
Convergent Adaptive Wavelet Methods for theStokes Problem?Stephan Dahlke1, Reinhard Hohmuth2, and Karsten Urban11 Institut f�ur Geometrie und Praktishe Mathematik, RWTH Aahen,Templergraben 55, 52056 Aahen, Germany2 Institut f�ur Mathematik I, Freie Universit�at Berlin, Arnimallee 2{6,14195 Berlin, GermanyAbstrat. We onsider wavelet disretizations for the Stokes problem in the mixedand divergene free variational formulation. For both ases, we present onvergentadaptive multisale strategies. Moreover, for adaptive wavelet disretizations of themixed formulation we provide an easy to implement riterion for enforing stability.1 IntrodutionAdaptive methods play an important role for the numerial solution of par-tial di�erential equations. Adapting the disretization to the struture of theproblem and the error quantity one is interested in, allows to resolve om-pliated problems with loal harater. Sine in many ases no suÆient apriori knowledge on the struture of the solution is available, loal re�nementor dere�nement is based on a posteriori error estimates.Even though adaptive methods are widely used in industrial odes, therehas not been a onvergene analysis of these strategies for many years. Quitereently, starting from [9℄, some rigorous proofs have been given. Whereasin [9℄ the onvergene of an adaptive sheme for the 2d Poisson problemusing pieewise linear Finite Elements is given, the subsequent papers [4,5℄use the framework of multisale methods and wavelets. In [5℄, a onvergentadaptive wavelet method for ellipti operators in any spatial dimension hasbeen introdued. This method has been somewhat modi�ed in [4℄ and it hasbeen proved that this modi�ed strategy is asymptotially optimal eÆient,i.e., it has the same rate of onvergene as the orresponding best n-termapproximation. The overall e�ort of this method is O(N log N ), where Ndenotes the number of unknowns. This latter algorithm has been tested in1d and 2d and the numerial results presented in [2℄ are promising.? The work of the �rst two authors has been supported by Deutshe Forshungs-gemeinshaft (DFG) under Grants Da 117/13-1 and Ho 1846/1-1, respetively.Moreover, this work was supported by the European Commission within theTMR projet (Training and Mobility for Researhers) Wavelets and MultisaleMethods in Numerial Analysis and Simulation, No. ERB FMRX CT98 018T4.This paper was written when the third author was in residene at the Istituto diAnalisi Numeria del C.N.R. in Pavia, Italy.



In this paper, we onsider adaptive wavelet methods for the Stokes prob-lem. Sine the mixed formulation gives rise to a saddle point problem, theabove mentioned approahes do not over this ase. However, in [6℄ a onver-gent wavelet method for general saddle point problems has been given. Weapply this strategy to the mixed formulation of the Stokes problem. More-over, it is known that the Stokes problem an be seen as an ellipti problemredued to the subspae of divergene free vetor �elds. We show that usingdivergene free wavelets [11,13,14℄ one an in fat apply the theory for sym-metri positive de�nite operators to the divergene free disretization of theStokes problem.1.1 The Stokes ProblemThe Stokes problem is well-known as a linearized model of the ow of avisous, inompressible uid in some domain. A numerial solver an alsobe used as a kernel for solving the full Navier{Stokes equations, [10℄. Let usreall the formulation of the Stokes problem.Problem 1. Given the exterior fore f , one has to determine the veloity uand the pressure p suh that��u+rp = f in 
 ;r �u = 0 in 
 ;u = 0 on � := �
 ; (1)where 
 � IRn is a bounded Lipshitz domain of interest.1.2 Multisale Methods and WaveletsLet us briey reall those fats for multisale methods and wavelets that willbe needed in this paper. For extensive surveys, we refer to [3,7℄. We all asystem of funtions 	 := f � : � 2 rg � L2(
) a system of wavelets, if theyform (besides others) a Riesz basis for L2(
). Here, r denotes an in�nite setof indies. We may think of eah index as a ouple � = (j; k) where j =: j�jdenotes the sale or level of a wavelet whereas k represents its loation inspae. Moreover, we assume that in partiular diam(supp �) � 2�j�j andthat 	 haraterizes a family of Sobolev spaes Hs(
), s 2 (�~; ), in thesense X�2r d� �s;
 �  X�2r 22sj�j jd�j2!1=2 :The onstants ~,  > 0 are determined by smoothness and approximationproperties of 	 and its biorthogonal (dual) system ~	 , [7℄. By A � B, wemean that there exist absolute onstants ; C > 0 suh that A � B � CA.The �rst inequality will be abbreviated by A <� B.



2 Adaptive Wavelet Methods for Ellipti OperatorEquationsLet A be a linear operator mapping a Hilbert spae H into its dual H�.Then, we onsider the operator equation Au = f for a given f 2 H�. For theanalysis of an adaptive strategy, the following assumptions will be posed.Assumption 1. (a) The bilinear form a(�; �) is symmetri and positive def-inite on H suh that kvk2A := a(v; v) � kvk2H for v 2 H.(b) The wavelet basis funtions 	 are in H, their duals ~	 in the dual spaeH�, eah funtion v 2 H has a unique expansion in terms of 	v = dT	 := X�2rd�  �; d� := hv; ~ �i ;suh that kD�1 dk`2(r) � kdT 	kH , where D is a �xed positive diagonalmatrix.() The sti�ness matrix A :=DhA	; 	 iTD has the deay propertyja�;�0j <� 2����j�j�j�j�� �1 + d(�; �0)��� ;where d(�; �0) := 2min(j�j;j�0j) dist�supp �; supp �0� for some � > n2 and� > n.For any �nite � � r let u� 2 span(	�) denote the related Galerkinsolution. In [4,5℄, a strategy is desribed how to enlarge � to some ~� � �suh that the distane property holds, i.e., there exists some 0 < � < 1 suhthat ku� � u ~�kA � � ku� u�kA :Now, one proeeds using Galerkin orthogonalitya(u� � u ~�; u� u ~�) = 0 (2)to onlude ku � u ~�k2A = ku � u�k2A � ku� � u ~�k2A � (1 � �2)ku � u�k2A,whih proves the saturation property, i.e., a strit error redution sine 0 <1� �2 < 1.Obviously, due to the onstraint on the divergene, one an not diretlyapply this result to the Stokes problem.3 Mixed DisretizationThe most ommon disretizations of the Stokes problem are based on themixed formulation:



Problem 2. For given f 2 H�1(
)n, determine u 2 X := H10 (
)n andp 2M := L20(
) := fq 2 L2(
) : R
 q(x) dx = 0g suh thata(u;v) + b(v; p) = (f ;v)0;
; v 2X ;b(u; q) = 0; q 2M ; (3)where a(u;v) := (ru;rv)0;
, b(v; q) := (r � v; q)0;
.Assuming that the saddle point Problem 2 is well posed, we are interestedin a onvergent adaptive strategy. Moreover, given adaptive disretizationsX� � X and M� � M , it is well-known that in order to ensure stability,the indued spaes need to ful�ll the Ladyshenskaja{Babu�ska{Brezzi (LBB)ondition infq�2M� supv�2X� b(v�; q�)kv�kX kq�kM � � (4)for some onstant � > 0 independent of �.In [6℄, we have introdued a onvergent adaptive sheme for saddle pointproblems and we have given expliit riteria (in terms of single basis fun-tions) in order to ensure (4). Let us sketh the main results from [6℄ for thespeial ase of the Stokes problem.3.1 Convergent Adaptive StrategyIn order to introdue an adaptive sheme that an be proven to onverge, weonsider an adaptive version of Uzawa's algorithm [1℄. For the Shur omple-ment S := BA�1B0 (where A and B are indued by the bilinear forms a(�; �),b(�; �), respetively, in the usual manner), we assume 2kSk�1 > � > 0 and weset q := kId� �Sk < 1.Algorithm 1. Let �M0 = ; and p(0)�0 = p(0) = 0. Then, for i = 1; 2; : : : andhosen "i > 0 we proeed as follows:1. Determine by an adaptive algorithm a set of indies �Xi suh that for theGalerkin solution u(i)�i w.r.t. �Xi ofa(u;v) = (f ;v) � b(v; p(i�1)�i�1 ); v 2X ; (5)one has ku(i)�i � ~u(i)k1;
 < qi"i, where ~u(i) denotes the exat solution of(5).2. Determine an index set �Mi suh that the LBB ondition holds. Then,de�ne p(i)�i by(p(i)�i ; q�i) = (p(i�1)�i�1 ; q�i) + �b(u(i)�i ; q�i); q�i 2M�i : (6)The following result has been proven in [6℄.



Theorem 1. Under the above assumptions and with "i > 0 hosen suh thatP1i=1 "i <� 1 the exat solution of the mixed problem an be approximatedwith any desired auray by Algorithm 1:ku� u(i+1)�i+1 k1;
 + kp� p(i)�ik0;
 <� qi :3.2 The LBB ConditionIt was already mentioned that (4) is important for the stability of the nu-merial solution. Moreover, we have seen that it also enters in Algorithm 1.Hene, it is important to have a riterion for (4) at hand that is easy tohek. In the above desribed adaptive framework this means, that we haveto be able to onstrut a spae M� for a given X� suh that (4) holds (seethe seond step in Algorithm 1). Finally, this onstrution must be easy toaomplish and to implement.First, we have to hoose the wavelet bases for X and M appropriately.This has been introdued in [8℄ and may be summarized as follows: hoosewavelet bases 	 := f � : � 2 rXg for X and � := f#� : � 2 rMg for Msuh that the divergene of any vetor �eld  � is a ertain linear ombinationof the dual funtions ~�, i.e., there exist �nite set of indies �(�) � rM suhthat r � � = X�2�(�) �;� ~#� : (7)Using this hoie, the following fat is a onsequene of the general resultstated in [6℄, Theorem 3.2.Theorem 2. For subsets (�X ; �M ) � (rX ;rM), de�ne the wavelet trialspaes X� := span(	�X ) and M� := span(��M ). These spaes ful�ll theLBB ondition (4) provided that�M = B(�X ) := f� 2 �(�) : � 2 �Xg : (8)Moreover, (8) ensures the full equilibrium property, i.e., (r�v�; q�) = 0 foran v� 2X� and all q� 2M� already implies r � v� = 0.4 Divergene Free DisretizationAnother ommonway to form a variational formulation of (1) is to embed thedivergene onstraint into the trial and test spae. This goes bak to Leray[12℄ in 1934. Here, we will follow [10℄. Let us setV := f� 2 C10 (
)n : r �� = 0g ; V := losk�k1;
 (V) : (9)Then, the divergene free variational formulation of (1) reads:



Problem 3. Given a vetor �eld f 2 H�1(
)n, one has to determine theveloity u 2 V suh thata(u;v) = (u;f)0;
; v 2 V : (10)Note that the pressure is eliminated in this formulation and an be ob-tained by means of a postproessing, [10℄. The advantage of (10) is obvioussine we an deal with an ellipti problem in the setting of Setion 2. On theother hand, one has to use a basis for V whih is problemati for many kindsof disretizations.In reent years, divergene free wavelet bases have been onstruted start-ing from the pioneering work by Lemari�e{Rieusset in [11℄, who onstrutedtensor produt divergene free wavelets on IRn. Nowadays, there are also on-strutions on some lasses of bounded domains 
 � IRn available, [13,14℄.We will not desribe the onstrution in detail here, but rather summarizethose properties that we will need here and refer the reader to [14℄ for furtherdetails. In partiular, we will always assume that 
 is hosen in suh a waythat the subsequent onstrution atually is possible.Divergene free wavelets are linear ombinations of suitable wavelet fun-tions in the form  df� = X�2S(�) d�;� � ; (11)where S(�) � r is a �nite subset whose ardinality is independent of �.Moreover, also the values of d�;� do not depend on � in the sense that thefollowing inequality holds independently of ����� X�2S(�) d�;����� <� 1 : (12)Finally, 	 = f � : � 2 rg is a suitable wavelet basis for H10(
)n ful�llingAssumption 1. Their duals ~ df� take the form~ df� = X�2 ~S(�) ~d�;� ~ � ; (13)where ~	 is a dual basis for 	 . Finally, the following result is in general provenin [14℄ (see also [11,13℄): eah vetor �eld � 2 V has a unique expansion� = X�2rdf �  df� ;  2 `2(rdf ) ;and the following estimate holds for �,  df� 2 Hs(
)nk�k2s;
 � X�2rdf 22sj�jj�j2 : (14)



Theorem 3. The divergene free wavelet bases 	df ful�ll Assumption 1 forProblem 3.Proof. Condition (a) is trivially ful�lled sine the bilinear form a(�; �) is ellip-ti on all of H10 (
)n, [10℄. Sine V is a losed subset of H10(
)n, the normequivalene (14) for s = 1 already ensures (b) in Assumption 1. Finally, dueto the properties of S(�) and 	 in (11), we obtaina( df� ; df�0) = X�2S(�) X�02S(�0) d�;�d�0;�0a( �; �0) :In view of (12) and the properties of S(�), we obtain that 	df enforesanalogous deay properties as 	 whih proves (). utReferenes1. K. Arrow, L. Hurwiz, and H. Uzawa, Studies in Nonlinear Programming, Stan-ford University Press, Stanford, CA, 1958.2. A. Barinka, T. Barsh, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and K.Urban, Adaptive wavelet shemes for ellipti problems | Implementation andnumerial experiments, RWTH Aahen, IGPM Preprint 173, 1999.3. A. Cohen, Wavelet methods in numerial analysis, in: Handbook of NumerialAnalysis, North Holland, Amsterdam, to appear.4. A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet shemes for elliptioperator equations | Convergene rates, RWTH Aahen, IGPM Preprint 165,1998.5. S. Dahlke, W. Dahmen, R. Hohmuth, and R. Shneider, Stable multisale basesand loal error estimation for ellipti problems, Appl. Numer. Math. 23, No. 1(1997) 21{48.6. S. Dahlke, R. Hohmuth, and K. Urban, Adaptive wavelet methods for saddlepoint problems, Preprint 1126, Istituto di Analisi Numeria del C. N. R., 1999.7. W. Dahmen, Wavelet and multisale methods for operator equations, Ata Nu-meria 6 (1997) 55{228.8. W. Dahmen, A. Kunoth, and K. Urban, A Wavelet{Galerkin method for theStokes problem, Computing 56 (1996) 259{302.9. W. D�orer, A onvergent adaptive algorithm for Poisson's equation, SIAM J.Numer. Anal. 33 (1996) 1106{1124.10. V. Girault and P.-A. Raviart, Finite Element Methods for Navier{Stokes{Equations, Springer{Verlag, Berlin, 2nd edition, 1986.11. P.G. Lemari�e{Rieusset, Analyses multi-r�esolutions non orthogonales, Commu-tation entre Projeteurs et Derivation et Ondelettes Veteurs �a divergene nulle,Revista Mat. Iberoameriana 8 (1992) 221{236.12. J. Leray, Sur le movement d'un liquide visqueux emplissant l'espae, Ata Math.63 (1934) 193{248.13. K. Urban, On divergene{free wavelets, Adv. Comput. Math. 4, No. 1,2 (1995)51{82.14. K. Urban, Wavelet bases in H(div) and H(url), Preprint 1106, Istituto diAnalisi Numeria del C. N. R., 1998.


