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Abstract. We consider wavelet discretizations for the Stokes problem in the mixed
and divergence free variational formulation. For both cases, we present convergent
adaptive multiscale strategies. Moreover, for adaptive wavelet discretizations of the
mixed formulation we provide an easy to implement criterion for enforcing stability.

1 Introduction

Adaptive methods play an important role for the numerical solution of par-
tial differential equations. Adapting the discretization to the structure of the
problem and the error quantity one is interested in, allows to resolve com-
plicated problems with local character. Since in many cases no sufficient a
priori knowledge on the structure of the solution is available, local refinement
or derefinement is based on a posteriori error estimates.

Even though adaptive methods are widely used in industrial codes, there
has not been a convergence analysis of these strategies for many years. Quite
recently, starting from [9], some rigorous proofs have been given. Whereas
in [9] the convergence of an adaptive scheme for the 2d Poisson problem
using piecewise linear Finite Elements is given, the subsequent papers [4,5]
use the framework of multiscale methods and wavelets. In [5], a convergent
adaptive wavelet method for elliptic operators in any spatial dimension has
been introduced. This method has been somewhat modified in [4] and it has
been proved that this modified strategy is asymptotically optimal efficient,
i.e., 1t has the same rate of convergence as the corresponding best n-term
approximation. The overall effort of this method is O(N log N), where N
denotes the number of unknowns. This latter algorithm has been tested in
1d and 2d and the numerical results presented in [2] are promising.
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In this paper, we consider adaptive wavelet methods for the Stokes prob-
lem. Since the mixed formulation gives rise to a saddle point problem, the
above mentioned approaches do not cover this case. However, in [6] a conver-
gent wavelet method for general saddle point problems has been given. We
apply this strategy to the mixed formulation of the Stokes problem. More-
over, it is known that the Stokes problem can be seen as an elliptic problem
reduced to the subspace of divergence free vector fields. We show that using
divergence free wavelets [11,13,14] one can in fact apply the theory for sym-
metric positive definite operators to the divergence free discretization of the
Stokes problem.

1.1 The Stokes Problem

The Stokes problem is well-known as a linearized model of the flow of a
viscous, incompressible fluid in some domain. A numerical solver can also
be used as a kernel for solving the full Navier—Stokes equations, [10]. Let us
recall the formulation of the Stokes problem.

Problem 1. Given the exterior force f, one has to determine the velocity u
and the pressure p such that

—Au+Vp=fn 2
V-u =01in £, (1)
u =0on Il :=002 ,

where £2 C IR" is a bounded Lipschitz domain of interest.

1.2 Multiscale Methods and Wavelets

Let us briefly recall those facts for multiscale methods and wavelets that will
be needed in this paper. For extensive surveys, we refer to [3,7]. We call a
system of functions ¥ := {¢\ : X € V} C L?(£2) a system of wavelets, if they
form (besides others) a Riesz basis for L%(£2). Here, V denotes an infinite set
of indices. We may think of each index as a couple A = (j, k) where j =: |A]
denotes the scale or level of a wavelet whereas k represents its location in
space. Moreover, we assume that in particular diam(suppyy) ~ 2= and
that ¥ characterizes a family of Sobolev spaces H*(§2), s € (—%,7), in the

sense
1/2
d ~ 2s|A| 2
H Z A%Hs,n (Z 2 [N
AEV AEV

The constants 7, v > 0 are determined by smoothness and approximation
properties of ¥ and its biorthogonal (dual) system ¥, [7]. By A ~ B, we
mean that there exist absolute constants ¢, ' > 0 such that cA < B < CA.
The first inequality will be abbreviated by A < B.



2 Adaptive Wavelet Methods for Elliptic Operator
Equations

Let A be a linear operator mapping a Hilbert space H into its dual H*.
Then, we consider the operator equation Au = f for a given f € H*. For the
analysis of an adaptive strategy, the following assumptions will be posed.

Assumption 1. (a} The bilinear form a(-,-) is symmetric and positive def-
inite on H such that ||v||% := a(v,v) ~ [|v||3 forv € H.

(b) The wavelet basis functions W are in H, their duals ¥ in the dual space
H*, each function v € H has a unique expansion in terms of ¥

v = dTW = Z d)\ 1/))” d)\ = <U,’l/))\> )

AEV

such that ||[D™* d||2(vy ~ ||dT V||, where D is a fired positive diagonal
matrix.
(c) The stiffness matriz A := D{AW, W) D has the decay property

] < 277l (1 g, 0) 7T

where d(A, N') == gmin ([, 1A") dist(supp P, supp 1/)>\/) for some o > 5 and
T>n.

For any finite A C V let ux € span(¥,) denote the related Galerkin
solution. In [4,5], a strategy is described how to enlarge A to some A D A
such that the distance property holds, i.e., there exists some 0 < x < 1 such
that

llua —uglla > wllu—ualla .

Now, one proceeds using Galerkin orthogonality
alug —uju—ug) =0 (2)

to conclude [[u — ugld = Ju — uall3 — llur — wgl3 < (1 - #2)lu = a3,
which proves the saturation property, i.e., a strict error reduction since 0 <
1—k2<1.

Obviously, due to the constraint on the divergence, one can not directly
apply this result to the Stokes problem.

3 Mixed Discretization

The most common discretizations of the Stokes problem are based on the
maxed formulation:



Problem 2. For given f € H™* ()", determine w € X = HY(2)" and
peM:=L§(R2)={qge L*(2): [,q(x)dz =0} such that

afu,v) + b(0.p) = (F.0)o.0, v EX ;
b(u,q) =0, ge M , (3)

where a(u,v) := (Vu,Vv)oa, blv,g) =(V-v,¢)0a0.

Assuming that the saddle point Problem 2 is well posed, we are interested
in a convergent adaptive strategy. Moreover, given adaptive discretizations
X4 C X and My C M, it is well-known that in order to ensure stability,
the induced spaces need to fulfill the Ladyshenskaja—Babuska-Brezzi (LBB)

condition

inf  sup 71)(”)\’ ) >3 (4)

neMa,, cx lluallx lloallsr —

for some constant 8 > 0 independent of A.

In [6], we have introduced a convergent adaptive scheme for saddle point
problems and we have given explicit criteria (in terms of single basis func-
tions) in order to ensure (4). Let us sketch the main results from [6] for the
special case of the Stokes problem.

3.1 Convergent Adaptive Strategy

In order to introduce an adaptive scheme that can be proven to converge, we
consider an adaptive version of Uzawa’s algorithm [1]. For the Schur comple-
ment S := BATLB’ (where A and B are induced by the bilinear forms a(-, -,
b(-,-), respectively, in the usual manner), we assume 2||S[|=! > a > 0 and we
set ¢ .= ||Id — aS|| < 1.

Algorithm 1. Let AY = () and pglou) =pl® = 0. Then, fori=1,2,... and
chosen ¢; > 0 we proceed as follows:

1. Determine by an adaptive algorithm a set of indices A such that for the
Galerkin solution u%l) w.r.t. AX of

a(u,v) = (f,v) — b(v,psfl__ll)), veX |, (5)
one has ||u512l) — ﬂ(i)HLQ < q'e;, where @'V denotes the ezact solution of
(5).

2. Determine an inder set AM such that the LBB condition holds. Then,
define pxl) by

PV aa) = 05V qa) + ab(ul qa),  qa € Ma, . (6)

The following result has been proven in [6].



Theorem 1. Under the above assumptions and with ¢; > 0 chosen such that
Sooiei < 1 the exact solution of the mized problem can be approzimated
with any desired accuracy by Algorithm 1:

)
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3.2 The LBB Condition

It was already mentioned that (4) is important for the stability of the nu-
merical solution. Moreover, we have seen that it also enters in Algorithm 1.
Hence, it is important to have a criterion for (4) at hand that is easy to
check. In the above described adaptive framework this means, that we have
to be able to construct a space M4 for a given X 4 such that (4) holds (see
the second step in Algorithm 1). Finally, this construction must be easy to
accomplish and to implement.

First, we have to choose the wavelet bases for X and M appropriately.
This has been introduced in [8] and may be summarized as follows: choose
wavelet bases ¥ := {1, : A € VX} for X and @ := {9, : p € VM} for M
such that the divergence of any vector field 45, is a certain linear combination
of the dual functions @, i.e., there exist finite set of indices A(X) € VM such
that

Vo= > oy . (7)

HEA(N)

Using this choice, the following fact is a consequence of the general result
stated in [6], Theorem 3.2.

Theorem 2. For subsets (AX AM) c (VX VM), define the wavelet trial
spaces X 4 := span(W 4x) and My := span(@ n). These spaces fulfill the
LBB condition (4) provided that

MM = BAX) = {pe AN : AeAX) . (8)
Moreover, (8) ensures the full equilibrium property, i.e., (V- -v4,q4) =0 for

an vy € X 4 and all g4 € M4 already implies V -v4 = 0.

4 Divergence Free Discretization

Another common way to form a variational formulation of (1) is to embed the
divergence constraint into the trial and test space. This goes back to Leray
[12] in 1934. Here, we will follow [10]. Let us set

Vi={pcCF2)" : V- -¢=0}, V i=clos |, (V) . (9)

Then, the divergence free variational formulation of (1) reads:



Problem 3. Given a vector field f € H_l(())”, one has to determine the
velocity w € V' such that

a(u,v) = (u, fo,q, vEV . (10)

Note that the pressure is eliminated in this formulation and can be ob-
tained by means of a postprocessing, [10]. The advantage of (10) is obvious
since we can deal with an elliptic problem in the setting of Section 2. On the
other hand, one has to use a basis for V' which is problematic for many kinds
of discretizations.

In recent years, divergence free wavelet bases have been constructed start-
ing from the pioneering work by Lemarié—Rieusset in [11], who constructed
tensor product divergence free wavelets on IR". Nowadays, there are also con-
structions on some classes of bounded domains £2 C IR" available, [13,14].
We will not describe the construction in detail here, but rather summarize
those properties that we will need here and refer the reader to [14] for further
details. In particular, we will always assume that {2 is chosen in such a way
that the subsequent construction actually is possible.

Divergence free wavelets are linear combinations of suitable wavelet func-

tions in the form
Yo Dt (11)
HES(A)

where S(X) C V is a finite subset whose cardinality is independent of .
Moreover, also the values of dy ,, do not depend on X in the sense that the
following inequality holds independently of A

Z d)\ “‘ <1 (12)
pes(A
Finally, @ = {4y : A € V} is a suitable wavelet basis for H3(£2)" fulfilling
Assumption 1. Their duals ’lZJC;\f take the form

~ df ~ ~
da= > dy,tu (13)
Hes(A)

where @ is a dual basis for @. Finally, the following result is in general proven
n [14] (see also [11,13]): each vector field ¢ € V' has a unique expansion

¢ = Z A vy, ceF(vihy |
AEVdf
and the following estimate holds for ¢, 1/;%\f € H* ()"

IKlZ o~ 30 22N ey (14)
AEVdf



Theorem 3. The divergence free wavelet bases % fulfill Assumption 1 for
Problem 3.

Proof. Condition (a) is trivially fulfilled since the bilinear form a(-, -) is ellip-
tic on all of H}(§2)", [10]. Since V is a closed subset of H}(£2)", the norm
equivalence (14) for s = 1 already ensures (b) in Assumption 1. Finally, due
to the properties of S(A) and ¥ in (11), we obtain

AN PN = 2 2 Dapdy W)
HeSA) pes(N)

In view of (12) and the properties of S(A), we obtain that @ enforces
analogous decay properties as & which proves (c). a
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