
Quadrature Formulas for Re�nable Fun
tions andWavelets II: Error AnalysisArne Barinka�, Titus Bars
h, Stephan Dahlkez,Mi
hael Konik, and Mario MommerAbstra
t. This paper is 
on
erned with the 
onstru
tion and the analysis of Gauss quadratureformulas for 
omputing integrals of (smooth) fun
tions against re�nable fun
tions and wavelets. The maingoal of this paper is to develop rigorous error estimates for these formulas. For the univariate setting,we derive asymptoti
 error bounds for a huge 
lass of weight fun
tions in
luding spline fun
tions. Wealso dis
uss multivariate quadrature rules and present error estimates for spe
i�
 nonseparable re�nablefun
tions, i.e., for some spe
ial box splines.Key Words: Gauss quadrature, s
aling fun
tions, wavelets, splines, error estimates.AMS subje
t 
lassi�
ation: Primary 65D32, se
ondary 41A30, 42C15.1 Introdu
tionThe appli
ation of wavelets to pra
ti
al problems requires the 
omputation of inner prod-u
ts of a given fun
tion with wavelets or with an asso
iated re�nable fun
tion. In most
ases, this 
an not be done dire
tly by �nding primitives, so that suitable quadrature for-mulas are needed. However, most of the 
lassi
al quadrature formulas may not performvery well, be
ause neither the re�nable fun
tions nor the wavelets are ne
essarily verysmooth. Moreover, in many 
ases, these fun
tions are only known impli
itly via 
ertainfun
tional equations from whi
h the fun
tion values have to be 
omputed or approximated.This is usually expensive and/or ina

urate.In [BBDK℄ Gauss quadrature formulas for re�nable fun
tions and wavelets were de-rived using these fun
tions as weight fun
tions. As the weight fun
tion only has to benonnegative, this approa
h 
ir
umvents the diÆ
ulties due to the la
king smoothness. The
onstru
tion presented there is quite general and works very well for both, the univariateand the multivariate 
ase.This paper 
an be viewed as a 
ontinuation of [BBDK℄, dis
ussing several questions thatremained open there. Espe
ially, we shall be 
on
erned with rigorous error estimates for�The work of this author has been supported by the Volkswagen Stiftung.zThe work of this author has been supported by Deuts
he Fors
hungsgemeins
haft, Grant Da 117/13-1.1



the quadrature formulas 
onstru
ted in [BBDK℄. For the univariate 
ase, we will presentasymptoti
 error estimates for a wide 
lass of weight fun
tions. For the multivariatesetting, we will provide and dis
uss methods to estimate the error for formulas of anyorder, at least for some spe
i�
 weight fun
tions.Another important issue that we will deal with is the following. In pra
ti
e, manyappli
ations require the use of wavelets on bounded domains. Then near the boundaryone has to use so{
alled boundary adapted wavelets and s
aling fun
tions, see, e.g., [DKU℄.Then the question arises how to design suitable Gauss quadrature rules for these boundaryadapted fun
tions. The problem is that these fun
tions are no longer re�nable in the
lassi
al sense. This 
auses diÆ
ulties 
on
erning the 
omputation of their momentswhi
h is an essential step in any Gauss quadrature rule. We present one spe
i�
 solutionto this problem here.The outline of the paper is as follows. In Se
tion 2, we shortly review the waveletsetting as far as we need it for our purposes. Se
tion 3 is devoted to the (univariate)Gauss quadrature. Based on a well{known result given in [Sz℄, we derive estimates for theleading 
oeÆ
ients of the asso
iated orthogonal polynomials. They 
an be used to stateand to prove the desired error estimates for a huge 
lass of weight fun
tions in
ludingspline fun
tions. We also summarize the 
onstru
tion prin
iples for Gauss formulas forwavelets and re�nable fun
tions on the real line as introdu
ed in [BBDK℄. In Se
tion4 we apply the ma
hinery developed in Se
tion 3 to the 
ase of B{spline wavelets andre�nable fun
tions. We derive Gauss quadrature rules for boundary adapted fun
tions,and investigate the error estimates for both, the usual 
ardinal B{splines and the boundaryadapted versions. In Se
tion 5, we will treat the multidimensional 
ase. We review the
onstru
tion of quadrature formulas for nonseparable multivariateweight fun
tions. Then,we derive some error estimates for these 
ases. By using the general theory as outlined in[St℄, we present rigorous error bounds for some spe
ial weight fun
tions, i.e., for spe
i�
box splines whi
h are frequently used in pra
ti
e.2 The wavelet settingIn this se
tion, we shall brie
y re
all the basi
 setting of wavelet analysis as far as itis needed for our purposes. In general, a fun
tion  is 
alled a wavelet if all its s
aled,dilated, and integer translated versions j;k(x) := 2j=2 (2jx� k); j; k 2 ZZ; (1)form a Riesz basis of L2(IR). Usually, wavelets 
an be found by means of fun
tionalequations  (x) =Xk2ZZ bk'(2x� k); (2)where ' is a re�nable fun
tions, i.e., ' satis�es a two{s
ale relation'(x) = Xk2ZZ ak'(2x� k) (3)2



with the mask a = fakgk2ZZ 2 `2(ZZ): In the sequel, we shall restri
t ourselves to re�nablefun
tions and wavelets with 
ompa
t support and we will always assume thatsupp(a) := fk 2 ZZjak 6= 0g � [m1;m2℄: (4)It 
an be 
he
ked that (4) implies supp' � [m1;m2℄.There are several methods to 
onstru
t wavelets in higher dimensions. The simplestway is to use tensor produ
ts. There also exist multivariate wavelet 
onstru
tions withrespe
t to non{separable re�nable fun
tions � satisfying�(x) = Xk2ZZd ak�(2x� k); fakgk2ZZd 2 `2(ZZd); (5)see, e.g., [JM℄ for details. In any 
ase, a family  i; i = 1; : : : ; 2d�1; of wavelets is needed.Ea
h  i satis�es a fun
tional equation similar to (2), i(x) = Xk2ZZd bik�(2x� k): (6)As in the univariate 
ase, we shall hen
eforth assume that the s
aling fun
tions andwavelets under 
onsideration are all 
ompa
tly supported.It is often very 
onvenient to have a

ess to a suitable biorthogonal wavelet basis. Fora given (univariate) wavelet basis f j;k; j; k 2 ZZg, one is interested in �nding a se
ondsystem f ~ j;k; j; k 2 ZZg satisfying( j;k(�); ~ j0;k0(�)) = Æj;j0Æk;k0; j; j0; k; k0 2 ZZ: (7)Here (�; �) 
learly denotes the usual L2{inner produ
t. The 
onstru
tion of su
h a biorthog-onal system essentially relies on a suitable se
ond generator ~' su
h that ' and ~' form adual pair, ('(�); ~'(� � k)) = Æ0;k: (8)Elegant 
onstru
tions 
an be found, e.g., in [CDF℄. Generalizations to higher dimensionsalso exist [CD℄.For further information on wavelet analysis, the reader is referred to one of the textbookson wavelets whi
h have appeared quite re
ently [Ch, D, Dau, KL, Me, W℄.To treat pra
ti
al problems, it is often ne
essary to 
onstru
t wavelet bases on boundeddomains. In this paper, we shall fo
us on the 
ase 
 = (0; 1). The 
onstru
tion of waveletson the interval is meanwhile well understood, see, e.g., [AHJP, CDV, DKU℄. Here werefer to the approa
h in [DKU℄ where a biorthogonal wavelet basis is 
onstru
ted. The
ommon strategy is to start with a pair of dual generators on IR. Spe
i�
ally, we 
hoosehere a biorthogonal system from the family 
onstru
ted in [CDF℄ where the primal s
alingfun
tions 
onsist of 
ardinal B{splines. For j � j0 where j0 is �xed (suÆ
iently large todisentangle end point e�e
ts) one builds �j by keeping those translates 2j=2'(2j ��k); k 2ZZ, that are fully supported in [0; 1℄. These will be referred to as interior basis fun
tions.For B{splines of order m, at ea
h end of the interval m �xed linear 
ombinations ofthe 2j=2'(2j � �k) are added in su
h a way that the resulting 
olle
tion �j spans all3



polynomials of order m on (0; 1). One pro
eeds in the same way with the dual s
alingfun
tions restoring the original order of polynomial exa
tness while keeping #�j = #~�j.Then only the interior basis fun
tions inherit the biorthogonality from the line whereasthe boundary modi�
ations have perturbed biorthogonality. It 
an be shown thoughthat in this spline family one 
an always biorthogonalize [DKU℄, ending up with pairs ofgenerator bases �j ; ~�j. These bases always 
onsist of three parts signi�ed by the indexsets �Lj ;�Ij ;�Rj (and similarly for the dual 
olle
tions) identifying the left boundary,interior and right boundary basis fun
tions. Only the size of the interior sets �Ij dependson j. The number of boundary fun
tions stays always the same. Moreover, for ea
h endpoint one has a �xed �nite number (namely m for the primal respe
tively ~m for the dualbasis) of s
aling relations whi
h 
an be 
omputed a{priorily and stored. The interiorbasis fun
tions satisfy, of 
ourse, the 
lassi
al stationary re�nement rule from the line
ase. Moreover, the whole set of s
aling fun
tions is re�nable in the following generalizedsense. There exist re�nement matri
esM j;0 and ~M j;0 su
h that�Tj = �Tj+1Mj;0; ~�Tj = ~�Tj+1 ~Mj;0; (9)where the bases are viewed as ve
tors whose 
omponents are the individual s
aling fun
-tions. The re�nement matri
es have �xed upper left and lower right blo
ks. Only thestationary blo
k Aj 
hanges its size with growing level j, see Figure 1.Mj;0 := ML Aj MRFigure 1: Stru
ture of re�nement matri
es for spline wavelets on the interval.3 Gauss quadratureThis se
tion is devoted to the (univariate) Gauss quadrature setting. We start in Sub-se
tion 3.1 by re
alling the basi
 fa
ts. In Subse
tion 3.2, we derive some error estimatesand apply them to the important spe
ial 
ase of spline fun
tions. Finally, in Subse
tion3.3, we shortly review the 
onstru
tion of quadrature rules for re�nable fun
tions andwavelets. 4



3.1 General settingA univariate Gauss quadrature rule repla
es an integral by a weighted sum of pointevaluations of f , i.e.,Z[a;b℄ f(x)w(x)dx � Inw(f) := nXi=1 �if(xi); [a; b℄ � IR; n 2 IN; (10)with knots xi and weights �i; i = 1; : : : n. Here w is 
alled the weight fun
tion, whi
h inthe most 
lassi
al 
ase is 
hosen to be w � 1. However, the theory 
an be developed fora huge 
lass of fun
tions. In fa
t, w only has to satisfy the following 
onditions, 
f. [Sto℄,p. 135.De�nition 3.1 A fun
tion w on the (�nite or in�nite) interval (a; b) is 
alled a weightfun
tion if it is nonnegative and measurable and if all its moments
i(w) := bZa xiw(x) dx i = 0; 1; : : : (11)exist. Moreover, we always require that 
0(w) > 0.In this paper, we will only 
onsider 
ompa
tly supported weight fun
tions.De�ning the inner produ
t 
orresponding to w as(f; g)w := Z[a;b℄ f(x)g(x)w(x)dx; (12)the knots xi of the Gauss rule are the zeros of the n{th orthogonal polynomial with respe
tto this s
alar produ
t. A quadrature rule is said to be of degree N if it is exa
t for allpolynomials with order up to N . Gauss quadrature rules with n points are of degreeN = 2n.For further information on quadrature, the reader is referred, e.g., to [DR, K, St℄ andthe referen
es therein.3.2 Error analysisOn
e a Gauss quadrature rule of the form (10) is established, one is 
learly interested in
omputing the quadrature error whi
h is de�ned byEnw(f) := Z[a;b℄ f(x)w(x)dx � Inw(f): (13)A 
lassi
al result states that if f 2 C2n(IR)Enw(f) = f (2n)(�)(2n)!k2n;0 ; for some a < � < b; (14)5



see again [DR℄ for details. Here kn;0 denotes the leading 
oeÆ
ient of the n{th orthonormalpolynomial with respe
t to the s
alar produ
t (�; �)w.Hen
e, if the weight fun
tion and the degree is given, it is possible to 
ontrol the errorfor any spe
i�
 Gauss quadrature rule. However, the question remains open, how theerror will behave asymptoti
ally as n in
reases. Fortunately, there exist some results inthis dire
tion, at least for weight fun
tions satisfying some additional 
onditions as weshall now explain.De�nition 3.2 Let w be a weight fun
tion a

ording to De�nition 3.1 on the interval[�1; 1℄. w is said to be in the fun
tion 
lass W if�Z�� j lnw�(#)jd# <1; (15)for w�(#) := w(
os(#)) j sin(#)j.For this spe
ial 
lass W, the following theorem holds, see, e.g., [Sz℄ for details.Theorem 3.3 Let w 2 W andpn(x) = nXi=0 kn;ixn�i; n = 0; 1; 2; : : : (16)be the system of orthonormal polynomials asso
iated with the weight fun
tion w. Then,as n tends to in�nity,kn;0 � 2nCw; with Cw := ��1=2 exp0��12� 1Z�1 ln(w(x))p1� x2 dx1A : (17)As usual, `a � b' means that both quantities 
an be uniformly bounded by some
onstant multiple of ea
h other. Likewise, ` <� ' indi
ates inequality up to 
onstantfa
tors.Theorem 3.3 now sets us in the position to 
ontrol the asymptoti
 error of Gaussformulas for w 2 W. Let us mention that the above result holds for a somewhat wider
lass of fun
tions, details 
an again be found in [Sz℄, p. 296.To use Theorem 3.3 in pra
ti
e, it is 
learly desirable to have an easy 
riterion at handto 
he
k the 
ondition (15). In the following lemma we give one result in this dire
tionwhi
h, as we shall see later on, 
an be applied to any spline fun
tion on [�1; 1℄ andtherefore also to every spline wavelet and re�nable fun
tion, respe
tively.Lemma 3.4 Let w be a bounded weight fun
tion on [�1; 1℄ with zeros xi; i = 1; : : : ; L.If there exist numbers ri; 
i; �i > 0; i = 1; : : : ; L and Æ > 0 su
h thatw(x) � 
ijxi � xj�i; x 2 [xi � ri; xi + ri℄ \ [�1; 1℄; (18)w(x) � Æ; x 2 [�1; 1℄n L[i=1[xi � ri; xi + ri℄; (19)6



then w is 
ontained in W.Proof. We have to 
he
k that �R�� j lnw�(#)jd#, with w� := w(
os(#))j sin(#)j exists. Asw is bounded, w� is also bounded and we may assume without loss of generality thatw� � 1. Hen
e �Z�� j lnw�(#)j d# = � �Z�� lnw�(#) d#: (20)To show the existen
e of the integral, letZ := f#� 2 [��; �℄ : 
os(#�) = xi; i = 1 : : : ; Lg:For r > 0 suÆ
iently small, we may de
ompose the expression in (20) asZ[��;�℄lnw�(#) d# = Z[��;�℄nS#�2Z [#��r;#�+r℄lnw�(#) d#+ X#�2Z Z[#��r;#�+r℄\[��;�℄lnw�(#) d#: (21)We start by showing that ea
h of the summands of the se
ond expression in (21) exists.To this end, 
onsider for #� 2 Z the de
ompositionZ[#��r;#�+r℄\[��;�℄lnw�(#) d# = Z[#� ;#�+r℄\[��;�℄lnw(
os(#)) d#+ Z[#��r;#� ℄\[��;�℄lnw(
os(#)) d#+ Z[#��r;#�+r℄\[��;�℄ln j sin(#)j d# :We will �rst show the existen
e of the �rst term on the right{hand side of (22). Withoutloss of generality, we may assume that #� 6= � so that [#�; #�+r℄ � [��; �℄ for r suÆ
ientlysmall. Let xi� be su
h that 
os(#�) = xi� . Then, by assumption (18)#�+rZ#� lnw(
os(#)) d# � #�+rZ#� ln �
i� jxi� � 
os(#)j�i� � d#= #�+rZ#� ln 
i� d#+ �i� #�+rZ#� ln jxi� � 
os(#)j d#: (22)7



The �rst integral 
learly exists. Con
erning the se
ond one, we �rst assume that #� 6=0;�� and substitute y = xi��
os(#). This yields with ~r := xi� � 
os(#� + r) 6= 0#�+rZ#� ln jxi� � 
os(#)j d# = lim"!0 ~rZ" ln jyj�1 � (xi� � y)2��1=2dy>� lim"!0 ~rZ" ln jyj d#: (23)The existen
e of the integral in the 
ases �� = 0;�� 
an be shown analogously by using1 � 
os(x) = 2 sin2(x=2). Hen
e in all three 
ases the 
orresponding integrals are �nite,whi
h establishes the existen
e of the �rst term in (22). The existen
e of the se
ond term
an be shown in a similar fashion. Hen
e we are left with the last term. Its existen
eis 
lear as long as #� 62 f��; 0; �g. However, these ex
eptional 
ases 
an be treatedby employing similar arguments as for (22). Therefore we have shown that the se
ondexpression in (21) exists. So it remains to study the �rst term. By taking (19) intoa

ount, we observe that only the vi
inities of the points ��; 0; and � require somespe
ial attention. For that, we may again pro
eed as above. It �nally follows that�Z�� j lnw�(#)jd# <1;i.e., w 2 W.Lemma 3.4 and Theorem 3.3 
an now be used to derive the following result for splinefun
tions.Corollary 3.5 Let w be a nonnegative spline fun
tion on [�1; 1℄ having only �nitely manyzeros and let kn;0 be de�ned a

ording to (16). Then as n tends to in�nitykn;0 � 2nCw; with Cw := ��1=2 exp0��12� 1Z�1 ln(w(x))p1� x2 dx1A : (24)Furthermore, if f 2 C2n; n 2 IN; the error of the 
orresponding Gauss quadrature rulesatis�es for n tending to in�nityjEnw(f)j = ������ 1Z�1 f(x)w(x)dx� Inw(f)������ <� kf (2n)kL1[�1;1℄(2n)!22nC2w : (25)Proof. As (18) and (19) are obviously ful�lled for all spline fun
tions by Lemma 3.4,any nonnegative spline with �nitely many zeros is 
ontained inW. Therefore (24) followsimmediately from Theorem 3.3. Then formula (25) is a simple 
onsequen
e of the 
lassi
alerror estimate (14) for Gauss quadrature errors.8



3.3 Gauss formulas for wavelets and re�nable fun
tionsThe integrals we have to deal with in the wavelet setting are of the following form(f; �j;k) = Zsupp(�j;k)f(x)�j;k(x) dx (26)where � is either a re�nable fun
tion ' or a wavelet  , see Se
tion 2. By means of asubstitution, one 
an write (26) asZsupp(�j;k)f(x)�j;k(x) dx = 2�j=2 Z
 f(2�j (u+ k)) �(u) du; (27)with 
 := supp(�). Hen
e it suÆ
es to �nd a quadrature rule for integrals of the formZ
 f(x)�(x)dx; (28)to be able to 
ompute all integrals in(26).In [BBDK℄, one solution to this problem has been given. The general idea was to
onstru
t Gaussian quadrature rules using � as weight fun
tion. Then, no smoothnessis required for �, however, it should be nonnegative, whi
h might not always be the
ase. Yet, this problem 
an be �xed using the following lifting tri
k. Suppose that for� 6� 0; � 2 f'; g there exists an appropriate 
onstant 
 > 0 su
h that on supp(�)�
(x) := �(x) + 
�[l1;l2℄(x) � 0; (29)where �[l1;l2℄ denotes the 
hara
teristi
 fun
tion of [l1; l2℄ � supp(�). Then one 
an set upa quadrature rule with weights �
i and knots x
i 
orresponding to the nonnegative fun
tion�
(x). After that, a se
ond Gauss rule with weights ��i and knots x�i for the 
hara
teristi
fun
tion �[l1;l2℄ has to be determined. Hen
e we are left with the task to 
ompute themoments of re�nable fun
tions and wavelets, respe
tively. This 
an be done using analgorithm by [DM2℄ and the fun
tional equation (2), see [BBDK℄.4 Gauss quadrature for 
ardinal B{spline systemsRe�nable fun
tions and wavelets related to 
ardinal B{splines are of spe
ial interest inpra
ti
e. Indeed, in re
ent years, it has turned out that spline wavelets form a powerfultool for many appli
ations of wavelet analysis su
h as signal/image analysis/
ompressionand the numeri
al treatment of operator equations. This is also due to the fa
t that inthe 
ontext of solving problems on bounded domains, the B{spline approa
h provides asuitable way to 
onstru
t appropriate bases on these domains, see Se
tion 2. Consequently,the aim of this se
tion is twofold. Firstly, we want to derive and to analize quadratureformulas for boundary adapted s
aling fun
tions and wavelets. Se
ondly, we will applythe error analysis presented in Se
tion 3.2 to both, the 
lassi
al and the boundary adapteds
aling fun
tions and wavelets. 9



4.1 Constru
tion of quadrature formulas for boundary adapteds
aling fun
tionsWe have already mentioned that the 
onstru
tion of a suitable Gauss formula essentiallyrelies on the 
omputation of the moments of the weight fun
tion. As outlined in Se
tion2, the s
aling fun
tions near the boundary 
onstru
ted a

ording to [DKU℄ are no longerre�nable in the 
lassi
al sense. Therefore the usual way to 
ompute the moments asexplained in [DM2℄ does not work in this 
ase. One possible remedy reads as follows. Let'Lj;k(x); k = 0; : : : ;m� 1 (30)denote the m fun
tions adapted to the left side of the interval, 
ompare with Se
tion 2.For the 
omputation of their moments
Ll;j;k := 1Z0 xl'Lj;k(x)dx (31)we may use a di�erent representation of 
Ll;j;k from [DKU℄. Let ~'Lj;l denote a boundaryadapted version of the dual generator before the �nal biorthogonalization pro
edure isperformed. Then
Ll;j;k = �'Lj;k(�); (�)l�[0;1℄ = 2�j=2 2�lj�'Lj;k(�); ~'Lj;l(�)�[0;1℄; (32)provided that the dual system is exa
t of order greater or equal l. But for the biorthogonalspline system, dual fun
tions of arbitrary order are available, at least in prin
iple. More-over, the term on the right{hand side in (32) 
an be 
omputed exa
tly (up to roundo�),see again [DKU℄ for details. Consequently, for ea
h of the boundary adapted fun
tions,we may use (32) to derive a Gauss formula by following exa
tly the lines in [BBDK℄. Sowe end up with m + 1 formulas, one for the interior fun
tions and m for the boundaryadapted fun
tions (the right boundary 
an be handled by using symmetry arguments).In prin
iple, the values in (32) also depend on the level j. However, this dependen
y onlyresults in a s
aling by powers of two. Therefore the quadrature rules for the boundaryadapted fun
tions have to be 
omputed only on
e and for all on the 
oarsest level, justlike for the interior fun
tions.We 
on
lude this se
tion with the following example. LetNL2 be one of the two boundaryadapted fun
tions 
orresponding to the 
entralized 
ardinal B{spline of order two, seeFigure 2, and let f(x) := 
os(x) ex: (33)We will test the above method for 
omputingZsupp(NL2 )f(x)NL2 (x) dx = p2(8e1=4 sin(1=4) � 8e1=8 sin(1=8) � 1) � 0:58150188308191:In the following table, the values and the relative errors for the 
orresponding quadraturerules are listed. We see that the relative error de
reases very rapidly as n in
reases, sothat our formulas indeed perform satisfa
torily.10



n InNL2 (f) rel. error1 0.5817194542408 3.742e-042 0.58150322100026 2.301e-063 0.58150188304296 6.700e-114 0.58150188308187 8.126e-14
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Figure 2: NL2 , one of the two boundary adapted s
aling fun
tion of N2.4.2 Error analysis for the B{spline 
aseAs already outlined above, 
ardinal B{splines play an important role in pra
ti
al appli-
ations. Therefore, we want to investigate the error behaviour of Gauss quadrature rulesfor this 
ase in more detail.Let us �rst remark that after a suitable transformation to the interval [�1; 1℄ the generalresult stated in Corollary 3.5 also holds for the boundary adapted fun
tions be
ause theyare still pie
ewise polynomials.In the following table, we list the 
omputed values of Cw a

ording to (24) for both,the B{splines and their boundary adapted versions. Let N� denote the usual 
entralized
ardinal B{spline of order �, N� its transformed version with supp(N�) = [�1; 1℄ and letNL�;k; k = 0; : : : ; �� 1 be the 
orresponding transformed boundary adapted fun
tions.For the 
entralized B{spline N2 = N2, some of the leading 
oeÆ
ients were 
omputedexa
tly in [BBDK℄. In the following table, we 
ompare the estimated and exa
t leading
oeÆ
ient kn in this 
ase. 11



� CN� CNL�;0 CNL�;1 CNL�;2 CNL�;32 1.41 0.89 1.413 3.39 1.12 1.04 0.974 7.98 1.64 1.41 1.22 1.06n 1 2 3 4 5 6kn 2.45 5.07 10.51 21.26 43.17 86.802n CN2 2.84 5.68 11.36 22.72 45.44 90.24We see that the estimated kn deviate from the exa
t ones only by fa
tors dropping from1:13 to 1:04, showing that the asymptoti
 estimate for this 
ase is already very good forsmall n.5 The multivariate 
aseExtensions of the one dimensional wavelet theory to the multivariate 
ase are most easilydone by a tensor produ
t ansatz, 
ompare with Se
tion 2. In [BBDK℄, we have shownthat one 
an derive Gaussian type formulas for these 
ases from the one dimensional 
asedes
ribed above by simple produ
t formulas. Error formulas for these produ
t formulas
an also be easily dedu
ed from the one dimensional estimates, see, e.g., [StS℄. However,in many appli
ations, it is desirable to work with nonseparable re�nable fun
tions andwavelets. Then one has to pro
eed in a somewhat di�erent way. In Subse
tion 5.1, weshall explain the general idea. With regard to the appli
ations we have in mind, we restri
tourselves mostly to the 
ase d = 2: Furthermore, we 
on�ne the dis
ussion to nonnegativere�nable fun
tions be
ause we shall mainly apply the analysis to spe
i�
 box splines. Forthe general 
ase, we refer to [BBDK℄. In Subse
tion 5.2, we derive 
ertain multivariateerror estimates. After brie
y re
alling the basi
 fa
ts, some spe
i�
 box splines are studiedin detail.5.1 Quadrature rules for the nonseparable 
aseLet us brie
y re
all the 
onstru
tion of multivariate quadrature rules whi
h are not oftensor produ
t type. We want to �nd a quadrature rule of degree N having the formZsupp� f(x; y)�(x; y)dxdy � n(N)Xi=1 �if(xi; yi): (34)12



To this end, one has to 
hoose the points(xi; yi); i = 1; : : : ; n; n = n(N) = (1 +N)N2 (35)in su
h a way that they do not all lie on a 
urve QN(x; y) = 0; where QN is a polynomialof order N . Then the 
oeÆ
ients �i 
an be found as solutions of the linear system�1xl11 yl21 + � � �+ �nxl1n yl2n = Zsupp� xl1yl2�(x; y)dxdy; 0 � jlj � N � 1; (36)see, e.g., [St℄ for details. In this paper, we shall mainly 
onsider the 
ase that � is a boxspline. Let us brie
y re
all the de�nition and the basi
 fa
ts. Let X = fx1; : : : ; x�g �ZZdnf0g; x� = (x�1; : : : ; x�d)T denote a set of not ne
essarily distin
t ve
tors satisfying� � d and < X >= span X = IRd: (37)Then the box spline B(�jX) is de�ned by requiring that the equationZIRd f(x)B(xjX)dx = Z[0;1℄�f(Xu)du (38)holds for any 
ontinuous fun
tion f on IRd: The ve
tors x1; : : : ; x� are 
alled the dire
tionve
tors of B(�jX): Every box spline is a re�nable fun
tion,B(�jX) = Xk2ZZd akB(2 � �kjX); (39)where the mask a = fakgk2ZZd is given byXk2ZZd akzk = 2d�� �Y�=1(1 + zx� ): (40)It 
an be shown that a box spline is a pie
ewise polynomial. Moreover, it is nonnegativeand satis�esB(ujX) = 0; u 62 [X[; [X[:= ft1x1 + � � �+ t�x� : 0 � t� < 1; 1 � � � �g: (41)For further information on box splines, the reader is referred to [DM℄. In [BBDK℄, suitablesets of points and weights for various box splines were 
onstru
ted. Let us also mentionthat further examples 
an be 
onstru
ted by means of [QM℄.5.2 Error analysisIn [BBDK℄, several quadrature rules of the form (34) have been developed and tested.The performan
e was quite well in all 
ases. In this se
tion, we want to go one step further13



and derive some rigorous error estimates, at least for some spe
i�
 box splines. To thisend, we apply the general theory as, e.g., outlined in [St℄. Let us start by brie
y re
allingthe basi
 fa
ts.Let R2 be a re
tangle a � x � b; 
 � y � d: We want to dis
uss estimates for the errorEnw(f) in an integration formulaZR2 w(x; y)f(x; y)dxdy = n(N)Xi=1 �if(xi; yi) + Enw(f): (42)We assume that(i) i; j are nonnegative integers;(ii) p; q are positive integers;(iii) � = p + q � 2.We de�ne Bp;q(a0; 
0) as the spa
e of all fun
tions f(x; y) with the following properties:(i) The derivative f (p;q)(x; y) is Riemann integrable on R2;(ii) the derivatives f (��j;j)(x; 
0); j < q are Riemann integrable on a � x � b;(iii) the derivatives f (i;��i)(a0; y); i < p are Riemann integrable on 
 � y � d;(iv) the derivatives f (i;j)(a0; 
0); i+ j < � exist;(v) Taylor's formula with respe
t to the point (a0; 
0) holds for all (x; y) in R2.We shall also need the kernel fun
tions Kp;q(u; v); Ki;j:x(u) and Ki;j:y(v) de�ned byKp;q(u; v) := Enw �(x� u)p�1(p � 1)! �(a0; u; x)(y � v)q�1(q � 1)! �(
0; v; y)� ; (43)Ki;j:x(u) := Enw �(x� u)i�1(i� 1)! �(a0; u; x)(y � 
0)jj! � ; 0 � j < q; i � � � j; (44)Ki;j:y(v) := Enw �(x� a0)ii! (y � v)j�1(j � 1)! �(
0; v; y)� ; 0 � i < q; j � � � i; (45)where �(�;$; &) is the step fun
tion�(�;$; &) :=8>>><>>>: 1; for � � $ < &;�1; for & � $ < �;0; otherwise: (46)It turns out that Enw(f) 
an be estimated by means of the kernel fun
tions de�ned above.The following theorem summerizes several results proved in [St℄.14



Theorem 5.1 Suppose we have an integration formula (34) of degree N and let 2 � � =p + q � N . Let us furthermore assume that f 2 Bp;q(a0; 
0): ThenjEnw(f)j �Xj<q e��j;j:xM��j;j:x +Xi<p ei;��i:yMi;��i:y + ep;qMp;q; (47)where ei;j:x := bRa jKi;j:x(u)jdu; Mi;j:x := supu2[a;b℄ jf (��j;j)(u; 
0)j;ei;j:y := dR
 jKi;j:y(v)jdv; Mi;j:y := supv2[
;d℄ jf (i;��i)(a0; v)j;ep;q := bRa dR
 jKp;q(u; v)jdudv; Mp;q := sup(u;v)2[a;b℄�[
;d℄ jf (p;q)(u; v)j: (48)We see that the error estimate (47) essentially 
onsists of two parts. One part onlydepends on the fun
tion f whereas the other part only depends on the given quadraturerule. Therefore it seems to be worthwhile to 
ompute at least the se
ond part as pre
iselyas possible. Although this might be expensive, the reader should observe that this onlyhas to be done on
e and for all.As an example, we have performed su
h a 
omputation for the box spline B( � j 1 0 10 1 1)whi
h is the famous Courant �nite element whose graph looks like a hexagonal pyra-mid. To determine the quantities ei;j:x; ei;j:y and ep;q, we have to 
ompute the fun
tionsKp;q(u; v); Ki;j:x(u) and Ki;j:y(v) with high a

ura
y on a �ne grid. From that, the valuesof ei;j:x, ei;j:y and ep;q 
an be extra
ted.The evaluation of Kp;q at a point (u; v) amounts to 
ompute the exa
t integral and thequadrature rule for the fun
tion in bra
kets on the right{hand side in (43). In our 
ase,the integrals 
an be 
omputed exa
tly. We evaluate them as fun
tions of u and v on are
tangular grid with meshsize h = 1=64. Computed on
e and for all, these values 
anbe used to determine Kp;q for di�erent quadrature rules on the same grid. To 
omputethe error for other quadrature rules, e.g., for di�erent exa
tness or di�erent algorithmsfor 
hoosing the knots, respe
tively, only the appli
ation of the quadrature rule to thetrun
ated powers have to be 
omputed. This has to be done on the same grid and isvery fast. In the following tables, some of the resulting error terms de�ned in (48) aredisplayed.
15



N i!j!ei;j:x(B( � j 1 0 10 1 1))2 inj 0 11 0.303 0.4992 0.3333 inj 0 1 21 0.135 0.0453 0.04622 0.0268 0.04203 0.02374 inj 0 1 2 31 0.126 0.0259 0.0291 0.02292 0.0176 0.0130 0.01303 0.00537 0.01884 0.006255 inj 0 1 2 3 41 0.0839 0.0147 0.0147 0.00858 0.008282 0.00764 0.00142 0.00284 0.002203 0.00144 0.000336 0.002884 0.000718 0.0002415 0.000732N i!j!ei;j:y(B( � j 1 0 10 1 1))2 inj 1 20 0.663 0.8331 0.08333 inj 1 2 30 0.164 0.0323 0.01391 0.0298 0.01142 0.04754 inj 1 2 3 40 0.127 0.0178 0.00505 0.002811 0.0195 0.00364 0.003452 0.0294 0.009053 0.02795 inj 1 2 3 4 50 0.100 0.0109 0.00238 0.000824 0.0004931 0.0173 0.00212 0.000577 0.0003512 0.0168 0.00212 0.001593 0.00742 0.002944 0.00865 16



N p!q!ep;q(B( � j 1 0 10 1 1))2 pnq 11 0.4993 pnq 1 21 0.1016 0.05692 0.05144 pnq 1 2 31 0.0904 0.0382 0.02822 0.0436 0.01703 0.03225 pnq 1 2 3 41 0.0532 0.0188 0.0116 0.008962 0.0197 0.00445 0.002713 0.0123 0.003384 0.00918In Figure 3, some typi
al fun
tions Kp;q for the box spline B( � j 1 0 10 1 1) are depi
ted.The knots of the quadrature rules 
orrespond to those lines where the kernel fun
tionsshow singularities or singularities in a derivative.The �rst two pi
tures 
orrespond to the same values of p and q but di�erent quadraturerules. Sin
e the se
ond one is 
omputed for N = 4, more knots and therefore moresingularities o

ur. However, the error is of 
omparable size be
ause the kernel fun
tionshave low regularity and therefore in
reasing the order of the quadrature rule 
annotde
rease the error a lot.The superiority of higher order quadrature rules shows up if the fun
tion to be integratedis smooth. Therefore we 
ompare in the se
ond and the third pi
ture the behaviour ofKp;q as p and q in
rease. One observes that the error depi
ted in the third �gure is mu
hsmaller than in the se
ond one, be
ause the smoother kernel fun
tions 
an be integratedmore a

urately with the (higher order) quadrature rule.
17
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We are now in the position to test our error bounds (47) for a typi
al example. Forf(x; y) := sin(x+ y) we want to 
ompute the integralZIR2 f(x; y)B(x; y j 1 0 10 1 1)dxdy: (49)The exa
t value of (49) is given by
os(1)� 
os(3) + 
os(4) � 12 � 0:703472992036784:Sin
e in our spe
ial 
asejfp;q(x; y)j � 1; for all p; q; x; and y;the fun
tion f belongs to all spa
es Bp;q and the evaluation of the error bound (47) isparti
ularly easy: all values Mp;q, Mi;j:x and Mi;j:y are bounded by one. Let us denoteby jEnp;qj the error bound given by (47) for some p; q. In the next tabular, we present theintegrals as 
al
ulated by our quadrature formula together with the true error and someof the 
orresponding error bounds.N n InB( � j 1 0 10 1 1) (f) jEnB( � j 1 0 10 1 1)(f)j jEn1;1(f)j jEn2;1(f)j jEn2;2(f)j jEn2;3(f)j2 3 0.2978843607 4.06e-01 1.08e+003 6 0.7072451256 3.77e-03 1.31e�01 3.77e�024 10 0.7053436798 1.87e-03 1.08e�01 2.54e�02 8.32e�035 15 0.7033638796 1.09e-04 6.24e�02 1.16e�02 1.32e�03 5.01e�04As expe
ted, the error bounds de
rease rapidly for larger values of p and q sin
e thefun
tion f is 
learly analyti
. In fa
t, already for N = 4 we obtain reasonably sharpbounds.Referen
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