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Abstract. This paper is concerned with the generalization of the continuous shearlet transform
to higher dimensions. Similar to the two-dimensional case, our approach is based on translations,
anisotropic dilations and specific shear matrices. We show that the associated integral transform
again originates from a square-integrable representation of a specific group, the full n-variate shear-
let group. Moreover, we verify that by applying the coorbit theory, canonical scales of smoothness
spaces and associated Banach frames can be derived. We also indicate how our transform can be
used to characterize singularities in signals.

1. Introduction

Modern technology allows for easy creation, transmission and storage of huge amounts of data.
Confronted with a flood of data, such as internet traffic, or audio and video applications, nowadays
the key problem is to extract the relevant information from these sets. To this end, usually the
first step is to decompose the signal with respect to suitable building blocks which are well–suited
for the specific application and allow a fast and efficient extraction. In this context, one particular
problem which is currently in the center of interest is the analysis of directional information. Due
to the bias to the coordinate axes, classical approaches such as, e.g., wavelet or Gabor transforms
are clearly not the best choices, and hence new building blocks have to be developed. In recent
studies, several approaches have been suggested such as ridgelets [2], curvelets [3], contourlets [9],
shearlets [19] and many others. For a general approach see also [18]. Among all these approaches,
the shearlet transform stands out because it is related to group theory, i.e., this transform can be
derived from a square-integrable representation π : S → U(L2(R

2)) of a certain group S, the so-
called shearlet group, see [7]. An admissible function with respect to this group is called a shearlet.
Therefore, in the context of the shearlet transform, all the powerful tools of group representation
theory can be exploited.

So far, the shearlet transform is well developed for problems in R
2. Given a shearlet ψ ∈ L2(R

2),
a signal f ∈ L2(R

2) can be analyzed by its voice transform, the shearlet transform

SHψf(a, s, t) = 〈f, π(a, s, t)ψ(·)〉 = 〈f, |a|−
3
4 ψ(A−1

a S−1
s (· − t))〉, (1)

where a ∈ R
∗, s ∈ R, t ∈ R

2 and

Aa :=

(
a 0

0 sgn (a)
√

|a|

)

and Ss :=

(
1 s
0 1

)

(2)
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denote the parabolic scaling matrix and the shear matrix. By now, the continuous shearlet transform
of two-dimensional functions is already well-established; however, for analyzing higher-dimensional

data sets, there is clearly an urgent need for further generalizations. This is exactly the concern of
this paper.

To our best knowledge, it seems that there exist only few results in this direction: general
semidirect products of subgroups ofGLn(R) with the translation group were considered with respect
to square integrability in [21], see also [18]. Admissible subgroups of the semidirect product of the
Heisenberg group and the symplectic group were examined in [5]. Some important progress has
been achieved for the curvelet case in [1] and for surfacelets in [22]. Our paper provides the first
detailed higher-dimensional shearlet approach.

The first step towards a higher-dimensional shearlet transform is the identification of a suitable
shear matrix. Given an n-dimensional vector space V and a k-dimensional subspace W of V ,
a reasonable model reads as follows: the shear should fix the space W and translate all vectors
parallel to W . That is, for V = W ⊕W ′ and v = w + w′, the shear operation S can be described
as S(v) = w + (w′ + s(w′)) where s is a linear mapping from W ′ to W . Then, with respect to an
appropriate basis of V , the shear operation S corresponds to a block matrix of the form

S =

(
Ik sT

0 In−k

)

, s ∈ R
n−k,k.

Then we are faced with the problem how to choose the block s. Since we want to end up with a
square integrable group representation, one has to be careful. Usually, the number of parameters
has to fit together with the space dimension, for otherwise the resulting group would be either to
large or to small. Since we have n degrees of freedom related with the translates and one degree
of freedom related with the dilation, n − 1 degrees of freedom for the shear component would be
optimal. Therefore one natural choice would be s ∈ R

n−1,1, i.e., k = 1. Indeed, in Section 2 we
show that with this choice the associated multivariate shearlet transform can be interpreted as a
square integrable group representation of a (2n)-parameter group, the full shearlet group. It is a
remarkable fact that this choice is in some sense a canonical one, other (n − 1)-parameter choices
might lead to nice group structures, but the representation will usually not be square integrable,
see Remark 2.5 for details.

Once we have established a square integrable group representation, there is a very natural link to
another useful concept, namely the coorbit space theory introduced by Feichtinger and Gröchenig
in a series of papers [10, 11, 12, 13, 15]. By means of the coorbit space theory, it is possible to derive
in a very natural way scales of smoothness spaces associated with the group representation. In this
setting, the smoothness of functions is measured by the decay of the associated voice transform.
Moreover, by a tricky discretization of the representation, it is possible to obtain (Banach) frames
for these smoothness spaces. Fortunately, it turns out that for our multivariate continuous shearlet
transform, all the necessary conditions for the application of the coorbit space theory can be
established, so that we end up with new canonical smoothness spaces, the multivariate shearlet
coorbit spaces, together with their discretizations.

One of the most important advantages of the two-dimensional continuous shearlet transform is
the fact that it can be used to analyze singularities. Indeed, as outlined in [20], see also [4] for
curvelets, it turns out that the decay of the continuous shearlet transform exactly describes the
location and orientation of the singularities. By our approach these characterizations carry over to
higher-dimensions.

This paper is organized as follows: in Section 2, we introduce the multivariate continuous shearlet
transform and investigate its properties. We establish the full shearlet group and show that its
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representation in L2(R
n) is indeed square integrable. Then, in Section 3, we discuss the relations

with coorbit space theory. We show that all the necessary building block for the application of this
theory can be provided. Consequently, the shearlet coorbit spaces and the associated families of
Banach frames can be established. Finally, in Section 4, we investigate how the n-variate shearlet
transform can be used to detect singularities in signals. It turn out that, similar to the two–
dimensional case, the shape of the singularity is reflected by the decay of the shearlet transform.

2. Multivariate Continuous Shearlet Transform

In this section, we introduce the shearlet transform on L2(R
n). This requires the generalization

of the parabolic dilation matrix and of the shear matrix. We will start with a rather general
definition of shearlet groups in Subsection 2.1 and then restrict ourselves to those groups having
square integrable representations in Subsection 2.1. Let In denote the (n, n)-identity matrix and
0n, resp. 1n the vectors with n entries 0, resp. 1.

2.1. Unitary Representations of the Shearlet Group. We define dilation matrices depending
on one parameter a ∈ R

∗ := R \ {0} by

Aa := diag (a1(a), . . . , an(a)),

where a1(a) := a and aj(a) = sgn (a)|a|αj with αj ∈ (0, 1), j = 2, . . . , n. In order to have directional
selectivity, the dilation factors at the diagonal of Aa should be chosen in an anisotropic way, i.e.,
|ak(a)|, k = 2, . . . , n should increase less than linearly in a as a→ ∞. Our favorite choice will be

Aa :=

(

a 0T

n−1

0n−1 sgn (a)|a|
1
n In−1

)

. (3)

In Section 4, we will see that this choice leads to an increase of the shearlet transform at hyperplane
singularities as |a| → 0. For fixed k ∈ {1, . . . , n}, we define our shear matrices by

S =

(
Ik sT

0n−k,k In−k

)

, s ∈ R
n−k,k. (4)

The shear matrices form a subgroup of GLn(R).

Remark 2.1. Shear matrices on R
n were also considered in [18]. We want to show the relation of

those matrices to our setting (4). The authors in [18] call S ∈ R
n,n a general shear matrix if

(In − S)2 = 0n,n. (5)

Of course, our matrices in (4) fulfill this condition. Condition (5) is equivalent to the fact that S
decomposes as

S = P−1 diag (J1, . . . , Jr, 1n−2r)P, Jj :=

(
1 1
0 1

)

, r ≤ n/2.

With P := (p1, . . . , pn) and P−1 = (q1, . . . , qn)
T this can be written as

S = In +

r∑

j=1

q2j−1p
T

2j, with pT

2jq2i−1 = 0, i, j = 1, . . . , r.

Matrices of the type Sqp := In + q pT with pT q = 0 are called elementary shear matrices. The
general shear matrices do not form a group. In particular, the product of two elementary shear
matrices Sq1p1 and Sq2p2 is again a shear matrix if and only if the matrices commute which is the

case if and only if pT

1 q2 = pT

2 q1 = 0. Then Sq1p1Sq2p2 = In +
∑2

j=1 qjp
T

j holds true. Hence we see
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that any general shear matrix is the product of elementary shear matrices. In [18] any subgroup
of GLn(R) generated by finitely many pairwise commuting elementary matrices is called a shear
group. A shear group is maximal if it is not a proper subgroup of any other shear group. It is not
difficult to show that maximal shear groups are those of the form

G :=






In +

(
k∑

i=1

ciqi

)



n−k∑

j=1

djp
T

j



 : ci, dj ∈ R






, pT

j qi = 0,

with linearly independent vectors qi, i = 1, . . . , k, resp., pj , j = 1, . . . , k. Let {q̃i : i = 1, . . . , k} be
the dual basis of {qi : i = 1, . . . , k} in the linear space V spanned by these vectors and let {p̃j : j =
1, . . . , n − k} be the dual basis of {pj : j = 1, . . . , n− k} in V ⊥. Set P := (q1, . . . , qk, p̃1, . . . , p̃n−k)
so that P−1 = (q̃1, . . . , q̃k, p1, . . . , pn−k)

T. Then we see that for all S ∈ G

P−1 S P =

(
Ik c dT

0n−k,k In−k

)

, c = (c1, . . . , ck)
T, d = (d1, . . . , dn−k)

T.

In other words, up to a basis exchange, the maximal shear groups G coincide with our block matrix
groups in (4).

For our shearlet transform we have to combine dilation matrices and shear matrices. Let Aa,1 :=
diag (a1, . . . , ak) and Aa,2 := diag (ak+1, . . . , an). We will use the relations

S−1
s =

(
Ik −sT

0n−k,k In−k

)

and SsAaSs′Aa′ = Ss+A−1
a,2s

′Aa,1
Aaa′ . (6)

For the special setting in (3), the last relation simplifies to

SsAaSs′Aa′ = S
s+|a|1−

1
n s′

Aaa′ .

Lemma 2.2. The set R
∗ × R

k(n−k) × R
n endowed with the operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, s +A−1
a,2 s

′Aa,1, t+ SsAat
′)

is a locally compact group S. The left and right Haar measures on S are given by

dµl(a, s, t) =
|detAa,2|

k−1

|a||detAa,1|n−k+1
da ds dt and dµr(a, s, t) =

1

|a|
da ds dt.

Proof. By the left relation in (6) it follows that e := (1, 0n−1, 0n) is the neutral element in S and

that the inverse of (a, s, t) ∈ R
∗ × R

k(n−k) × R
n is given by

(a, s, t)−1 =
(
a−1,−Aa,2 sA

−1
a,1,−A

−1
a S−1

s t).

By straightforward computation it can be checked that the multiplication is associative.
Further, we have for a function F on S that

∫

S

F
(
(a′, s′, t′) ◦ (a, s, t)

)
dµl(a, s, t) =

∫

R

∫

Rk(n−k)

∫

Rn

F (a′a, s′+A−1
a′,2 sAa′,1, t

′+Ss′Aa′t) dµl(a, s, t).

By substituting t̃ := t′ + Ss′Aa′t, i.e., dt̃ = |detAa′ | dt and s̃ := s′ +A−1
a′,2 sAa′,1, i.e.,

ds̃ = |detAa′,1|
n−k/|detAa′,2|

k ds and ã := a′a this can be rewritten as
∫

Rn

∫

Rk(n−k)

∫

R

F (ã, s̃, t̃)
1

|detAa′ |

|detAa′,2|
k

|detAa′,1|n−k
1

|a′|

|a′||detAa′,1|
n−k+1

|detAa′,2|k−1
dµl(ã, s̃, t̃)
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so that dµl is indeed the left Haar measure on S. Similarly we can verify that dµr is the right Haar
measure on S. �

In the following, we use only the left Haar measure and the abbreviation dµ = dµl. For f ∈
L2(R

n) we define

π(a, s, t)f(x) = fa,s,t(x) := |detAa|
− 1

2 f(A−1
a S−1

s (x− t)). (7)

It is easy to check that π : S → U(L2(R
n)) is a mapping from S into the group U(L2(R

n)) of unitary
operators on L2(R

n). The Fourier transform of fa,s,t is given by

f̂a,s,t(ω) =

∫

Rn

fa,s,t(x)e
−2πi〈x,ω〉 dx

= |detAa|
1
2 e−2πi〈t,ω〉 f̂(AT

aS
T

s ω)

= |detAa|
1
2 e−2πi〈t,ω〉 f̂

(
aω̃1

Aa,2(s ω̃1 + ω̃2)

)

(8)

where ω̃1 := (ω1, · · · , ωk)
T and ω̃2 := (ωk+1, · · · , ωn)

T.
Recall that a unitary representation of a locally compact group G with the left Haar measure µ

on a Hilbert space H is a homomorphism π from G into the group of unitary operators U(H) on
H which is continuous with respect to the strong operator topology.

Lemma 2.3. The mapping π defined by (7) is a unitary representation of S.

Proof. Let ψ ∈ L2(R
n), x ∈ R

n, and (a, s, t), (a′, s′, t′) ∈ S. Using (6) we obtain

π(a, s, t)(π(a′, s′, t′)ψ)(x) = |detAa|
− 1

2π(a′, s′, t′)ψ(A−1
a S−1

s (x− t))

= |detAaa′ |
− 1

2ψ(A−1
a′ S

−1
s′ (A−1

a S−1
s (x− t) − t′))

= |detAaa′ |
− 1

2ψ(A−1
a′ S

−1
s′ A

−1
a S−1

s (x− (t+ SsAat
′)))

= |detAaa′ |
− 1

2ψ(A−1
aa′S

−1

s+A−1
a,2 s

′Aa,1
(x− (t+ SsAat

′)))

= π((a, s, t) ◦ (a′, s′, t′))ψ(x).

�

2.2. Square Integrable Representations of the Shearlet Group. A nontrivial function ψ ∈
L2(R

n) is called admissible, if
∫

S

|〈ψ, π(a, s, t)ψ〉|2dµ(a, s, t) <∞.

If π is irreducible and there exits at least one admissible function ψ ∈ L2(R
n), then π is called

square integrable.
In the rest of this paper, we deal with shear matrices (4) with k = 1, i.e.,

Ss :=

(
1 sT

0n−1 In−1

)

, s ∈ R
n−1. (9)

Then we have that

dµl(a, s, t) =
1

|a|n+1
da ds dt.

We will see in Remark 2.5 that this choice is canonical. The following result shows that in this case
the unitary representation π defined in (7) is square integrable.
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Theorem 2.4. A function ψ ∈ L2(R
n) is admissible if and only if it fulfills the admissibility

condition

Cψ :=

∫

Rn

|ψ̂(ω)|2

|ω1|n
dω <∞. (10)

Then, for any f ∈ L2(R
n), the following equality holds true:

∫

S

|〈f, ψa,s,t〉|
2 dµ(a, s, t) = Cψ ‖f‖2

L2(Rn) . (11)

In particular, the unitary representation π is irreducible and hence square integrable.

Proof. Employing the Plancherel theorem and (8), we obtain with ψ∗
a,s,0(x) := ψa,s,0(−x) that

∫

S

|〈f, ψa,s,t〉|
2 dµ(a, s, t) =

∫

S

|f ∗ ψ∗
a,s,0(t)|

2 dt ds
da

|a|n+1

=

∫

R

∫

Rn−1

∫

Rn

|f̂(ω)|2|ψ̂∗
a,s,0(ω)|2 dω ds

da

|a|n+1

=

∫

R

∫

Rn−1

∫

Rn

|f̂(ω)|2|detAa||ψ̂(AT

aS
T

s ω)|2 dω ds
da

|a|n+1
(12)

=

∫

R

∫

Rn

∫

Rn−1

|f̂(ω)|2
|detAa,2|

|a|n
|ψ̂

(
aω1

Aa,2(ω̃ + ω1s)

)

|2 ds dω da.

Substituting ξ̃ := Aa,2(ω̃ + ω1s), i.e., |detAa,2| |ω1|
n−1 ds = dξ̃, we obtain

∫

S

|〈f, ψa,s,t〉|
2 dµ(a, s, t) =

∫

R

∫

Rn

∫

Rn−1

|f̂(ω)|2 |a|−n |ω1|
−(n−1) |ψ̂

(
aω1

ξ̃

)

|2 dξ̃ dω da.

Next, we substitute ξ1 := aω1, i.e., ω1 da = dξ1 which results in
∫

S

|〈f, ψa,s,t〉|
2 dµ(a, s, t) =

∫

R

∫

Rn

∫

Rn−1

|f̂(ω)|2
|ω1|

n

|ξ1|n|ω1|n
|ψ̂

(
ξ1
ξ̃

)

|2 dξ̃ dω dξ1 = Cψ ‖f‖
2
L2(Rn).

Setting f := ψ, we see that ψ is admissible if and only if Cψ is finite.
The irreducibility of π follows from (11) in the same way as in [6]. �

By the following remark, the choice of the shear matrix Ss with k = 1 is canonical to ensure that
π is a square integrable representation.

Remark 2.5. Assume that our shear matrix has the form (4) with sT = (sij)
p,n−p
i,j=1 ∈ R

k,n−k. Let

s contain N different entries (variables). We assume that N ≥ n − 1 since we have one dilation
parameter and otherwise the group becomes too small. Then we obtain instead of (12)

∫

S

|〈f, ψa,s,t〉|
2 dµ(a, s, t) =

∫

R

∫

Rn

∫

RN

|f̂(ω)|2|detAa| |ψ̂(Aa

(
ω̃1

ω̃2 + sω̃1

)

)|2 dµ(a, s, t) (13)

where ω̃1 := (ω1, . . . , ωk)
T and ω̃2 := (ωk+1, . . . , ωn)

T. Now we can use the following substitution
procedure:

ξk+1 := (ωk+1 + s11ω1 + . . .+ s1kωk), (14)

i.e., dξk+1 = |ω1|ds11 and with corresponding modifications if some of the s1j, j > 1 are the same as
s11. Then we replace s11 in the other rows of ω̃2 + sω̃1 where it appears by (14). Next we continue
to substitute the second row if it contains an integration variable from s (6= s11). Continuing this

substitution process up to the final row we have at the end replaced the lower n− k values in ψ̂ by
n− r, r ≤ k variables ξ1 = ξj1, . . . , ξjn−r and some functions depending only on a, ω, ξj1, . . . , ξjn−r .
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Consequently, the integrand depends only on these variables. However, we have to integrate over
a, ω, ξj1 , . . . , ξjn−r and over the remaining N − (n − r) variables from s. But then the integral in
(13) becomes infinity unless N = n− r. Since n− 1 ≤ N this implies r = k = 1, i.e., our choice of
Ss with (9).

A function ψ ∈ L2(R
n) fulfilling the admissibility condition (10) is called a continuous shearlet,

the transform SHψ : L2(R
n) → L2(S),

SHψf(a, s, t) := 〈f, ψa,s,t〉 = (f ∗ ψ∗
a,s,0)(t), (15)

continuous shearlet transform and S defined in Lemma 2.2 with (9) a shearlet group.

Remark 2.6. An example of a continuous shearlet can be constructed as follows: Let ψ1 be a
continuous wavelet with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−2,−1

2 ] ∪ [12 , 2], and let ψ2 be such that

ψ̂2 ∈ C∞(Rn−1) and supp ψ̂2 ⊆ [−1, 1]n−1. Then the function ψ ∈ L2(Rn) defined by

ψ̂(ω) = ψ̂(ω1, ω̃) = ψ̂1(ω1) ψ̂2

(
1

ω1
ω̃

)

is a continuous shearlet. The support of ψ̂ is depiced for ω1 ≥ 0 in Fig. 1.

Remark 2.7. In [21] the authors consider admissible subgroups G of GLn(R), i.e., those subgroups
for which the semidirect product with the translation group gives rise to a square integrable re-

presentation π(g, t)f(x) = |det g|−
1
2 f(g−1(x− t)). Let △ denotes the modular function on G, i.e.,

dµl(g) = △(g) dµr(g) and write △ ≡ |det | to mean that △(g) = |det g| for all g ∈ G. Then [21]
contains the following result:

i) If G is admissible, then △ 6≡ |det | and G0
x := {g ∈ G : gx = x} is compact for a.e. x ∈ R

n.
ii) If △ 6≡ |det | and for a.e. x ∈ R

n there exits ε(x) > 0 such that Gεx : {g ∈ G : |gx − x| ≤
ε(x)} is compact, then G is admissible.

Unfortunately, the above conditions ”just fail” to be a characterization of admissibility by the ”ε-
gap” in the compactness condition. In our case we have that △ 6≡ |det | since |a|−n 6= |a| |a|α2+...+αn

for |a| 6= 1. Further, G0
x = (1, 0n−1) a.e. and Gεx = {(a, s) : |a| ∈ [1 − ε1, 1 + ε1], sj ∈ [−εj , εj ], j =

2, . . . , n} a.e. for some small εj , so that the necessary condition i) and the sufficient condition ii)
are fulfilled.

3. Multivariate Shearlet Coorbit Theory

In this section we want to establish a coorbit theory based on the square integrable representation
(7) of the shearlet group defined with (3) and (9). We mainly follow the lines of [6]. For further
information on coorbit space theory, the reader is referred to [10, 11, 12, 13, 15].

3.1. Shearlet Coorbit Space. We consider weight functions w(a, s, t) = w(a, s) that are lo-
cally integrable with respect to a and s, i.e., w ∈ Lloc1 (Rn) and fulfill w ((a, s, t) ◦ (a′, s′, t′)) ≤
w(a, s, t)w(a′, s′, t′) and w(a, s, t) ≥ 1 for all (a, s, t), (a′, s′, t′) ∈ S. For 1 ≤ p <∞, let

Lp,w(S) := {F measurable on S : ‖F‖Lp,w(S) :=

(∫

S

|F (g)|p w(a, s, t)pdµ(a, s, t)

)1/p

<∞},

and let L∞,w be defined with the usual modifications. In order to construct the coorbit spaces
related to the shearlet group we have to ensure that there exists a function ψ ∈ L2(R

n) such that

SHψ(ψ) = 〈ψ, π(a, s, t)ψ〉 ∈ L1,w(S). (16)
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Figure 1. Support of the shearlet ψ̂ in Remark 2.6 for ω1 ≥ 0.

Concerning the integrability of group extensions we also mention [17]. To this end, we need a
preliminary lemma on the support of ψ.

Lemma 3.1. Let a1 > a0 ≥ α > 0 and b = (b1, . . . , bn−1)
T be a vector with positive components.

Suppose that supp ψ̂ ⊆ ([−a1,−a0]∪ [a0, a1])×Qb, where Qb := [−b1, b1]×· · ·× [−bn−1, bn−1]. Then

ψ̂ψ̂a,s,0 6≡ 0 implies a ∈
[
− a1

a0
,−a0

a1

]
∪
[
a0
a1
, a1a0

]
and s ∈ Qc, where c := 1+(a1/a0)1/n

a0
b.

Proof. Let us first dicusss the case a > 0. By (8) we see that the following conditions are necessary

for ψ̂(ω)ψ̂a,s,0(ω) 6≡ 0:

i)
a0 ≤ ω1 ≤ a1 and a0

a ≤ ω1 ≤ a1
a or

−a1 ≤ ω1 ≤ −a0 and −a1
a ≤ ω1 ≤ −a0

a ,

ii) −b ≤ ω̃ ≤ b and − a−1/nb− ω1s ≤ ω̃ ≤ a−1/nb− ω1s

where ω̃ := (ω2, . . . , ωn−1)
T and ii) is meant componentwise. Condition i) implies that

a ∈
[a0

a1
,
a1

a0

]
. (17)

For si ≥ 0 and a0 ≤ ω1 ≤ a1 the second condition in ii) becomes

−a−1/nbi − sia1 ≤ ωi+1 ≤ a−1/nbi − sia0

and with (17) further

−

(
a0

a1

)−1/n

bi − sia1 ≤ ωi+1 ≤

(
a0

a1

)−1/n

bi − sia0.

Together with the first condition in ii) this results in si ≤
bi
a0

(
1+
(
a1
a0

)1/n)
. The same condition can

be deduced for si ≥ 0 and −a1 ≤ ω1 ≤ −a0.

For si < 0 and a0 ≤ ω1 ≤ a1 or −a1 ≤ ω1 ≤ −a0, we obtain that si ≥ − bi
a0

(
1 +

(
a1
a0

)1/n)
is

necessary for ψ̂(ω)ψ̂a,s,0(ω) 6≡ 0.
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Finally, the case a < 0 can be treated similarly which results in a ∈
[
− a1

a0
,−a0

a1

]
. This completes

the proof. �

Now we can prove the required property (16) of SHψ(ψ).

Theorem 3.2. Let ψ be a Schwartz function such that supp ψ̂ ⊆ ([−a1,−a0]∪ [a0, a1])×Qb. Then

we have that SHψ(ψ) ∈ L1,w(S), i.e.,

‖〈ψ, π(·)ψ〉‖L1,w (S) =

∫

S

|SHψ(ψ)(a, s, t)|w(a, s, t) dµ(a, s, t) <∞.

Proof. Straightforward computation gives

‖〈ψ, π(·)ψ〉‖L1,w (S) =

∫

R

∫

Rn−1

∫

Rn

|〈ψ,ψa,s,t〉|w(a, s) dtds
da

|a|n+1

=

∫

R

∫

Rn−1

∫

Rn

|ψ ∗ ψ∗
a,s,0(t)|w(a, s) dtds

da

|a|n+1

=

∫

R

∫

Rn−1

∫

Rn

|F−1F
(
ψ ∗ ψ∗

a,s,0

)
(t)| dtw(a, s) ds

da

|a|n+1

=

∫

R

∫

Rn−1

‖F
(
ψ ∗ ψ∗

a,s,0

)
‖F−1L1

w(a, s) ds
da

|a|n+1

=

∫

R

∫

Rn−1

‖ψ̂
¯̂
ψa,s,0‖F−1L1

w(a, s) ds
da

|a|n+1
,

where ‖f‖F−1L1(Rn) :=
∫

Rn |F−1f(x)| dx for f ∈ L1(R
n). By Lemma 3.1 this can be rewritten as

‖〈ψ, π(·)ψ〉‖L1,w (S) =

(
∫ −a0/a1

−a1/a0

+

∫ a1/a0

a0/a1

)
∫

Qc

‖ψ̂ ψ̂∗
a,s,0‖F−1L1(Rn) w(a, s) ds

da

|a|n+1
,

which is obviously finite. �

For ψ satisfying (16) we can consider the space

H1,w := {f ∈ L2(R
n) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)}, (18)

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dual H∼
1,w, the space of all continuous conjugate-

linear functionals on H1,w. The spaces H1,w and H∼
1,w are π-invariant Banach spaces with continuous

embeddings H1,w →֒ H →֒ H∼
1,w, and their definition is independent of the shearlet ψ. Then the

inner product on L2(R
n) × L2(R

n) extends to a sesquilinear form on H∼
1,w × H1,w, therefore for

ψ ∈ H1,w and f ∈ H∼
1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼

1,w×H1,w

are well-defined. Now, for 1 ≤ p ≤ ∞, we define the shearlet coorbit spaces

SCp,w := {f ∈ H∼
1,w : SHψ(f) ∈ Lp,w(S)} (19)

with norms ‖f‖SCp,w := ‖SHψf‖Lp,w(S). It holds that SC1,w = H1,w and SC1,1 = L2(R
n).
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3.2. Shearlet Banach Frames. The Feichtinger-Gröchenig theory provides us with a machinery
to construct atomic decompositions and Banach frames for our shearlet coorbit spaces SCp,w. In
a first step, we have to determine, for a compact neighborhood U of e ∈ S with non-void interior,
so-called U–dense sets. A (countable) family X = ((a, s, t)λ)λ∈Λ in S is said to be U -dense if
∪λ∈Λ(a, s, t)λU = S, and separated if for some compact neighborhood Q of e we have (ai, si, ti)Q ∩
(aj , sj, tj)Q = ∅, i 6= j, and relatively separated if X is a finite union of separated sets.

Lemma 3.3. Let U be a neighborhood of the identity in S, and let α > 1 and β, γ > 0 be defined

such that

[α
1
n
−1, α

1
n ) × [−β

2 ,
β
2 )n−1 × [−γ

2 ,
γ
2 )n ⊆ U. (20)

Then the sequence

{(ǫαj , βαj(1−
1
n

)k, S
βαj(1− 1

n )k
Aαjγm) : j ∈ Z, k ∈ Z

n−1,m ∈ Z
n, ǫ ∈ {−1, 1}} (21)

is U -dense and relatively separated.

Proof. Set

U0 := [α
1
n
−1, α

1
n ) × [−β

2 ,
β
2 )n−1 × [−γ

2 ,
γ
2 )n.

It is sufficient to prove that the sequence (21) is U0-dense.
For this, fix any (x, y, z) ∈ S. In the following we assume that x ∈ R

+ in which case we have to
set ǫ = 1. If x < 0, the same arguments apply while choosing ǫ = −1. We have that

(αj , βαj(1−
1
n

)k, S
βαj(1− 1

n )k
Aαjγm) ◦ U0 = {(αju, αj(1−

1
n

)(βk + v), S
βαj(1− 1

n )k
Aαj (γm+ w)) :

(u, v,w) ∈ U0}.

Then [logα x + ( 1
n − 1), logα x + 1

n) contains a unique integer j, and there exists a unique u ∈

[α
1
n
−1, α

1
n ) such that logα x = logα u+ j. Further, there exist unique k ∈ Z

n−1 and v ∈ [−β
2 ,

β
2 )n−1

so that βk + v = αj(
1
n
−1)y. Finally, we have that

S
βαj(1− 1

n )k
Aαj (γm+ w) =

(
αj (γm1 + w1) + β〈k, γm̃+ w̃〉)

α
j
n (γm̃+ w̃)

)

.

There exist unique m̃ ∈ Z
n−1 and w̃ ∈ [−γ

2 ,
γ
2 )n−1 such that γm̃+ w̃ = α− j

n z̃ and unique m1 ∈ Z

and w1 ∈ [−γ
2 ,

γ
2 ) such that γm1 + w1 = α−jz1 − βα− j

n 〈k, z̃〉. We have shown that there exist

unique (u, v,w) ∈ U0 and j ∈ Z, k ∈ Z
n−1, m ∈ Z

n such that

(x, y, z) = (αju, αj(1−
1
n

)(βk + v), S
βαj(1− 1

n )k
Aαj (γm+w)).

Finally, the uniqueness of the decomposition proves immediately that the chosen sequence is
relatively separated. �

Next we define the U–oscillation as

oscU (a, s, t) := sup
u∈U

|SHψ(ψ)(u ◦ (a, s, t)) − SHψ(ψ)(a, s, t)|. (22)

Then, the following decomposition theorem, which was proved in a general setting in [10, 11, 12,
13, 15], says that discretizing the representation by means of an U -dense set produces an atomic
decomposition for SCp,w.
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Theorem 3.4. Assume that the irreducible, unitary representation π is w-integrable and let an

appropriately normalized ψ ∈ L2(R
n) which fulfills

M〈ψ, π(a, s, t)〉 := sup
u∈(a,s,t)U

|〈ψ, π(u)ψ〉| ∈ L1,w(S) (23)

be given. Choose a neighborhood U of e so small that

‖ oscU ‖L1,w(S) < 1. (24)

Then for any U -dense and relatively separated set X = ((a, s, t)λ)λ∈Λ the space SCp,w has the

following atomic decomposition: If f ∈ SCp,w, then

f =
∑

λ∈Λ

cλ(f)π((a, s, t)λ)ψ (25)

where the sequence of coefficients depends linearly on f and satisfies

‖(cλ(f))λ∈Λ‖ℓp,w ≤ C‖f‖SCp,w (26)

with a constant C depending only on ψ and with ℓp,w being defined by

ℓp,w := {c = (cλ)λ∈Λ : ‖c‖ℓp,w := ‖cw‖ℓp <∞},

where w = (w((a, s, t)λ))λ∈Λ. Conversely, if (cλ(f))λ∈Λ ∈ ℓp,w, then f =
∑

λ∈Λ cλπ((a, s, t)λ)ψ is

in SCp,w and

‖f‖SCp,w ≤ C ′‖(cλ(f))λ∈Λ‖ℓp,w . (27)

Given such an atomic decomposition, the problem arises under which conditions a function f is
completely determined by its moments 〈f, π((a, s, t)λ)ψ〉 and how f can be reconstructed from these
moments. This is answered by the following theorem which establishes the existence of Banach
frames.

Theorem 3.5. Impose the same assumptions as in Theorem 3.4. Choose a neighborhood U of e
such that

‖ oscU ‖L1,w(S) < 1/‖SHψ(ψ)‖L1,w(S). (28)

Then, for every U -dense and relatively separated family X = ((a, s, t)λ)λ∈Λ in G the set {π((a, s, t)λ)ψ :
λ ∈ Λ} is a Banach frame for SHp,w. This means that

i) f ∈ SCp,w if and only if (〈f, π((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ ∈ ℓp,w;

ii) there exist two constants 0 < D ≤ D′ <∞ such that

D ‖f‖SCp,w ≤ ‖(〈f, π((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ‖ℓp,w ≤ D′ ‖f‖SCp,w ; (29)

iii) there exists a bounded, linear reconstruction operator S from ℓp,w to SCp,w such that

S
(

(〈f, ψ((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ

)

= f.

It remains to check how the conditions (23), (24) and (28) can be ensured. To this end, we need
the following lemma which was proved in a general setting in [15].

Lemma 3.6. Let SHψ(ψ) ∈ L1,w(S) and oscU ∈ L1,w(S) for one compact neighborhood U of e.
Then we have that ψ fulfills (23). If, in addition, SHψ(ψ) is continuous, then

lim
U→{e}

‖ oscU ‖L1,w(S) = 0. (30)

To apply the whole machinery of Theorems 3.4 and 3.5 to our shearlet group setting it remains
to prove that ‖ oscU ‖L1,w(S) becomes arbitrarily small for a sufficiently small neighborhood U of e.
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Theorem 3.7. Let ψ be a function contained in the Schwartz space S with supp ψ̂ ⊆ ([−a1,−a0]∪
[a0, a1]) ×Qb. Then, for every ε > 0, there exists a sufficiently small neighborhood U of e so that

‖ oscU ‖L1,w(S) ≤ ε. (31)

Proof. By Theorem 3.2 we have that SHψ(ψ) ∈ L1,w(S). Moreover, it is easy to check that SHψ(ψ)
is continuous on S. Thus, by Lemma 3.6, it remains to show that oscU ∈ L1,w(S) for some compact
neighborhood of e. By definition of oscU and Parseval’s identity we have that

oscU (a, s, t) = sup
(α,β,γ)∈U

∣
∣〈ψ̂, ψ̂a,s,t〉 − 〈ψ̂, ψ̂(α,β,γ)(a,s,t)〉

∣
∣

= sup
(α,β,γ)∈U

∣
∣
∣|a|1−

1
2nF

(

ψ̂(AaS
T

s ·)
¯̂
ψ
)

(t) − |aα|1−
1
2nF

(

ψ̂(AaαS
T

β+α1−1/ns
·)

¯̂
ψ
)

(γ + SβAαt)
∣
∣
∣ ,

where we can assume that α > 0. By Lemma 3.1, we see that for (α, β) in a sufficiently small

neighborhood of (1, 0n−1), the function ψ̂(AaαS
T

β+α1−1/ns
·)

¯̂
ψ becomes zero except for values a con-

tained in two finite intervals away from zero and values s in a finite interval. Thus, it remains to
show that

∫

Rn oscU (a, s, t)w(a, s) dt ≤ C(a, s) with a finite constant C(a, s). The main idea is to
split the integral into three parts

∫

Rn

oscU (a, s, t)w(a, s) dt = |a|1−
1
2n (I1 + I2 + I3),

where

I1 :=

∫

Rn

sup
(α,β,γ)∈U

∣
∣|1 − α1− 1

2n |F
(

ψ̂(AaS
T

s ·)
¯̂
ψ
)

(t)w(a, s) dt

I2 :=

∫

Rn

sup
(α,β,γ)∈U

α1− 1
2n

∣
∣F
(

ψ̂(AaS
T

s ·)
¯̂
ψ
)

(t) −F
(

ψ̂(AaS
T

s ·)
¯̂
ψ
)

(γ + SβAαt)
∣
∣w(a, s) dt

I3 :=

∫

Rn

sup
(α,β,γ)∈U

α1− 1
2n

∣
∣F
(

ψ̂(AaS
T

s ·)
¯̂
ψ
)

(γ + SβAαt)

− F
(

ψ̂(AaαS
T

β+α1−1/ns
·)

¯̂
ψ
)

(γ + SβAαt)
∣
∣w(a, s) dt.

The integrals I1 and I3 can be exacly handled as in the proof of [6, Theorem 3.7]. The same holds
true for I2 except that we have to replace t2 ∈ R in the proof [6, Theorem 3.7] by t̃ ∈ R

n−1, where
t = (t1, t̃

T)T. The corresponding estimates are detailed in [8]. �

4. Analysis of Singularities

In this section, we deal with the decay of the shearlet transform at hyperplane singularities
in R

n and at special simplex singularities in R
3. For the behaviour of the shearlet transform at

singularities in R
2 we refer to [20, 23].

4.1. Hyperplane Singularities. We consider (n − m)-dimensional hyperplanes in R
n, m =

1, . . . , n− 1 through the origin given by





x1
...
xm






︸ ︷︷ ︸

xA

+ P






xm+1
...
xn






︸ ︷︷ ︸

xE

=






0
...
0




 , P :=






pT

1
...
pT

m




 ∈ R

m,n−m. (32)
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Note that this setting excludes some special hyperplanes, e.g., for n = 3 andm = 1 planes containing
the x1-axis and for n = 3 and m = 2 lines contained within the x1x2–plane. To detect such
hyperplane singularities one has to perform a simple variable exchange in the shearlet stetting or
to define ,,shearlets on the cone” similar to [20].

Let δ denote the Delta distribution. Then we obtain for

νm := δ(xA + PxE)

that

ν̂m(ω) =

∫

Rn

δ(xA + PxE)e−2πi(〈xA ,ωA〉+〈xE ,ωE〉) dx

=

∫

Rn−m

e−2πi(−〈PxE ,ωA〉+〈xE ,ωE〉) dxE

= δ(ωE − PTωA). (33)

The following theorem describes the decay of the shearlet transform at hyperplane singularities.
We use the notation SHψf(a, s, t) ∼ |a|r as a → 0, if there exist constants 0 < c ≤ C < ∞ such
that

c|a|r ≤ SHψf(a, s, t) ≤ C|a|r as a→ 0.

Theorem 4.1. Let ψ ∈ L2(R
n) be a shearlet satisfying ψ̂ ∈ C∞(Rn). Assume further that

ψ̂(ω) = ψ̂1(ω1)ψ̂2(ω̃/ω1), where supp ψ̂1 ∈ [−a1,−a0] ∪ [a0, a1] for some a1 > a0 ≥ α > 0,
∫

R
ψ̂1(ξ)|ξ|

m−1 dξ 6= 0, m = 1, . . . , n− 1 and supp ψ̂2 ∈ Qb. If

(sm, . . . , sn−1) = (−1, s1, . . . , sm−1)P and (t1, . . . , tm) = −(tm+1, . . . , tn)P
T, (34)

then

SHψνm(a, s, t) ∼ |a|
1−2m

2n as a→ 0. (35)

Otherwise, the shearlet transform SHψνm decays rapidly as a→ 0.

The condition (34) requires that the the shearlet is aligned with the hyperplane (32) and that t
lies within the hyperplane.

The condition on ψ̂1 and ψ̂2 can be relaxed toward a rapid decay of the functions.

Proof. An application of Plancherel’s theorem for tempered distribution together with (33) and (8)
yields

SHψνm(a, s, t) := 〈νm, ψa,s,t〉

= 〈ν̂m, ψ̂a,s,t〉

=

∫

Rn

δ(ωE − PTωA)|a|1−
1
2n e2πi〈t,ω〉

¯̂
ψ
(

aω1, sgn(a)|a|
1
n (ω1s+ ω̃)

)

dω

= |a|1−
1
2n

∫

Rm

e2πi〈tA+PtE ,ωA〉 ¯̂
ψ

(

aω1, sgn(a)|a|
1
n (ω1s+

(
ω̃A

PTωA

)

)

)

dωA

with ω̃A = (ω2, . . . , ωm)T. By definition of ψ̂ this can be rewritten as

SHψνm(a, s, t) = |a|1−
1
2n

∫

Rm

e2πi〈tA+PtE ,ωA〉 ¯̂
ψ1(aω1)

¯̂
ψ2

(

|a|
1
n
−1(s+

1

ω1

(
ω̃A

PTωA

)

)

)

dωA.
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Substituting ξ̃A = (ξ2, . . . , ξm)T := ω̃A/ω1, i.e., dω̃A = |ω1|
m−1 dξ̃A, we get

SHψνm(a, s, t) = |a|1−
1
2n

∫

R

∫

Rm−1

e2πiω1〈tA+PtE ,(1,ξ̃
T
A)T〉 ¯̂

ψ1(aω1)|ω1|
m−1

×
¯̂
ψ2

(

|a|
1
n
−1(s+

(
ξ̃A

PT(1, ξ̃T

A)T

)

)

)

dξ̃Adω1

and further by substituting ξ1 := aω1

SHψνm(a, s, t) = |a|1−m− 1
2n

∫

Rm−1

∫

R

e2πi
ξ1
a
〈tA+PtE ,(1,ξ̃

T
A )T〉|ξ1|

m−1 ¯̂
ψ1(ξ1) dξ1

×
¯̂
ψ2

(

|a|
1
n
−1(s+

(
ξ̃A

PT(1, ξ̃T

A)T

)

)

)

dξ̃A.

Finally, by substituting ω̃A := |a|
1
n
−1(ξ̃A+sa), where sa := (s1, . . . , sm−1)

T and se := (sm, . . . , sn−1)
T,

we obtain

SHψνm(a, s, t) = |a|
1−2m

2n

∫

Rm−1

∫

R

e2πi
ξ1
a
〈tA+PtE ,(1,|a|

1−1/nω̃T
A−sTa )〉|ξ1|

m−1 ¯̂
ψ1(ξ1) dξ1

×
¯̂
ψ2





ω̃A

|a|
1
n
−1
(
se − PT

(
−1
sa

)
)

+ PT

(
0
ω̃A

)



 dω̃A.

If the vector

se − PT

(
−1
sa

)

6= 0n−m (36)

then at least one component of its product with |a|1/n−1 becomes arbitrary large as a→ 0. On the

other hand, by the support property of ψ̂2, we conclude that ψ̂2(ω̃A, ·) becomes zero if we ω̃A is not
in Q(b1,...,bm−1) ⊂ Rm−1. But for all ω̃A ∈ Q(b1,...,bm−1) at least one component of

|a|
1
n
−1
(
se − PT

(
1
sa

)
)

+ PT

(
0
ω̃A

)
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is not within the support of ψ̂2 for a sufficiently small so that ψ̂2 becomes zero again. Assume now
that we have equality in (36). Then

SHψνm(a, s, t) = |a|
1−2m

2n

∫

Rm−1

∫

R

e2πi
ξ1
a
〈tA+PtE ,(1,|a|

1−1/nω̃T
A−sTa )〉|ξ1|

m−1 ¯̂
ψ1(ξ1) dξ1

×
¯̂
ψ2





ω̃A

PT

(
0
ω̃A

)



 dω̃A

= C |a|
1−2m

2n

∫

Rm−1

ψ̃
(m−1)
1

(

〈tA + PtE , (1, |a|
1−1/nω̃T

A − sT

a )〉/a
)

×
¯̂
ψ2





ω̃A

PT

(
0
ω̃A

)



 dω̃A

= C |a|
1−2m

2n

∫

Rm−1

ψ̃
(m−1)
1

(

〈tA + PtE,

(
|a|1/n−1

ω̃T

A − |a|1/n−1sa

)

〉 |a|−1/n

)

×
¯̂
ψ2





ω̃A

PT

(
0
ω̃A

)



 dω̃A,

where ψ̃1 has the Fourier transform
ˆ̃
ψ1(ξ1) :=

¯̂
ψ1(ξ1) for ξ1 ≥ 0 and

ˆ̃
ψ1(ξ1) := −

¯̂
ψ1(ξ1) for ξ1 < 0.

Since by our assumptions the support of ψ̂1 is bounded away from the origin, we see that ˆ̃ψ1 is

again in C∞(R). If tA + PtE 6= 0m, then, since ψ̂1 ∈ C∞ the function ψ̃
(m−1)
1 decays rapidly as

a → 0 for all ω̃A in the bounded domain, where ψ̂2 doesn’t become zero. Consequently, the value

of the shearlet transform decays rapidly. If tA + PtE = 0m and ψ̃
(m−1)
1 (0) 6= 0, then

SHψνm(a, s, t) = C |a|
1−2m

2n ψ̃
(m−1)
1 (0)

∫

Rm−1

¯̂
ψ2





ω̃A

PT

(
0
ω̃A

)



 dω̃A ∼ |a|
1−2m

2n .

This finishes the proof. �

Remark 4.2. Other choices of the dilation matrix are possible, e.g.,

Aa :=

(

a 0T

n−1

0n−1 sgn (a)
√

|a| In−1

)

.

Then we have to replace (35) by |a|
n−2m−1

4 which increases for n < 2m+ 1 as a→ 0. Therefore, we
prefer our choice.

4.2. Tetrahedron Singularities. In the following, we deal with the cone C in the first octant of
R

3 given by

C := {x = C t : t ≥ 0 componentwise}, (37)

where

C := (p q r) =





1 1 1
p1 q1 r1
p2 q2 r2



 , pj, qj , rj > 0, j = 1, 2
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and the vectors p, q, r are linearly independent. The vector

npq :=

(

1,
p2 − q2

p1q2 − p2q1
,

q1 − p1

p1q2 − p2q1

)
T

=
(
1, ñT

pq

)
T

is a multiple of the normal vector of the plane spanned by p and q. Similarly, we use the notation
npr, nqr for the corresponding vectors perpendicular to the pr-plane and qr-plane. Let χC denote
the characteristic function of the cone C. Since the Fourier transform of the Heavyside function H
is

Ĥ(ω) =
1

2πi
pv

(
1

ω

)

+

√
π

2
δ(ω),

see [14, p. 340], we obtain that

χ̂C(ω) =

∫

C
e−2πi〈x,ω〉 dx = |detC|

∫

R3
+

e−2πi〈t,CTω〉 dt

= c1

(
1

pTω

1

qTω

1

rTω

)

+ c2

(
1

pTω

1

qTω
δ(rTω) +

1

pTω

1

rTω
δ(qTω) +

1

qTω

1

rTω
δ(pTω)

)

+ c3

(
1

pTω
δ(qTω)δ(rTω) +

1

qTω
δ(pTω)δ(rTω) +

1

rTω
δ(pTω)δ(qTω)

)

+ c4
(
δ(pTω)δ(qTω)δ(rTω)

)
(38)

with nonzero constants cj , j = 1, 2, 3, 4. We have omitted the pv to simplify the notation. This
can be used to prove the following theorem.

Theorem 4.3. Let ψ ∈ L2(R
3) be a shearlet satisfying ψ̂ ∈ C∞(R3). Assume further that ψ̂(ω) =

ψ̂1(ω1)ψ̂2(ω̃/ω1), where supp ψ̂1 ∈ [−a1,−a0]∪ [a0, a1] for some a1 > a0 ≥ α > 0,
∫

R
ψ̂1(ξ)/ξ dξ 6= 0

and ψ̂2 is a non-negative function with supp ψ̂2 ∈ Qb, ψ̂2(0) 6= 0. Let a > 0. If

s = −ñpq, n
T

pqt = 0 or s = −ñpr, n
T

prt = 0 or s = −ñqr, n
T

qrt = 0

then

SHψχC(a, s, t) ∼ a5/6.

If

1 − p1s1 − p2s2 = 0, s 6=
q2 − p2

p1q2 − p2q1
, s 6=

r2 − p2

p1r2 − p2r1
and t = cp or

1 − q1s1 − q2s2 = 0, s 6=
p2 − q2

q1p2 − q2p1
, s 6=

r2 − q2
q1r2 − q2r1

and t = cq or

1 − r1s1 − r2s2 = 0, s 6=
q2 − r2

r1q2 − r2q1
, s 6=

p2 − r2
r1p2 − r2p1

and t = cr

then

SHψχC(a, s, t) ∼ a3/2.

If

1 − p1s1 − p2s2 6= 0, 1 − q1s1 − q2s2 6= 0, 1 − r1s1 − r2s2 6= 0 and t = (0, 0, 0)T,

then

SHψχC(a, s, t) ∼ a13/9.
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If

1 − p1s1 − p2s2 = 0, 1 − q1s1 − q2s2 6= 0, 1 − r1s1 − r2s2 6= 0 or

1 − q1s1 − q2s2 = 0, 1 − p1s1 − p2s2 6= 0, 1 − r1s1 − r2s2 6= 0 or

1 − r1s1 − r2s2 = 0, 1 − p1s1 − p2s2 6= 0, 1 − q1s1 − q2s2 6= 0

and t1 − t2s1 − t3s2 = 0

then

SHψχC(a, s, t) ∼ a3/2.

Otherwise, the shearlet transform SHψχC(a, s, t) decays rapidly as a→ 0.

Proof. To determine the decay of SHψχC(a, s, t) = 〈χ̂C , ψ̂a,s,t〉 as a→ 0, we consider the four parts
of (38) separately.

1. Since p, q, r are linearly independent, we have by the support of ψ̂ that

〈δ(pT·)δ(qT·)δ(rT·), ψ̂a,s,t〉 = ψ̂a,s,t(0) = 0.

2. Next we obtain

〈δ(pT·)δ(qT·)
1

rT·
, ψ̂a,s,t〉 = a5/6 1

rTnpq

∫

R

e2πiω1〈t,npq〉
¯̂
ψ1(aω1)

ω1

¯̂
ψ2

(

a−2/3(s+ ñpq)
)

dω1

∼ a5/6 ¯̂
ψ2

(

a−2/3(s+ ñpq)
) ∫

R

e2πiξ1〈t,npq〉/a
¯̂
ψ1(ξ1)

ξ1
dξ1. (39)

If s 6= −ñpq, then (39) becomes zero for sufficiently small a since
¯̂
ψ2 is compactly supported. If

s = −ñpq, then

〈δ(pT·)δ(qT·)
1

rT·
, ψ̂a,s,t〉 ∼ a5/6 φ1(〈t, npq〉/a),

where φ1 defined by φ̂1(ξ) :=
¯̂
ψ1(ξ)/ξ ∈ S is rapidly decaying. Thus, the above expression decays

rapidly as a→ 0 except for nT

pqt = 0, i.e., t is in the pq-plane, where the decay is a5/6.

3. For I3 := 〈δ(pT·) 1
qT·

1
rT·
, ψ̂a,s,t〉 we get with ω3 = −(ω1 + p1ω2)/p2 that

I3 = a5/6

∫

R2

e2πi〈t,ω〉
¯̂
ψ1(aω1)

¯̂
ψ2

(

a−2/3

(

s+
1

ω1

(
ω2

ω3

)))
1

qTω

1

rTω
dω1dω2.

Substituting first ξ2 := a−2/3(s1 + ω2/ω1) and then ξ1 := aω1 this becomes

I3 = a3/2

∫

R2

e
2πiξ1

(
t1−

t3
p2

−s1(t2−
p1t3
p2

)
)
/a
e
2πiξ1ξ2(t2−

p1t3
p2

)/a1/3
¯̂
ψ1(ξ1)

ξ1

×
¯̂
ψ2

(
ξ2

a−2/3(− 1
p2

+ p1
p2
s1 + s2) −

p1
p2
ξ2

)
1

gpq(ξ2)

1

gpr(ξ2)
dξ1dξ2

where gpq(ξ2) := 1− q2
p2
−s1(q1−

p1q2
p2

)+a2/3ξ2(q1−
p1q2
p2

). If 1−p1s1−p2s2 6= 0, then
¯̂
ψ2

(
(ξ2, a

−2/3(− 1
p2

+
p1
p2
s1 + s2) −

p1
p2
ξ2)

T
)

becomes zero for sufficiently small a by the support property of ψ̂2.

Let 1 − p1s1 − p2s2 = 0.
3.1. If 1 − q2

p2
− s1(q1 − p1q2

p2
) 6= 0, i.e., s1 6= − p2−q2

p1q2−p2q1
and 1 − r2

p2
− s1(r1 − p1r2

p2
) 6= 0, i.e.,
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s1 6= − p2−r2
p1r2−p2r1

, then the function φ2 defined by φ̂2 :=
¯̂
ψ2

“

ξ2(1,−
p1
p2

)T
”

gpq(ξ2) gpr(ξ2) ∈ S is rapidly decaying and

we obtain

I3 = a3/2

∫

R1

e
2πiξ1

(
t1−

t3
p2

−s1(t2−
p1t3
p2

)
)
/a

¯̂
ψ1(ξ1)

ξ1
φ2

(
ξ1(t2p2 − p1t3)

p2 a1/3

)

dξ1

If t2p2 − p1t3 6= 0, then

φ2

(
ξ1(t2p2 − p1t3)

p2 a1/3

)

≤ C
a2r/3

a2r/3 + ‖ξ1(t2 − p1t3/p2)‖2r
∀r ∈ N

and since
¯̂
ψ1(ξ1) = 0 for ξ1 ∈ [−a0, a0], we see that I3 is rapidly decaying as a → 0. Note that

φ2(0) 6= 0 for sufficiently small a since ψ̂2 is non-negative. If t2p2 − p1t3 = 0, then

I3 ∼ a3/2φ1

(

t1 −
t3
p2

a

)

which decays rapidly as a→ 0 except for t1p2 = t3. Now t2p2 − p1t3 = 0 and t1p2 = t3 imply that
t = c p, c ∈ R. In this case we have that I3 ∼ a3/2.
3.2. If s1 = − p2−q2

p1q2−p2q1
and consequently s = −ñpq, then

I3 ∼ a5/6

∫

R2

e
2πiξ1

(
t1−

t3
p2

−s1(t2−
p1t3
p2

)
)
/a
e
2πiξ1ξ2(t2−

p1t3
p2

)/a1/3
¯̂
ψ1(ξ1)

ξ1

¯̂
ψ2 (ξ2(1,−p1/p2)

T)

gpr(ξ2)

1

ξ2
dξ2dξ1

∼ a5/6

∫

R

e
2πiξ1

(
t1−

t3
p2

−s1(t2−
p1t3
p2

)
)
/a

¯̂
ψ1(ξ1)

ξ1
(φ2 ∗ sgn)

(
ξ1(p2t2 − p1t3)

p2a1/3

)

dξ1

where φ̂2(ξ2) :=
¯̂
ψ2(ξ2(1,−p1/p2)T)

gpr(ξ2) ∈ S. Since φ2 ∗ sgn is bounded we get

I3 ∼ a5/6φ1

(

t1 −
t3
p2

− s1(t2 −
p1t3
p2

)

a

)

,

where φ̂1(ξ1) :=
¯̂
ψ1(ξ1)
ξ1

∈ S. The last expression decays rapidly as a→ 0 except for t1−
t3
p2

− s1(t2−
p1t3
p2

) = 0, where I3 ∼ a5/6. Together with the conditions on s the latter is the case if nT

pqt = 0.

4. Finally, we examine I4 := 〈 1
pT·

1
qT·

1
rT·
, ψ̂a,s,t〉. We obtain

I4 = a5/6

∫

R3

e2πi〈t,ω〉
¯̂
ψ1(aω1)

¯̂
ψ2

(

a−2/3

(

s+
1

ω1

(
ω2

ω3

)))
1

pTω

1

qTω

1

rTω
dω

and further by substituting ξj := a−2/3(sj−1 + ωj/ω1), j = 2, 3 and ξ1 := aω1

I4 = a13/6

∫

R3

e2πiξ1(t1+t2(a2/3ξ2−s1)+t3(a2/3ξ3−s2))/a
¯̂
ψ1(ξ1)

ξ1

¯̂
ψ2 ((ξ2, ξ3)

T)

gp(ξ2, ξ3) gq(ξ2, ξ3) gr(ξ2, ξ3)
dξ,

where gp(ξ2, ξ3) := 1 − p1s1 − p2s2 + a2/3(ξ2p1 + ξ3p2).
4.1. If 1 − p1s1 − p2s2 6= 0, 1 − q1s1 − q2s2 6= 0 and 1 − r1s1 − r2s2 6= 0, then φ2 defined by

φ̂2(ξ2, ξ3) :=
¯̂
ψ2((ξ2,ξ3)T)

gp(ξ2,ξ3) gq(ξ2,ξ3) gr(ξ2,ξ3) ∈ S is rapidly decaying and

I4 = a13/6

∫

R

e2πiξ1(t1−t2s1−t3s2)/a
¯̂
ψ1(ξ1)

ξ1
φ2(ξ1(t2, t3)/a

1/3) dξ1,
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Similarly as before, we see that I4 decays rapidly as a → 0 if (t2, t3) 6= (0, 0). For t2 = t3 = 0 we

conclude that I4 ∼ a13/6φ1 ((t1 − t2s1 − t3s2)/a). The right-hand side is rapidly decaying as a→ 0
except for t1 − t2s1 − t3s2 = 0, i.e., for t = (0, 0, 0)T, where I4 ∼ a13/6.
4.2. If 1 − p1s1 − p2s2 = 0 and 1 − q1s1 − q2s2 6= 0, 1 − r1s1 − r2s2 6= 0, we obtain with

φ̂2(ξ2, ξ3) :=
¯̂
ψ2((ξ2,ξ3)T)

gq(ξ2,ξ3) gr(ξ2,ξ3)
∈ S that

I4 = a3/2

∫

R3

e2πiξ1(t1−t2s1−t3s2)/a e2πiξ1(t2ξ2+t3ξ3)/a1/3
¯̂
ψ1(ξ1)

ξ1
φ̂2(ξ2, ξ3)

1

p1ξ2 + p2ξ3
dξ

∼ a3/2

∫

R

e2πiξ1(t1−t2s1−t3s2)/a
¯̂
ψ1(ξ1)

ξ1
(φ2 ∗ h)(ξ1(t2, t3)/a

1/3) dξ1

∼ a3/2φ1(t1 − t2s1 − t3s2)/a),

where h(u, v) := sgn(−v/p2) δu(t2−p1t3/p2). Thus I4 decays rapidly as a→ 0 except for t1− t2s1−
t3s2 = 0.
4.3. Let 1 − p1s1 − p2s2 = 0 and 1 − q1s1 − q2s2 = 0, i.e., s = −ñpq. Then we obtain with

φ̂2(ξ2, ξ3) :=
¯̂
ψ2((ξ2,ξ3)T)
gr(ξ2,ξ3)

∈ S that

I4 = a5/6

∫

R3

e2πiξ1(t1−t2s1−t3s2)/a e2πiξ1(t2ξ2+t3ξ3)/a1/3
¯̂
ψ1(ξ1)

ξ1
φ̂2(ξ2, ξ3)

1

p1ξ2 + p2ξ3

1

q1ξ2 + q2ξ3
dξ

= a5/6

∫

R

e2πiξ1(t1−t2s1−t3s2)/a
¯̂
ψ1(ξ1)

ξ1
(φ2 ∗ h)(ξ1(t2, t3)/a

1/3) dξ1

∼ a5/6φ1(t1 − t2s1 − t3s2)/a),

where h(u, v) := sgn p2u−p1v
p1q2−q1p2

sgn q2u−q1v
p1q2−q1p2

. If t1 − t2s1 − t3s2 = 0, i.e., nT

pqt = 0, then I4 ∼ a5/6,

otherwise we have a rapid decay as a→ 0. This finishes the proof. �
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