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Abstract. This paper is concerned with the construction and the analysis of Gauss quadrature
formulas for computing integrals of (smooth) functions against refinable functions and wavelets. The main
goal of this paper is to develop rigorous error estimates for these formulas. For the univariate setting,
we derive asymptotic error bounds for a huge class of weight functions including spline functions. We
also discuss multivariate quadrature rules and present error estimates for specific nonseparable refinable
functions, i.e., for some special box splines.
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1 Introduction

The application of wavelets to practical problems requires the computation of inner prod-
ucts of a given function with wavelets or with an associated refinable function. In most
cases, this can not be done directly by finding primitives, so that suitable quadrature for-
mulas are needed. However, most of the classical quadrature formulas may not perform
very well, because neither the refinable functions nor the wavelets are necessarily very
smooth. Moreover, in many cases, these functions are only known implicitly via certain
functional equations from which the function values have to be computed or approximated.
This is usually expensive and/or inaccurate.

In [BBDK] Gauss quadrature formulas for refinable functions and wavelets were de-
rived using these functions as weight functions. As the weight function only has to be
nonnegative, this approach circumvents the difficulties due to the lacking smoothness. The
construction presented there is quite general and works very well for both, the univariate
and the multivariate case.

This paper can be viewed as a continuation of [BBDK], discussing several questions that
remained open there. Especially, we shall be concerned with rigorous error estimates for
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the quadrature formulas constructed in [BBDK]. For the univariate case, we will present
asymptotic error estimates for a wide class of weight functions. For the multivariate
setting, we will provide and discuss methods to estimate the error for formulas of any
order, at least for some specific weight functions.

Another important issue that we will deal with is the following. In practice, many
applications require the use of wavelets on bounded domains. Then near the boundary
one has to use so—called boundary adapted wavelets and scaling functions, see, e.g., [DKU].
Then the question arises how to design suitable Gauss quadrature rules for these boundary
adapted functions. The problem is that these functions are no longer refinable in the
classical sense. This causes difficulties concerning the computation of their moments
which is an essential step in any Gauss quadrature rule. We present one specific solution
to this problem here.

The outline of the paper is as follows. In Section 2, we shortly review the wavelet
setting as far as we need it for our purposes. Section 3 is devoted to the (univariate)
Gauss quadrature. Based on a well-known result given in [Sz], we derive estimates for the
leading coefficients of the associated orthogonal polynomials. They can be used to state
and to prove the desired error estimates for a huge class of weight functions including
spline functions. We also summarize the construction principles for Gauss formulas for
wavelets and refinable functions on the real line as introduced in [BBDK]. In Section
4 we apply the machinery developed in Section 3 to the case of B—spline wavelets and
refinable functions. We derive Gauss quadrature rules for boundary adapted functions,
and investigate the error estimates for both, the usual cardinal B—splines and the boundary
adapted versions. In Section 5, we will treat the multidimensional case. We review the
construction of quadrature formulas for nonseparable multivariate weight functions. Then,
we derive some error estimates for these cases. By using the general theory as outlined in
[St], we present rigorous error bounds for some special weight functions, i.e., for specific
box splines which are frequently used in practice.

2 The wavelet setting

In this section, we shall briefly recall the basic setting of wavelet analysis as far as it
is needed for our purposes. In general, a function ¢ is called a wavelet if all its scaled,
dilated, and integer translated versions

in(e) = 2102 — k), jkeZ, (1)

form a Riesz basis of Ly(IR). Usually, wavelets can be found by means of functional
equations

)= 3 bup(2e — k), (2)

keZ

where ¢ is a refinable functions, i.e.,  satisfies a two—scale relation

pla) =Y ap(2w — k) (3)

keZ



with the mask a = {ax}rez € (2(Z). In the sequel, we shall restrict ourselves to refinable
functions and wavelets with compact support and we will always assume that

supp(a) :=1{k € Z|ar # 0} C [mq, ma). (4)

It can be checked that (4) implies suppy C [my, ma.

There are several methods to construct wavelets in higher dimensions. The simplest
way is to use tensor products. There also exist multivariate wavelet constructions with
respect to non—separable refinable functions ¢ satisfying

P(x) = Z arp(2z — k), {artrema € G(Z7), (5)

keZzd

see, e.g., [JM] for details. In any case, a family *, 7 = 1,...,2¢—1, of wavelets is needed.
Each " satisfies a functional equation similar to (2),

= Y bo(2e — k). (6)

kezd

As in the univariate case, we shall henceforth assume that the scaling functions and
wavelets under consideration are all compactly supported.

It is often very convenient to have access to a suitable biorthogonal wavelet basis. For
a given (univariate) wavelet basis {¢;r, j, k € Z}, one is interested in finding a second
system {;/N)M, J, k € Z} satisfying

(W) Yy () = 8 jebupr, 5,5 kK € Z. (7)

Here (-, -) clearly denotes the usual Ly—inner product. The construction of such a biorthog-
onal system essentially relies on a suitable second generator ¢ such that ¢ and ¢ form a

dual pair,
(P(), (- = k) = do k- (8)

Elegant constructions can be found, e.g., in [CDF]. Generalizations to higher dimensions
also exist [CD].

For further information on wavelet analysis, the reader is referred to one of the textbooks
on wavelets which have appeared quite recently [Ch, D, Dau, KL, Me, W].

To treat practical problems, it is often necessary to construct wavelet bases on bounded
domains. In this paper, we shall focus on the case Q@ = (0, 1). The construction of wavelets
on the interval is meanwhile well understood, see, e.g., [AHJP, CDV, DKU]. Here we
refer to the approach in [DKU] where a biorthogonal wavelet basis is constructed. The
common strategy is to start with a pair of dual generators on IR. Specifically, we choose
here a biorthogonal system from the family constructed in [CDF] where the primal scaling
functions consist of cardinal B—splines. For j > jo where jg is fixed (sufficiently large to
disentangle end point effects) one builds ®; by keeping those translates 2//2¢(27 - —k), k €
Z, that are fully supported in [0,1]. These will be referred to as interior basis functions.
For B-splines of order m, at each end of the interval m fixed linear combinations of
the 2//2¢(27 - —k) are added in such a way that the resulting collection ®; spans all



polynomials of order m on (0,1). One proceeds in the same way with the dual scaling
functions restoring the original order of polynomial exactness while keeping #®,; = #Ci)]
Then only the interior basis functions inherit the biorthogonality from the line whereas
the boundary modifications have perturbed biorthogonality. It can be shown though
that in this spline family one can always biorthogonalize [DKU], ending up with pairs of
generator bases @, &)j. These bases always consist of three parts signified by the index
sets Af,AJI,Af (and similarly for the dual collections) identifying the left boundary,
interior and right boundary basis functions. Only the size of the interior sets AJI depends
on j. The number of boundary functions stays always the same. Moreover, for each end
point one has a fixed finite number (namely m for the primal respectively m for the dual
basis) of scaling relations which can be computed a—priorily and stored. The interior
basis functions satisfy, of course, the classical stationary refinement rule from the line
case. Moreover, the whole set of scaling functions is refinable in the following generalized
sense. There exist refinement matrices M ;o and Mj,o such that

T T 57 — 6T N
O = 07, Mo, & = &7, My, (9)
where the bases are viewed as vectors whose components are the individual scaling func-
tions. The refinement matrices have fixed upper left and lower right blocks. Only the
stationary block A; changes its size with growing level j, see Figure 1.

My,

j‘[/() = 117

M, R

Figure 1: Structure of refinement matrices for spline wavelets on the interval.

3 Gauss quadrature

This section is devoted to the (univariate) Gauss quadrature setting. We start in Sub-
section 3.1 by recalling the basic facts. In Subsection 3.2, we derive some error estimates
and apply them to the important special case of spline functions. Finally, in Subsection
3.3, we shortly review the construction of quadrature rules for refinable functions and
wavelets.



3.1 General setting

A univariate Gauss quadrature rule replaces an integral by a weighted sum of point
evaluations of f, i.e.,

/ fla)w(x)de ~ ID(f) := Z)\Zf(xz), [a,b] C IR, n €N, (10)
o i=1

with knots x; and weights X\;, © = 1,...n. Here w is called the weight function, which in
the most classical case is chosen to be w = 1. However, the theory can be developed for
a huge class of functions. In fact, w only has to satisfy the following conditions, cf. [Sto],

p- 135.

Definition 3.1 A function w on the (finite or infinite) interval (a,b) is called a weight
function if it is nonnegative and measurable and if all its moments

vi(w) := /xlw(:zj) de 1=0,1,... (11)

exist. Moreover, we always require that vo(w) > 0.

In this paper, we will only consider compactly supported weight functions.
Defining the inner product corresponding to w as

%mmz/ﬂMMW@Wa (12)
[a.]

the knots x; of the Gauss rule are the zeros of the n—th orthogonal polynomial with respect
to this scalar product. A quadrature rule is said to be of degree N if it is exact for all
polynomials with order up to N. Gauss quadrature rules with n points are of degree
N = 2n.

For further information on quadrature, the reader is referred, e.g., to [DR, K, St] and
the references therein.

3.2 Error analysis

Once a Gauss quadrature rule of the form (10) is established, one is clearly interested in
computing the quadrature error which is defined by

Eﬂﬂ:=/fwmwwx—mu» (13)

[a,0]

A classical result states that if f € C?"(IR)

FEI)

for some a < £ < b, (14)



see again [DR] for details. Here k,, o denotes the leading coefficient of the n—th orthonormal
polynomial with respect to the scalar product (-,-),.

Hence, if the weight function and the degree is given, it is possible to control the error
for any specific Gauss quadrature rule. However, the question remains open, how the
error will behave asymptotically as n increases. Fortunately, there exist some results in
this direction, at least for weight functions satisfying some additional conditions as we
shall now explain.

Definition 3.2 Let w be a weight function according to Definition 3.1 on the interval
[—1,1]. w is said to be in the function class W if

/|1nw*(19)|d19 < 00, (15)

for w*(¥) := w(cos(V)) |sin()].
For this special class W, the following theorem holds, see, e.g., [Sz] for details.
Theorem 3.3 Let w € W and

palr) =Y kna"™ n=0,1,2,... (16)
=0

be the system of orthonormal polynomials associated with the weight function w. Then,
as n tends to infinity,

“1 [ In(w(z))
™) Ve

kno ~2"Cy, with C,:= w12 exp dz | . (17)

As usual, ‘a ~ b means that both quantities can be uniformly bounded by some
constant multiple of each other. Likewise, ©* < ’ indicates inequality up to constant
factors.

Theorem 3.3 now sets us in the position to control the asymptotic error of Gauss
formulas for w € W. Let us mention that the above result holds for a somewhat wider
class of functions, details can again be found in [Sz], p. 296.

To use Theorem 3.3 in practice, it is clearly desirable to have an easy criterion at hand
to check the condition (15). In the following lemma we give one result in this direction
which, as we shall see later on, can be applied to any spline function on [—1, 1] and
therefore also to every spline wavelet and refinable function, respectively.

Lemma 3.4 Let w be a bounded weight function on [—1,1] with zeros x;, 1 = 1,..., L.
If there exist numbers ri,c;, 3; > 0,1 =1,.... L and § > 0 such that

w(x) > ci|:1:i—:1;ﬁ", x € [x; —ri x4 N[=1,1], (18)
L
we) > & xe[=LIN i —ri a4, (19)

=1
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then w s contained in WW.

Proof. We have to check that [ |Inw*(d)]d¥, with w* := w(cos(?))|sin(J)] exists. As
w is bounded, w* is also bounded and we may assume without loss of generality that

w* < 1. Hence

Kis

/|1nw*(19)| dv = —/lnw*(ﬂ) dy. (20)

—T

To show the existence of the integral, let
Z:={J, €[-m,7]: cos(¥,)=wa;, it =1...,L}.

For r > 0 sufficiently small, we may decompose the expression in (20) as

/lnw*(ﬂ) dy = / Inw*(?) dv
[—m,7] (=7 N\ Uy, ezldv—rdu+7]
+ > / Inw*() do. (21)
9, €2

[y —rdu+r]n[—7,7]

We start by showing that each of the summands of the second expression in (21) exists.
To this end, consider for ¥, € Z the decomposition

Inw (W) dd = / Inw(cos(¥)) dv
[y —rdu+r]n[—7,7] [Fv,9p+r]n[—7,7]
+ / Inw(cos(¥)) dv
[0 —r,0,]0[=m,7]
+ / In |sin(9)| dv .
[0y —r,dy+r]n[—m,7]
We will first show the existence of the first term on the right—hand side of (22). Without

loss of generality, we may assume that ¥/, # 7 so that [¢,,,4+r] C [—m, 7] for r sufficiently
small. Let x;, be such that cos(v,) = x;,. Then, by assumption (18)

Gutr Gutr
Inw(cos(d)) dv > / In (Ciy|$¢y — cos(¥) ﬁw) v
3 5
Fu+r Fu+r
= / Ine, di+ 3, / In|z;, — cos(V)| dv. (22)
Gy 9y



The first integral clearly exists. Concerning the second one, we first assume that 4, #
0, —m and substitute y = x;, —cos(?). This yields with 7 := x;, — cos(d, + 1) # 0

Jp+r 7

o o . . o 2 —1/2
/1n|:1;2u cos(¥)| dy = 11_1;%/11(1|y| (1 (x;, — ) ) dy
Jy £

> 1
2 11_1;%/11(1|y| dv. (23)

The existence of the integral in the cases 6, = 0, —7 can be shown analogously by using
1 — cos(z) = 2sin*(x/2). Hence in all three cases the corresponding integrals are finite,
which establishes the existence of the first term in (22). The existence of the second term
can be shown in a similar fashion. Hence we are left with the last term. Its existence
is clear as long as ¥, € {—m,0,7}. However, these exceptional cases can be treated
by employing similar arguments as for (22). Therefore we have shown that the second
expression in (21) exists. So it remains to study the first term. By taking (19) into
account, we observe that only the vicinities of the points —m,0, and 7 require some
special attention. For that, we may again proceed as above. It finally follows that

/|lnw*(19)|d19 < 00,

e, we W. I

Lemma 3.4 and Theorem 3.3 can now be used to derive the following result for spline
functions.

Corollary 3.5 Letw be a nonnegative spline function on [—1,1] having only finitely many
zeros and let k, o be defined according to (16). Then as n tends to infinity

“1 [ In(w(z))
™) Ve

kno ~2"Cy, with C,:= w12 exp dz | . (24)

Furthermore, if f € C*™.n € IN, the error of the corresponding Gauss quadrature rule
satisfies for n tending to infinity

/ COUN
B2 = | [ fauterte - 1| £ oSl (25)

Proof. As (18) and (19) are obviously fulfilled for all spline functions by Lemma 3.4,
any nonnegative spline with finitely many zeros is contained in W. Therefore (24) follows
immediately from Theorem 3.3. Then formula (25) is a simple consequence of the classical
error estimate (14) for Gauss quadrature errors. O



3.3 Gauss formulas for wavelets and refinable functions

The integrals we have to deal with in the wavelet setting are of the following form

(f.0;%) = f(@)0;(x) da (26)
supp(6; 1)

where # is either a refinable function ¢ or a wavelet ¥, see Section 2. By means of a
substitution, one can write (26) as

/ f(2)04(2) de = Q—J/Q/f(z—f'(wrk)) O(u) du, (27)

supp(6; 1) Q

with € := supp(#). Hence it suffices to find a quadrature rule for integrals of the form
[ i, (25)
Q

to be able to compute all integrals in(26).

In [BBDK], one solution to this problem has been given. The general idea was to
construct Gaussian quadrature rules using  as weight function. Then, no smoothness
is required for ., however, it should be nonnegative, which might not always be the
case. Yet, this problem can be fixed using the following lifting trick. Suppose that for
6 % 0,0 € {©,¢} there exists an appropriate constant ¢ > 0 such that on supp(6)

0°(x) := 0(x) + expy 1)(z) >0, (29)

where xp, 1,] denotes the characteristic function of [/, /3] 2 supp(¢). Then one can set up
a quadrature rule with weights A and knots x§ corresponding to the nonnegative function
0°(x). After that, a second Gauss rule with weights A and knots 2 for the characteristic

function xy;, 1,) has to be determined. Hence we are left with the task to compute the

l)l2
moments of refinable functions and wavelets, respectively. This can be done using an

algorithm by [DM2] and the functional equation (2), see [BBDK].

4 Gauss quadrature for cardinal B—spline systems

Refinable functions and wavelets related to cardinal B—splines are of special interest in
practice. Indeed, in recent years, it has turned out that spline wavelets form a powerful
tool for many applications of wavelet analysis such as signal /image analysis/compression
and the numerical treatment of operator equations. This is also due to the fact that in
the context of solving problems on bounded domains, the B—spline approach provides a
suitable way to construct appropriate bases on these domains, see Section 2. Consequently,
the aim of this section is twofold. Firstly, we want to derive and to analize quadrature
formulas for boundary adapted scaling functions and wavelets. Secondly, we will apply
the error analysis presented in Section 3.2 to both, the classical and the boundary adapted
scaling functions and wavelets.



4.1 Construction of quadrature formulas for boundary adapted
scaling functions

We have already mentioned that the construction of a suitable Gauss formula essentially
relies on the computation of the moments of the weight function. As outlined in Section
2, the scaling functions near the boundary constructed according to [DKU] are no longer
refinable in the classical sense. Therefore the usual way to compute the moments as
explained in [DM2] does not work in this case. One possible remedy reads as follows. Let

c,oﬁk(:zj), k=0,....m—1 (30)

denote the m functions adapted to the left side of the interval, compare with Section 2.
For the computation of their moments

1
’YJL,j,k = /xl¢£k($)d$ (31)
0

we may use a different representation of ’ij,k from [DKU]. Let @fl denote a boundary
adapted version of the dual generator before the final biorthogonalization procedure is
performed. Then

= (), () =272 270 (Gl (), 00 ()

provided that the dual system is exact of order greater or equal [. But for the biorthogonal

(32)

[0,1] (0,1

spline system, dual functions of arbitrary order are available, at least in principle. More-
over, the term on the right-hand side in (32) can be computed exactly (up to roundoff),
see again [DKU] for details. Consequently, for each of the boundary adapted functions,
we may use (32) to derive a Gauss formula by following exactly the lines in [BBDK]. So
we end up with m + 1 formulas, one for the interior functions and m for the boundary
adapted functions (the right boundary can be handled by using symmetry arguments).
In principle, the values in (32) also depend on the level j. However, this dependency only
results in a scaling by powers of two. Therefore the quadrature rules for the boundary
adapted functions have to be computed only once and for all on the coarsest level, just
like for the interior functions.

We conclude this section with the following example. Let NF be one of the two boundary
adapted functions corresponding to the centralized cardinal B—spline of order two, see
Figure 2, and let

f(x) := cos(x) e”. (33)

We will test the above method for computing
/ F@)NE(x) dz = v2(8¢"*sin(1/4) — 8e'/®sin(1/8) — 1) ~ 0.58150188308191.

supp(N2L)

In the following table, the values and the relative errors for the corresponding quadrature
rules are listed. We see that the relative error decreases very rapidly as n increases, so
that our formulas indeed perform satisfactorily.

10



n va(}(f) rel. error
1 0.5817194542408 3.742e-04
0.58150322100026 2.301e-06
0.58150188304296 6.700e-11
0.58150188308187 8.126e-14

N VC R N

Boundary adapted function for m=2
T T T

Figure 2: NI, one of the two boundary adapted scaling function of Ns.

4.2 Error analysis for the B—spline case

As already outlined above, cardinal B-splines play an important role in practical appli-
cations. Therefore, we want to investigate the error behaviour of Gauss quadrature rules
for this case in more detail.

Let us first remark that after a suitable transformation to the interval [—1, 1] the general
result stated in Corollary 3.5 also holds for the boundary adapted functions because they
are still piecewise polynomials.

In the following table, we list the computed values of C,, according to (24) for both,
the B-splines and their boundary adapted versions. Let N, denote the usual centralized
cardinal B-spline of order p, M, its transformed version with supp(M,) = [—1, 1] and let
‘ﬁik, k=0,...,p—1 be the corresponding transformed boundary adapted functions.

For the centralized B—spline Ny = 1y, some of the leading coefficients were computed
exactly in [BBDK]. In the following table, we compare the estimated and exact leading
coeflicient k,, in this case.

11



£,0 71 £,2 2,3

2 141 0.89 1.41
3 3.39 1.12 1.04 0.97

4 7.98 1.64 1.41 1.22 1.06

n 1 2 3 4 5 6
kn 2.45 5.07 10.51 21.26 43.17 86.80
2" Oy, 2.84 5.68 11.36 22.72 45.44 90.24

We see that the estimated k&, deviate from the exact ones only by factors dropping from
1.13 to 1.04, showing that the asymptotic estimate for this case is already very good for
small n.

5 The multivariate case

Extensions of the one dimensional wavelet theory to the multivariate case are most easily
done by a tensor product ansatz, compare with Section 2. In [BBDK], we have shown
that one can derive Gaussian type formulas for these cases from the one dimensional case
described above by simple product formulas. Error formulas for these product formulas
can also be easily deduced from the one dimensional estimates, see, e.g., [StS]. However,
in many applications, it is desirable to work with nonseparable refinable functions and
wavelets. Then one has to proceed in a somewhat different way. In Subsection 5.1, we
shall explain the general idea. With regard to the applications we have in mind, we restrict
ourselves mostly to the case d = 2. Furthermore, we confine the discussion to nonnegative
refinable functions because we shall mainly apply the analysis to specific box splines. For
the general case, we refer to [BBDK]. In Subsection 5.2, we derive certain multivariate
error estimates. After briefly recalling the basic facts, some specific box splines are studied
in detail.

5.1 Quadrature rules for the nonseparable case

Let us briefly recall the construction of multivariate quadrature rules which are not of
tensor product type. We want to find a quadrature rule of degree N having the form

n(N)
[ femdtededy ~ Y s e 34)

supp¢o
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To this end, one has to choose the points

(1+N)N

(xi,yi), 1=1,...,n, n=n(N)= 5

(35)

in such a way that they do not all lie on a curve Qn(x,y) = 0, where Qy is a polynomial
of order N. Then the coefficients A; can be found as solutions of the linear system

Myl o Nyl = / ey o(e,y)dedy,  0<JI<N-1,  (36)

supp¢

see, e.g., [St] for details. In this paper, we shall mainly consider the case that ¢ is a box
spline. Let us briefly recall the definition and the basic facts. Let X = {z! ... a*} C
ZN{0}, 2 = (24,...,2%)7 denote a set of not necessarily distinct vectors satisfying
@ > dand

< X >=span X = R". (37)

Then the box spline B(-|X) is defined by requiring that the equation

/f (2] X)dz = /f (Xu)d (38)

0,1

1

holds for any continuous function f on IR?. The vectors x!, ..., z* are called the direction

vectors of B(-|X). Every box spline is a refinable function,
B(-|X)= > aB(2-—k|X), (39)
kez?
where the mask a = {a; }rcza is given by

I

> =27 [T+ ). (40)

kezd v=1

It can be shown that a box spline is a piecewise polynomial. Moreover, it is nonnegative
and satisfies

Bu|X)=0, ug[X[, [X[={tix" + -+t 0<t, <1, 1 <v<pu} (41)

For further information on box splines, the reader is referred to [DM]. In [BBDK], suitable
sets of points and weights for various box splines were constructed. Let us also mention
that further examples can be constructed by means of [QM].

5.2 Error analysis

In [BBDK], several quadrature rules of the form (34) have been developed and tested.
The performance was quite well in all cases. In this section, we want to go one step further

13



and derive some rigorous error estimates, at least for some specific box splines. To this
end, we apply the general theory as, e.g., outlined in [St]. Let us start by briefly recalling
the basic facts.

Let Ry be a rectangle a < = < b, ¢ <y < d. We want to discuss estimates for the error
E?(f) in an integration formula

n(N)

[ ooty = Y Aif i) + B2 (42)

Ry =1
We assume that
(i) 7,7 are nonnegative integers;
(ii) p,q are positive integers;
(iii) o=p+4q>2.
We define B, ,(ao, co) as the space of all functions f(x,y) with the following properties:
(i) The derivative f»9(z,y) is Riemann integrable on Rj;
(ii) the derivatives f"=99)(x,¢y), j < q are Riemann integrable on a < x < b;
(iii) the derivatives f7=9(ag,y), i < p are Riemann integrable on ¢ <y < d;
(iv) the derivatives f(9)(ag,co), 14 j < o exist;
(v) Taylor’s formula with respect to the point (ag, ¢p) holds for all (x,y) in Ra.

We shall also need the kernel functions K, ,(u,v), K;;.(u) and K; ;.,(v) defined by

Kpo(uw) = KD (M«ao,m%aco,v,y)) , (43)

(p=1)' (g=1)
[(i,j:x(u) = EZ; (%é‘(a()?u?x)(:yi]i’%)]) 9 0 S .] < g, i S g — .j? (44)
[(i,j:y(v) — EZ; ((l' —i!GO)Z (y(]__vi]): é“(co,v,y)> 5 0 S 1< q, ] S g — i, (45)

where ((¢,w,¢) is the step function

1, for:<w<eg,
((t,@,6) =19 —1, forc <w <y, (46)

0, otherwise.

It turns out that E(f) can be estimated by means of the kernel functions defined above.
The following theorem summerizes several results proved in [St].

14



Theorem 5.1 Suppose we have an integration formula (34) of degree N and let 2 < o =
p+q < N. Let us furthermore assume that f € B, ,(ao,co). Then

|E$(f)| S Z ecr—j,j:xMcr—j,j:x —I' Z ei,cr—i:yMi,cr—i:y —I' ep,qu,tp (47)
Ji<q <p
where )
€ij 1= [ | K jw(u)|du, M jop := Supepa i | 17799 (u, o),
d
€ijy 1= [ [Kijy(v)|dv, M; jiy = sup,epeq | F47 7 (a0, v)], (48)

b d
€pg = f f | Ky q(u,v)|dudv, M, = SUP (y,v)€[a,b] x[c,d] |f(p’q)(uav)|-

We see that the error estimate (47) essentially consists of two parts. One part only
depends on the function f whereas the other part only depends on the given quadrature
rule. Therefore it seems to be worthwhile to compute at least the second part as precisely
as possible. Although this might be expensive, the reader should observe that this only

has to be done once and for all.

611)

which is the famous Courant finite element whose graph looks like a hexagonal pyra-

As an example, we have performed such a computation for the box spline B( -

mid. To determine the quantities ¢; ;.5 €; ., and e, ,, we have to compute the functions
K, 4(u,v), K;j.p(u) and K; ., (v) with high accuracy on a fine grid. From that, the values
of € ., €4y and €, , can be extracted.

The evaluation of K,, at a point (u,v) amounts to compute the exact integral and the
quadrature rule for the function in brackets on the right-hand side in (43). In our case,
the integrals can be computed exactly. We evaluate them as functions of v and v on a
rectangular grid with meshsize h = 1/64. Computed once and for all, these values can
be used to determine K, , for different quadrature rules on the same grid. To compute
the error for other quadrature rules, e.g., for different exactness or different algorithms
for choosing the knots, respectively, only the application of the quadrature rule to the
truncated powers have to be computed. This has to be done on the same grid and is
very fast. In the following tables, some of the resulting error terms defined in (48) are
displayed.
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tlesa(B(-[511))

Njloo 1

1 0.303 0.499

2 0.333

70 T >

1 0.135 0.0453 0.0462

2 0.0268 0.0420

3 0.0237

VAL T 5 3

1 0.126 0.0259 0.0291 0.0229

2 0.0176 0.0130 0.0130

3 0.00537 0.018%8

4 0.00625

70 T > 3 1
1 0.0839 0.0147 0.0147 0.00858 0.00828
2 0.00764 0.00142 0.00284  0.00220
3 0.00144 0.000336 0.00288

4 0.000718 0.000241

5 0.000732

ite (B 1591))

1 >

0 0.663 0.833

1 0.0833

VAN 5 3

0 0.164 0.0323 0.0139

1 0.0298 0.0114

2 0.0475

VAR > 3 1

0 0.127 0.0178 0.00505 0.00281

1 0.0195 0.00364 0.00345

2 0.0294 0.00905

3 0.0279

VAN 5 3 I 5
0 0.100 0.0109 0.00238 0.000824 0.000493
1 0.0173 0.00212 0.000577 0.000351

2 0.0168 0.00212 0.00159

3 0.00742 0.00294

4 0.00865
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5 | P\a |1
1T 10.499
p\g |1 2
3 || "T 10.1016 0.0569
2 |0.0514
p\g | 1 2 3

1 0.0904 0.0382 0.0282

4 2 0.0436 0.0170

3 0.0322

p\g | 1 2 3 4

1 0.0532  0.0188  0.0116  0.00896
5 0.0197  0.00445 0.00271

0.0123  0.00338
0.00918

= o DN

101
011

The knots of the quadrature rules correspond to those lines where the kernel functions
show singularities or singularities in a derivative.

In Figure 3, some typical functions K, , for the box spline B( - ) are depicted.

The first two pictures correspond to the same values of p and ¢ but different quadrature
rules. Since the second one is computed for N = 4, more knots and therefore more
singularities occur. However, the error is of comparable size because the kernel functions
have low regularity and therefore increasing the order of the quadrature rule cannot
decrease the error a lot.

The superiority of higher order quadrature rules shows up if the function to be integrated
is smooth. Therefore we compare in the second and the third picture the behaviour of
K, , as p and ¢ increase. One observes that the error depicted in the third figure is much
smaller than in the second one, because the smoother kernel functions can be integrated
more accurately with the (higher order) quadrature rule.
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Figure 3: Some typical kernel functions.
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We are now in the position to test our error bounds (47) for a typical example. For
flz,y) ;= sin(x + y) we want to compute the integral

[ By 3 hasay. (49
R2

The exact value of (49) is given by

cos(4) — 1
2

cos(1) — cos(3) + ~ 0.703472992036784.

Since in our special case

/7, y)l <1, forall pg,z, and y,

the function f belongs to all spaces B,, and the evaluation of the error bound (47) is
particularly easy: all values M, ,, M, ., and M, ;. are bounded by one. Let us denote
by [E} | the error bound given by (47) for some p, ¢. In the next tabular, we present the
integrals as calculated by our quadrature formula together with the true error and some

of the corresponding error bounds.

N I”B(‘m%)(f) |EnB(-|59})(f)| [ETL (D TES(D] | TES(N] | [E2()]
2 | 3 0.2978843607 | 4.06e-01 1.08e+00

3| 6 0.7072451256 | 3.77e-03 1.31e—01 | 3.77e—02

4 |10 || 0.7053436798 | 1.87e-03 1.08e—01 | 2.54e—02 | 8.32e—03

5 | 15 || 0.7033638796 | 1.09e-04 6.24e—02 | 1.16e—02 | 1.32e—03 | 5.01e—04

As expected, the error bounds decrease rapidly for larger values of p and ¢ since the
function f is clearly analytic. In fact, already for N = 4 we obtain reasonably sharp
bounds.
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