
Some Remarks on Quadrature Formulas for Re�nableFuntions and WaveletsArne Barinka�, Titus Barsh, Stephan Dahlkey, Mihael KonikAbstratThis paper is onerned with the eÆient omputation of integrals of (smooth)funtions against re�nable funtions and wavelets, respetively. We derive quadra-ture formulas of Gauss{type using these funtions as weight funtions. The methodsare tested for several model problems and possible pratial appliations are dis-ussed.Key Words: Gauss quadrature, saling funtions, wavelets.AMS subjet lassi�ation: Primary 65D32, seondary 41A30, 42C05, 42C15.1 IntrodutionIn reent years, muh progress has been made in establishing wavelet analysis as a om-petitive tool for image analysis/ompression and for the numerial treatment of operatorequations. Nevertheless, there are still some important problems whih have not beensolved satisfatorily yet. In this paper, we give a ontribution to one of these questions aswe shall now explain. Whenever wavelet analysis is used in pratie, sooner or later onehas to ompute inner produts with wavelets or with an assoiated re�nable funtion. Werefer to Setion 2 for a short overview on wavelet analysis. In some exeptional ases, it ispossible to ompute these inner produts diretly by �nding primitives, however, usuallythey are not aessable and therefore one needs suitable quadrature rules. Of ourse, oneould simply apply one of the well{known quadrature formulas whih an be found inany book on numerial analysis. However, this usually leads to serious trouble. First ofall, neither the re�nable funtion nor the wavelet are neessarily very smooth so that alassial quadrature rule may not perform satisfatorily. Moreover, in many ases, thesefuntions are not known expliitly but only via ertain funtional equations from whihthe funtion values have to be omputed or approximated. This is possible in priniple,however, these kinds of funtion evaluations may be expensive and/or inaurate.In the last few years, several approahes to this problem have been suggested. Dahmenand Mihelli [DM2℄ developed a method whih is based on the iteration of a spei��The work of this author has been supported by the Volkswagen StiftungyThe work of this author has been supported by Deutshe Forshungsgemeinshaft, Grant Da 117/13{11



operator derived from a related subdivision sheme. It works in any dimension and undervery low regularity assumptions on the funtion f , but it might be somewhat expensive.A di�erent approah is presented in [PS1, PS2℄, where quadrature formulas for re�nablefuntions are onsidered. Several types of Newton{Cotes quadratures are disussed, whihare determined using Tshebyshe� polynomials.In this paper, we are also onerned with the onstrution of quadrature formulas.Our approah is mainly based on Gauss quadrature, whih o�ers the optimal exatnessfor a given number of quadrature points. The idea is to use the re�nable funtion and thewavelet, respetively, as the weight funtion for suh a quadrature rule. Note that in thisonstrution the weight is only required to be non{negative. Of ourse, one has to be ableto ompute the moments of the weight funtions with high auray. Fortunately, thisis no problem in the wavelet setting. In fat, all moments an be omputed reursivelyand very heaply, see Setion 4 for details. To our knowledge, the �rst approah in thisdiretion was given by Gautshi et.al. [GGP℄. However, their approah only works forre�nable funtions with some smoothness whereas in our setting we do not need thisassumption. Moreover, in [GGP℄ only re�nable funtions are onsidered while in thispaper we also study the wavelet ase. (Nevertheless, let us mention that simultaneouslyto our work, generalizations to these ases are in preparation [GS℄). Furthermore, we alsogive an outline how our approah an be generalized to higher dimensions.This paper is organized as follows. In Setion 2, we give a very short summary ofthe basi fats from wavelet analysis. In Setion 3, we briey reall the setting of Gaussquadrature as far as it is needed for our purposes. In Setion 4, we disuss the speialfeatures appearing in the appliation of Gauss quadrature in the wavelet setting. Then, inSetion 5, we apply the theory developed so far to the important speial ase of ardinal B{splines. In Setion 6, we present some ways how our approah an be generalized to higherdimensions. This turns out to be quite easy in the tensor produt ase, however, leavingthe Gauss quadrature setting, the general ase is also briey disussed. We have tested ourmethod for some important model problems in one and two dimensions, and the resultsare presented in Setion 7. It turns out that the performane was quite satisfatorily inall ases. Finally, in Setion 8, we disuss the appliation of these quadrature rules tosome pratial problems. So far, it seems that the approah presented here works veryeÆiently for the omputation of far�eld integrals arising in boundary element methods.We therefore disuss one typial example in this regard in detail.2 The wavelet settingIn this setion, we shall briey reall the basi setting of wavelet analysis as far as itis needed for our purposes. In general, a funtion  is alled a wavelet if all its saled,dilated, and integer translated versions j;k(x) := 2j=2 (2jx� k); j; k 2 ZZ; (1)form a Riesz basis of L2(IR). Usually, they are onstruted by means of a multiresolutionanalysis introdued by Mallat [M℄ whih is a nested sequene fVjgj2ZZ of losed subspaesof L2(IR) suh that their union is dense while their intersetion is zero. Furthermore, one2



assumes that the spaes fVjgj2ZZ are related byf(�) 2 Vj () f(2�) 2 Vj+1; (2)and that the spae V0 is shift{invariant and spanned by the integer translates of one singlefuntion ' alled the generator of the multiresolution analysis. Assuming that ' has stableinteger translates, it an be shown that ' is re�nable, i.e., it satis�es a two{sale relation'(x) = Xk2ZZ ak'(2x� k) (3)with the mask a = fakgk2ZZ 2 `2(ZZ): In the sequel, we shall restrit ourselves to re�nablefuntions with ompat support and we will always assume thatsupp(a) := fk 2 ZZjak 6= 0g � [m1;m2℄: (4)It an be heked that (4) implies supp' � [m1;m2℄: Beause the union of the spaesfVjgj2ZZ is dense in L2(IR), it is easy to see that the onstrution of a wavelet basis reduesto �nding a funtion whose translates span a omplement spae W0 of V0 in V1. Hene (2)implies that the wavelet  an be found by means of a funtional equation of the form (x) =Xk2ZZ bk'(2x� k); (5)where the sequene b := fbkgk2ZZ has to be judiiously hosen, see, e.g., [Ch, Dau, Me℄ fordetails. We shall heneforth always assume that supp(b) � [n1; n2℄, so that the resultingwavelet is ompatly supported.There are several methods to generalize this onept to higher dimensions. The sim-plest way is to use tensor produts. Given a univariate multiresolution analysis withgenerator ', it turns out that�(x1; : : : ; xd) := '(x1) : : : '(xd) (6)generates a multiresolution analysis of L2(IRd). Let E denote the verties of the unit ubein IRd. De�ning  0 := ' and  1 :=  , it an be shown that the set 	 of 2d � 1 funtions e(x1; : : : ; xd) := dYl=1  el(xl) e = (e1; : : : ; ed) 2 Enf0g; (7)generates by shifts and dilates a basis of L2(IRd): There also exist multivariate waveletonstrutions with respet to non{separable re�nable funtions � satisfying�(x) = Xk2ZZd ak�(2x� k); fakgk2ZZd 2 `2(ZZd); (8)see, e.g., [JM℄ for details. Analogously to the tensor produt ase, a family  i; i =1; : : : ; 2d � 1; of wavelets is needed. Eah  i satis�es a funtional equation similar to (5), i(x) = Xk2ZZd bik�(2x� k): (9)3



As in the univariate ase, we shall heneforth assume that the saling funtions andwavelets under onsideration are all ompatly supported.In pratie, it is often very onvenient to have aess to a suitable biorthogonal waveletbasis. For a given (univariate) wavelet basis f j;k; j; k 2 ZZg, one is interested in �ndinga seond system f ~ j;k; j; k 2 ZZg satisfying( j;k(�); ~ j0;k0(�)) = Æj;j0Æk;k0 ; j; j0; k; k0 2 ZZ: (10)Here (�; �) learly denotes the usual L2{inner produt. The onstrution of suh a biorthog-onal system essentially relies on a suitable seond generator ~' suh that ' and ~' form adual pair, ('(�); ~'(� � k)) = Æ0;k: (11)Elegant onstrutions an be found, e.g., in [CDF℄. Generalizations to higher dimensionsalso exist [CD℄.For further information on wavelet analysis, the reader is referred to one of the exellenttextbooks on wavelets whih have appeared quite reently [Ch, D, Dau, KL, Me, W℄.3 Gauss quadratureA univariate Gauss quadrature rule replaes an integral by a weighted sum of pointevaluations of f , i.e.,Z[a;b℄ f(x)w(x)dx � Inw(f) := nXi=1 �if(xi); [a; b℄ � IR; n 2 IN; (12)with knots xi and weights �i; i = 1; : : : n. Here w(x) is alled the weight funtion, whihin the most lassial ase is hosen to be w(x) � 1. However, the theory an be developedfor a hugh lass of funtions. In fat, in order to get an appropriate formula, w(�) is ingeneral only required to be non{negative.De�ning the inner produt orresponding to w(�) � 0 as(f; g)w := Z[a;b℄ f(x)g(x)w(x)dx;the knots xi of the Gauss rule are the zeros of n{th orthogonal polynomial �n withrespet to this salar produt. The orthogonal polynomials satisfy the following three{term reurrene relation�k+1(x) = (x� �k)�k(x)� �k�k�1(x); k = 0; : : : ; n� 1; (13)��1(x) = 0; �0(x) = 1:The oeÆients �k, �k an be omputed as�k = (x�k; �k)w(�k; �k)w ; �k = (�k; �k)w(�k�1; �k�1)w : (14)4



Note that all �k vanish if the weight funtion is symmetri to the origin.The omputation of the Gauss quadrature rule aording to a spei� weight funtionw an be done in several ways, see, e.g., [DR℄, Chapter 2.7. One lassial method is thefollowing. The �rst step is to ompute the reursion oeÆients �k, �k aording to (14)and (13). In a seond step, solving an eigenvetor/eigenvalue problem with a tridiagonalmatrix onsisting of the oeÆients �k, �k, leads to the desired values for xi and �i, see,e.g., [DR, G℄.Let us de�ne the Gauss quadrature error on the interval [a; b℄ byEnw(f) := ��� Z[a;b℄ f(x)w(x)dx� Inw(f)���: (15)A lassial result states that if f 2 C2n(IR) and w(�) � 0, thenEnw(f) = f (2n)(�)(2n)!k2n ; for some a < � < b; (16)see again [DR℄ for details. Here kn denotes the leading oeÆient of the n-th orthonormalpolynomial with respet to the salar produt (�; �)w. In the ase that w is symmetri tothe origin, we have kn =  nYi=0 (�i(�); �i(�))w!�1 :A quadrature rule is said to be of degree m if it is exat for all polynomials with order upto m. Gauss quadrature rules with n points are of degree m = 2n, f. (16).Generalizations to higher dimensions also exist. For ertain integration domains suhas retangles, Gauss quadrature rules an be derived by a produt formula made up ofunivariate Gauss formulas. We will ome bak to this issue in Setion 6.1. In ertainases, it is also possible to onstrut non{produt formulas, whih will be disussed inSetion 6.2.For further information on quadrature, the reader is referred, e.g., to [DR, K, St℄ andthe referenes therein.4 Gauss quadrature in the wavelet ontextWhenever wavelet analysis is used in pratie, sooner or later one has to ompute innerproduts of the form (f; �j;k) = Zsupp(�j;k)f(x)�j;k(x) dx; (17)where f is some given funtion and �j;k denotes a wavelet  j;k(x) aording to (1) or anassoiated dilated and translated version of a re�nable funtion,'j;k(x) := 2j=2'(2jx� k); j; k 2 ZZ; (18)5



f. Setion 2. Integrals of the form (17) our quite naturally in image/signal proessingwhen projetions of the signal f onto the spaes Vj and Wj have to be omputed. Theyalso have to be dealt with when wavelets are used as basis funtions in a Galerkin approahto solve, e.g., an ellipti operator equation. In fat, the entries in the right{hand side ofthe resulting linear system are of the form (17), ompare with Setion 8.By means of a substitution, integrals of the form (17) an be transfered to integralsinvolving only �, Zsupp(�j;k)f(x)�j;k(x) dx = 2�j=2 Z
 f(2�j (u+ k)) �(u) du; (19)where 
 := supp(�). Reall that in either ase 
 is assumed to be ompat, f. Setion2. Note that if we have determined quadrature rules on 
 forZ
 f(x)�(x) dx; � 2 f'; g; (20)all integrals of the form (17) an be omputed by the substitution (19). Hene, knotsand weights have to be alulated only one and for all on 
. Therefore, the remainingquestion is how to �nd appropriate rules for the integrals in (20).4.1 The general ideaA lassial way to deal with integrals of the form (20) is to use a usual Gauss quadrature,namely to hoose f(�)�(�) as the integrand and w(x) � 1 as the weight funtion. Buteven if f 2 C1, this method might run into trouble beause in general � needs notto be very smooth. In speial ases, suh as the ardinal B{splines, see Setion 5, it ispossible to get around this problem by dividing the integration domainD into subdomainsDl; l = 1; : : : ; k, on whih the integrand is suÆiently smooth and to apply a Gauss ruleon eah of these. Suh a sheme is referred to as a omposite quadrature rule. They arein general quite expensive, beause in order to ahieve a formula of degree 2m; m 2 IN ,on D, one has to perform km point evaluations. Therefore we will present an alternativeapproah to irumvent the smoothness problem.Instead of using the lassial Gaussian rule, a modi�ed formula aording to w(x) =�(x); � 2 f'; g is used. As the weight funtion is only required to be non{negative,the laking smoothness of � is no longer a problem in the sense that the performane ofthis Gauss quadrature only depends on the number of knots and the regularity of f , butnot on the smoothness of w as one an see from (16). Hene, if f 2 C2n; n 2 IN , Gaussquadrature rules of degree 2m;m � n an be ahieved with m knots.All in all the approximation of integrals of the form (20) boils down to the onstrutionof a Gauss rule for the weight funtion w(x) = �(x), e.g, aording to the method desribedin Setion 3. Hene the remaining key ingredient is the eÆient omputation of integralsof polynomials against re�nable funtions and wavelets, respetively.Before we turn to this issue in the next subsetion, let us briey deal with the following.Viewing � as a weight funtion in general requires � to be non{negative. This overs6



important saling funtions suh as the ardinal B{splines or the box splines, see Setions5 and 7.2. However, there are prominent ases of saling funtions and wavelets not beingnon{negative, suh as the dual saling funtions and the wavelets aording to the aboveases. This problem an be �xed with the following lifting trik. If � 6� 0 one an �nd anappropriate onstant  > 0 suh that on supp(�)�(x) := �(x) + �[l1;l2℄(x) � 0; (21)where �[l1;l2℄ denotes the harateristi funtion of [l1; l2℄ � supp(�), f. (4) and (5).Obviously, the moments of �[l1;l2℄ an be omputed as�(�[l1;l2℄) := l2Zl1 x� dx = l�+12 � l�+11� + 1 ; � 2 IN [ f0g:Using the methods desribed in Setion 4.2, the moments of � are also aessable. Fromthis the moments of � are easily omputable and the orresponding quadrature rule withweights �i and knots xi an be determined. Then a seond Gauss rule with weights ��i andknots x�i for the harateristi funtion �[l1;l2℄ has to be set up using its already omputedmoments. The sum (12) is then in fat replaed by the di�erene of two sumsZ
 f(x)�(x)dx � In� (f) = nXi=1 �if(xi )�  nXi=1 ��i f(x�i ): (22)To redue e�ets of anellation,  should be hosen as small as possible. In the ase that� is expliitly known, this is no problem. But even if it is given only impliitly by meansof the mask, by employing the algorithm in [DM2℄, point values are still aessable, atleast on a dyadi grid. Therefore  an be determined by a simple plot. This might beexpensive when it omes to wavelets with large supports or to higher dimensions, butreall that this has to be done only one and for all.Remark 4.1 Let us briey disuss a slightly di�erent way to deal with integrals involvingwavelets. One ould apply the above quadrature method only to the ase � = ' and treatthe wavelet ase by using the saling funtion representation (5) of  . This results in aquadrature formula made up of k = n2�n1+1 quadrature rules for ', and hene invokingkn point evaluations of f in a formula of degree 2n. This is in general more expensivethen the ansatz proposed here, where the number of point evaluations for a wavelet is atmost 2n, independent of the length of b in (5).4.2 Computing the momentsWe are left with the determination of Gauss quadrature rules for a non{negative weightfuntion � 2 f';  g, (21). This an be done e.g. aording to Setion 3. Taking theabove lifting trik in aount, the key step of this onstrution is the omputation ofthe moments of �. In some speial ases this an be done diretly, e.g. in the ase ofardinal B{spline wavelets, see Setion 5. However, in general, this is not the ase. As7



one possible solution, in [GGP℄ Simpson's quadrature rules are applied. By onsequene,this approah is limited to `smooth' re�nable funtions. But many saling funtions donot allow quadrature rules to ompute their moments beause their regularity is too low.We therefore suggest in the following a di�erent method avoiding quadrature.The omputation of integrals with monomials an be done eÆiently and (up to roundo�) exatly by using reursion relations, see [DM2℄. For reader's onveniene, we brieyreall the basi ideas. As the method an be easily desribed for the multivariate aseand as we will need it later in Setion 6 in this shape, let us present the sheme in thisgeneral form. We start with the ase of an arbitrary re�nable funtion � in d dimensions.Reall, that we always assume supp � and supp i; i 2 I, to be ompat in IRd. Let usde�ne � := ZIRd x��(x)dx; � = (�1; : : : ; �d); x� = x�11 : : : x�dd : (23)The normalization Zsupp(�) �(x)dx = 1leads to 0 = 1. De�ning�� := 2�j�j�d���� Xk2ZZd akk�; j�j := dXl=1 �l;we obtain � = X0���� ����� = �0� + X0��<� �����: (24)Here � < � means �j � �j; j = 1; : : : ; d, and �i < �i for at least one i 2 f1; : : : ; dg:Hene we end up with the reursion� = (1 � 2�j�j) X0��<� �����: (25)Now we want to use the method presented above to ompute integrals involvingwavelets instead of saling funtions. Sine wavelets are linear ombinations of trans-lated versions of re�nable funtions on the next higher level, ompare with (9), this taskis not too diÆult. The integrals of wavelets with monomials an be omputed as followsZsupp( i)x� i(x)dx = ZIRd x� Xk2ZZd bik �(2x� k)dx = 12j�j+d ZIRd x� Xk2ZZd bik �(x� k)dx= 12j�j+d Xk2ZZd bik ZIRd  X0��������x�k���!�(x)dx= 12j�j+d Xk2ZZd X0���� bik����k���� (26)where again � = (�1; : : : ; �d). 8



5 Cardinal B{splines and their dualsIn this setion, we shall apply the theory investigated above to the ase that the under-lying re�nable funtion is a ardinal B{spline or one of the orresponding dual funtions,ompare with Setion 2. These speial funtions are frequently used in numerial analysis.In general, the ardinal B{spline N� of order � 2 IN is a pieewise polynomial funtionwhih is de�ned reursively as a onvolution produt, i.e.,N1(x) := �[0;1)(x);N�(x) := (N��1 � N1)(x) = ZIR N��1(x� y)N1(y)dy: (27)Obviously, all these funtions are positive so that we may use the algorithm outlinedin Setion 4 without using the lifting trik (22). We shall mainly be onerned with theB{spline N2: By an integer shift, we obtain the lassial symmetri hat funtionN2(x) := N2(x+ 1) = 8>>><>>>: 1 + x; �1 � x < 0;1 � x; 0 � x � 1;0; otherwise: (28)We list the knots and weights for this ase in Table A in the appendix. Let us remarkthat for the spline ase these knots and weights an be determined without the reursionformula (24) beause the moments � an be omputed diretly. For instane, for thespline N2, we obtain � = 8<: 0; � odd;2(�+1)(�+2); � even:In the following table, we have listed the leading oeÆients kl; l = 1; : : : ; 10; of theorthonormal polynomials orresponding to N2. We see that the sequene kl; l = 1; : : : ; 10;approximately behaves like 2(l�1): Beause k�2l enters in the error estimate (16), we expetthat the resulting quadrature rules perform very aurately as l inreases. This onjetureis on�rmed by our numerial experiments, see Setion 7.k1 1.000000000000000000000000000000k2 2.449489742783178098197284074700k3 5.070925528371099465057709964190k4 10.513149660756936271463359120000k5 21.259740683707940951376792519400k6 43.169070646570870905645790976900k7 86.801073005286568361974542381700k8 175.063172739382196824342750901000k9 351.225962331516688455428359048000k10 706.2012326189154121598551125030009



For ardinal B{splines, suitable dual generators are known. In fat, in [CDF℄, familiesof re�nable funtions ~N�;~�, �+~� even, were onstruted suh that a biorthogonality relationof the form (11) is satis�ed, i.e.,�N�(�); ~N�;~�(� � k)� = Æ0;k: (29)We also want to derive quadrature rules using these dual funtions as weight funtions.In general, they are no longer positive so that we have to work with the lifting trik (22)in this ase. One again, we shall fous on the ase � = 2: The next �gure shows both,the (entralized) dual funtion ~N2;4 whih is biorthogonal to the usual hat funtion (28),and its lifted version ~N12;4.
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~N12;4 := ~N2;4 + �[�4;4℄In the next table we present the reursion oeÆients �k entering the onstrutionof the two rules needed in the lifting trik, namely the one for ~N12;4 and the one for theharateristi funtion �[�4;4℄.k �k( ~N12;4) �k ��[�4;4℄� k �k( ~N12;4) �k ��[�4;4℄�0 9.00000000000000 8.00000000000000 5 3.43508129707940 4.040404040404101 4.72222222222222 5.33333333333333 6 4.56778842439712 4.027972027971392 4.91777777777778 4.26666666666666 7 3.70208113647468 4.020512820512673 3.50852646887946 4.11428571428572 8 4.10494370822309 4.015686274500754 4.74217628189890 4.06349206349206 9 4.10652830708695 4.01238390088814One a dual generator is found, a biorthogonal wavelet basis satisfying (10) an beeasily onstruted, see again [CDF℄ for details. By using the lifting trik one more time,we may determine a quadrature formula aording to Setion 4 for the weight funtion . In the next �gure, we have depited the primal wavelet  2;2 orresponding to N2 and~N2;2 in the original and in the lifted form. 10
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 12;2 :=  2;2 + �[�1:5;1:5℄The next tabular lists the oeÆients �k for the lifted wavelet and for the harateristifuntion �[�1:5;1:5℄.k �k( 12;2) �k(�[�1:5;1:5℄) k �k( 12;2) �k(�[�1:5;1:5℄)0 3.0000000000000 3.0000000000000 5 0.5371914738074 0.56818181818181 0.6616116523517 0.7500000000000 6 0.5688216835388 0.56643356643352 0.7351467769579 0.6000000000000 7 0.5777163727584 0.56538461538433 0.4703057627907 0.5785714285714 8 0.5494010683153 0.56470588235314 0.6434383764919 0.5714285714286 9 0.5746251705822 0.5642414860593We want to �nish this setion with another remark. As already stated above, theardinal B{spline N� is a pieewise polynomial funtion and its singular support an bedetermined exatly. Therefore another method frequently used in pratie is to subdividethe support of N� and of the orresponding primal wavelet aording to their singularsupports and to employ a usual Gauss quadrature (with w � 1) on eah of the resultingsubintervals. However, this approah is only appliable to the primal funtions and hasthe serious disadvantage that the number of subdivisions, whih is proportional to thenumerial ost, grows like � for the generator and like �+ ~� for the orresponding primalwavelet. Moreover, in higher dimensions the number of subdivisions grows exponentiallywith the spatial dimension d. In ontrary to this, the method presented here requires onlythe evaluation of one integral independent of the order of the wavelet and of the salingfuntion.6 The multivariate aseIn this setion, we investigate how the approah outlined above an be generalized tomultivariate re�nable funtions and wavelets. We �rst disuss the important speial aseof saling funtions and wavelets of tensor produt type, i.e.,�(x1; : : : ; xd) = �1(x1)�2(x2) � � � �d(xd); (30)11



where �i; i = 1; : : : ; d, denote univariate re�nable funtions or wavelets, ompare withSetion 2. It turns out that this ase an in fat be redued to the univariate settingpresented above. Moreover, we also briey explain how general saling funtions andwavelets an be handled.6.1 The tensor produt aseLet us �rst assume that all the �i; i = 1; : : : ; d, on the right{hand side of (30) are non{negative. We want to �nd a quadrature formula of degree N;N 2 IN , of the formZ
1 � � �Z
d f(x1; : : : ; xd)�1(x1) � � � �d(xd) dx1 � � � dxd � n(N)Xi=1 �if(xi;1; : : : ; xi;d): (31)Here 
i = supp(�i); i = 1; : : : ; d. It is easy to derive suh a formula from the univariaterule onstruted in Setions 3 and 4 by using the following general result shown in [St℄.Let IRd � I = I1 � I2; I1 � IRd1 ; I2 � IRd2 be a ube. Suppose that we are givenquadrature rules on I1 and I2 with respet to weight funtions g1 and g2, respetively, andwith points and weights(xi;1; : : : ; xi;d1); �i; i = 1; : : : ; n1; and (xj;d1+1; : : : ; xj;d); �j ; j = 1; : : : ; n2;whih are of degree N1 and N2, respetively. Let g be de�ned byg(x1; : : : ; xd) = g1(x1; : : : ; xd1)g2(xd1+1; : : : ; xd):Then the following theorem holds, see [St℄, Chapter 2, Theorem 2.3{1.Theorem 6.1 The n = n1n2 points and weights(xi;1; : : : ; xi;d1; xj;d1+1; : : : ; xj;d); �i�j; i = 1; : : : ; n1; j = 1; : : : ; n2;are an integration formula for the weight funtion g on I whih is of degree N = min(N1; N2).Applying Theorem 6.1 (d�1) times ends up in a produt quadrature formula for a funtion� of the form (30).In ase that the funtions �i; i = 1; : : : ; d, are not non{negative, things are slightlymore ompliated. Nevertheless, it turns out that one an again use the lifting trik (22).To avoid unneessary tehnial diÆulties, we shall only write down the details for thease d = 2. The higher dimensional ases an be treated analogously. Let us onsider thefollowing deompositionZ
1 Z
2 f(x1; x2)�1(x1)�2(x2) dx1dx2 = Z
1 Z
2 f(x1; x2)(�1(x1) + 1)(�2(x2) + 2) dx1dx2�Z
1 Z
2 f(x1; x2)(�1(x1) + 1)2 dx1dx212



�Z
1 Z
2 f(x1; x2)(�2(x2) + 2)1 dx1dx2+Z
1 Z
2 f(x1; x2)12 dx1dx2: (32)By using Theorem 6.1 for eah term on the right{hand side one an onstrut a quadratureformula made up of univariate rules. Note that if 1 and 2 are appropriately hosen, allweight funtions for these ases are positive.6.2 The general aseLet us now onsider the ase that � is a multivariate saling funtion or a multivariatewavelet whih is not neessarily of the form (30). Then there is no way to use a produtformula aording to Theorem 6.1 and therefore we have to derive diretly a (non{produt)quadrature rule. Leaving the usual Gauss quadrature setting, this is possible, e.g., byemploying the results from [St℄. Let us briey reall the ideas. We shall fous on the2D{ase, for the general ase, the reader is again referred to [St℄. Let us �rst assume that� is non{negative. We again want to �nd a quadrature rule of degree N having the formZsupp� f(x; y)�(x; y) dxdy � n(N)Xi=1 �if(xi; yi): (33)To this end, one has to hoose the points(xi; yi); i = 1; : : : ; n; n = n(N) = (2 +N)(1 +N)2 (34)in suh a way that they do not all lie on a urve QN(x; y) = 0; where QN is a polynomialof degree N . Suh a set of points an always be found, see, e.g., [St℄, Ch. 1, Theorem1.8{3 for details. Under this ondition, the (n� n){matrix with rows(x�11 y�21 ; : : : ; x�1n y�2n ); 0 � �1 + �2 � Nis non{singular and the oeÆients �i an be found as solutions of the linear system�1x�11 y�21 + � � � + �nx�1n y�2n = Zsupp�x�1y�2�(x; y) dxdy; 0 � j�j � N: (35)Let us stress that again the right{hand side in (35) an be omputed exatly without anyregularity assumption on �, ompare with Setion 4.2. Saling funtions and waveletstaking negative values an be handled by using the lifting trik.Remark 6.2 It might be somewhat expensive to onstrut non{produt quadrature rulesof a very high degree, for then a huge linear system has to be assembled and to be solved.However, the reader should again observe that these expensive omputations have only tobe done one and for all. 13



7 Numerial examplesOne the quadrature rules for re�nable funtions and wavelets are established, one learlywishes to see how they behave in pratie. Therefore we have tested our formulas forseveral model problems, and the results are presented in this setion. In Subsetion7.1, the univariate formulas are disussed. We use the B{splines, their duals and theorresponding wavelets as introdued in Setion 5 as weight funtions. Furthermore, inSubsetion 7.2, we test the multivariate rules. We fous on the non{produt formulasonstruted in Setion 6.2 and we use box splines as weight funtions. It turned out thatthe performane was quite satisfatorily in all ases.7.1 Univariate examplesTo test the whole proedure, we have applied it to the omputation of the integrals4Z�4 ex ~N2;4(x)dx and 1Z�1 exN2(x)dx:The results are displayed in the following table.n In~N2;4 InN2 n In~N2;4 InN21 1.0000000000000 1.00000000000000 6 0.9233247035827 1.086161269773932 -0.6252681537938 1.08449718995440 7 0.9233379806840 1.086161269741543 0.9543890162969 1.08614841390864 8 0.9233380192360 1.086161269533894 0.9088372144081 1.08616121370867 9 0.9233380209880 1.086161269978475 0.9234686807508 1.08616126928519 10 0.9233380212325 1.08616126988915For the seond integral, we an investigate the quality of the proess somewhat morepreisely beause in this ase the exat solution e+ e�1 � 2 � 1:086161269630487 an beeasily omputed. It turns out that already for n = 5 the error is about 10�10. Moreover,this example enables us to test the error estimate (16). Indeed, sine the exponentialfuntion is stritly inreasing on [�1; 1℄, we obtain the rough estimateEN2n (ex) � e(2n)!k2n : (36)In the following table, we have ompared this estimate with the true error. We see that(36) is in general too pessimisti by one power of ten.14



n j 1R�1 exN2(x)dx� InN2j ((2n)!k2n)�1e1 0.086161269630487 1.35914092 0.00166408 0.0377539143 0.000012856 0.00014682074 0.000000056 0.00000060996975 � 10�10 0.000000001657354We have also tested the quadrature formula obtained for the B{spline wavelet  2;2 as theweight funtion. We used it to approximate the integralZIR ex  2;2(x)dx:Sine an expliit representation of the wavelet is known, it is again easy to omputethe exat value of the integral for omparison. The results, showing a rapid derease ofthe error, are displayed in the next table.n In 2;2 j RIR ex 2;2dx�In 2;2j n In 2;2 j RIR ex 2;2dx�In 2;2j1 0.0000000000000 1.440913408e-01 6 -0.1440913412020 3.978017359e-102 -0.1487392673555 4.647926551e-03 7 -0.1440913405939 2.102940599e-103 -0.1439509995222 1.403412819e-04 8 -0.1440913412644 4.602584424e-104 -0.1440912053939 1.354102581e-07 9 -0.1440913407264 7.778050425e-115 -0.1440913387957 2.008493871e-09 10 -0.1440913404450 3.591145714e-107.2 Multivariate examplesIn this subsetion we present tests onerning the general multivariate approahe desribedin Setion 6.2. The disussion of the tensor produt ase as explained in Setion 6.1 ispostponed to Setion 8, where we study a pratial appliation in aordane to this indetail.The method for non tensor produt weight funtions has been applied to the maybemost prominent family of non{separable multivariate saling funtions, i.e., to box splines.Let us briey reall the de�nition and the basi fats. LetX = fx1; : : : ; x�g � ZZdnf0g; xl = (xl1; : : : ; xld)T denote a set of not neessarily distintvetors satisfying � � d and < X >= span X = IRd: (37)15



Then the box spline B(�jX) is de�ned by requiring that the equationZIRd f(x)B(xjX)dx = Z[0;1℄�f(Xu)du (38)holds for any ontinuous funtion f on IRd: The vetors x1; : : : ; x� are alled the diretionvetors of B(�jX): Every box spline is a re�nable funtion,B(�jX) = Xk2ZZd akB(2 � �kjX); (39)where the mask a = fakgk2ZZd is given byXk2ZZd akzk = 2d�� �Yl=1(1 + zxl): (40)It an be shown that a box spline is a pieewise polynomial. Moreover, it is positiveand satis�esB(ujX) = 0; u 62 [X[; [X[:= ft1x1 + � � �+ t�x� : 0 � tl < 1; 1 � l � �g: (41)For further information on box splines, the reader is referred to [DM℄.We set up a simple algorithm to generate a spei� set of n(N) points in the domain ofintegration aording to (34) and to onstrut the orresponding non{produt quadraturerule for a bivariate weight, f. Setion 6.2. In our test examples, the resulting quadraturerules were surprisingly weakly dependent on the loation of these points, however, thealgorithm used in the following examples tends to equidistribute them.First of all, we applied our algorithm to the famous Courant �nite element B( � j 1 0 10 1 1)i.e., to the bivariate box spline with diretion vetor �10�; �01�; �11�: The graph of this funtionlooks like a hexagonal pyramid. Aording to (41), its support is ontained in the ube[0; 2℄�[0; 2℄: In Table B in the appendix, we have listed the resulting Gauss points and theorresponding weights for this ube as N and therefore n(N) inreases, f. (34). Withthese points and weights, we have tested the method desribed in Setion 6.2 for thefuntion f(x; y) = sin(x+ y):The results are depited in the following table.N n InB(� j 1 0 10 1 1 ) N n InB(� j 1 0 10 1 1)1 3 0:29788436073635405 7 36 0:703473195589258362 6 0:70724512563270003 8 45 0:703472941225625433 10 0:70534367984966273 9 55 0:703472990090478924 15 0:70336387961090840 10 66 0:703472992637434245 21 0:70345600023785304 11 78 0:703472992046743966 28 0:70347597675687457 12 91 0:7034729920313601616



We have also tested our method for the tensor produt ardinal B{splineN2
N2(x; y),i.e., for the bivariate box spline with diretion vetors �10�; �10�; �01�; �01�. We applied theresulting quadrature rule to the funtionsf(x; y) = sin(x+ y) and g(x; y) = exp(x+ 2y):In both ases, the exat solutions an be easily omputed. Consequently, we are able toalulate the errors of the quadrature rules. It seems to be most meaningful to onsiderthe relative errorsE(n; f;N2 
N2) := j R (f(x; y)N2 
N2(x; y) dxdy � InN2
N2 jj R f(x; y)N2 
N2(x; y) dxdyj : (42)The results are listed below.N n InN2
N2(f) E(n; f;N2 
N2) InN2
N2(g) E(n; g;N2 
N2)2 6 0:764912463322939 0:4821e � 02 29:787140498052480 0:1139e � 13 10 0:768230405045909 0:5043e � 03 30:254584373509807 0:4128e � 24 15 0:768619073231594 0:1273e � 05 30:131265424222669 0:3492e � 45 21 0:768611816978489 0:8166e � 05 30:133087211221344 0:9538e � 46 28 0:768618283581450 0:2464e � 06 30:130175412991949 0:1257e � 57 36 0:768618204690890 0:1437e � 06 30:130286953988257 0:2445e � 58 45 0:768618091001388 0:4129e � 08 30:130214729062992 0:4750e � 79 55 0:768618093017487 0:1506e � 08 30:130214524534466 0:4071e � 710 66 0:768618094207751 0:4247e � 10 30:130213355947507 0:1929e � 811 78 0:768618094183085 0:1037e � 10 30:130213314885822 0:5659e � 912 91 0:768618094174823 0:3695e � 12 30:130213298960925 0:3737e � 10As expeted, in both ases the error dereases very rapidly as N grows.Finally, we have studied our algorithm for the box spline B( � j 1 1 0 0 10 0 1 1 1). One again,we used f(x; y) = sin(x+ y) as test funtion. The results are as follows.N n InB� � j 1 1 0 0 10 0 1 1 1� N n InB� � j 1 1 0 0 10 0 1 1 1�1 3 �0:45348505681758178 7 36 0:100376332760221732 6 0:04964854550337172 8 45 0:100376685865930973 10 0:09289718468658661 9 55 0:100376578727270994 15 0:10098966569179155 10 66 0:100376575037525815 21 0:10042928697158683 11 78 0:100376576644721516 28 0:10037031312195928 12 91 0:1003765766756454917



8 Pratial appliationsOne possible appliation of the desribed method is the omputation of right{hand sidesin (adaptive) Galerkin shemes for ellipti operator equations. There, vetors of the formF� := (f;  j;k)(j;k)2�our. Here � is a possibly launary set of wavelet indies. The appliation of the abovemethod is straightforward. One redues all integrals to the standard situation by means ofthe substitution (19) and uses the lifting trik (22) if neessary. However, the performaneof the resulting quadrature formulas depends on the smoothness of the right{hand sidef , see (16), whih might not always be adequate.Another appliation arises in the ontext of the boundary element method. In thisase, one has to solve an operator equationAu = f; (43)where A has a global Shwartz kernel K,(Av)(x) = Z K(x; y)v(y) dy; (44)whih satis�es the onditionj��x��yK(x; y)j � �;�dist(x; y)�(d+2t+j�j+j�j): (45)Here 2t is the order of the operator A . The funtion K is in general a smooth andnon{loal, but it may have a singularity on the diagonal. For further details, the readeris referred, e.g., to [DPS, Sh℄ and the referenes therein.Let us �rst onsider the ase d = 1. If one wants to solve (43) by means of a waveletGalerkin approah, one has to evaluate salar produts of the form(K'j;k; 'j0;k0) := Zsupp('j;k) Zsupp('j0;k0 )K(x; y)'j;k(x)'j0;k0(y) dxdy (46)and (K j;k;  j0;k0) := Zsupp( j;k) Zsupp( j0;k0 )K(x; y) j;k(x) j0;k0(y) dxdy: (47)By the substitution (19), we get from (46)(K'j;k; 'j0;k0) = 2�(j+j0)=2 Zsupp' Zsupp' K�2�j(�x� k); 2�j0(�y � k0)�'(�x)'(�y) d�xd�y:These integrals an be evaluated by using the ideas desribed in Setion 6.1. Indeed,we may apply Theorem 6.1 to the ase I1 = I2 = supp'; g1 = g2 = '; f(x; y) =K�2�j(�x � k); 2�j0(�y � k0)�: The reader should observe that the Shwartz kernel K is18



usually very smooth o� the diagonal so that the Gauss quadrature should perform verywell for the omputation of integrals involving basis funtions whose supports are wellseperated. These integrals are sometimes alled far�eld integrals.As an example, we have omputed the salar produts (46) for an important speialase, i.e., for the Hilbert transform. In this ase, the kernel is of the formK(x; y) = 1x� y : (48)The saling funtion ' was hosen to be the hat funtion de�ned in (28). The resultingsti�ness matrix for j = j0 = 3 is illustrated in Figure 1. As disussed above, the methodproposed here only performs satisfatorily in regions where supp('j;k) \ supp('j;k0) = ;:Therefore the entries in the viinity of the diagonal are not depited in the following�gures. If the orresponding domains of integration are overlapping one gets singularintegrals, whih require partiular attention. Weakly singular kernels an be transformedto analyti ones by nonlinear hanges of variables. Higher singularities arising from otheroperators must be transformed to those of weakly singular type by some regularization.Details of suh transformations have been arried out in [S, SS℄.
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A AppendixIn the following tables we list knots and weights for Gauss quadrature rules with n =1; : : : 10 knots for the hat funtion, f. (28). Note that wN2i = wN2n�i+1 and xN2i =�xN2n�i+1; i = 1 : : : dn=2e.Table A, Weights and knots for the hat funtion, see (28)n wN2i xN2iontinued on next page)23



Weights and knots for the hat funtion, see (28) (ontinued)10 0.005369059724471598670424583844 0.9431663817256676997553842761050.030113256293466570387688594983 0.8140532886558227179497832112070.081230624454969189238806002360 0.6237843136334670790001748269970.153837064198188702301836370938 0.3883513213345513312833387061260.229449995328903939401244447876 0.128573681331639522292510283016In the next table, we list the knots and weight orresponding to the Courant �nite elementB( � j 1 0 10 1 1), f. Setion 7.2.Table B: Weights and knots for the Courant FE, see Setion (7.2)wiB(� j 1 0 10 1 1) xiB(� j 1 0 10 1 1 )N=1 0.49999999999999989 (1.0000000000000000, 2.0000000000000000)(n=3) 0.25000000000000000 (0.0000000000000000, 0.0000000000000000)0.25000000000000000 (2.0000000000000000, 0.0000000000000000)N=2 0.21354166666666685 (0.7500000000000000, 0.3333333333333333)(n=6) -0.02604166666666664 (1.7500000000000000, 0.3333333333333333)0.135416666666665555 (0.2500000000000000, 1.0000000000000000)0.489583333333333591 (1.2500000000000000, 1.0000000000000000)0.088541666666667185 (0.7500000000000000, 1.6666666666666667)0.098958333333333148 (1.7500000000000000, 1.6666666666666667)N=3 0.02343749999999971 (0.0000000000000000, 0.2500000000000000)(n=10) 0.09895833333333410 (1.0000000000000000, 0.2500000000000000)-0.01822916666666661 (2.0000000000000000, 0.2500000000000000)0.23958333333333245 (0.5.00000000000000, 0.7500000000000000)0.15624999999999892 (1.5000000000000000, 0.7500000000000000)-0.00260416666666644 (0.0000000000000000, 1.2500000000000000)0.35937500000000105 (1.0000000000000000, 1.2500000000000000)0.03906250000000029 (2.0000000000000000, 1.2500000000000000)0.01041666666666670 (0.5.00000000000000, 1.7500000000000000)0.09374999999999965 (1.5000000000000000, 1.7500000000000000)N=4 0.05465494791666419 (0.5000000000000000, 0.2000000000000000)(n=15) 0.01152343749999857 (1.1666666666666667, 0.2000000000000000)-0.00107421875000024 (1.8333333333333333, 0.2000000000000000)(ontinued on next page)24



Weights and knots for the Courant FE, see Setion (7.2)0.04778645833334450 (0.1666666666666666, 0.6000000000000000)0.17630208333334255 (0.8333333333333333, 0.6000000000000000)0.03.63281250000011 (1.5000000000000000, 0.6000000000000000)0.11243489583330270 (0.5000000000000000, 1.0000000000000000)0.21367187499999982 (1.1666666666666667, 1.0000000000000000)0.02285156250000006 (1.8333333333333333, 1.0000000000000000)-0.00039062499999955 (0.1666666666666666, 1.4000000000000000)0.11640625000002323 (0.8333333333333333, 1.4000000000000000)0.14440104166666040 (1.5000000000000000, 1.4000000000000000)0.00061848958333334 (0.5000000000000000, 1.8000000000000000)0.04147135416666046 (1.1666666666666667, 1.8000000000000000)0.02301432291666924 (1.8333333333333333, 1.8000000000000000)N=5 0.00563964843751220 (0.0000000000000000, 0.1666666666666666)(n=25) 0.04064941406245611 (0.6666666666666666, 0.1666666666666666)-0.00017089843749108 (1.3333333333333333, 0.1666666666666666)-0.00002441406249938 (2.0000000000000000, 0.1666666666666666)0.07250976562499598 (0.3333333333333333, 0.5000000000000000)0.09404296875009843 (1.0000000000000000, 0.5000000000000000)0.00766601562498629 (1.6666666666666667, 0.5000000000000000)0.00424804687499713 (0.0000000000000000, 0.8333333333333333)0.16567382812499065 (0.6666666666666666, 0.8333333333333333)0.11137695312488399 (1.3333333333333333, 0.8333333333333333)-0.00161132812499675 (2.0000000000000000, 0.8333333333333333)0.03525390624998361 (0.3333333333333333, 1.1666666666666667)0.17324218750004255 (1.0000000000000000, 1.1666666666666667)0.07119140625007708 (1.6666666666666667, 1.1666666666666667)-0.00051269531249515 ( 0.000000000000000, 1.5000000000000000)0.03430175781251509 ( 0.666666666666666, 1.5000000000000000)0.12941894531245335 (1.3333333333333333, 1.5000000000000000)0.01101074218748175 (2.0000000000000000, 1.5000000000000000)-0.00151367187500374 (0.3333333333333333, 1.8333333333333333)0.02021484374999951 (1.0000000000000000, 1.8333333333333333)0.02739257812501232 (1.6666666666666667, 1.8333333333333333)(ontinued on next page)25
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