Some Remarks on Quadrature Formulas for Refinable
Functions and Wavelets

Arne Barinka*, Titus Barsch, Stephan Dahlke! Michael Konik

Abstract

This paper is concerned with the efficient computation of integrals of (smooth)
functions against refinable functions and wavelets, respectively. We derive quadra-
ture formulas of Gauss—type using these functions as weight functions. The methods
are tested for several model problems and possible practical applications are dis-
cussed.

Key Words: Gauss quadrature, scaling functions, wavelets.

AMS subject classification: Primary 65D32, secondary 41A30, 42C05, 42C15.

1 Introduction

In recent years, much progress has been made in establishing wavelet analysis as a com-
petitive tool for image analysis/compression and for the numerical treatment of operator
equations. Nevertheless, there are still some important problems which have not been
solved satisfactorily yet. In this paper, we give a contribution to one of these questions as
we shall now explain. Whenever wavelet analysis is used in practice, sooner or later one
has to compute inner products with wavelets or with an associated refinable function. We
refer to Section 2 for a short overview on wavelet analysis. In some exceptional cases, it is
possible to compute these inner products directly by finding primitives, however, usually
they are not accessable and therefore one needs suitable quadrature rules. Of course, one
could simply apply one of the well-known quadrature formulas which can be found in
any book on numerical analysis. However, this usually leads to serious trouble. First of
all, neither the refinable function nor the wavelet are necessarily very smooth so that a
classical quadrature rule may not perform satisfactorily. Moreover, in many cases, these
functions are not known explicitly but only via certain functional equations from which
the function values have to be computed or approximated. This is possible in principle,
however, these kinds of function evaluations may be expensive and/or inaccurate.

In the last few years, several approaches to this problem have been suggested. Dahmen
and Micchelli [DM2] developed a method which is based on the iteration of a specific

*The work of this author has been supported by the Volkswagen Stiftung
TThe work of this author has been supported by Deutsche Forschungsgemeinschaft, Grant Da 117/13-1

operator derived from a related subdivision scheme. It works in any dimension and under
very low regularity assumptions on the function f, but it might be somewhat expensive.
A different approach is presented in [PS1, PS2], where quadrature formulas for refinable
functions are considered. Several types of Newton—Cotes quadratures are discussed, which
are determined using Tschebyscheff polynomials.

In this paper, we are also concerned with the construction of quadrature formulas.
Our approach is mainly based on Gauss quadrature, which offers the optimal exactness
for a given number of quadrature points. The idea is to use the refinable function and the
wavelet, respectively, as the weight function for such a quadrature rule. Note that in this
construction the weight is only required to be non—negative. Of course, one has to be able
to compute the moments of the weight functions with high accuracy. Fortunately, this
is no problem in the wavelet setting. In fact, all moments can be computed recursively
and very cheaply, see Section 4 for details. To our knowledge, the first approach in this
direction was given by Gautschi et.al. [GGP]. However, their approach only works for
refinable functions with some smoothness whereas in our setting we do not need this
assumption. Moreover, in [GGP] only refinable functions are considered while in this
paper we also study the wavelet case. (Nevertheless, let us mention that simultaneously
to our work, generalizations to these cases are in preparation [GS]). Furthermore, we also
give an outline how our approach can be generalized to higher dimensions.

This paper is organized as follows. In Section 2, we give a very short summary of
the basic facts from wavelet analysis. In Section 3, we briefly recall the setting of Gauss
quadrature as far as it is needed for our purposes. In Section 4, we discuss the special
features appearing in the application of Gauss quadrature in the wavelet setting. Then, in
Section 5, we apply the theory developed so far to the important special case of cardinal B—
splines. In Section 6, we present some ways how our approach can be generalized to higher
dimensions. This turns out to be quite easy in the tensor product case, however, leaving
the Gauss quadrature setting, the general case is also briefly discussed. We have tested our
method for some important model problems in one and two dimensions, and the results
are presented in Section 7. It turns out that the performance was quite satisfactorily in
all cases. Finally, in Section 8, we discuss the application of these quadrature rules to
some practical problems. So far, it seems that the approach presented here works very
efficiently for the computation of farfield integrals arising in boundary element methods.
We therefore discuss one typical example in this regard in detail.

2 The wavelet setting

In this section, we shall briefly recall the basic setting of wavelet analysis as far as it
is needed for our purposes. In general, a function ¢ is called a wavelet if all its scaled,
dilated, and integer translated versions

ip(x) =222 e — k), g k€, (1)

form a Riesz basis of Ly(IR). Usually, they are constructed by means of a multiresolution
analysis introduced by Mallat [M] which is a nested sequence {V;},;cz of closed subspaces
of L2(IR) such that their union is dense while their intersection is zero. Furthermore, one

assumes that the spaces {V]};cz are related by
f() eV = f(2) € Vi, (2)

and that the space V4 is shift-invariant and spanned by the integer translates of one single
function ¢ called the generator of the multiresolution analysis. Assuming that ¢ has stable
integer translates, it can be shown that ¢ is refinable, i.e., it satisfies a two—scale relation

pla) =) arp(2z — k) (3)

keZ

with the mask a = {ax}rez € (2(Z). In the sequel, we shall restrict ourselves to refinable
functions with compact support and we will always assume that

supp(a) :=1{k € Z|ar # 0} C [mq, ma). (4)

It can be checked that (4) implies supp ¢ C [my, my]. Because the union of the spaces
{V,}jez is dense in Ls(IR), it is easy to see that the construction of a wavelet basis reduces
to finding a function whose translates span a complement space Wy of V4 in V4. Hence (2)
implies that the wavelet ¥ can be found by means of a functional equation of the form

o)=Y bup(2e =) (%)

where the sequence b := {b; }rcz has to be judiciously chosen, see, e.g., [Ch, Dau, Me] for
details. We shall henceforth always assume that supp(b) C [n1, n2], so that the resulting
wavelet is compactly supported.

There are several methods to generalize this concept to higher dimensions. The sim-
plest way is to use tensor products. Given a univariate multiresolution analysis with
generator , it turns out that

O,y wa) = p(a1) . p(ea) (6)
generates a multiresolution analysis of Ly(IR?). Let E denote the vertices of the unit cube

in IR?. Defining ¢° := » and 1! := 1, it can be shown that the set ¥ of 2¢ — 1 functions

d

V1,) = H;/}el(xl) e=(e,...,eq) € F\{0}, (7)

=1

generates by shifts and dilates a basis of Ly(IR?). There also exist multivariate wavelet
constructions with respect to non—separable refinable functions ¢ satisfying

dr) =Y axd2r — k), {artyeze € L(ZY), (8

kezZ?

~—

see, e.g., [JM] for details. Analogously to the tensor product case, a family !, i =
1 2% — 1, of wavelets is needed. Each 1 satisfies a functional equation similar to (5),

=) b2 — k). (9

keZz?

9o ey

~—

As in the univariate case, we shall henceforth assume that the scaling functions and
wavelets under consideration are all compactly supported.

In practice, it is often very convenient to have access to a suitable biorthogonal wavelet
basis. For a given (univariate) wavelet basis {¢); ¢, 7,k € Z}, one is interested in finding
a second system {;/N)M, J, k € Z} satisfying

(Vi n()y Do () = 85 500p s God kK € Z. (10)

Here (-, -) clearly denotes the usual Ly—inner product. The construction of such a biorthog-
onal system essentially relies on a suitable second generator ¢ such that ¢ and ¢ form a
dual pair,
(0(), P(- = k) = dok- (11)

Elegant constructions can be found, e.g., in [CDF]. Generalizations to higher dimensions
also exist [CD].

For further information on wavelet analysis, the reader is referred to one of the excellent
textbooks on wavelets which have appeared quite recently [Ch, D, Dau, KL, Me, W].

3 Gauss quadrature

A univariate Gauss quadrature rule replaces an integral by a weighted sum of point
evaluations of f, i.e.,

/ fla)w(z)de ~ ID(f) = Z)\Zf(xz), [a,b] C IR, n €N, (12)
o] i=1

with knots x; and weights X\;, i = 1,...n. Here w(x) is called the weight function, which
in the most classical case is chosen to be w(x) = 1. However, the theory can be developed
for a hugh class of functions. In fact, in order to get an appropriate formula, w(-) is in
general only required to be non—negative.

Defining the inner product corresponding to w(-) > 0 as

(f. 9w = / F(2)g(wu(z)dr.
[a,b]

the knots z; of the Gauss rule are the zeros of n—-th orthogonal polynomial m, with
respect to this scalar product. The orthogonal polynomials satisfy the following three—
term recurrence relation

Thi1(2) = (x — ap)mp(a) — Bemp-a(2), b =0,...,n—1, (13)
m_1(x) =0, mo(x) = 1.
The coefficients ay, (. can be computed as

(T Ty Tk)uw

(ks Tk)

(ks T)

(7Tk—17 ﬂ-k—l)w ‘

., Br= (14)

ap =

Note that all ay vanish if the weight function is symmetric to the origin.

The computation of the Gauss quadrature rule according to a specific weight function
w can be done in several ways, see, e.g., [DR], Chapter 2.7. One classical method is the
following. The first step is to compute the recursion coefficients oy, B according to (14)
and (13). In a second step, solving an eigenvector/eigenvalue problem with a tridiagonal
matrix consisting of the coefficients ay, Ok, leads to the desired values for x; and \;, see,
e.g., [DR, GJ.

Let us define the Gauss quadrature error on the interval [a, b] by
B2 = | [foetod - 1) (15
[a,8]

A classical result states that if f € C?"(IR) and w(-) > 0, then

A
(2n)lk2’

EL(f) =

for some a < £ < b, (16)

see again [DR] for details. Here k,, denotes the leading coefficient of the n-th orthonormal
polynomial with respect to the scalar product (-,-),. In the case that w is symmetric to

b = (H <m<->,m<->>w) .

=0

the origin, we have

A quadrature rule is said to be of degree m if it is exact for all polynomials with order up
to m. Gauss quadrature rules with n points are of degree m = 2n, cf. (16).

Generalizations to higher dimensions also exist. For certain integration domains such
as rectangles, Gauss quadrature rules can be derived by a product formula made up of
univariate Gauss formulas. We will come back to this issue in Section 6.1. In certain
cases, it is also possible to construct non-—product formulas, which will be discussed in
Section 6.2.

For further information on quadrature, the reader is referred, e.g., to [DR, K, St] and
the references therein.

4 Gauss quadrature in the wavelet context

Whenever wavelet analysis is used in practice, sooner or later one has to compute inner
products of the form

(/0,1 / f 0,1 (17)

Sllpp

where f is some given function and 6;; denotes a wavelet ¢; ;(x) according to (1) or an
associated dilated and translated version of a refinable function,

pin(z) =222 — k), jkeZ, (18)

cf. Section 2. Integrals of the form (17) occur quite naturally in image/signal processing
when projections of the signal f onto the spaces V; and W; have to be computed. They
also have to be dealt with when wavelets are used as basis functions in a Galerkin approach
to solve, e.g., an elliptic operator equation. In fact, the entries in the right—hand side of
the resulting linear system are of the form (17), compare with Section 8.

By means of a substitution, integrals of the form (17) can be transfered to integrals
involving only 4,

/ ()0 0(x) de = Q—J/Z/f(z—f(wrk)) O(u) du, (19)

supp(f;,x)

where := supp(f). Recall that in either case € is assumed to be compact, cf. Section
2. Note that if we have determined quadrature rules on €2 for

/ f(@)0(x)dr, 0 € {o, 9}, (20)

all integrals of the form (17) can be computed by the substitution (19). Hence, knots
and weights have to be calculated only once and for all on). Therefore, the remaining
question is how to find appropriate rules for the integrals in (20).

4.1 The general idea

A classical way to deal with integrals of the form (20) is to use a usual Gauss quadrature,
namely to choose f(-)8(-) as the integrand and w(x) = 1 as the weight function. But
even if f € C%, this method might run into trouble because in general # needs not
to be very smooth. In special cases, such as the cardinal B—splines, see Section 5, it is
possible to get around this problem by dividing the integration domain D into subdomains
Dl =1,...,k, on which the integrand is sufficiently smooth and to apply a Gauss rule
on each of these. Such a scheme is referred to as a composite quadrature rule. They are
in general quite expensive, because in order to achieve a formula of degree 2m, m € IV,
on D, one has to perform km point evaluations. Therefore we will present an alternative
approach to circumvent the smoothness problem.

Instead of using the classical Gaussian rule, a modified formula according to w(z) =
O(x), 0 € {p,¢} is used. As the weight function is only required to be non—negative,
the lacking smoothness of § is no longer a problem in the sense that the performance of
this Gauss quadrature only depends on the number of knots and the regularity of f, but
not on the smoothness of w as one can see from (16). Hence, if f € C**, n € IN, Gauss
quadrature rules of degree 2m,m < n can be achieved with m knots.

Allin all the approximation of integrals of the form (20) boils down to the construction
of a Gauss rule for the weight function w(x) = 0(x), e.g, according to the method described
in Section 3. Hence the remaining key ingredient is the efficient computation of integrals
of polynomials against refinable functions and wavelets, respectively.

Before we turn to this issue in the next subsection, let us briefly deal with the following.
Viewing # as a weight function in general requires § to be non—negative. This covers

important scaling functions such as the cardinal B—splines or the box splines, see Sections
5 and 7.2. However, there are prominent cases of scaling functions and wavelets not being
non—negative, such as the dual scaling functions and the wavelets according to the above
cases. This problem can be fixed with the following lifting trick. If 8 # 0 one can find an
appropriate constant ¢ > 0 such that on supp()

0°(a) 1= 0(a) + ex () 2 0, (21)

where vy, 1,1 denotes the characteristic function of [{;,{3] D supp(8), cf. (4) and (5).
Xli1,l2]) PPV,

Obviously, the moments of xp, ;,) can be computed as

lo

75()([[1712]) = /wﬁ dx =

I

[

W, geNU {0}

Using the methods described in Section 4.2, the moments of § are also accessable. From
this the moments of §° are easily computable and the corresponding quadrature rule with
weights A¢ and knots «¢ can be determined. Then a second Gauss rule with weights A* and
knots « for the characteristic function yp, ;,) has to be set up using its already computed
moments. The sum (12) is then in fact replaced by the difference of two sums

JEC TR SPIT RS SPES! (22)

To reduce effects of cancellation, ¢ should be chosen as small as possible. In the case that
6 is explicitly known, this is no problem. But even if it is given only implicitly by means
of the mask, by employing the algorithm in [DM2], point values are still accessable, at
least on a dyadic grid. Therefore ¢ can be determined by a simple plot. This might be
expensive when it comes to wavelets with large supports or to higher dimensions, but
recall that this has to be done only once and for all.

Remark 4.1 Let us briefly discuss a slightly different way to deal with integrals involving
wavelets. One could apply the above quadrature method only to the case § = ¢ and treat
the wavelet case by using the scaling function representation (5) of ¥. This results in a
quadrature formula made up of k = ny—ny + 1 quadrature rules for ¢, and hence invoking
kn point evaluations of f in a formula of degree 2n. This is in general more expensive
then the ansatz proposed here, where the number of point evaluations for a wavelet is at
most 2n, independent of the length of b in (5).

4.2 Computing the moments

We are left with the determination of Gauss quadrature rules for a non—negative weight
function 0° € {¢° ¢}, (21). This can be done e.g. according to Section 3. Taking the
above lifting trick in account, the key step of this construction is the computation of
the moments of #. In some special cases this can be done directly, e.g. in the case of
cardinal B—spline wavelets, see Section 5. However, in general, this is not the case. As

one possible solution, in [GGP] Simpson’s quadrature rules are applied. By consequence,
this approach is limited to ‘smooth’ refinable functions. But many scaling functions do
not allow quadrature rules to compute their moments because their regularity is too low.
We therefore suggest in the following a different method avoiding quadrature.

The computation of integrals with monomials can be done efficiently and (up to round
off) exactly by using recursion relations, see [DM2]. For reader’s convenience, we briefly
recall the basic ideas. As the method can be easily described for the multivariate case
and as we will need it later in Section 6 in this shape, let us present the scheme in this
general form. We start with the case of an arbitrary refinable function ¢ in d dimensions.
Recall, that we always assume supp ¢ and supp¢’,i € I, to be compact in IR?. Let us
define

vﬁ/”qﬁ(m)dx, B=Br,...0), «=al" (23)

/ $(z)dz = 1

supp(¢)

The normalization

leads to 79 = 1. Defining

d
cg = 2~ 1Pl=d (g) Z apgk®, 0] := Zﬁla
I=1

kez?
we obtain
Vo= Y, e =ut D T (24)
0<a<p 0<a<p
Here o < 3 means a; < 35, 7 = 1,...,d, and o; < f3; for at least one ¢ € {1,...,d}.
Hence we end up with the recursion
v =(1=27) Y 7. (25)
0<a<p

Now we want to use the method presented above to compute integrals involving
wavelets instead of scaling functions. Since wavelets are linear combinations of trans-
lated versions of refinable functions on the next higher level, compare with (9), this task
is not too difficult. The integrals of wavelets with monomials can be computed as follows

/x%i(x)dx = /xﬁme(kd:z;—2|ﬁ|+d/ > b ol — k)d

. d d
supp(¢t) Ri kEZ R kEZ

d (0;,;5 (g) xakﬁ—a> d(x)da
e Y (e 26)

kezd 0<alp

where again 3 = (f1,. .., 4).

5 Cardinal B—splines and their duals

In this section, we shall apply the theory investigated above to the case that the under-
lying refinable function is a cardinal B—spline or one of the corresponding dual functions,
compare with Section 2. These special functions are frequently used in numerical analysis.
In general, the cardinal B-spline N, of order p € IN is a piecewise polynomial function
which is defined recursively as a convolution product, i.e.,

N1(51?) = X[0,1)(=’1?)7
Ny(2) = (N % Ni)(a) = / Ny (2 — y)Na(y)dy. (27)

Obviously, all these functions are positive so that we may use the algorithm outlined
in Section 4 without using the lifting trick (22). We shall mainly be concerned with the
B-spline V. By an integer shift, we obtain the classical symmetric hat function

1+2, —1<2<0,

No(z)i=No(z+1) =3 1 -2, 0<z<1, (28)

Y

0, otherwise.

We list the knots and weights for this case in Table A in the appendix. Let us remark
that for the spline case these knots and weights can be determined without the recursion
formula (24) because the moments v can be computed directly. For instance, for the
spline N3, we obtain

0, [odd,
s = 5
(CESEESL (3 even.
In the following table, we have listed the leading coefficients k;, [= 1,...,10, of the
orthonormal polynomials corresponding to Ny. We see that the sequence k;, [=1,...,10,

approximately behaves like 201 Because k[enters in the error estimate (16), we expect
that the resulting quadrature rules perform very accurately as [increases. This conjecture
is confirmed by our numerical experiments, see Section 7.

ky 1.000000000000000000000000000000
ks 2.449489742783178098197284074700
ks 5.070925528371099465057709964190
ks | 10.513149660756936271463359120000
ks | 21.259740683707940951376792519400
ks | 43.169070646570870905645790976900
k7 | 86.801073005286568361974542381700
ks | 175.063172739382196824342750901000
kg | 351.225962331516688455428359048000
k1o | 706.201232618915412159855112503000

For cardinal B-splines, suitable dual generators are known. In fact, in [CDF], families
of refinable functions N, ;, p+p even, were constructed such that a biorthogonality relation
of the form (11) is satisfied, i.e.,

(Wo)Nl = R)) = o (29)
We also want to derive quadrature rules using these dual functions as weight functions.
In general, they are no longer positive so that we have to work with the lifting trick (22)
in this case. Once again, we shall focus on the case p = 2. The next figure shows both,

the (centralized) dual function NQA which is biorthogonal to the usual hat function (28),
and its lifted version N ,.

NM N21,4 = NM + X[-4,4]
In the next table we present the recursion coefficients 35 entering the construction
of the two rules needed in the lifting trick, namely the one for N2174 and the one for the

characteristic function y[_4.4).

k Br(N 1) B (X[-1.1)) k Br(N]) B (Xi—a.4)

0 | 9.00000000000000 | 8.00000000000000 || 5 | 3.43508129707940 | 4.04040404040410
1| 4.72222929992999 | 5.33333333333333 || 6 | 4.56778842439712 | 4.02797202797139
2 | 4.9177TTTTTTTTTTS | 4.26666666666666 | 7 | 3.70208113647468 | 4.02051282051267
3 | 3.50852646887946 | 4.11428571428572 || 8 | 4.10494370822309 | 4.01568627450075
4 | 4.74217628189890 | 4.06349206349206 || 9 | 4.10652830708695 | 4.01238390088814

Once a dual generator is found, a biorthogonal wavelet basis satisfying (10) can be
easily constructed, see again [CDF] for details. By using the lifting trick one more time,
we may determine a quadrature formula according to Section 4 for the weight function
Y. In the next figure, we have depicted the primal wavelet 13 5 corresponding to N, and
NZ? in the original and in the lifted form.

10

V22 @Z’%z =22 + X[-1.5,1.5]
The next tabular lists the coefficients 3 for the lifted wavelet and for the characteristic

function X155

k

5k(X[—1.5,1.5])

5k(X[—1.5,1.5])

0

N VC R N

3.0000000000000
0.6616116523517
0.7351467769579
0.4703057627907
0.6434383764919

3.0000000000000
0.7500000000000
0.6000000000000
0.5785714285714
0.5714285714286

O o =1 O v | o

0.5371914738074
0.5688216835388
0.5777163727584
0.5494010683153
0.5746251705822

0.5681818181818
0.5664335664335
0.5653846153843
0.5647058823531
0.5642414860593

We want to finish this section with another remark. As already stated above, the
cardinal B-spline NV, is a piecewise polynomial function and its singular support can be
determined exactly. Therefore another method frequently used in practice is to subdivide
the support of A, and of the corresponding primal wavelet according to their singular
supports and to employ a usual Gauss quadrature (with w = 1) on each of the resulting
subintervals. However, this approach is only applicable to the primal functions and has
the serious disadvantage that the number of subdivisions, which is proportional to the
numerical cost, grows like p for the generator and like p + p for the corresponding primal
wavelet. Moreover, in higher dimensions the number of subdivisions grows exponentially
with the spatial dimension d. In contrary to this, the method presented here requires only
the evaluation of one integral independent of the order of the wavelet and of the scaling
function.

6 The multivariate case

In this section, we investigate how the approach outlined above can be generalized to
multivariate refinable functions and wavelets. We first discuss the important special case
of scaling functions and wavelets of tensor product type, i.e.,

O(x1, ... xq) = 01(21)0a(x2) - - - Oa(2q), (30)

11

where 0;, 1 = 1,...,d, denote univariate refinable functions or wavelets, compare with
Section 2. It turns out that this case can in fact be reduced to the univariate setting
presented above. Moreover, we also briefly explain how general scaling functions and
wavelets can be handled.

6.1 The tensor product case

Let us first assume that all the 6,, + = 1,...,d, on the right-hand side of (30) are non—
negative. We want to find a quadrature formula of degree N, N € IV, of the form

/ [/ f(xl, Cee ,l’d)(gl(xl) Cee Hd(xd) dxl [dl’d ~ Z)\Z»f(:zjm, ceey wi,d)- (31)
Ay =1

Q

Here Q; = supp(6;), ¢+ = 1,...,d. It is easy to derive such a formula from the univariate
rule constructed in Sections 3 and 4 by using the following general result shown in [St].
Let R" > I =1, x I, I, C IR™, I, C IR™ be a cube. Suppose that we are given
quadrature rules on [; and [, with respect to weight functions ¢; and g3, respectively, and
with points and weights

(Tidyeeor @iy)y Aoy 0=1,.00,ny, and (Tjdi41s-- o5 Tjd)y My J = 1,00, 02,

which are of degree Ny and Ns, respectively. Let g be defined by

g(xr, . o xq) = gi(@r, ..o, 2a) G2 (Ta 415 - o Td)-
Then the following theorem holds, see [St], Chapter 2, Theorem 2.3-1.

Theorem 6.1 The n = niny points and weights
(1}2'71, ey idi s Ljdi41y e - - ,l’]"d),)\Z'/,L]‘7 = 1, ceey N,] = 1, sy, Mo,
are an integration formula for the weight function g on I which is of degree N = min(Ny, Ny).

Applying Theorem 6.1 (d—1) times ends up in a product quadrature formula for a function
O of the form (30).

In case that the functions 6;, + = 1,....,d, are not non—negative, things are slightly
more complicated. Nevertheless, it turns out that one can again use the lifting trick (22).
To avoid unnecessary technical difficulties, we shall only write down the details for the
case d = 2. The higher dimensional cases can be treated analogously. Let us consider the
following decomposition

//f(xl,xz)el(xl)ez(xz) deides = //f(:z;l,:z:z)(el(:z;l)—|—c1)(02(:1;2)—|—c2) driday

Ql QQ Q1 Q2

—//f(xl,xz)(ﬁl(xl)—l-cl)cg dyds

Q Qo

12

—//f(xl,xg)(ﬁg(xz)—l—@)cl dyds

Q Qo

-|-//f(:1;1,:1;2)0102 derdas. (32)

Q Qo

By using Theorem 6.1 for each term on the right—hand side one can construct a quadrature
formula made up of univariate rules. Note that if ¢; and ¢y are appropriately chosen, all
weight functions for these cases are positive.

6.2 The general case

Let us now consider the case that O is a multivariate scaling function or a multivariate
wavelet which is not necessarily of the form (30). Then there is no way to use a product
formula according to Theorem 6.1 and therefore we have to derive directly a (non—product)
quadrature rule. Leaving the usual Gauss quadrature setting, this is possible, e.g., by
employing the results from [St]. Let us briefly recall the ideas. We shall focus on the
2D—case, for the general case, the reader is again referred to [St]. Let us first assume that
O is non—negative. We again want to find a quadrature rule of degree N having the form

n(N)
[ety dedy ~ Y- Nf i) (33)

supp®
To this end, one has to choose the points

24+ N)(1+N)

(xi,yi), i=1,...,n, n=n(N)= 5

(34)

in such a way that they do not all lie on a curve Qn(x,y) = 0, where Qy is a polynomial
of degree N. Such a set of points can always be found, see, e.g., [St], Ch. 1, Theorem
1.8-3 for details. Under this condition, the (n x n)-matrix with rows

(@ a), 0SBt S N
is non-singular and the coefficients A; can be found as solutions of the linear system
)\1:Iif1ylﬁ2—|----—|-)\n:1;gly£2 = /xﬁlyﬁ2®(:1;,y) dxdy, 0<|B] <N. (35)
supp®

Let us stress that again the right—hand side in (35) can be computed exactly without any
regularity assumption on ©, compare with Section 4.2. Scaling functions and wavelets
taking negative values can be handled by using the lifting trick.

Remark 6.2 [t might be somewhat expensive to construct non—product quadrature rules
of a very high degree, for then a huge linear system has to be assembled and to be solved.
However, the reader should again observe that these expensive computations have only to
be done once and for all.

13

7 Numerical examples

Once the quadrature rules for refinable functions and wavelets are established, one clearly
wishes to see how they behave in practice. Therefore we have tested our formulas for
several model problems, and the results are presented in this section. In Subsection
7.1, the univariate formulas are discussed. We use the B—splines, their duals and the
corresponding wavelets as introduced in Section 5 as weight functions. Furthermore, in
Subsection 7.2, we test the multivariate rules. We focus on the non—product formulas
constructed in Section 6.2 and we use box splines as weight functions. It turned out that
the performance was quite satisfactorily in all cases.

7.1 Univariate examples
To test the whole procedure, we have applied it to the computation of the integrals

4 1

/exNgA(:z;)d:z; and /eng(:z;)dx.

—4 -1

The results are displayed in the following table.

n . Iz, n I Iz,

1| 1.0000000000000 | 1.00000000000000 || 6 | 0.9233247035827 | 1.08616126977393
2 | -0.6252681537938 | 1.08449718995440 || 7 | 0.9233379806840 | 1.08616126974154
3 | 0.9543890162969 | 1.08614841390864 || 8 | 0.9233380192360 | 1.08616126953389
4| 0.9088372144081 | 1.08616121370867 || 9 | 0.9233380209880 | 1.08616126997847
5| 0.9234686307508 | 1.08616126928519 || 10 | 0.9233380212325 | 1.08616126988915

For the second integral, we can investigate the quality of the process somewhat more
precisely because in this case the exact solution e +e™! —2 ~ 1.086161269630487 can be
easily computed. It turns out that already for n = 5 the error is about 107!°. Moreover,
this example enables us to test the error estimate (16). Indeed, since the exponential
function is strictly increasing on [—1,1], we obtain the rough estimate

€

(2n)lk2"

By (e”) < (36)

In the following table, we have compared this estimate with the true error. We see that
(36) is in general too pessimistic by one power of ten.

14

1
no| | [e Ny(a)de — I | | ((2n)'k2) e
~1

1 | 0.086161269630487 1.3591409

2 10.00166408 0.037753914

3 1 0.000012856 0.0001468207

4 1 0.000000056 0.0000006099697
5|~ 1071 0.000000001657354

We have also tested the quadrature formula obtained for the B—spline wavelet 13 5 as the
weight function. We used it to approximate the integral

Zel’ g o(x)dx.

Since an explicit representation of the wavelet is known, it is again easy to compute
the exact value of the integral for comparison. The results, showing a rapid decrease of
the error, are displayed in the next table.

n 15272 |ﬂf%e%/)272d:1;—[”272| n 15272 |ﬂf%e%/)272d:1;—[”272|

11 0.0000000000000 | 1.440913408e-01
-0.1487392673555 | 4.647926551e-03
-0.1439509995222 | 1.403412819e-04 -0.1440913412644 | 4.602584424e-10
-0.1440912053939 | 1.354102581e-07 -0.1440913407264 | 7.778050425e-11
-0.1440913387957 | 2.008493871e-09 || 10 | -0.1440913404450 | 3.591145714e-10

-0.1440913412020 | 3.978017359e-10
-0.1440913405939 | 2.102940599e-10

O L =~ D

[L]

7.2 Multivariate examples

In this subsection we present tests concerning the general multivariate approache described
in Section 6.2. The discussion of the tensor product case as explained in Section 6.1 is
postponed to Section 8, where we study a practical application in accordance to this in
detail.

The method for non tensor product weight functions has been applied to the maybe
most prominent family of non—separable multivariate scaling functions, i.e., to box splines.
Let us briefly recall the definition and the basic facts. Let
X ={z'. .. 2"} € ZN{0}, o' = (2},...,2)T denote a set of not necessarily distinct
vectors satisfying ¢ > d and

< X >=span X = R". (37)

15

Then the box spline B(-|X) is defined by requiring that the equation

/f (2] X)dz = /f (Xu)d (38)

[0,1]#

1

holds for any continuous function f on IR?. The vectors ', ..., 2" are called the direction

vectors of B(-|X). Every box spline is a refinable function,

B(-|X)= > aB(2-—k|X), (39)

kez®
where the mask a = {aj},cza s given by

I

> apet =2 T+ 2. (40)

kez? =1

It can be shown that a box spline is a piecewise polynomial. Moreover, it is positive
and satisfies

Bu|X)=0, ug[X[, [X[={tix"'+ - +t,a": 0<t; <1, 1 <<l (41)

For further information on box splines, the reader is referred to [DM].

We set up a simple algorithm to generate a specific set of n(N) points in the domain of
integration according to (34) and to construct the corresponding non—product quadrature
rule for a bivariate weight, cf. Section 6.2. In our test examples, the resulting quadrature
rules were surprisingly weakly dependent on the location of these points, however, the
algorithm used in the following examples tends to equidistribute them.

First of all, we applied our algorithm to the famous Courant finite element B(-|}91)

i.e., to the bivariate box spline with direction vector (é), (?), G) The graph of this function
looks like a hexagonal pyramid. According to (41), its support is contained in the cube
[0,2] x[0,2]. In Table B in the appendix, we have listed the resulting Gauss points and the
corresponding weights for this cube as NV and therefore n(N) increases, cf. (34). With
these points and weights, we have tested the method described in Section 6.2 for the

function
fz,y) = sin(z +).
The results are depicted in the following table.

N | n I Ni|n I
B(-]591) B(-|591)

1| 3]0.29788436073635405 || 7 | 36 | 0.70347319558925836
6 | 0.70724512563270003 || 8 | 45 | 0.70347294122562543
10 | 0.70534367984966273 || 9 | 55 | 0.70347299009047892
15 | 0.70336387961090840 || 10 | 66 | 0.70347299263743424
21 | 0.70345600023785304 || 11 | 78 | 0.70347299204674396
28 1 0.70347597675687457 || 12 | 91 | 0.70347299203136016

Sy Ot e W N

16

We have also tested our method for the tensor product cardinal B-spline Ny @ N3 (z,y),
i.e., for the bivariate box spline with direction vectors (é), (é), (?), (?) We applied the

resulting quadrature rule to the functions

fz,y) = sin(z +y) g(w,y) = exp(x + 2y).
In both cases, the exact solutions can be easily computed. Consequently, we are able to
calculate the errors of the quadrature rules. It seems to be most meaningful to consider

and

the relative errors

The results are listed below.

Eln, [Nz @ Ny) = | [(f(z,y)N2 @ Ny(w,y) dedy —]J@2®N2|‘

| [flz,y) N2 @ Ny(z,y) dedy|

(42)

N |n e, () En, f, N2 @ N3) I3en,(9) E(n, g, Ny @ Ny)
2 1 6 | 0.764912463322939 0.4821e — 02 29.787140498052480 0.1139¢ — 1
3 | 10 || 0.768230405045909 0.5043¢ — 03 30.254584373509807 0.4128¢e — 2
4 115 || 0.768619073231594 0.1273e — 05 30.131265424222669 0.3492¢ — 4
5 121] 0.768611816978489 0.8166e — 05 30.133087211221344 0.9538¢ — 4
6 | 28 || 0.768618283581450 0.2464¢ — 06 30.130175412991949 0.1257e — 5
7 136 | 0.768618204690890 0.1437¢ — 06 30.130286953988257 0.2445e¢ — 5
8 |45 | 0.768618091001388 0.4129¢ — 08 30.130214729062992 0.4750e — 7
9 | 55 || 0.768618093017487 0.1506e — 08 30.130214524534466 0.4071e — 7
10 | 66 || 0.768618094207751 0.4247¢ — 10 30.130213355947507 0.1929¢ — 8§
11 | 78 || 0.768618094183085 0.1037¢ — 10 30.130213314885822 0.5659¢ — 9
12 1 91 || 0.768618094174823 0.3695¢ — 12 30.130213298960925 0.3737¢ — 10

As expected, in both cases the error decreases very rapidly as N grows.

Finally, we have studied our algorithm for the box spline B(-

110
001

01 :
91). Once again,

we used f(x,y) = sin(x + y) as test function. The results are as follows.

Ml ey YT Ty

1 | 3 | —0.45348505681758178 || 7 | 36 | 0.10037633276022173
216 0.04964854550337172 8 | 45 | 0.10037668586593097
3 110 | 0.09289718468658661 9 | 55| 0.10037657872727099
4 |15] 0.10098966569179155 10 | 66 | 0.10037657503752581
5 121 | 0.10042928697158683 11 | 78 | 0.10037657664472151
6 | 28 | 0.10037031312195928 12 1 91 | 0.10037657667564549

17

8 Practical applications

One possible application of the described method is the computation of right—hand sides
in (adaptive) Galerkin schemes for elliptic operator equations. There, vectors of the form

A= (f7 ¢j,k)(j,k)eA

occur. Here A is a possibly lacunary set of wavelet indices. The application of the above
method is straightforward. One reduces all integrals to the standard situation by means of
the substitution (19) and uses the lifting trick (22) if necessary. However, the performance
of the resulting quadrature formulas depends on the smoothness of the right—hand side
f, see (16), which might not always be adequate.

Another application arises in the context of the boundary element method. In this
case, one has to solve an operator equation

Au = f, (43)

where A has a global Schwartz kernel K,

(Av)(x) = /[&’(x,y)v(y) dy, (44)
which satisfies the condition
|8§85K(:1;,y)| < caﬁdist(:p,y)_(d+2t+|a|+|ﬁ|). (45)

Here 2t is the order of the operator A . The function K is in general a smooth and
non—local, but it may have a singularity on the diagonal. For further details, the reader
is referred, e.g., to [DPS, Sch] and the references therein.

Let us first consider the case d = 1. If one wants to solve (43) by means of a wavelet
Galerkin approach, one has to evaluate scalar products of the form

(K@j k@) = / / K(z,y)e;n(x)eip(y) dedy (46)

supp(@y, k) supp(;/ 5r)

and
m%m%wizt/ /Axymkmwm>w@ (47)

supp(15 k) supp (Y1 1)

By the substitution (19), we get from (46)

(Keisppw) =200 [[K (29 = 0,277 (0 - 1)) pla)ely) dad.

SuUppy suppy

These integrals can be evaluated by using the ideas described in Section 6.1. Indeed,
we may apply Theorem 6.1 to the case [; = [= suppp, ¢1 = g2 = », f(a,y) =

K <2‘j(:i' — k), 277 (y — k’)) The reader should observe that the Schwartz kernel K is

18

usually very smooth off the diagonal so that the Gauss quadrature should perform very
well for the computation of integrals involving basis functions whose supports are well
seperated. These integrals are sometimes called farfield integrals.

As an example, we have computed the scalar products (46) for an important special
case, i.e., for the Hilbert transform. In this case, the kernel is of the form

1

K(z,y) = — "

(48)

The scaling function ¢ was chosen to be the hat function defined in (28). The resulting
stiffness matrix for j = 5/ = 3 is illustrated in Figure 1. As discussed above, the method
proposed here only performs satisfactorily in regions where supp(p;x) N supp(p;jr) = 0.
Therefore the entries in the vicinity of the diagonal are not depicted in the following
figures. If the corresponding domains of integration are overlapping one gets singular
integrals, which require particular attention. Weakly singular kernels can be transformed
to analytic ones by nonlinear changes of variables. Higher singularities arising from other
operators must be transformed to those of weakly singular type by some regularization.
Details of such transformations have been carried out in [S, SS].

Stiffnessmatrix for Hilbert transform

X

Figure 1: Stiffness matrix corresponding to the Hilbert transform

For the simple case of the hat function, the entries in the stiffness matrix can also be
computed directly. This fact can clearly be used to test the performance of the algorithm.
In Figure 2, we have depicted the resulting relative error. It turns out that the error is in
fact very small, especially in the farfield. Note that for the above reasons, the entries in
the vicinity of the diagonal are not displayed.

19

Relative Error for Stiffnessmatrix for Hilbert transform

x107

25

Figure 2: Relative error corresponding to the Hilbert transform

In case that o is not strictly positive, we may apply the lifting trick (22) using ¢ =
w2 = . We obtain the decomposition

[[ree-ne - Ks@ie) ded - (19)

SuUpp¢ suppy

[[R - m.2 = et + o) + o) dedy

SuUpp¢ suppy

- [] B 02 - K + e dedy

SuUpp¢ suppy

- [] B 02 - Kl + e dedy

SuUpp¢ suppy

+ / / K293 — k), 277 (5 — k))& dady.

SuUpp¢ suppy

We have tested this idea for the case ¢ = NQA and the kernel defined in (48). The results
are displayed in the following Figure 3, again omitting the entries close to the diagonal.

20

Stiffnessmatrix for Hilbert transform, dual scaling functions

0.15

0.1

AN
=~
=~ AL
0.05 ==\ S
:::‘:'\‘\\\\\ NS
=< AN A W W N
=Ilnrkrksssrssessss
0 e NN N
— A N

NS S SSSoOTS
NS

X
)
W

SOSSS

)
!
i

SISO

X
I
o

0
i
0
o
i

S S OSST |
_ e S S AN oSS
0.05 SN R MY ==
“““““\\\ \“““
O e O O |
ST S SN T OO SeS |
eSS U NN SoSososS
S — NN |
01 NN
NN
e
NN TSSSSS TS

Figure 3: Stiffness matrix with respect to NQA

For the integrals according to (47), we can again use the lifting trick for the wavelet
1, which is totally analogous to (49). The resulting stiffness matrix is presented in Figure
8 in the appendix. It shows the typical finger structure, that has been investigated, e.g.,
in [DPS].

Higher dimensional problems can be treated analogously by using suitable tensor prod-
ucts of wavelets and scaling functions or by setting up an appropriate quadrature formula
by means of the method described in Section 6.2.

21

Stiffnessmatrix with respect to the Multiscale Basis

Or - F 30
F
I
T
- aa -,
10 N
I
1]
L | EEC
I] - 1-4
20 -
1 [EEIE]
] T
] 17
an]
T~ -6
] (EIE]
] T
30 u I EEmE
] s _] -8
] I
40 HHH H
H o -10
50 _12
60 - o -14
|
H
-16
70 1 1 1 1 1 1 J
0 10 20 30 40 50 60 70

Figure 4: Stifflness matrix associated with the wavelet 1, 5

Acknowledgement: The authors would like to thank Prof. W. Gautschi for an inspir-
ing discussion at the 2. Workshop on Orthogonal Polynomials at Ballenstedt, Germany,
and for putting unpublished material at their disposal. They also feel grateful to Mario
Mommer who did a great job working on some of the numerical experiments.

22

A Appendix

In the following tables we list knots and weights for Gauss quadrature rules with n =
1,...10 knots for the hat function, cf. (28). Note that wi? = wivfi_l_l

—X

No

n—i+1°

i=1...[n/2].

Table A, Weights and knots for the hat function, see (28)

N
w; '’

No
Z;

1.000000000000000000000000000000

0.000000000000000000000000000000

0.500000000000000000000000000000

0.408248290463863016366214012451

0.208333333333333333333333333334
0.583333333333333333333333333332

0.632455532033675866399778708887
0.000000000000000000000000000000

0.098866304579875626785852745947
0.401133695420124373214147254053

0.750925143304447384549815336033
0.262229842652747963829202721001

0.051658257765490621790913992431
0.239473240705457390441501909707
0.417737003058103975535168195725

0.821440599738381527872000286332
0.449920352459841963349447292207
0.000000000000000000000000000000

0.029496561655309346531441703474
0.147481233705272848259384512169
0.323022204639417805209173784355

0.865738294978819096173689107167
0.576614808248487335302143006343
0.194263676775038891612011154922

0.017940745025631765708397345815
0.093925039319343914901843901982
0.224746555018036629912163487255
0.326775321273975378955190529895

0.895615660710817516798208431832
0.665993283705955567193128023493
0.348413302656911965593248650426
0.000000000000000000000000000000

0.011529448606035851690614526463
0.062272586069543357120647564671
0.157584233713380391549094329339
0.268613731611040399639643579526

0.916498601781823410628599506008
0.730126110448886200699403394721
0.46470084488963896 7828890258309
0.154629080840261133515525835015

0.007724672257048883537841173746
0.042637377229386622561030714360
0.111965186394200942366897985607
0.203250033165550156295536408147
0.268845461907626790477387436280

0.931753814324370259839777441275
0.777874522766333218736187749949
0.554352720106100763666240572469
0.284230579976574031942210440432
0.000000000000000000000000000000

(continued on next page)

23

and :1;5\72 =

Weights and knots for the hat function, see (28) (continued)

10 | 0.005369059724471598670424583844 | 0.943166381725667699755384276105
0.030113256293466570387688594983 | 0.814053288655822717949783211207
0.081230624454969189238806002360 | 0.623784313633467079000174826997
0.153837064198188702301836370938 | 0.388351321334551331283338706126
0.229449995328903939401244447876 | 0.128573681331639522292510283016

In the next table, we list the knots and weight corresponding to the Courant finite element

B(-]391), cf. Section 7.2.
Table B: Weights and knots for the Courant FE, see Section (7.2)
WBCTRTD) BT
N=1 0.49999999999999989 | (1.0000000000000000, 2.0000000000000000)
(n=3) 0.25000000000000000 | (0.0000000000000000, 0.0000000000000000)
0.25000000000000000 | (2.0000000000000000, 0.0000000000000000)
N=2 0.21354166666666685 | (0.7500000000000000, 0.3333333333333333)
(n=6) | -0.02604166666666664 | (1.7500000000000000, 0.3333333333333333)
0.135416666666665555 | (0.2500000000000000, 1.0000000000000000)
0.489583333333333591 | (1.2500000000000000, 1.0000000000000000)
0.088541666666667185 | (0.7500000000000000, 1.6666666666666667)
0.098958333333333148 | (1.7500000000000000, 1.6666666666666667)
N=3 | 0.02343749999999971 | (0.0000000000000000, 0.2500000000000000)
(n=10) | 0.09895833333333410 | (1.0000000000000000, 0.2500000000000000)
-0.01822916666666661 | (2.0000000000000000, 0.2500000000000000)
0.23958333333333245 | (0.5.00000000000000, 0.7500000000000000)
0.15624999999999892 | (1.5000000000000000, 0.7500000000000000)
-0.00260416666666644 | (0.0000000000000000, 1.2500000000000000)
0.35937500000000105 | (1.0000000000000000, 1.2500000000000000)
0.03906250000000029 | (2.0000000000000000, 1.2500000000000000)
0.01041666666666670 | (0.5.00000000000000, 1.7500000000000000)
0.09374999999999965 | (1.5000000000000000, 1.7500000000000000)
N=4 | 0.05465494791666419 | (0.5000000000000000, 0.2000000000000000)
(n=15) | 0.01152343749999857 | (1.1666666666666667, 0.2000000000000000)
10.00107421875000024 | (1.8333333333333333, 0.2000000000000000)
(continued on next page)

24

Weights and knots for the Courant FE, see Section (7.2)

0.04778645833334450
0.17630208333334255
0.03.63281250000011
0.11243489583330270
0.21367187499999982
0.02285156250000006
-0.00039062499999955
0.11640625000002323
0.14440104166666040
0.00061848958333334
0.04147135416666046
0.02301432291666924

(0.1666666666666666, 0.6000000000000000
0.8333333333333333, 0.6000000000000000
1.5000000000000000, 0.6000000000000000
0.5000000000000000, 1.0000000000000000
1.1666666666666667, 1.0000000000000000
1.8333333333333333, 1.0000000000000000
0.1666666666666666, 1.4000000000000000
0.8333333333333333, 1.4000000000000000
1.5000000000000000, 1.4000000000000000
0.5000000000000000, 1.8000000000000000
1.1666666666666667, 1.8000000000000000
1.8333333333333333, 1.8000000000000000

N=5
(n=25)

0.00563964843751220
0.04064941406245611
-0.00017089843749108
-0.00002441406249938
0.07250976562499598
0.09404296875009843
0.00766601562498629
0.00424804687499713
0.16567382812499065
0.11137695312488399
-0.00161132812499675
0.03525390624998361
0.17324218750004255
0.07119140625007708
-0.00051269531249515
0.03430175781251509
0.12941894531245335
0.01101074218748175
-0.00151367187500374
0.02021484374999951
0.02739257812501232

)
)
)
)
)
)
)
)
)
)
)
)
0.0000000000000000, 0.1666666666666666)
0.6666666666666666, 0.1666666666666666)
1.3333333333333333, 0.1666666666666666)
2.0000000000000000, 0.1666666666666666)
0.3333333333333333, 0.5000000000000000)
1.0000000000000000, 0.5000000000000000)
1.6666666666666667, 0.5000000000000000)
0.0000000000000000, 0.8333333333333333)
0.6666666666666666, 0.8333333333333333)
1.3333333333333333, 0.8333333333333333)
2.0000000000000000, 0.8333333333333333)
0.3333333333333333, 1.1666666666666667)
1.0000000000000000, 1.1666666666666667)
1.6666666666666667, 1.1666666666666667)
0.000000000000000, 1.5000000000000000)
0.666666666666666, 1.5000000000000000)
1.3333333333333333, 1.5000000000000000)
2.0000000000000000, 1.5000000000000000)
0.3333333333333333, 1.8333333333333333)
1.0000000000000000, 1.8333333333333333)
1.6666666666666667, 1.8333333333333333)

e N T I T U I I N e e

(continued on next page)

25

Weights and knots for the Courant FE, see Section (7.2)

0.02165244369923851
0.01092212414607925
0.00023707233405760
0.00024138354750510
0.01956523108091459
0.06333050601655035
0.05252965695052495
-0.00197270307585234
0.05579025430068487
0.09904191355256522
0.03337605390533229
0.00133713414426512
0.00721324133490140
0.09532598263317101
0.13028669407781066
0.05507194075043687
0.01838655421356106
0.07841338707667969
0.07853257517310503
0.01421283943936253
-0.00050312829397308
0.00710763275300024
0.07266312049191456
0.05418506602132048

~

0.3750000000000000, 0.1428571428571428
0.8750000000000000, 0.1428571428571428
1.3750000000000000, 0.1428571428571428
1.8750000000000000, 0.1428571428571428
0.1.25000000000000, 0.4285714285714285
0.6.25000000000000, 0.4285714285714285
1.1250000000000000, 0.4285714285714285
1.6250000000000000, 0.4285714285714285
0.3.75000000000000, 0.7142857142857143
0.8.75000000000000, 0.7142857142857143
1.3750000000000000, 0.7142857142857143
1.8750000000000000, 0.7142857142857143
0.1.25000000000000, 1.0000000000000000
0.6.25000000000000, 1.0000000000000000
1.1250000000000000, 1.0000000000000000
1.625000000000000, 1.0000000000000000
0.3.75000000000000, 1.2857142857142858
0.8.75000000000000, 1.2857142857142858
1.3750000000000000, 1.2857142857142858
1.8750000000000000, 1.2857142857142858
0.1.25000000000000, 1.5714285714285714
0.6.25000000000000, 1.5714285714285714
1.1250000000000000, 1.5714285714285714
1.6250000000000000, 1.5714285714285714

~

S e e S S e o S S o T T o e T S o) e e

~—

e P N T T N T T N N N N
~—

-0.00053315742935788 | (0.3.75000000000000, 1.8571428571428572)
0.00716100218435023 | (0.8.75000000000000, 1.8571428571428572)
0.01765379325419301 | (1.3750000000000000, 1.8571428571428572)
0.00877138571765864 | (1.8750000000000000, 1.8571428571428572)
References
[Ch] C.K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.

[CDF] A. Cohen, I. Daubechies, and J. Feauveau, Bi-orthogonal bases of compactly
supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560.

[CD]

A. Cohen and I. Daubechies, Non—separable bidimensional wavelet bases, Rewv.

Mat. Iberoamericana 9 (1993), 51-137.

26

(D]

[DM]

[DM?2]

[DPS]

[Dau]

[DR]

[GGP]

[GS]

[IM]

W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Nu-
merica 6 (1997), Cambridge University Press, Cambridge, 55-228.

W. Dahmen and C.A. Micchelli, Recent progresses in multivariate splines, in:
“Approximation Theory IV”, (C.K. Chui, L.L. Schumaker, and J.D. Ward, Eds.),
Academic Press, New York, 1983, 27-121.

W. Dahmen and C.A. Micchelli, Using the refinement equation for evaluating
integrals of wavelets, SIAM J. Numer. Anal. 30(2) (1993), 507-537.

W. Dahmen, S. Prossdorf, and R. Schneider, Multiscale methods for pseudo-
differential equations on manifolds, in: “Wavelets: Theory, Algorithms, and Ap-
plications”, (C.K. Chui, L. Montefusco, and L. Puccio, Eds.), Academic Press,
1994, 385-424.

. Daubechies, Ten Lectures on Wavelets, CBMS—-NSF Regional Conference Series
in Applied Math. 61, STAM, Philadelphia, 1992.

P. Davis and P. Rabinowitz, Methods of Numerical Integration, (W. Rheinboldt,
Ed.), Academic Press, New York, 1975.

W. Gautschi, Orthogonal polynomials: applications and computation, Acta Nu-
merica 5 (1996), Cambridge University Press, Cambridge, 45-119.

W. Gautschi, L. Gori, and F. Pitolli, Gauss quadrature for refinable weight func-
tions, preprint, 1999.

W. Gautschi and T. Sauer, Moments of refinable functions and Gauss quadrature,
manuscript, 1999.

R.Q. Jia and C.A. Micchelli, Using the refinement equations for the construction
of pre-wavelets II: Powers of two, in: “Curves and Surfaces”, (P.J. Laurent, A.
LeMéhauté, and L.L. Schumaker, Eds.), Academic Press, New York, 1991, 209-
246.

J.—P. Kahane and P.—G. Lemarié-Rieusset, Fourier Series and Wavelets, Gordon

and Breach Science Publishers, Luxembourg, 1995.

V.I. Krylov, Approzimate Calculation of Integrals, translated by A.H. Stroud,
Macmillan, New York, 1962.

S. Mallat, Multiresolution approximation and wavelet orthonormal bases of L*(IR),

Trans. Amer. Math. Soc. 315 (1989), 69-88.

Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics
37, Cambridge, 1992.

R. Piessens and W. Sweldens, Quadrature formulae and asymptotic error expan-
sions for wavelet approximations of smooth functions, SIAM J. Numer. Anal.

31(4) (1994), 1240-1264.

27

[PS2]

[5]

[55]

[Sch]

[St]

[StS]

R. Piessens and W. Sweldens, Asymptotic error expansions of wavelet approxima-
tions of smooth functions II, Numer. Math. 68 (1994), 377-401.

S. Sauter, Uber die effiziente Verwendung des Galerkin—Verfahrens zur Lésung
Fredholmscher Integralgleichungen, PhD. Thesis, Christian-Albrecht-Universitat,
Kiel, 1992.

S. Sauter and C. Schwab, Quadrature for hp Galerkin BEM in IR*, Num. Math.
78 (1997), 211-258.

R. Schneider, Multiskalen— und Wavelet—-Matrizkompression: Analysisbasierte
Methoden zur effizienten Losung grofier vollbesetzter Gleichungssysteme, Advances
in Numerical Mathematics, Teubner, Stuttgart, 1998.

A.H. Stroud, Approzimate Calculation of Multiple Integrals, Prentice—Hall, New
Jersey, 1971.

A.H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, New
Jersey, 1966.

P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge University
Press, Cambridge, 1997.

Arne Barinka, Titus Barsch, Stephan Dahlke
RWTH Aachen

Institut fur Geometrie und Praktische Mathematik
Templergraben 55

52056 Aachen

Germany
{barinka,barsch,dahlke}@igpm.rwth-aachen.de

Michael Konik

Fakultat fur Mathematik

Technische Universitat Chemnitz
09107 Chemnitz

Germany
konik@mathematik.tu-chemnitz.de

28

