
Quadrature Formulas for Re�nable Funtions andWavelets II: Error AnalysisArne Barinka�, Titus Barsh, Stephan Dahlkez,Mihael Konik, and Mario MommerAbstrat. This paper is onerned with the onstrution and the analysis of Gauss quadratureformulas for omputing integrals of (smooth) funtions against re�nable funtions and wavelets. The maingoal of this paper is to develop rigorous error estimates for these formulas. For the univariate setting,we derive asymptoti error bounds for a huge lass of weight funtions inluding spline funtions. Wealso disuss multivariate quadrature rules and present error estimates for spei� nonseparable re�nablefuntions, i.e., for some speial box splines.Key Words: Gauss quadrature, saling funtions, wavelets, splines, error estimates.AMS subjet lassi�ation: Primary 65D32, seondary 41A30, 42C15.1 IntrodutionThe appliation of wavelets to pratial problems requires the omputation of inner prod-uts of a given funtion with wavelets or with an assoiated re�nable funtion. In mostases, this an not be done diretly by �nding primitives, so that suitable quadrature for-mulas are needed. However, most of the lassial quadrature formulas may not performvery well, beause neither the re�nable funtions nor the wavelets are neessarily verysmooth. Moreover, in many ases, these funtions are only known impliitly via ertainfuntional equations from whih the funtion values have to be omputed or approximated.This is usually expensive and/or inaurate.In [BBDK℄ Gauss quadrature formulas for re�nable funtions and wavelets were de-rived using these funtions as weight funtions. As the weight funtion only has to benonnegative, this approah irumvents the diÆulties due to the laking smoothness. Theonstrution presented there is quite general and works very well for both, the univariateand the multivariate ase.This paper an be viewed as a ontinuation of [BBDK℄, disussing several questions thatremained open there. Espeially, we shall be onerned with rigorous error estimates for�The work of this author has been supported by the Volkswagen Stiftung.zThe work of this author has been supported by Deutshe Forshungsgemeinshaft, Grant Da 117/13-1.1



the quadrature formulas onstruted in [BBDK℄. For the univariate ase, we will presentasymptoti error estimates for a wide lass of weight funtions. For the multivariatesetting, we will provide and disuss methods to estimate the error for formulas of anyorder, at least for some spei� weight funtions.Another important issue that we will deal with is the following. In pratie, manyappliations require the use of wavelets on bounded domains. Then near the boundaryone has to use so{alled boundary adapted wavelets and saling funtions, see, e.g., [DKU℄.Then the question arises how to design suitable Gauss quadrature rules for these boundaryadapted funtions. The problem is that these funtions are no longer re�nable in thelassial sense. This auses diÆulties onerning the omputation of their momentswhih is an essential step in any Gauss quadrature rule. We present one spei� solutionto this problem here.The outline of the paper is as follows. In Setion 2, we shortly review the waveletsetting as far as we need it for our purposes. Setion 3 is devoted to the (univariate)Gauss quadrature. Based on a well{known result given in [Sz℄, we derive estimates for theleading oeÆients of the assoiated orthogonal polynomials. They an be used to stateand to prove the desired error estimates for a huge lass of weight funtions inludingspline funtions. We also summarize the onstrution priniples for Gauss formulas forwavelets and re�nable funtions on the real line as introdued in [BBDK℄. In Setion4 we apply the mahinery developed in Setion 3 to the ase of B{spline wavelets andre�nable funtions. We derive Gauss quadrature rules for boundary adapted funtions,and investigate the error estimates for both, the usual ardinal B{splines and the boundaryadapted versions. In Setion 5, we will treat the multidimensional ase. We review theonstrution of quadrature formulas for nonseparable multivariateweight funtions. Then,we derive some error estimates for these ases. By using the general theory as outlined in[St℄, we present rigorous error bounds for some speial weight funtions, i.e., for spei�box splines whih are frequently used in pratie.2 The wavelet settingIn this setion, we shall briey reall the basi setting of wavelet analysis as far as itis needed for our purposes. In general, a funtion  is alled a wavelet if all its saled,dilated, and integer translated versions j;k(x) := 2j=2 (2jx� k); j; k 2 ZZ; (1)form a Riesz basis of L2(IR). Usually, wavelets an be found by means of funtionalequations  (x) =Xk2ZZ bk'(2x� k); (2)where ' is a re�nable funtions, i.e., ' satis�es a two{sale relation'(x) = Xk2ZZ ak'(2x� k) (3)2



with the mask a = fakgk2ZZ 2 `2(ZZ): In the sequel, we shall restrit ourselves to re�nablefuntions and wavelets with ompat support and we will always assume thatsupp(a) := fk 2 ZZjak 6= 0g � [m1;m2℄: (4)It an be heked that (4) implies supp' � [m1;m2℄.There are several methods to onstrut wavelets in higher dimensions. The simplestway is to use tensor produts. There also exist multivariate wavelet onstrutions withrespet to non{separable re�nable funtions � satisfying�(x) = Xk2ZZd ak�(2x� k); fakgk2ZZd 2 `2(ZZd); (5)see, e.g., [JM℄ for details. In any ase, a family  i; i = 1; : : : ; 2d�1; of wavelets is needed.Eah  i satis�es a funtional equation similar to (2), i(x) = Xk2ZZd bik�(2x� k): (6)As in the univariate ase, we shall heneforth assume that the saling funtions andwavelets under onsideration are all ompatly supported.It is often very onvenient to have aess to a suitable biorthogonal wavelet basis. Fora given (univariate) wavelet basis f j;k; j; k 2 ZZg, one is interested in �nding a seondsystem f ~ j;k; j; k 2 ZZg satisfying( j;k(�); ~ j0;k0(�)) = Æj;j0Æk;k0; j; j0; k; k0 2 ZZ: (7)Here (�; �) learly denotes the usual L2{inner produt. The onstrution of suh a biorthog-onal system essentially relies on a suitable seond generator ~' suh that ' and ~' form adual pair, ('(�); ~'(� � k)) = Æ0;k: (8)Elegant onstrutions an be found, e.g., in [CDF℄. Generalizations to higher dimensionsalso exist [CD℄.For further information on wavelet analysis, the reader is referred to one of the textbookson wavelets whih have appeared quite reently [Ch, D, Dau, KL, Me, W℄.To treat pratial problems, it is often neessary to onstrut wavelet bases on boundeddomains. In this paper, we shall fous on the ase 
 = (0; 1). The onstrution of waveletson the interval is meanwhile well understood, see, e.g., [AHJP, CDV, DKU℄. Here werefer to the approah in [DKU℄ where a biorthogonal wavelet basis is onstruted. Theommon strategy is to start with a pair of dual generators on IR. Spei�ally, we hoosehere a biorthogonal system from the family onstruted in [CDF℄ where the primal salingfuntions onsist of ardinal B{splines. For j � j0 where j0 is �xed (suÆiently large todisentangle end point e�ets) one builds �j by keeping those translates 2j=2'(2j ��k); k 2ZZ, that are fully supported in [0; 1℄. These will be referred to as interior basis funtions.For B{splines of order m, at eah end of the interval m �xed linear ombinations ofthe 2j=2'(2j � �k) are added in suh a way that the resulting olletion �j spans all3



polynomials of order m on (0; 1). One proeeds in the same way with the dual salingfuntions restoring the original order of polynomial exatness while keeping #�j = #~�j.Then only the interior basis funtions inherit the biorthogonality from the line whereasthe boundary modi�ations have perturbed biorthogonality. It an be shown thoughthat in this spline family one an always biorthogonalize [DKU℄, ending up with pairs ofgenerator bases �j ; ~�j. These bases always onsist of three parts signi�ed by the indexsets �Lj ;�Ij ;�Rj (and similarly for the dual olletions) identifying the left boundary,interior and right boundary basis funtions. Only the size of the interior sets �Ij dependson j. The number of boundary funtions stays always the same. Moreover, for eah endpoint one has a �xed �nite number (namely m for the primal respetively ~m for the dualbasis) of saling relations whih an be omputed a{priorily and stored. The interiorbasis funtions satisfy, of ourse, the lassial stationary re�nement rule from the linease. Moreover, the whole set of saling funtions is re�nable in the following generalizedsense. There exist re�nement matriesM j;0 and ~M j;0 suh that�Tj = �Tj+1Mj;0; ~�Tj = ~�Tj+1 ~Mj;0; (9)where the bases are viewed as vetors whose omponents are the individual saling fun-tions. The re�nement matries have �xed upper left and lower right bloks. Only thestationary blok Aj hanges its size with growing level j, see Figure 1.Mj;0 := ML Aj MRFigure 1: Struture of re�nement matries for spline wavelets on the interval.3 Gauss quadratureThis setion is devoted to the (univariate) Gauss quadrature setting. We start in Sub-setion 3.1 by realling the basi fats. In Subsetion 3.2, we derive some error estimatesand apply them to the important speial ase of spline funtions. Finally, in Subsetion3.3, we shortly review the onstrution of quadrature rules for re�nable funtions andwavelets. 4



3.1 General settingA univariate Gauss quadrature rule replaes an integral by a weighted sum of pointevaluations of f , i.e.,Z[a;b℄ f(x)w(x)dx � Inw(f) := nXi=1 �if(xi); [a; b℄ � IR; n 2 IN; (10)with knots xi and weights �i; i = 1; : : : n. Here w is alled the weight funtion, whih inthe most lassial ase is hosen to be w � 1. However, the theory an be developed fora huge lass of funtions. In fat, w only has to satisfy the following onditions, f. [Sto℄,p. 135.De�nition 3.1 A funtion w on the (�nite or in�nite) interval (a; b) is alled a weightfuntion if it is nonnegative and measurable and if all its momentsi(w) := bZa xiw(x) dx i = 0; 1; : : : (11)exist. Moreover, we always require that 0(w) > 0.In this paper, we will only onsider ompatly supported weight funtions.De�ning the inner produt orresponding to w as(f; g)w := Z[a;b℄ f(x)g(x)w(x)dx; (12)the knots xi of the Gauss rule are the zeros of the n{th orthogonal polynomial with respetto this salar produt. A quadrature rule is said to be of degree N if it is exat for allpolynomials with order up to N . Gauss quadrature rules with n points are of degreeN = 2n.For further information on quadrature, the reader is referred, e.g., to [DR, K, St℄ andthe referenes therein.3.2 Error analysisOne a Gauss quadrature rule of the form (10) is established, one is learly interested inomputing the quadrature error whih is de�ned byEnw(f) := Z[a;b℄ f(x)w(x)dx � Inw(f): (13)A lassial result states that if f 2 C2n(IR)Enw(f) = f (2n)(�)(2n)!k2n;0 ; for some a < � < b; (14)5



see again [DR℄ for details. Here kn;0 denotes the leading oeÆient of the n{th orthonormalpolynomial with respet to the salar produt (�; �)w.Hene, if the weight funtion and the degree is given, it is possible to ontrol the errorfor any spei� Gauss quadrature rule. However, the question remains open, how theerror will behave asymptotially as n inreases. Fortunately, there exist some results inthis diretion, at least for weight funtions satisfying some additional onditions as weshall now explain.De�nition 3.2 Let w be a weight funtion aording to De�nition 3.1 on the interval[�1; 1℄. w is said to be in the funtion lass W if�Z�� j lnw�(#)jd# <1; (15)for w�(#) := w(os(#)) j sin(#)j.For this speial lass W, the following theorem holds, see, e.g., [Sz℄ for details.Theorem 3.3 Let w 2 W andpn(x) = nXi=0 kn;ixn�i; n = 0; 1; 2; : : : (16)be the system of orthonormal polynomials assoiated with the weight funtion w. Then,as n tends to in�nity,kn;0 � 2nCw; with Cw := ��1=2 exp0��12� 1Z�1 ln(w(x))p1� x2 dx1A : (17)As usual, `a � b' means that both quantities an be uniformly bounded by someonstant multiple of eah other. Likewise, ` <� ' indiates inequality up to onstantfators.Theorem 3.3 now sets us in the position to ontrol the asymptoti error of Gaussformulas for w 2 W. Let us mention that the above result holds for a somewhat widerlass of funtions, details an again be found in [Sz℄, p. 296.To use Theorem 3.3 in pratie, it is learly desirable to have an easy riterion at handto hek the ondition (15). In the following lemma we give one result in this diretionwhih, as we shall see later on, an be applied to any spline funtion on [�1; 1℄ andtherefore also to every spline wavelet and re�nable funtion, respetively.Lemma 3.4 Let w be a bounded weight funtion on [�1; 1℄ with zeros xi; i = 1; : : : ; L.If there exist numbers ri; i; �i > 0; i = 1; : : : ; L and Æ > 0 suh thatw(x) � ijxi � xj�i; x 2 [xi � ri; xi + ri℄ \ [�1; 1℄; (18)w(x) � Æ; x 2 [�1; 1℄n L[i=1[xi � ri; xi + ri℄; (19)6



then w is ontained in W.Proof. We have to hek that �R�� j lnw�(#)jd#, with w� := w(os(#))j sin(#)j exists. Asw is bounded, w� is also bounded and we may assume without loss of generality thatw� � 1. Hene �Z�� j lnw�(#)j d# = � �Z�� lnw�(#) d#: (20)To show the existene of the integral, letZ := f#� 2 [��; �℄ : os(#�) = xi; i = 1 : : : ; Lg:For r > 0 suÆiently small, we may deompose the expression in (20) asZ[��;�℄lnw�(#) d# = Z[��;�℄nS#�2Z [#��r;#�+r℄lnw�(#) d#+ X#�2Z Z[#��r;#�+r℄\[��;�℄lnw�(#) d#: (21)We start by showing that eah of the summands of the seond expression in (21) exists.To this end, onsider for #� 2 Z the deompositionZ[#��r;#�+r℄\[��;�℄lnw�(#) d# = Z[#� ;#�+r℄\[��;�℄lnw(os(#)) d#+ Z[#��r;#� ℄\[��;�℄lnw(os(#)) d#+ Z[#��r;#�+r℄\[��;�℄ln j sin(#)j d# :We will �rst show the existene of the �rst term on the right{hand side of (22). Withoutloss of generality, we may assume that #� 6= � so that [#�; #�+r℄ � [��; �℄ for r suÆientlysmall. Let xi� be suh that os(#�) = xi� . Then, by assumption (18)#�+rZ#� lnw(os(#)) d# � #�+rZ#� ln �i� jxi� � os(#)j�i� � d#= #�+rZ#� ln i� d#+ �i� #�+rZ#� ln jxi� � os(#)j d#: (22)7



The �rst integral learly exists. Conerning the seond one, we �rst assume that #� 6=0;�� and substitute y = xi��os(#). This yields with ~r := xi� � os(#� + r) 6= 0#�+rZ#� ln jxi� � os(#)j d# = lim"!0 ~rZ" ln jyj�1 � (xi� � y)2��1=2dy>� lim"!0 ~rZ" ln jyj d#: (23)The existene of the integral in the ases �� = 0;�� an be shown analogously by using1 � os(x) = 2 sin2(x=2). Hene in all three ases the orresponding integrals are �nite,whih establishes the existene of the �rst term in (22). The existene of the seond terman be shown in a similar fashion. Hene we are left with the last term. Its existeneis lear as long as #� 62 f��; 0; �g. However, these exeptional ases an be treatedby employing similar arguments as for (22). Therefore we have shown that the seondexpression in (21) exists. So it remains to study the �rst term. By taking (19) intoaount, we observe that only the viinities of the points ��; 0; and � require somespeial attention. For that, we may again proeed as above. It �nally follows that�Z�� j lnw�(#)jd# <1;i.e., w 2 W.Lemma 3.4 and Theorem 3.3 an now be used to derive the following result for splinefuntions.Corollary 3.5 Let w be a nonnegative spline funtion on [�1; 1℄ having only �nitely manyzeros and let kn;0 be de�ned aording to (16). Then as n tends to in�nitykn;0 � 2nCw; with Cw := ��1=2 exp0��12� 1Z�1 ln(w(x))p1� x2 dx1A : (24)Furthermore, if f 2 C2n; n 2 IN; the error of the orresponding Gauss quadrature rulesatis�es for n tending to in�nityjEnw(f)j = ������ 1Z�1 f(x)w(x)dx� Inw(f)������ <� kf (2n)kL1[�1;1℄(2n)!22nC2w : (25)Proof. As (18) and (19) are obviously ful�lled for all spline funtions by Lemma 3.4,any nonnegative spline with �nitely many zeros is ontained inW. Therefore (24) followsimmediately from Theorem 3.3. Then formula (25) is a simple onsequene of the lassialerror estimate (14) for Gauss quadrature errors.8



3.3 Gauss formulas for wavelets and re�nable funtionsThe integrals we have to deal with in the wavelet setting are of the following form(f; �j;k) = Zsupp(�j;k)f(x)�j;k(x) dx (26)where � is either a re�nable funtion ' or a wavelet  , see Setion 2. By means of asubstitution, one an write (26) asZsupp(�j;k)f(x)�j;k(x) dx = 2�j=2 Z
 f(2�j (u+ k)) �(u) du; (27)with 
 := supp(�). Hene it suÆes to �nd a quadrature rule for integrals of the formZ
 f(x)�(x)dx; (28)to be able to ompute all integrals in(26).In [BBDK℄, one solution to this problem has been given. The general idea was toonstrut Gaussian quadrature rules using � as weight funtion. Then, no smoothnessis required for �, however, it should be nonnegative, whih might not always be thease. Yet, this problem an be �xed using the following lifting trik. Suppose that for� 6� 0; � 2 f'; g there exists an appropriate onstant  > 0 suh that on supp(�)�(x) := �(x) + �[l1;l2℄(x) � 0; (29)where �[l1;l2℄ denotes the harateristi funtion of [l1; l2℄ � supp(�). Then one an set upa quadrature rule with weights �i and knots xi orresponding to the nonnegative funtion�(x). After that, a seond Gauss rule with weights ��i and knots x�i for the harateristifuntion �[l1;l2℄ has to be determined. Hene we are left with the task to ompute themoments of re�nable funtions and wavelets, respetively. This an be done using analgorithm by [DM2℄ and the funtional equation (2), see [BBDK℄.4 Gauss quadrature for ardinal B{spline systemsRe�nable funtions and wavelets related to ardinal B{splines are of speial interest inpratie. Indeed, in reent years, it has turned out that spline wavelets form a powerfultool for many appliations of wavelet analysis suh as signal/image analysis/ompressionand the numerial treatment of operator equations. This is also due to the fat that inthe ontext of solving problems on bounded domains, the B{spline approah provides asuitable way to onstrut appropriate bases on these domains, see Setion 2. Consequently,the aim of this setion is twofold. Firstly, we want to derive and to analize quadratureformulas for boundary adapted saling funtions and wavelets. Seondly, we will applythe error analysis presented in Setion 3.2 to both, the lassial and the boundary adaptedsaling funtions and wavelets. 9



4.1 Constrution of quadrature formulas for boundary adaptedsaling funtionsWe have already mentioned that the onstrution of a suitable Gauss formula essentiallyrelies on the omputation of the moments of the weight funtion. As outlined in Setion2, the saling funtions near the boundary onstruted aording to [DKU℄ are no longerre�nable in the lassial sense. Therefore the usual way to ompute the moments asexplained in [DM2℄ does not work in this ase. One possible remedy reads as follows. Let'Lj;k(x); k = 0; : : : ;m� 1 (30)denote the m funtions adapted to the left side of the interval, ompare with Setion 2.For the omputation of their momentsLl;j;k := 1Z0 xl'Lj;k(x)dx (31)we may use a di�erent representation of Ll;j;k from [DKU℄. Let ~'Lj;l denote a boundaryadapted version of the dual generator before the �nal biorthogonalization proedure isperformed. ThenLl;j;k = �'Lj;k(�); (�)l�[0;1℄ = 2�j=2 2�lj�'Lj;k(�); ~'Lj;l(�)�[0;1℄; (32)provided that the dual system is exat of order greater or equal l. But for the biorthogonalspline system, dual funtions of arbitrary order are available, at least in priniple. More-over, the term on the right{hand side in (32) an be omputed exatly (up to roundo�),see again [DKU℄ for details. Consequently, for eah of the boundary adapted funtions,we may use (32) to derive a Gauss formula by following exatly the lines in [BBDK℄. Sowe end up with m + 1 formulas, one for the interior funtions and m for the boundaryadapted funtions (the right boundary an be handled by using symmetry arguments).In priniple, the values in (32) also depend on the level j. However, this dependeny onlyresults in a saling by powers of two. Therefore the quadrature rules for the boundaryadapted funtions have to be omputed only one and for all on the oarsest level, justlike for the interior funtions.We onlude this setion with the following example. LetNL2 be one of the two boundaryadapted funtions orresponding to the entralized ardinal B{spline of order two, seeFigure 2, and let f(x) := os(x) ex: (33)We will test the above method for omputingZsupp(NL2 )f(x)NL2 (x) dx = p2(8e1=4 sin(1=4) � 8e1=8 sin(1=8) � 1) � 0:58150188308191:In the following table, the values and the relative errors for the orresponding quadraturerules are listed. We see that the relative error dereases very rapidly as n inreases, sothat our formulas indeed perform satisfatorily.10



n InNL2 (f) rel. error1 0.5817194542408 3.742e-042 0.58150322100026 2.301e-063 0.58150188304296 6.700e-114 0.58150188308187 8.126e-14
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Figure 2: NL2 , one of the two boundary adapted saling funtion of N2.4.2 Error analysis for the B{spline aseAs already outlined above, ardinal B{splines play an important role in pratial appli-ations. Therefore, we want to investigate the error behaviour of Gauss quadrature rulesfor this ase in more detail.Let us �rst remark that after a suitable transformation to the interval [�1; 1℄ the generalresult stated in Corollary 3.5 also holds for the boundary adapted funtions beause theyare still pieewise polynomials.In the following table, we list the omputed values of Cw aording to (24) for both,the B{splines and their boundary adapted versions. Let N� denote the usual entralizedardinal B{spline of order �, N� its transformed version with supp(N�) = [�1; 1℄ and letNL�;k; k = 0; : : : ; �� 1 be the orresponding transformed boundary adapted funtions.For the entralized B{spline N2 = N2, some of the leading oeÆients were omputedexatly in [BBDK℄. In the following table, we ompare the estimated and exat leadingoeÆient kn in this ase. 11



� CN� CNL�;0 CNL�;1 CNL�;2 CNL�;32 1.41 0.89 1.413 3.39 1.12 1.04 0.974 7.98 1.64 1.41 1.22 1.06n 1 2 3 4 5 6kn 2.45 5.07 10.51 21.26 43.17 86.802n CN2 2.84 5.68 11.36 22.72 45.44 90.24We see that the estimated kn deviate from the exat ones only by fators dropping from1:13 to 1:04, showing that the asymptoti estimate for this ase is already very good forsmall n.5 The multivariate aseExtensions of the one dimensional wavelet theory to the multivariate ase are most easilydone by a tensor produt ansatz, ompare with Setion 2. In [BBDK℄, we have shownthat one an derive Gaussian type formulas for these ases from the one dimensional asedesribed above by simple produt formulas. Error formulas for these produt formulasan also be easily dedued from the one dimensional estimates, see, e.g., [StS℄. However,in many appliations, it is desirable to work with nonseparable re�nable funtions andwavelets. Then one has to proeed in a somewhat di�erent way. In Subsetion 5.1, weshall explain the general idea. With regard to the appliations we have in mind, we restritourselves mostly to the ase d = 2: Furthermore, we on�ne the disussion to nonnegativere�nable funtions beause we shall mainly apply the analysis to spei� box splines. Forthe general ase, we refer to [BBDK℄. In Subsetion 5.2, we derive ertain multivariateerror estimates. After briey realling the basi fats, some spei� box splines are studiedin detail.5.1 Quadrature rules for the nonseparable aseLet us briey reall the onstrution of multivariate quadrature rules whih are not oftensor produt type. We want to �nd a quadrature rule of degree N having the formZsupp� f(x; y)�(x; y)dxdy � n(N)Xi=1 �if(xi; yi): (34)12



To this end, one has to hoose the points(xi; yi); i = 1; : : : ; n; n = n(N) = (1 +N)N2 (35)in suh a way that they do not all lie on a urve QN(x; y) = 0; where QN is a polynomialof order N . Then the oeÆients �i an be found as solutions of the linear system�1xl11 yl21 + � � �+ �nxl1n yl2n = Zsupp� xl1yl2�(x; y)dxdy; 0 � jlj � N � 1; (36)see, e.g., [St℄ for details. In this paper, we shall mainly onsider the ase that � is a boxspline. Let us briey reall the de�nition and the basi fats. Let X = fx1; : : : ; x�g �ZZdnf0g; x� = (x�1; : : : ; x�d)T denote a set of not neessarily distint vetors satisfying� � d and < X >= span X = IRd: (37)Then the box spline B(�jX) is de�ned by requiring that the equationZIRd f(x)B(xjX)dx = Z[0;1℄�f(Xu)du (38)holds for any ontinuous funtion f on IRd: The vetors x1; : : : ; x� are alled the diretionvetors of B(�jX): Every box spline is a re�nable funtion,B(�jX) = Xk2ZZd akB(2 � �kjX); (39)where the mask a = fakgk2ZZd is given byXk2ZZd akzk = 2d�� �Y�=1(1 + zx� ): (40)It an be shown that a box spline is a pieewise polynomial. Moreover, it is nonnegativeand satis�esB(ujX) = 0; u 62 [X[; [X[:= ft1x1 + � � �+ t�x� : 0 � t� < 1; 1 � � � �g: (41)For further information on box splines, the reader is referred to [DM℄. In [BBDK℄, suitablesets of points and weights for various box splines were onstruted. Let us also mentionthat further examples an be onstruted by means of [QM℄.5.2 Error analysisIn [BBDK℄, several quadrature rules of the form (34) have been developed and tested.The performane was quite well in all ases. In this setion, we want to go one step further13



and derive some rigorous error estimates, at least for some spei� box splines. To thisend, we apply the general theory as, e.g., outlined in [St℄. Let us start by briey reallingthe basi fats.Let R2 be a retangle a � x � b;  � y � d: We want to disuss estimates for the errorEnw(f) in an integration formulaZR2 w(x; y)f(x; y)dxdy = n(N)Xi=1 �if(xi; yi) + Enw(f): (42)We assume that(i) i; j are nonnegative integers;(ii) p; q are positive integers;(iii) � = p + q � 2.We de�ne Bp;q(a0; 0) as the spae of all funtions f(x; y) with the following properties:(i) The derivative f (p;q)(x; y) is Riemann integrable on R2;(ii) the derivatives f (��j;j)(x; 0); j < q are Riemann integrable on a � x � b;(iii) the derivatives f (i;��i)(a0; y); i < p are Riemann integrable on  � y � d;(iv) the derivatives f (i;j)(a0; 0); i+ j < � exist;(v) Taylor's formula with respet to the point (a0; 0) holds for all (x; y) in R2.We shall also need the kernel funtions Kp;q(u; v); Ki;j:x(u) and Ki;j:y(v) de�ned byKp;q(u; v) := Enw �(x� u)p�1(p � 1)! �(a0; u; x)(y � v)q�1(q � 1)! �(0; v; y)� ; (43)Ki;j:x(u) := Enw �(x� u)i�1(i� 1)! �(a0; u; x)(y � 0)jj! � ; 0 � j < q; i � � � j; (44)Ki;j:y(v) := Enw �(x� a0)ii! (y � v)j�1(j � 1)! �(0; v; y)� ; 0 � i < q; j � � � i; (45)where �(�;$; &) is the step funtion�(�;$; &) :=8>>><>>>: 1; for � � $ < &;�1; for & � $ < �;0; otherwise: (46)It turns out that Enw(f) an be estimated by means of the kernel funtions de�ned above.The following theorem summerizes several results proved in [St℄.14



Theorem 5.1 Suppose we have an integration formula (34) of degree N and let 2 � � =p + q � N . Let us furthermore assume that f 2 Bp;q(a0; 0): ThenjEnw(f)j �Xj<q e��j;j:xM��j;j:x +Xi<p ei;��i:yMi;��i:y + ep;qMp;q; (47)where ei;j:x := bRa jKi;j:x(u)jdu; Mi;j:x := supu2[a;b℄ jf (��j;j)(u; 0)j;ei;j:y := dR jKi;j:y(v)jdv; Mi;j:y := supv2[;d℄ jf (i;��i)(a0; v)j;ep;q := bRa dR jKp;q(u; v)jdudv; Mp;q := sup(u;v)2[a;b℄�[;d℄ jf (p;q)(u; v)j: (48)We see that the error estimate (47) essentially onsists of two parts. One part onlydepends on the funtion f whereas the other part only depends on the given quadraturerule. Therefore it seems to be worthwhile to ompute at least the seond part as preiselyas possible. Although this might be expensive, the reader should observe that this onlyhas to be done one and for all.As an example, we have performed suh a omputation for the box spline B( � j 1 0 10 1 1)whih is the famous Courant �nite element whose graph looks like a hexagonal pyra-mid. To determine the quantities ei;j:x; ei;j:y and ep;q, we have to ompute the funtionsKp;q(u; v); Ki;j:x(u) and Ki;j:y(v) with high auray on a �ne grid. From that, the valuesof ei;j:x, ei;j:y and ep;q an be extrated.The evaluation of Kp;q at a point (u; v) amounts to ompute the exat integral and thequadrature rule for the funtion in brakets on the right{hand side in (43). In our ase,the integrals an be omputed exatly. We evaluate them as funtions of u and v on aretangular grid with meshsize h = 1=64. Computed one and for all, these values anbe used to determine Kp;q for di�erent quadrature rules on the same grid. To omputethe error for other quadrature rules, e.g., for di�erent exatness or di�erent algorithmsfor hoosing the knots, respetively, only the appliation of the quadrature rule to thetrunated powers have to be omputed. This has to be done on the same grid and isvery fast. In the following tables, some of the resulting error terms de�ned in (48) aredisplayed.
15



N i!j!ei;j:x(B( � j 1 0 10 1 1))2 inj 0 11 0.303 0.4992 0.3333 inj 0 1 21 0.135 0.0453 0.04622 0.0268 0.04203 0.02374 inj 0 1 2 31 0.126 0.0259 0.0291 0.02292 0.0176 0.0130 0.01303 0.00537 0.01884 0.006255 inj 0 1 2 3 41 0.0839 0.0147 0.0147 0.00858 0.008282 0.00764 0.00142 0.00284 0.002203 0.00144 0.000336 0.002884 0.000718 0.0002415 0.000732N i!j!ei;j:y(B( � j 1 0 10 1 1))2 inj 1 20 0.663 0.8331 0.08333 inj 1 2 30 0.164 0.0323 0.01391 0.0298 0.01142 0.04754 inj 1 2 3 40 0.127 0.0178 0.00505 0.002811 0.0195 0.00364 0.003452 0.0294 0.009053 0.02795 inj 1 2 3 4 50 0.100 0.0109 0.00238 0.000824 0.0004931 0.0173 0.00212 0.000577 0.0003512 0.0168 0.00212 0.001593 0.00742 0.002944 0.00865 16



N p!q!ep;q(B( � j 1 0 10 1 1))2 pnq 11 0.4993 pnq 1 21 0.1016 0.05692 0.05144 pnq 1 2 31 0.0904 0.0382 0.02822 0.0436 0.01703 0.03225 pnq 1 2 3 41 0.0532 0.0188 0.0116 0.008962 0.0197 0.00445 0.002713 0.0123 0.003384 0.00918In Figure 3, some typial funtions Kp;q for the box spline B( � j 1 0 10 1 1) are depited.The knots of the quadrature rules orrespond to those lines where the kernel funtionsshow singularities or singularities in a derivative.The �rst two pitures orrespond to the same values of p and q but di�erent quadraturerules. Sine the seond one is omputed for N = 4, more knots and therefore moresingularities our. However, the error is of omparable size beause the kernel funtionshave low regularity and therefore inreasing the order of the quadrature rule annotderease the error a lot.The superiority of higher order quadrature rules shows up if the funtion to be integratedis smooth. Therefore we ompare in the seond and the third piture the behaviour ofKp;q as p and q inrease. One observes that the error depited in the third �gure is muhsmaller than in the seond one, beause the smoother kernel funtions an be integratedmore aurately with the (higher order) quadrature rule.
17
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We are now in the position to test our error bounds (47) for a typial example. Forf(x; y) := sin(x+ y) we want to ompute the integralZIR2 f(x; y)B(x; y j 1 0 10 1 1)dxdy: (49)The exat value of (49) is given byos(1)� os(3) + os(4) � 12 � 0:703472992036784:Sine in our speial asejfp;q(x; y)j � 1; for all p; q; x; and y;the funtion f belongs to all spaes Bp;q and the evaluation of the error bound (47) ispartiularly easy: all values Mp;q, Mi;j:x and Mi;j:y are bounded by one. Let us denoteby jEnp;qj the error bound given by (47) for some p; q. In the next tabular, we present theintegrals as alulated by our quadrature formula together with the true error and someof the orresponding error bounds.N n InB( � j 1 0 10 1 1) (f) jEnB( � j 1 0 10 1 1)(f)j jEn1;1(f)j jEn2;1(f)j jEn2;2(f)j jEn2;3(f)j2 3 0.2978843607 4.06e-01 1.08e+003 6 0.7072451256 3.77e-03 1.31e�01 3.77e�024 10 0.7053436798 1.87e-03 1.08e�01 2.54e�02 8.32e�035 15 0.7033638796 1.09e-04 6.24e�02 1.16e�02 1.32e�03 5.01e�04As expeted, the error bounds derease rapidly for larger values of p and q sine thefuntion f is learly analyti. In fat, already for N = 4 we obtain reasonably sharpbounds.Referenes[AHJP℄ L. Anderson, N. Hall, B. Jawerth, and G. Peters, Wavelets on losed subsetsof the real line, in: \Topis in the Theory and Appliations of Wavelets", (L.L.Shumaker and G. Webb, Eds.), Aademi Press, Boston, 1994, 1-61.[BBDK℄ A. Barinka, T. Barsh, S. Dahlke, and M. Konik, Some remarks on quadra-ture formulas for re�nable funtions and wavelets, IGPM{Preprint No. 176,RWTH Aahen, 1999. 19
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