In our example this amounts to the integration of the produ
t of two wavelets and theirderivatives. For s
aling fun
tions this is very easy whereas for wavelets this is not so 
learhow to realize. In the uniform 
ase one 
an use a simple tri
k: to set up the sti�nessmatrix in the single s
ale basis as a sparse matrix, and use the fa
t, that one 
an representthe sti�ness matrix in the multis
ale basis as the produ
t of the entire sti�ness matrixwith respe
t to the single s
ale basis with the multis
ale transformation matri
es for the
hange of basis between single s
ale and multis
ale representation.Sin
e in a uniform method we don't need individual entries of the matrix, but for thelinear solver only the a
tion of the sti�ness matrix on a ve
tor, this 
an be realized eÆ-
iently, namely by �rst using the fast transformation from multis
ale to single s
ale basis,multipli
ate with the (sparse) single s
ale sti�ness matrix and use the fast transformationba
k to the multis
ale representation.In our 
ontext this 
learly is no suitable strategy. We plan to 
ompute the entriesby numeri
al integration as it is already done for boundary integral equations, see [44℄.Promising e�orts to adapt the routines presented there are 
urrently made.But for the moment we still have to use the following provisional alternative: those
olumns of the sti�ness matrix needed during the adaptive algorithm are 
omputed byusing the uniform method for the 
orresponding unit ve
tor. The result is stored forfuture use. Of 
ourse this leads to quite a limitation, both on the re�nement depthwe 
an use and the time and memory 
onsumption, whi
h both are dominated by thisalternative. Nevertheless the adaptive algorithm proves to produ
e good approximationsand we believe it will show its full power when 
ombined with an appropriate 
omputationof the bilinear form.The 
lass ProblemThe 
lass Problem is designed to de�ne the problem we want to solve, i.e., the operator,the domain, the righthand side, the type of wavelets used. It estimates the various
onstants needed in the algorithm. Fun
tions operating on this 
lass are de�ned virtual,i.e., they 
an be rede�ned in an inherited 
lass. This makes it possible to have a 
ommoninterfa
e, whereas the spe
i�
 implementation 
an be 
hanged. Therefore all fun
tions
on
erning the adaptive algorithm are implemented (with still some ex
eptions, of 
ourse)independently of the spe
i�
 problem at hand.23



4 Numeri
al TestsWe are now prepared to begin with �rst realizations of the above adaptive s
heme. A fewintrodu
tory 
omments in this regard are in order. It is 
lear from the above developmentsthat a full exploitation of the 
on
eptual power requires new algorithmi
 ingredients partlydesigned from s
rat
h. Spe
i�
ally, for the problem dependent part little 
an be borrowedfrom existing software. Consequently not all parts of the whole 
onstru
tion site 
ouldbe brought to a mature state so that we are still far from having a 
omplete pi
ture.Nevertheless, we think that we have rea
hed a stage where �rst 
on
lusions are justi�edeven when a

epting 
ertain 
ompromises to be detailed later in 
onne
tion with 
on
rete
ases. In fa
t, su
h a summary of a�airs will provide valuable guidelines for furtherdevelopments.Con
erning the prin
ipal range of appli
ability, re
all that a wide s
ope of problems is
overed in
luding boundary value problems on open domains in Eu
lidean spa
e as wellas boundary integral equations on 
losed manifolds. However, to keep the demands onsophisti
ated geometry representations at a minimum we will 
on�ne here the dis
ussionto se
ond order ellipti
 boundary value problems in one and two spatial dimensions. Theseexamples are simple but nevertheless very instru
tive. Re
all that adaptivity is expe
tedto pay o� best when the solution exhibits singularities. First we 
onsider one 1D{modelproblem where the singularities of the solution are only 
aused by strong gradients of theright{hand side. To our knowledge, most of the earlier studies of adaptive wavelet s
hemesare 
on
erned with periodi
 problems in order to avoid the more 
ompli
ated 
onstru
tionof wavelets for domains. In this setting one 
an only expe
t data indu
ed singularitiesand we wish to 
on�rm that the present s
heme lives up to theoreti
al predi
tions in this
ase as well. A detailed do
umentation will be given in Se
tion 4.2.The se
ond 
lass of examples is 
on
erned with more sophisti
ated problems on non-smooth domains in IR2. In these 
ases, there o

ur also singularities whi
h are not gen-erated by the right{hand sides but by the shape of the domain. Su
h examples have notbeen studied before in the wavelet 
ontext. Therefore, the quantitative performan
e ofthe s
heme should be very instru
tive. In order to validate the results we will exploit thetheoreti
al knowledge about singularity solutions that is available for polygonal domains.The algorithm, of 
ourse, does not assume any of su
h information as input. A detaileddes
ription will be presented in Se
tion 4.3.Finally, the type of test problems also determines the demands on the 
entral tools,namely the wavelets. The prize that has to be paid for a relatively far rea
hing analysisis to employ bases with sophisti
ated properties as detailed in Se
tions 2.2 and 2.3. Itis meanwhile understood how to 
onstru
t wavelet bases with the desired properties foressentially all 
ases of interest. Roughly speaking the treatment of operators of orderless than or equal to �1=2 requires a little more sophisti
ated 
onstru
tions [32, 30℄.For the situation 
onsidered here more 
andidates are available and the 
onstru
tions in[14, 15, 19, 31℄ would work equally well. They form all Riesz bases in L2(
) and indu
eisomorphisms of the type (2.8) for Sobolev spa
es Hs for �1=2 < s < 3=2 well 
overingthe relevant 
ase H1 in the present 
ontext. For the parti
ular implementation dis
ussedbelow we have 
hosen the 
onstru
tion form [31℄. It is 
on
eptually fairly transparent sothat the relevant information 
on
erning the data stru
tures is not too hard to extra
t.24



4.1 The Constru
tion Prin
ipleThe 
onstru
tion of the wavelets in all subsequent appli
ations is based on a 
ommonprin
iple whi
h we will sket
h �rst. It 
onsists of three steps:a) Constru
t dual pairs of generator bases�j = f�j;k : k 2 �jg; ~�j = f~�j;k : k 2 �jg;i.e., h�j ; ~�ji := �h�j;k; ~�j;li�j;l2�j = I; (4.1)whose elements have lo
al supportdiam(supp �j;k) � 2�j ; diam(supp ~�j;k) � 2�j ; (4.2)su
h that their spans S(�j) := span�j ; S(~�j) := span ~�j;are nested S(�j) � S(�j+1); S(~�j) � S(~�j+1): (4.3)Sj(�j), Sj(~�j) are referred to as primal and dual multiresolution spa
es.b) Find a stable basis �	j of some 
omplement S( �	j) of S(�j) in S(�j+1), i.e.,S(�j+1) = S(�j)� S( �	j); j = j0; : : : : (4.4)
) Given su
h an initial de
omposition proje
t the initial basis �	j into a basis 	j whi
his perpendi
ular to S(~�j). The union 	 := �j0 [ S1j=j0 	j will be the �nal primalwavelet basis satisfying the requirements from Se
tions 2.2 and 2.3.This program 
an be 
arried out for various types of domains. We will use it for 
 =(0; 1), the unit 2-
ube and for domains 
 that are disjoint unions of smooth parametri
images of the unit 
ube (where in this order ea
h stage builds upon the pre
eding one).The point is that only steps a) and b) depend on the parti
ular situation at hande while 
)
an be a
hieved by a general me
hanism whi
h we brie
y des
ribe now. To this end, notethat (4.3) states that ea
h 
oarse s
aling fun
tion 
an be written as a linear 
ombinationof �ne s
ale basis fun
tions. Viewing the bases as ve
tors whose 
omponents are theindividual s
aling fun
tions (4.3) is equivalent to saying that there must be #�j+1 ��jmatri
esM j;0, ~M j;0 su
h that�Tj = �Tj+1M j;0; ~�Tj = ~�Tj+1 ~M j;0: (4.5)Likewise there must be #�j+1�(#�j+1�#�j) matri
es �M j;1 su
h that �	Tj = �Tj+1 �M j;1and the stability of �	j required in step b) is equivalent to saying that the 
omposedmatri
es �M j := (M j;0; �M j;1) are invertible and both jj �M j jj and jj �M�1j jj are uniformlybounded. In this latter 
ase �M j;1 is 
alled a stable 
ompletion ofM j;0 [16℄.Given a dual pair of generator bases �j , ~�j as above and some initial stable 
omple-tions �M j;1, biorthogonal wavelet bases 
an be obtained as follows [16℄.25



Proposition 4.1 For �j, ~�j as above and some stable 
ompletion �M j;1 ofM j;0 let �Gj :=�M�1j . Then M j;1 := (I �M j;0 ~MTj;0) �M j;1 (4.6)is also a stable 
ompletion and Gj =M�1j has the formGj =  ~MTj;0�Gj;1 ! : (4.7)Moreover, the 
olle
tions 	j :=MTj;1�j+1; ~	j := ~MTj;1~�j+1 (4.8)form biorthogonal systems,h	j ; ~	ji = I; h	j ; ~�ji = h�j ; ~	ji = 0; (4.9)i.e., 	 := �j0 [ [j�j0 	j; ~	 := ~�j0 [ [j�j0 ~	j; (4.10)are biorthogonal wavelet bases of the type needed in Se
tions 2.2, 2.3.In pra
ti
e, one needs not to perform the global matrix multipli
ations re
e
ted by(4.6) to 
ompute the entries ofM j;1. In fa
t, one 
an derive an alternative representation[16℄ M j;1 = �M j;1 +M j;0Lj; (4.11)where the entries of Lj 
an be individually identi�ed as inner produ
ts of generator basisfun
tions, see (3.3) and (3.32) in [16℄.In all appli
ations step b) of the above road map will turn out to be easy, so that,in summary, the main burden of the 
onstru
tion is shifted to the 
onstru
tion of dualgenerator bases. In parti
ular, all geometri
 information 
an be in
orporated in this step.The identi�
ation of the 
orresponding wavelets redu
es to an evaluation of a relation like(4.6).4.2 1D{ExamplesAs a �rst simple example we 
onsider the se
ond order boundary value problem�d2udx2 = f on 
 = (0; 1); (4.12)u(0) = u(1) = 0:We have tested this example for two di�erent right{hand sides. In the �rst 
ase, f isdesigned su
h that the exa
t solution isu(x) = e�100(x�0:5)2 (4.13)26



whi
h, up to the numeri
al pre
ision, indeed satis�es the Diri
hlet boundary 
onditions.In the se
ond 
ase, we 
hoose f 
orresponding to the solutionu(x) = 4eax � 1ea � 1 �1 � eax � 1ea � 1 � ; (4.14)whi
h also satis�es the boundary 
onditions. For our tests, we 
hoose a = 5:0 (althoughother values for a are 
learly possible). A

ording to (2.6) we will be 
on
erned with theweak formulation hu0; v0i = hf; vi; for all v 2 H10 (0; 1): (4.15)In the light of the dis
ussion in Se
tion 2.9 the following points should be kept inmind when interpreting the numeri
al results to be reported on later. The solution has inthis 
ase arbitrarily high pointwise smoothness and therefore has arbitrarily high Sobolevregularity. Therefore one might 
on
lude from the remarks in Se
tion 2.9 at the �rstglan
e that adaptive s
hemes may not work well in this. However, as also explainedin Se
tion 2.9, adaptivity may pay o� for fun
tions having a very large Sobolev normwhile the relevant Besov norm is of moderate size. This present examples are expe
tedto be of this type. Due to the strong gradients of the solutions u, their Sobolev normskukHr in
rease dramati
ally as r grows. As we shall see later on, at least for the se
ondexample the 
orresponding Besov norms turn out to be indeed signi�
antly smaller. Somequantitative estimates 
omparing Besov and Sobolev norms will be given in Se
tion 4.2.2.4.2.1 Wavelets on the IntervalLet us 
onsider the interval 
 = (0; 1). The 
onstru
tion of wavelets on the interval ismeanwhile well understood, see, e.g., [1, 13, 28℄. Here we refer to the 
onstru
tion in [28℄.A

ording to the above 
omments we mainly have to explain the 
onstru
tion of suitabledual pairs of generator bases.The 
ommon strategy is to start with a biorthogonal multiresolution analysis on IR.Spe
i�
ally we 
hoose here a biorthogonal system from the family 
onstru
ted in [17℄where the primal s
aling fun
tions 
onsist of 
ardinal B{splines. For j � j0 where j0 is�xed (suÆ
iently large to disentangle end point e�e
ts) one builds �j by keeping thosetranslates 2j=2�(2j ��k); k 2 ZZ, that are fully supported in [0; 1℄. These will be referred toas interior basis fun
tions. For B-splines of order m one adds at ea
h end of the intervalm �xed linear 
ombinations of the 2j=2�(2j ��k) in su
h a way that the resulting 
olle
tion�j spans all polynomials of order m on (0; 1). One pro
eeds in the same way with thedual s
aling fun
tions restoring the original order of polynomial exa
tness while keeping#�j = #~�j . At this point one 
an verify (4.2), (4.3) and (4.5), i.e., nestedness, lo
alityand re�nability. However, only the interior basis fun
tions inherit the biorthogonalityfrom the line whereas the boundary modi�
ations have perturbed biorthogonality. One
an show though that in this spline family of dual multiresolution sequen
es one 
analways biorthogonalize [28℄ ending up with pairs of generator bases �j; ~�j satisfying allthe properties mentioned in Se
tion 4.1. In fa
t, there are additional noteworthy featureswhi
h we re
ord now for later use. 27



(i) Exploiting symmetry properties of the original s
aling fun
tions one 
an arrangethe bases to be invariant under the transformation x ! 1 � x, a fa
t that will bevery useful in the bivariate 
ase.(ii) One 
an arrange that only a single primal and dual basis fun
tion di�ers from zeroat the end points of the interval.(iii) A

ording to the above 
omments, the bases �j ; ~�j always 
onsist of three partssigni�ed by the index sets �Lj ;�Ij ;�Rj (and similarly for the dual 
olle
tions) identi-fying the left boundary, interior and right boundary basis fun
tions. Only the size ofthe interior sets �Ij depends on j. The number of boundary fun
tions stays alwaysthe same. Moreover, for ea
h end point one has a �xed �nite number (namely mfor the primal respe
tively ~m for the dual side) of s
aling relations whi
h 
an be
omputed a{priorily and stored. The interior basis fun
tions satisfy, of 
ourse, the
lassi
al stationary re�nement rule from the line 
ase.The following properties of the 
orresponding re�nement matri
esM j;0 and ~M j;0 from(4.5) 
an be inferred from the above fa
ts.1) It follows from (i) that the matri
es M j;0; ~M j;0 are invariant under reversing theorder of rows and 
olumns.2) The re�nement matri
es have �xed upper left and lower right blo
ks with the abovesymmetry properties. Only the stationary interior blo
k 
hanges its size with grow-ing level j, see Figure 1.
Mj;0 := ML Aj MRFigure 1: Stru
ture of re�nement matri
es for spline wavelets on the interval.A detailed des
ription of the software for 
onstru
ting wavelets on the interval 
an befound in [8℄. It is based on the Multilevel Library presented in [6℄ and [7℄.For the treatment of problem (4.15) the wavelet basis has to satisfy (2.8) at least forH = H1(0; 1): Therefore we 
hoose the 
ardinal B{splines and their duals both of orderm; ~m � 2, ' := Nm(x); ~' := ~Nm; ~m(x); (4.16)28



as the starting point of the 
onstru
tion. Re
all from (4.15) that the trial fun
tions have tosatisfy homogeneous Diri
hlet boundary 
onditions. There are two ways of in
orporatingsu
h boundary 
onditions that suggest themselves.(I) In view of property (ii) above one 
an simply remove those basis fun
tions from thegenerator bases �j; ~�j that do not vanish at the end points of the interval. Obviously,the resulting 
olle
tions are still biorthogonal and span appropriate subspa
es ofH10 (0; 1), see [19, 15, 31℄.(II) Following [31℄, remove the two end point boundary fun
tions from �j that do notvanish at 0 and 1 but dis
ard two interior basis fun
tions from the dual 
olle
tion~�j. It 
an be shown that the resulting sets 
an again be biorthogonalized retainingall the above properties [33℄. Note that now only �j � H10 (0; 1) while S(~�j) still
ontains all polynomials of order ~m on the whole interval (0; 1).To 
onstru
t now wavelets for either 
hoi
e one 
an apply the re
ipe from Se
tion4.1. In fa
t, one easily identi�es an initial stable 
ompletion that works in both 
asessimultaneously. One 
an just take as a 
omplement basis the hat fun
tions 
orrespondingto new knots on the next re�nement level. This is often referred to as hierar
hi
al basis[51℄. The matri
es �M j;1 and the inverses �Gj are very sparse and expli
itly given. Thepoint is the followingProperty B: The initial 
omplement basis fun
tions � j;k vanish at the end points of (0; 1).Biorthogonal wavelets are then obtained for (I) and (II) by (4.6) in Proposition 4.1.Again the realization of boundary 
onditions is 
ompletely redu
ed to the 
onstru
tion ofgenerator bases only.Remark 4.2 In both 
ases (I) and (II) it is easy to determine the adapted re�nementmatri
es whi
h retain the above mentioned properties. The modi�
ation ofM j;0 is simplydis
arding the �rst and last rows and 
olumns. Thus the e�e
t of either option on the
orresponding biorthogonal wavelets is the use of the respe
tive versions of ~M j;0 in (4.6).While (I) is most simple and immediate, the option (II) appears to be 
on
eptuallypreferable for the following reasons. Quite in line with the stru
ture of the dual H�1(0; 1)ofH10 (0; 1), the fun
tionals onH10 (0; 1) should not be 
onstrained at the end points. This issupported by the following simple observation. Biorthogonality of the wavelets 
ombinedwith the fa
t that in (II) the dual system retains full polynomial exa
tness immediatelyensure that the wavelets have vanishing moments of order ~m on all of (0; 1)hP; j;ki = 0; P 2 � ~m: (4.17)Hen
e when the right{hand side is very simple, e.g., f = 1 on (0; 1), all right hand{sidedata hf;  j;ki arising in the Galerkin s
heme ex
ept on the s
aling fun
tion level j0 vanishin the 
ase (II) while in�nitely many wavelet 
oeÆ
ients build up in the 
ase (I) even iff is very smooth near the end points. For a detailed dis
ussion of related e�e
ts we referto [24℄. Therefore we used (II) in the present tests.29



Remark 4.3 Sin
e in the present 
ase H = H10 (0; 1) the diagonal matrix in (2.8) 
anbe 
hosen as !� := 2j�j. We have to verify norm equivalen
es of the form (2.8) in thepresen
e of boundary 
onditions, but the results in [33℄ e.g. imply that the wavelet basesfor either 
hoi
e (I) or (II) satisfy the norm equivalen
e (2.8) for D as above. Moreover,for (II) the 
an
ellation properties (2.13) holds for ~m = 2 throughout (0; 1). The fa
tthat these 
an
ellation properties deteriorate somewhat near the end points for option (I)should, however, not destroy the overall 
ompressibility property (2.22).Moreover, the following fa
t established in [31℄ will be useful.Remark 4.4 The wavelet bases 
an be arranged to share the symmetry properties (i) ofthe generator bases.One 
an see from (4.6) that the two s
ale matri
es M j;1, ~M j;1 in the de�nition ofthe biorthogonal wavelets have the same prin
ipal 3-blo
k stru
ture as the 
orrespondingre�nement matri
es shown in Figure 1.In Figure 2, we have depi
ted two members of the resulting set of s
aling fun
tionsand wavelets, respe
tively, one in the interior and one whi
h interse
ts the boundary.
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Figure 2: An interior and the at the border non vanishing fun
tion, for s
aling fun
tionsand wavelets.4.2.2 Dis
ussion of ResultsTo be able to interpret the results, we have to identify �rst the range of asymptoti
 opti-mality permitted by the above 
hoi
e of bases. Theorem 2.5 implies that the asymptoti
behavior depends on the 
ompressibility of the matrix A. In parti
ular, the parameter s�de�ned in (2.21) would provide a range where optimality is guaranteed. However, in thepresent situation this 
riterion is too weak. In fa
t, we know from [24℄ that the parameter30



� in (2.19) must satisfy t+ � < 
 where 
 bounds the Sobolev regularity of the wavelets.In this 
ase t = 1; 
 = m� 1=2 whi
h gives � = m� 3=2, i.e., s� = m� 2. Therefore, inthe 
ase ' = N2; we end up with s� = 0 whi
h is 
learly useless. Of 
ourse, the 
ondi-tion (2.21) is only suÆ
ient and in this 
ase a more detailed analysis of the 
ompressionproperties is ne
essary. In fa
t, for our spe
ial 
ase, a sharper result 
an be shown.Lemma 4.5 Let A denote the sti�ness matrix to (4.12) obtained by B{spline wavelets oforder m as basis fun
tions. Then for any � > 0 the following 
ompression estimate holds:kA �AJk <� 2�J(m�3=2��); i.e., A 2 As for all s < m� 3=2: (4.18)Proof: Eq. (4.18) 
an be established dire
tly by using a version of the S
hur lemma:if for the matrix B = (b�;�0)�;�02J there is a sequen
e !�; � 2 J and a positive 
onstant 
su
h that X�02J jb�;�0j!�0 � 
!� and X�2J jb�;�0j!� � 
!�0; �; �0 2 J ; (4.19)then kBk � 
:We want to use (4.19) for the sequen
e !� = 1 for all � 2 J . Let us brie
ysket
h the arguments. The �rst step is to estimate the entries in the sti�ness matrix
orresponding to (4.15). Ignoring for the moment the boundary e�e
ts, re
alling thatderivatives of wavelets are again wavelets, see e.g. [27℄, and using the vanishing momentproperty of wavelets, we obtain for any polynomial P�0 on 
�0 of degree < m � 1 andj0 � j hd �dx ; d �0dx i = hd �dx � P�0; d �0dx i� 




d �dx � P�0




L2(
�0 ) 2j0 




d �0dx 




L2<� 




d �dx � P�0




L2(
�0 ) :Sin
e ddx � 2 Hs; s < m� 3=2; a 
lassi
al Whitney type estimate yields thereforehd �dx ; d �0dx i <� 2j02�j0(m�3=2��) �����d �dx �����Hm�3=2��<� 2j02�j0(m�3=2��)j �jHm�1=2��<� 2j02�j0(m�3=2��)2j(m�1=2��)<� 2(j�j0)(m�3=2��)2j+j0 ;so that, taking the pre
onditioning matrix D into a

ount, we getja�;�0j <� 2(j�j0)(m�3=2��); j0 � j: (4.20)The 
ase j0 < j 
an be treated analogously,ja�;�0j <� 2(j0�j)(m�3=2��); j0 < j: (4.21)31



However, the 
rude estimates (4.20) and (4.21) do not tell the whole truth. Indeed, ifwe 
ombine the fa
t that the generator is a 
ardinal B{spline with the vanishing momentproperty of the wavelet basis, we see that for �xed values of j�j; j�0j a lot of entries ja�;�0jare zero. Roughly speaking, the non vanishing entries 
orrespond only to the wavelets  �0whose supports interse
t the singular support of  �. It 
an be shown that the number ofthese entries does not depend on the re�nement level. Consequently, we getXj�0j=j0 ja�;�0j <� 2�jj�j0 j(m�3=2��): (4.22)A

ording to (2.23) and (4.19), we have to show thatXjj�j0j>J Xj�0j=j0 ja�;�0j <� 2�J(m�3=2��): (4.23)Let us again �rst 
onsider the 
ase j0 > j: By using (4.22), we obtainXj0�j>J Xj�0j=j0 ja�;�0j <� 1Xj0=j+J 2(j�j0)(m�3=2��) <� 2j(m�3=2��)2�(J+j)(m�3=2��) <� 2�J(m�3=2��):(4.24)The 
ase j0 � j 
an be treated analogously. The se
ond 
ondition in (4.19) 
an be 
he
kedin a similar fashion and (4.18) is established.In view of the pivotal role of the approximate fast matrix/ve
tor multipli
ation, webegin with some tests of this ingredient. Of 
ourse, a

essing eÆ
iently the relevant matrixentries when performing the teles
oping expansion (2.50) is one of the 
entral problemdependent interfa
es. In order to obtain a qui
k impression of the quantitative behaviorof su
h a routine we have employed a very provisional strategy, namely to pre
omputea possibly large se
tion of the in�nite matrix A from (2.14). This 
an be done by �rstdetermining a full s
aling fun
tion representation of the sti�ness matrix followed by awavelet transform. We 
an then simply 
all the entries needed in (2.50). Of 
ourse, thisis a preliminary step that allows us to qui
kly 
he
k a

ura
y. The error estimate (2.51)indi
ates that the approximation power of the fast/matrix multipli
ation is determined bythe parameter s� whi
h, a

ording to (4.18), is given by s� = m� 3=2: This is 
on�rmedby our numeri
al tests. In Figure 3, the error kAv � wjk`2 is plotted in a logarithmi
s
ale. We see that the slope of the resulting 
urve is indeed approximately m� 3=2.A

ording to Theorem 2.5 we 
an expe
t that the error in approximating the solutionu to (4.15) de
ays at best like N�(m�3=2). This is 
on�rmed by the numeri
al resultsdisplayed in the �gures below. The �rst pi
tures in Figure 4 and 5 show the 
urrentGalerkin approximation u� and the 
orresponding error u � u� for the �rst example(4.13) for the wavelet basis asso
iated with ' = N2; ~' = ~N2;2: One 
an see that theerror de
reases very rapidly, as expe
ted. In the following pi
tures in Figure 6, the setsof wavelets sele
ted at the respe
tive stage by the adaptive algorithm are plotted. Thesewavelets are sometimes 
alled the a
tive ones. We should mention, that here we have
hosen as �0 the set of indi
es of all s
aling fun
tions on the 
oarsest level, be
ause this
ase shows some instru
tive e�e
ts in the later 
hoi
e of indi
es by the algorithm. Itsqualitative performan
e when 
hoosing �0 = ; however, is the same.32
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d=4,dt=4, s=−2.3Figure 3: The slope of error redu
tion.A few further details shed some light on the way the s
heme works. We see thatalthough the problem and the wavelet basis is symmetri
with respe
t to the point x = 0:5,sometimes the wavelets on a given re�nement level are 
hosen in a non symmetri
 way. Iffor example all 
oeÆ
ients are equal, theN largest 
oeÆ
ients are not uniquely determinedand the best N -term approximation is realized by di�erent possible 
hoi
es, see Figure 6.Also sometimes a dyadi
 level is skipped when expanding the set of a
tive wavelets. Inthe 
ourse of further re�nements, however, symmetrization and �lling of `gaps' graduallytakes pla
e.One more 
omment 
on
erning the behavior of the adaptive s
heme is in order. Wesee that the adaptive algorithm in fa
t observes the strong gradient of the solution u andadds wavelet 
oeÆ
ients in these regions. Therefore the lo
ation of the signi�
ant wavelet
oeÆ
ients of the approximate solution adequately re
e
ts the features of the right{handside. Consequently, the a
tive wavelets are by no means equally distributed.33
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Figure 4: The �rst three approximate solutions and di�eren
es to exa
t solution.34
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t solutionWe expe
t that the performan
e of the adaptive s
heme 
an be improved dramati
allyby in
reasing the smoothness of the wavelet basis. Indeed, sin
e � in (2.21) is dire
tlyrelated with the regularity of the basis, the parameter s� whi
h determines the perfor-man
e of the algorithm 
an be made larger in this way, 
ompare again with (4.18). Atthis point, we want to emphazise that in 
ontrary to linear s
hemes the approximationorder of the adaptive s
heme is not given by the polynomial exa
tness of the multireso-lution analysis. We have also made some quantitative tests with smoother wavelet bases.From Theorem 2.5 we know that for s < s� the algorithm should perform with the sameorder of approximation as the 
orresponding best N{term approximation. In Figure 8we have depi
ted the error for both, the best N{term approximation (
ontinuous line)and the adaptive algorithm (diamond{shaped line), as N in
reases, in a logarithmi
 s
ale.We see that both errors show almost the same behaviour. We also see that the adaptivealgorithm indeed performs better for smoother wavelet bases (i.e., for larger values of s�),as it should.We performed similar numeri
al tests also for the se
ond example. The results aredepi
ted in the Figures 9 and 10. As before, the pi
tures show the 
urrent Galerkin ap-proximation u� and the 
orresponding error u�u�:We used the wavelet basis asso
iatedwith ' = N3; ~' = ~N3;3. We see that again the error de
reases very rapidly as expe
ted.The reader should note that the errors are depi
ted in di�erent s
ales!37
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In Figure 12, the performan
e of the adaptive algorithm 
ompared with the best N{term approximation is illustrated. Again both algorithms show almost the same behavior.We also observe that the performan
e of the algorithm gets better as the smoothness ofthe wavelets in
reases.
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Figure 12: Comparison between best N-term approximation and adaptive algorithm.Let us end this se
tion with some remarks 
on
erning the 
omparison of adaptive andnonadaptive s
hemes. As we have already seen, for both examples studied above, thewavelet 
oeÆ
ients 
hosen by the adaptive algorithm are by no means equally distrib-uted. This indi
ates that for these example we indeed gain eÆ
ien
y by adaptive s
hemesalthough the solutions are arbitrary smooth in the Sobolev s
ale. As already stated above,the order of approximation that 
an be a
hieved is limited by the parameter s�; and thebest we 
an expe
t in our 
ase is an estimate of the formku� u�jk <� (#�j)�(m�3=2):For a uniform re�nement s
heme we obtain the same order of approximation for fun
tionsin Hm�1=2(0; 1), i.e., infvj2Sj kv � vjkH1(
) <� N�(m�3=2)j kvkHm�1=2(
); (4.25)
ompare with (2.37). We therefore gain eÆ
ien
y if the Hm�1=2{norm of the solution u islarge when 
ompared with the 
orresponding norm in the Besov spa
e Bm�1=2�� (L��(
));1=� � = m� 3=2 + 1=2 = m� 1: For the �rst example, it turns out that these two normsare only slightly di�erent, whereas in the se
ond example, they di�er dramati
ally.42



The norms of the latter 
ase are depi
ted in the following �gure:m Hm�1=2 B(m�1)(m�1)�1(L(m�1)�1)1.5 6:73 6:732 39:4 14:52.5 240 47:83 1617 275We have estimated the norms by employing the norm equivalen
es (2.11), i.e., by 
om-puting weighted sequen
e norms of wavelet expansions. The di�eren
e between Sobolevand Besov norms gets plausible if we take a look at the right{hand side and the exa
tsolution for the se
ond example, see Figure 13:
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Figure 13: The exa
t solution and the right{hand side for the se
ond exampleIn 
ontrary to the �rst example, the right{hand side of the se
ond example does notsatisfy the Diri
hlet boundary 
onditions. This 
auses the boundary layer of the solution43



u. This layer in
reases the Sobolev norm but does not in
uen
e the (weaker) Besov normtoo mu
h.The above 
omparison of Sobolev and Besov norms indi
ates that there is indeed somegain of eÆ
ien
y for adaptive s
hemes possible for this example. Therefore we made somenumeri
al tests in whi
h we 
ompared our adaptive algorithm with a uniform s
heme.The result is depi
ted in Figure 14.
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Figure 14: Comparison between adaptive algorithm / uniform re�nement.As one would expe
t, the slope of the 
urves is indeed the same. Nevertheless, sin
ethe norms di�er so mu
h, the line 
orresponding to the linear s
heme lies high above theone 
orresponding to the adaptive s
heme. Therefore we have indeed a spe
ta
ular gainof eÆ
ien
y.
44



4.3 2D{ExamplesOur next test 
ase is the 
lassi
al Poisson equation on an L{shaped domain 
 in IR2,�4u = f on 
; (4.26)uj�
 = 0;as shown in Figure 15.This problem is interesting be
ause now the solution may exhibit singularities solely
Figure 15: The L{shaped domain.
aused by the shape of the domain even for smooth right hand sides. In order to be ableto validate later the numeri
al results we start by brie
y re
alling some basi
 fa
ts on theregularity theory of (4.26).4.3.1 Regularity Theory for Polygonal DomainsIt is well{known that the solution u to (4.26) on a polygonal domain may exhibit singu-larities in the vi
inity of the verti
es, espe
ially when the domain is not 
onvex. Thereforethe Sobolev regularity of the solution will not be very high, even if the right{hand sidef is smooth. A

ording to the dis
ussion in Se
tion 2.9 this is a situation when adaptives
hemes are potentially superior to preset dis
retizations. In fa
t, sin
e 
 is obviouslya Lips
hitz domain, Theorem 2.7 tells us that the regularity of u in the spe
i�
 Besovs
ale B���(L��(
)); 1=� � = (�� 1)=2 + 1=2; will in general be higher than in the Sobolevs
ale. Moreover, for this spe
i�
 model problem, mu
h more 
an be said. In fa
t, forpolygonal domains in IR2, the singular parts of the solutions whi
h are responsible forthe de
reasing Sobolev regularity 
an be 
lassi�ed. The �rst results in this dire
tion wereproved by Kondrat'ev [43℄, see also [41℄ and [35℄.Let 
 be a simply 
onne
ted polygonal domain in IR2. The segments of �
 are denotedby �l; �l open, l = 1; : : : ; N; numbered in positive orientation. Furthermore, Vl denotesthe endpoint of �l and !l denotes the measure of the interior angle at Vl. Moreover, weintrodu
e polar 
oordinates (rl; �l) in the vi
inity of ea
h vertex Vl. Finally, �l denotes asuitable C1 trun
ation fun
tion. The following theorem is quoted from [41℄.45



Theorem 4.6 Suppose that the right{hand side f in (4.26) is 
ontained in H�(
) forsome � � �1: Furthermore, let us assume that m�=!l 6= �+1 for all l = 1; : : : ; N; m � 1:Then the solution u to (4.26) has an expansion u = uR + uS; where uR 2 H�+2(
) anduS = NXj=1 X0<�l;m<�+1 
l;mSl;m; �l;m := m�=!l; (4.27)where the fun
tions Sl;m are given bySl;m(rl; �l) = �l(rl)r�l;ml sin(m��l=!l); when �l;m is not an integer, (4.28)Sl;m(rl; �l) = �l(rl)r�l;ml [log rl sin(m��l=!l) + �l 
os(m��l=!l)℄ otherwise:(4.29)We see that the solution 
an be de
omposed into two parts. The regular part uR onlydepends on the right{hand side and 
an be made arbitrarily smooth by in
reasing thesmoothness of f:By using suitable embeddings, it turns out that uR 2 B���(L��(
)); 1=� � =(� � 1)=2 + 1=2; � < � + 2. On the other hand, the singular part uS does not dependon f but des
ribes the in
uen
e of the domain, and we see that the order of 
onvergen
ethat 
an be a
hieved by an adaptive s
heme essentially depends on the Besov regularityof uS: From Theorem 2.7 we already know that this regularity is high enough to justifyadaptive s
hemes. Nevertheless, for our spe
ial 
ase, a mu
h sharper result is available.Quite surprisingly, it turns out that uS has arbitrarily high smoothness in the nonlinearapproximation s
ale of Besov spa
es [22℄.Theorem 4.7 Any fun
tion Sl;m de�ned by (4.28) satis�esSl;m 2 B���(L��(
)); for all � > 0; 1� � = �� � 12 + 12� : (4.30)By 
ombining Theorem 4.6 and Theorem 4.7 we therefore obtain for f 2 H�(
)u 2 B���(L��(
)); 0 < � < �+ 2; 1� � = ��� 12 + 12� ; (4.31)see again [22℄ for details. The relations in (4.31) imply that for suÆ
iently smooth right{hand sides adaptive s
hemes 
an in prin
iple perform with an arbitrarily high order of
onvergen
e { whi
h again 
alls for high order wavelets!Motivated by these observations, in our tests the right{hand side f is designed in su
ha way that the solution u is exa
tly the `worst' singularity fun
tion whi
h, in the 
ase ofthe L{shaped domain, is obtained by inserting m = 1; ! = 3�=2 into (4.28), i.e.,u = S1;1(r; �) = �(r)r2=3 sin(2�=3): (4.32)It remains to �x the trun
ation fun
tion �. We setw(r) := 8><>: e�1=r2 if r > 0;0 else;and de�ne �(r) := w(3=4 � r)w(r � 1=2) + w(3=4 � r) :The resulting singularity fun
tion is depi
ted in Figure 16.46



Figure 16: The solution to our model problem.The 
orresponding right{hand side is 
onstru
ted by applying the Lapla
ian to u.Observe that the fun
tion u is harmoni
 in the vi
inity of the 
riti
al vertex. Thereforethe right{hand side does not `see' the strong gradient of u near this vertex whi
h 
on�rmsthat the singularities of u are in fa
t partially generated by the shape of the domain, seeFigure 17. To our knowledge so far adaptive wavelet s
hemes have not been applied yetto situations of this type.
Figure 17: The right{hand side.47



4.3.2 The Composite Wavelet BasisThe problem dependent part of the implementation requires again 
hoosing suitablewavelet bases. In prin
iple, several 
onstru
tions are meanwhile available [19, 14, 31, 32℄whi
h qualify for the 
ase at hand. Here we use the so{
alled 
omposite wavelet basis from[31℄ be
ause of a few te
hni
al 
onvenien
es.It is 
lear that tensor produ
ts of wavelets on the interval yield wavelet bases on2 := (0; 1)d. In our situation, the domain is a union of 
ubes whi
h �ts into the followingframework.A typi
al way to 
onstru
t wavelets on more 
ompli
ated domains is to use a do-main de
omposition te
hnique: the domain 
 of interest is divided into non overlappingsubdomains 
i �
 = N[i=1 �
i; 
i \ 
j = ;; i 6= j: (4.33)Here ea
h 
i is a smooth parametri
 image 
i = �i(2) of the unit 
ube where in generalfor d � d0 �i : IRd ! IRd0 : 2! 
i:Moreover, suppose that �i;l := �
i\ �
l is the 
ommon interfa
e of 
i and 
l. For the later
onstru
tion of global wavelet bases on 
 the parametri
 mappings �i have to satisfy the
ontinuity 
onditions ��1i (�i;l) = �(��1l (�i;l); (4.34)where � is a rotation.In order to 
onstru
t wavelet bases on 
 we follow the re
ipe from Se
tion 4.1, i.e., wehave to 
onstru
t �rst dual pairs of biorthogonal generator bases on the 
omposite domain
. This in turn is fairly easy by stit
hing together parametri
 liftings of generator bases onthe unit 
ube. This is essentially due to two fa
ts. Firstly, the boundary properties (ii) ofthe univariate ingredients in Se
tion 4.2.1 
on�ne the gluing pro
ess to very few fun
tionsasso
iated with the domain. Se
ondly, the symmetry properties from Remark 4.4 and (i)in Se
tion 4.2.1 leaves 
onvenient 
exibility 
on
erning invarian
e under rotations in theparametri
 mappings �i. We will detail this a bit by the following remarks.To avoid 
onfusion we will use the supers
ript 2 to denote fun
tions on 2. As men-tioned before, on the referen
e domain we use tensor produ
ts of the wavelets and s
alingfun
tions 
onstru
ted in Se
tion 4.2.1.We use multiindi
es k = (k1; : : : ; kd) to des
ribe the s
aling fun
tions'2j;k := 'j;k1 
 � � � 
 'j;kd ; k 2 I j := I1 � � � � � Id; (4.35)on 2.The next task is to assemble dual pairs of generator bases on the domain 
 by 
om-posing those on the subdomains. De�ning'ij;k(x) := '2j;k(��1i (x)); x 2 
i: (4.36)we have to glue those s
aling fun
tions a
ross interfa
es of subdomains whi
h do notvanish on these interfa
es. To identify these fun
tions it is48
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Figure 18: Mat
hed and res
aled s
aling fun
tions at the interfa
e.
onvenient to asso
iate grid points with the indi
es of our s
aling fun
tions. This 
anbe done by de�ning for k 2 Ij and some 0 < xk < 1:q(k) := 8><>: 0; 'j;k(0) 6= 0;1; 'j;k(1) 6= 0;xk; else; (4.37)and for k 2 I j q(k) := �q(k1); : : : ; q(kd)�: (4.38)Thus a fun
tion 'ij;k is supported inside a single subdomain 
i, if and only if �i(q(k)) 2
i n �
i.The 
orresponding grid points on the global domain are now de�ned using the para-metri
 mappings and the grid points de�ned before:� := �(i; k) := �i(q(k)): (4.39)For all points � on a 
ommon boundary of more than one subdomain, this � has severalrepresentations. If r(�) is the number of subdomains �
i where � belongs to, we have� = �i1(q(k1)) = : : : = �r(�)(q(kr(�))): (4.40)The idea is best illustrated in the univariate 
ase. In fa
t, in the example presented inFigure 18, where �1(x) := x � 1 and �2(x) = x we have 0 = � = �1(1) = �2(0) andr(�) = 2. At this point essential use is made of the property (ii) in Se
tion 4.2.1 a

ordingto whi
h for both ends of the interval only one fun
tion does not vanish on the boundary.49



Moreover, the symmetry property (i) ensures 
ompatibility of these mat
hings, re
all(4.34).The same prin
iple works for mat
hing a
ross multivariate 
ubi
al subdomains. Thes
aling fun
tions on the domain 
 are now de�ned as follows:'j;�(x) := r(�)�1=2'ij;k(x); x 2 
i: (4.41)The analogous 
onstru
tion holds for the dual system providing the global generatorbases �
j , ~�
j on 
 whi
h are globally 
ontinuous and hen
e suitable for the Galerkindis
retization of the present se
ond order problem.The resulting system is biorthogonal with respe
t to the modi�ed inner produ
t(v;w) := NXi=1hv Æ �i; w Æ �ii: (4.42)In fa
t, biorthogonality in the interior of ea
h subdomain is trivially retained. Using anappropriate s
aling of those fun
tions glued a
ross an interfa
e or around a vertex (e.g.by r(�)�1=2 where r(�) is the number of subdomains overlapped by the basis fun
tionasso
iated with �) biorthogonality is restored for those basis fun
tions as well [31℄, 
ompareFigure 2 and Figure 18. In Figure 19 we present a typi
al s
aling fun
tion overlappingthe 
ommon boundary of two subdomains. One 
an see that for this 
ase the fun
tionis the tensor produ
t of the usual hat fun
tion (in y{dire
tion) with the mat
hed onedimensional fun
tion in x{dire
tion shown in Figure 18.Note that, on a

ount of the assumptions on the parametri
 mappings �i, the modi�edinner produ
t (4.42) is equivalent to the 
anoni
al inner produ
t on 
 in the sense thatk � k2L2(
) � (�; �): (4.43)The Gramians of the mappings �i allow us of 
ourse to identify an expli
it Riesz mapR : L2(
)! L2(
) su
h that the pairs �
j ; R~�
j are now biorthogonal on 
 with respe
tto the standard inner produ
t h�; �i. The fa
t that this Riesz map is a multipli
ation by apie
ewise smooth but in general globally dis
ontinuous fun
tion explains why these basesare less suitable for operators of order � �1=2 where 
onstru
tions like [32, 30℄ still work.So far we have a

omplished step a) in Se
tion 4.1. Step b) 
onsists of identifying asuitable stable 
ompletion along with the 
orresponding two-s
ale matri
es. There areseveral possibilities des
ribed in [31℄ whi
h work for generator bases of any order. Forsimpli
ity our �rst tests will be based again on tensor produ
ts of pie
ewise linear trialfun
tions and 
orresponding duals of lowest possible order, see Se
tion 4.2.1. In this 
asethe initial stable 
ompletion 
an again be based on hierar
hi
al 
omplement fun
tions.What matters, in view of (4.34), is Property B whi
h now fa
ilitates an easy identi�
ationof the initial ingredients �M j;1, �Gj for initial stable 
ompletions on 
, retaining the favor-able symmetry properties as in Remark 4.4. Corresponding biorthogonal wavelets (withrespe
t to the modi�ed inner produ
t (4.42)) are then again obtained by (4.6) or (4.11).Of 
ourse, again homogeneous Diri
hlet boundary 
onditions have to be in
orporatedin the trial spa
es. As before we have the options (I), (II) des
ribed earlier. Re
all thatthe e�e
t on the wavelet bases is merely a di�erent 
hoi
e of ~M j;0 in (4.6). As in the50
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ase !� = 2j�j is a suitable 
hoi
e for the diagonal s
aling matrix D in (2.8). Usingthe results in [31, 33℄ ensures that then the norm equivalen
e (2.8) holds for H = H10 (
).Moreover, 
on
erning the 
an
ellation properties and the 
ompressibility of the operatorrepresentation A the same statements as in the 1D{
ase apply so that the bases satisfyall the requirements from Se
tions 2.2 and 2.3. One should note though that when the �iare not just translations and rotations the 
an
ellation properties (2.13) would deterioratenear the subdomain interfa
es due to the modi�
ation of inner produ
ts. To avoid thatone 
an use the 
onstru
tions from [32, 30℄ whi
h realize biorthogonality with respe
t tothe standard inner produ
t. In parti
ular, in [32℄ 
onditions like (4.34) are not needed.Note that all geometri
 information has been absorbed in the 
onstru
tion of the gen-erator bases �
j , ~�
j . The wavelets are obtained by an evaluation, in prin
iple, withouta need to dis
uss di�erent types of vertex situations in the partition of 
. This togetherwith a stronger exploitation of symmetry (to 
ope with (4.34)) distinguishes the 
onstru
-tion in [31℄ from [14℄, say. In either 
ase, the prin
ipal situation from the univariate 
asepersists, although with signi�
ant te
hni
al 
ompli
ations. The lo
al index sets enteringthe en
oding of the global index sets (whi
h in turn provide the links to the STL libraries)
onsist now of more distin
t groups depending on the multipli
ities r(�).In all appli
ations it is of great importan
e not to destroy the tensor produ
t stru
ture,be
ause exploiting this stru
ture 
an signi�
antly redu
e 
omputational 
osts 
ompared tonon tensor produ
t stru
tures. Computing the entries of the sti�ness matrix for example51



would only be possible for one or two wavelet levels be
ause for larger levels the memory
onsumption would have been too large. Using the tensor produ
t stru
ture we are ableto 
ompute up to level nine whi
h 
orresponds to a uniform grid of 784385 unknowns.For the L{shaped domain the routines for 
onstru
ting the wavelets are implementedby Vorloeper and des
ribed in detail in [50℄.4.3.3 Dis
ussion of ResultsThe test 
ase des
ribed above is interesting for the following reason. Starting with theemty set, the residual in the �rst step is only in
uen
ed by the wavelet 
oeÆ
ients of theright{hand side. These wavelet 
oeÆ
ients are small near the vertex, due to the fa
t thatu is harmoni
 there. Now in the next steps the adaptive s
heme has to `re
ognize' thisde�
ien
y and add wavelet 
oeÆ
ients at the `right' pla
es, namely in the vi
inity of thevertex to resolve the there strong gradient of the solution appropriately.Remark 4.8 Re
all that u has arbitrary high regularity in the Besov s
ale whereas for theSobolev s
ale a dire
t veri�
ation shows that u 2 H�(
); � < 5=3: Consequently, uniformgrids yield at best a 
onvergen
e rate N�5=6.In the Figures 20 and 21 we have depi
ted both, the approximate solution and theerror to the exa
t solution. It 
an be seen that the adaptive algorithm indeed behaveslike expe
ted. First 
oeÆ
ients are added to redu
e the error where strong gradients areindu
ed by the right{hand side whereas in the subsequent iterations the error is redu
ednear the vertex, so that after �ve iterations the error is equally distributed. We see thatsimilar to the 1D test problem the error again de
reases very rapidly. In Figure 22 we havealso depi
ted the sets of a
tive wavelet 
oeÆ
ients 
orresponding to the �fth iteration ofthe adaptive algorithm. The �rst pi
ture shows the set of 
oeÆ
ients 
orresponding to thes
aling fun
tions whereas in the remaining three we have treated the three di�erent typesof wavelets separately. It is shown in detail whi
h 
oeÆ
ients are added on ea
h re�nementlevel. We see that the symmetry of the exa
t solution is re
e
ted by the similarity of thepi
tures in the upper right and lower left 
orner. These two pi
tures 
learly 
orrespond totensor produ
t fun
tions of wavelet/generator and generator/wavelet type, respe
tively.Finally, we have also 
ompared the performan
e of the adaptive algorithm with thebest N{term approximation whi
h 
an be 
omputed very easily by 
olle
ting theN biggestwavelet 
oeÆ
ients. In Figure 23, we have depi
ted the errors as N in
reases. The 
on-tinuous line 
orresponds to the best N{term approximation. We see that the mat
hingbetween N{term and adaptive approximation is already pretty good. Indeed, the per-forman
e is in some sense better than expe
ted. Observe that the wavelet basis is notvery smooth so that no meaningful predi
tions 
an be made from the theoreti
al pointof view. Again we expe
t that the approximation rate of the adaptive s
heme 
an bedramati
ally in
reased by using smoother wavelet bases, for then the parameter s� whi
hdetermines the order of approximation grows. In fa
t, sin
e in our 
ase the solution u hasarbitrary high Besov regularity, the order of 
onvergen
e 
an also be made arbitrary highby in
reasing the smoothness of the wavelet basis. This topi
 will be studied in the nearfuture. 52
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