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t. We 
onsider wavelet dis
retizations for the Stokes problem in the mixedand divergen
e free variational formulation. For both 
ases, we present 
onvergentadaptive multis
ale strategies. Moreover, for adaptive wavelet dis
retizations of themixed formulation we provide an easy to implement 
riterion for enfor
ing stability.1 Introdu
tionAdaptive methods play an important role for the numeri
al solution of par-tial di�erential equations. Adapting the dis
retization to the stru
ture of theproblem and the error quantity one is interested in, allows to resolve 
om-pli
ated problems with lo
al 
hara
ter. Sin
e in many 
ases no suÆ
ient apriori knowledge on the stru
ture of the solution is available, lo
al re�nementor dere�nement is based on a posteriori error estimates.Even though adaptive methods are widely used in industrial 
odes, therehas not been a 
onvergen
e analysis of these strategies for many years. Quitere
ently, starting from [9℄, some rigorous proofs have been given. Whereasin [9℄ the 
onvergen
e of an adaptive s
heme for the 2d Poisson problemusing pie
ewise linear Finite Elements is given, the subsequent papers [4,5℄use the framework of multis
ale methods and wavelets. In [5℄, a 
onvergentadaptive wavelet method for ellipti
 operators in any spatial dimension hasbeen introdu
ed. This method has been somewhat modi�ed in [4℄ and it hasbeen proved that this modi�ed strategy is asymptoti
ally optimal eÆ
ient,i.e., it has the same rate of 
onvergen
e as the 
orresponding best n-termapproximation. The overall e�ort of this method is O(N log N ), where Ndenotes the number of unknowns. This latter algorithm has been tested in1d and 2d and the numeri
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In this paper, we 
onsider adaptive wavelet methods for the Stokes prob-lem. Sin
e the mixed formulation gives rise to a saddle point problem, theabove mentioned approa
hes do not 
over this 
ase. However, in [6℄ a 
onver-gent wavelet method for general saddle point problems has been given. Weapply this strategy to the mixed formulation of the Stokes problem. More-over, it is known that the Stokes problem 
an be seen as an ellipti
 problemredu
ed to the subspa
e of divergen
e free ve
tor �elds. We show that usingdivergen
e free wavelets [11,13,14℄ one 
an in fa
t apply the theory for sym-metri
 positive de�nite operators to the divergen
e free dis
retization of theStokes problem.1.1 The Stokes ProblemThe Stokes problem is well-known as a linearized model of the 
ow of avis
ous, in
ompressible 
uid in some domain. A numeri
al solver 
an alsobe used as a kernel for solving the full Navier{Stokes equations, [10℄. Let usre
all the formulation of the Stokes problem.Problem 1. Given the exterior for
e f , one has to determine the velo
ity uand the pressure p su
h that��u+rp = f in 
 ;r �u = 0 in 
 ;u = 0 on � := �
 ; (1)where 
 � IRn is a bounded Lips
hitz domain of interest.1.2 Multis
ale Methods and WaveletsLet us brie
y re
all those fa
ts for multis
ale methods and wavelets that willbe needed in this paper. For extensive surveys, we refer to [3,7℄. We 
all asystem of fun
tions 	 := f � : � 2 rg � L2(
) a system of wavelets, if theyform (besides others) a Riesz basis for L2(
). Here, r denotes an in�nite setof indi
es. We may think of ea
h index as a 
ouple � = (j; k) where j =: j�jdenotes the s
ale or level of a wavelet whereas k represents its lo
ation inspa
e. Moreover, we assume that in parti
ular diam(supp �) � 2�j�j andthat 	 
hara
terizes a family of Sobolev spa
es Hs(
), s 2 (�~
; 
), in thesense 


X�2r d� �


s;
 �  X�2r 22sj�j jd�j2!1=2 :The 
onstants ~
, 
 > 0 are determined by smoothness and approximationproperties of 	 and its biorthogonal (dual) system ~	 , [7℄. By A � B, wemean that there exist absolute 
onstants 
; C > 0 su
h that 
A � B � CA.The �rst inequality will be abbreviated by A <� B.



2 Adaptive Wavelet Methods for Ellipti
 OperatorEquationsLet A be a linear operator mapping a Hilbert spa
e H into its dual H�.Then, we 
onsider the operator equation Au = f for a given f 2 H�. For theanalysis of an adaptive strategy, the following assumptions will be posed.Assumption 1. (a) The bilinear form a(�; �) is symmetri
 and positive def-inite on H su
h that kvk2A := a(v; v) � kvk2H for v 2 H.(b) The wavelet basis fun
tions 	 are in H, their duals ~	 in the dual spa
eH�, ea
h fun
tion v 2 H has a unique expansion in terms of 	v = dT	 := X�2rd�  �; d� := hv; ~ �i ;su
h that kD�1 dk`2(r) � kdT 	kH , where D is a �xed positive diagonalmatrix.(
) The sti�ness matrix A :=DhA	; 	 iTD has the de
ay propertyja�;�0j <� 2����j�j�j�j�� �1 + d(�; �0)��� ;where d(�; �0) := 2min(j�j;j�0j) dist�supp �; supp �0� for some � > n2 and� > n.For any �nite � � r let u� 2 span(	�) denote the related Galerkinsolution. In [4,5℄, a strategy is des
ribed how to enlarge � to some ~� � �su
h that the distan
e property holds, i.e., there exists some 0 < � < 1 su
hthat ku� � u ~�kA � � ku� u�kA :Now, one pro
eeds using Galerkin orthogonalitya(u� � u ~�; u� u ~�) = 0 (2)to 
on
lude ku � u ~�k2A = ku � u�k2A � ku� � u ~�k2A � (1 � �2)ku � u�k2A,whi
h proves the saturation property, i.e., a stri
t error redu
tion sin
e 0 <1� �2 < 1.Obviously, due to the 
onstraint on the divergen
e, one 
an not dire
tlyapply this result to the Stokes problem.3 Mixed Dis
retizationThe most 
ommon dis
retizations of the Stokes problem are based on themixed formulation:



Problem 2. For given f 2 H�1(
)n, determine u 2 X := H10 (
)n andp 2M := L20(
) := fq 2 L2(
) : R
 q(x) dx = 0g su
h thata(u;v) + b(v; p) = (f ;v)0;
; v 2X ;b(u; q) = 0; q 2M ; (3)where a(u;v) := (ru;rv)0;
, b(v; q) := (r � v; q)0;
.Assuming that the saddle point Problem 2 is well posed, we are interestedin a 
onvergent adaptive strategy. Moreover, given adaptive dis
retizationsX� � X and M� � M , it is well-known that in order to ensure stability,the indu
ed spa
es need to ful�ll the Ladyshenskaja{Babu�ska{Brezzi (LBB)
ondition infq�2M� supv�2X� b(v�; q�)kv�kX kq�kM � � (4)for some 
onstant � > 0 independent of �.In [6℄, we have introdu
ed a 
onvergent adaptive s
heme for saddle pointproblems and we have given expli
it 
riteria (in terms of single basis fun
-tions) in order to ensure (4). Let us sket
h the main results from [6℄ for thespe
ial 
ase of the Stokes problem.3.1 Convergent Adaptive StrategyIn order to introdu
e an adaptive s
heme that 
an be proven to 
onverge, we
onsider an adaptive version of Uzawa's algorithm [1℄. For the S
hur 
omple-ment S := BA�1B0 (where A and B are indu
ed by the bilinear forms a(�; �),b(�; �), respe
tively, in the usual manner), we assume 2kSk�1 > � > 0 and weset q := kId� �Sk < 1.Algorithm 1. Let �M0 = ; and p(0)�0 = p(0) = 0. Then, for i = 1; 2; : : : and
hosen "i > 0 we pro
eed as follows:1. Determine by an adaptive algorithm a set of indi
es �Xi su
h that for theGalerkin solution u(i)�i w.r.t. �Xi ofa(u;v) = (f ;v) � b(v; p(i�1)�i�1 ); v 2X ; (5)one has ku(i)�i � ~u(i)k1;
 < qi"i, where ~u(i) denotes the exa
t solution of(5).2. Determine an index set �Mi su
h that the LBB 
ondition holds. Then,de�ne p(i)�i by(p(i)�i ; q�i) = (p(i�1)�i�1 ; q�i) + �b(u(i)�i ; q�i); q�i 2M�i : (6)The following result has been proven in [6℄.



Theorem 1. Under the above assumptions and with "i > 0 
hosen su
h thatP1i=1 "i <� 1 the exa
t solution of the mixed problem 
an be approximatedwith any desired a

ura
y by Algorithm 1:ku� u(i+1)�i+1 k1;
 + kp� p(i)�ik0;
 <� qi :3.2 The LBB ConditionIt was already mentioned that (4) is important for the stability of the nu-meri
al solution. Moreover, we have seen that it also enters in Algorithm 1.Hen
e, it is important to have a 
riterion for (4) at hand that is easy to
he
k. In the above des
ribed adaptive framework this means, that we haveto be able to 
onstru
t a spa
e M� for a given X� su
h that (4) holds (seethe se
ond step in Algorithm 1). Finally, this 
onstru
tion must be easy toa

omplish and to implement.First, we have to 
hoose the wavelet bases for X and M appropriately.This has been introdu
ed in [8℄ and may be summarized as follows: 
hoosewavelet bases 	 := f � : � 2 rXg for X and � := f#� : � 2 rMg for Msu
h that the divergen
e of any ve
tor �eld  � is a 
ertain linear 
ombinationof the dual fun
tions ~�, i.e., there exist �nite set of indi
es �(�) � rM su
hthat r � � = X�2�(�) 
�;� ~#� : (7)Using this 
hoi
e, the following fa
t is a 
onsequen
e of the general resultstated in [6℄, Theorem 3.2.Theorem 2. For subsets (�X ; �M ) � (rX ;rM), de�ne the wavelet trialspa
es X� := span(	�X ) and M� := span(��M ). These spa
es ful�ll theLBB 
ondition (4) provided that�M = B(�X ) := f� 2 �(�) : � 2 �Xg : (8)Moreover, (8) ensures the full equilibrium property, i.e., (r�v�; q�) = 0 foran v� 2X� and all q� 2M� already implies r � v� = 0.4 Divergen
e Free Dis
retizationAnother 
ommonway to form a variational formulation of (1) is to embed thedivergen
e 
onstraint into the trial and test spa
e. This goes ba
k to Leray[12℄ in 1934. Here, we will follow [10℄. Let us setV := f� 2 C10 (
)n : r �� = 0g ; V := 
losk�k1;
 (V) : (9)Then, the divergen
e free variational formulation of (1) reads:



Problem 3. Given a ve
tor �eld f 2 H�1(
)n, one has to determine thevelo
ity u 2 V su
h thata(u;v) = (u;f)0;
; v 2 V : (10)Note that the pressure is eliminated in this formulation and 
an be ob-tained by means of a postpro
essing, [10℄. The advantage of (10) is obvioussin
e we 
an deal with an ellipti
 problem in the setting of Se
tion 2. On theother hand, one has to use a basis for V whi
h is problemati
 for many kindsof dis
retizations.In re
ent years, divergen
e free wavelet bases have been 
onstru
ted start-ing from the pioneering work by Lemari�e{Rieusset in [11℄, who 
onstru
tedtensor produ
t divergen
e free wavelets on IRn. Nowadays, there are also 
on-stru
tions on some 
lasses of bounded domains 
 � IRn available, [13,14℄.We will not des
ribe the 
onstru
tion in detail here, but rather summarizethose properties that we will need here and refer the reader to [14℄ for furtherdetails. In parti
ular, we will always assume that 
 is 
hosen in su
h a waythat the subsequent 
onstru
tion a
tually is possible.Divergen
e free wavelets are linear 
ombinations of suitable wavelet fun
-tions in the form  df� = X�2S(�) d�;� � ; (11)where S(�) � r is a �nite subset whose 
ardinality is independent of �.Moreover, also the values of d�;� do not depend on � in the sense that thefollowing inequality holds independently of ����� X�2S(�) d�;����� <� 1 : (12)Finally, 	 = f � : � 2 rg is a suitable wavelet basis for H10(
)n ful�llingAssumption 1. Their duals ~ df� take the form~ df� = X�2 ~S(�) ~d�;� ~ � ; (13)where ~	 is a dual basis for 	 . Finally, the following result is in general provenin [14℄ (see also [11,13℄): ea
h ve
tor �eld � 2 V has a unique expansion� = X�2rdf 
�  df� ; 
 2 `2(rdf ) ;and the following estimate holds for �,  df� 2 Hs(
)nk�k2s;
 � X�2rdf 22sj�jj
�j2 : (14)



Theorem 3. The divergen
e free wavelet bases 	df ful�ll Assumption 1 forProblem 3.Proof. Condition (a) is trivially ful�lled sin
e the bilinear form a(�; �) is ellip-ti
 on all of H10 (
)n, [10℄. Sin
e V is a 
losed subset of H10(
)n, the normequivalen
e (14) for s = 1 already ensures (b) in Assumption 1. Finally, dueto the properties of S(�) and 	 in (11), we obtaina( df� ; df�0) = X�2S(�) X�02S(�0) d�;�d�0;�0a( �; �0) :In view of (12) and the properties of S(�), we obtain that 	df enfor
esanalogous de
ay properties as 	 whi
h proves (
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