
Nonlinear Approximation and AdaptiveTechniques for Solving Elliptic OperatorEquationsStephan Dahlke and Wolfgang DahmenInstitut f�ur Geometrieund Praktische MathematikRWTH AachenTemplergraben 5552056 AachenGermanyRonald A. DeVoreDepartment of MathematicsUniversity of South CarolinaColumbia, S.C. 29208USAAbstractThis survey article is concerned with two basic approximation con-cepts and their interrelation with the numerical solution of elliptic op-erator equations, namely nonlinear and adaptive approximation. Onone hand, for nonlinear approximation based on wavelet expansionsthe best possible approximation rate, which a function can have fora given number of degrees of freedom, is characterized in terms of itsregularity in a certain scale of Besov spaces. Therefore, after demon-strating the gain of nonlinear approximation over linear approxima-tion measured in a Sobolev scale, we review some recent results on theSobolev and Besov regularity of solutions to elliptic boundary value1



problems. On the other hand, nonlinear approximation requires infor-mation that is generally not available in practice. Instead one has toresort to the concept of adaptive approximation. We briey summa-rize some recent results on wavelet based adaptive schemes for ellipticoperator equations. In contrast to more conventional approaches onecan show that these schemes converge without prior assumptions onthe solution such as the saturation property. One central objectiveof this paper is to contribute to interrelating nonlinear approximationand adaptive methods in the context of elliptic operator equations.Key Words: Nonlinear approximation, adaptive methods, elliptic equa-tions, wavelets, characterization of function spaces.AMS subject classi�cation: 35B65, 41A46, 46E35, 65N12, 65N30, 65N55.1 IntroductionAdaptive methods are an important tool for numerically solving elliptic equa-tions. Their origins appear in the adaptive grid re�nements in Finite ElementMethods. Heuristically, adaptive methods are e�ective when trying to recoversolutions u which exhibit singularities. Much impetus to the theory of adap-tive �nite element methods was provided by the introduction and analysis ofp and h-p methods by Babuska and his collaborators (see e.g. [2] and [3]).A lot of further results on this subject have been developed in the last years,see e.g. [4, 33, 52]. For an overview on the theory of adaptive �nite elements,the reader is referred to [28] and [53]. On the other hand, for most adaptivealgorithms, there exist no proofs of convergence.The purpose of this paper is to phrase the problem of designing andanalyzing adaptive methods in the context of approximation of functions. Inthis way, we shall introduce some analytical tools which may prove usefulfor constructing and analyzing adaptive algorithms. In particular, we shallutilize heavily the theory of multilevel methods and wavelets.An outline of this paper is as follows. In x2, we introduce the ellipticproblems that we shall consider. They take the formAu = f (1.1)2



where A is a symmetric positive de�nite operator which is boundedly invert-ible on some Sobolev space. Thus, (1.1) includes both integral equations andboundary value problems.In x3, we briey recall the theory of Sobolev and Besov spaces which weshall need for this paper. While these spaces have their classical de�nitions interms of derivatives and smoothness, we introduce them from the viewpoint ofwavelet decompositions. This gives a simple criterion for membership in thesespaces in terms of certain sequence norms applied to the wavelet coe�cients.This also gives us an opportunity to introduce wavelet decompositions forvarious types of domains which will be important for both our numerical andanalytic considerations. We conclude this section with summarizing somerelevant facts about wavelet discretizations of (1.1).In x4,5, we discuss some approximation concepts which are relevant fornumerically approximating the solution u to (1.1). We draw distinctionsbetween two cases:� Linear methods where the approximation comes from a linear space.� Nonlinear methods where the approximation takes place from a nonlin-ear set.Adaptive methods are a form of nonlinear approximation. In these sections,we shall discuss the smoothness required of a function v in order that it canbe approximated with a certain e�ciency by linear or nonlinear methods.This is important, vis a vis (1.1), since it tells us the smoothness (regularity)the solution u must have in order for it to be approximated with a givene�ciency.There will be two scales of regularity: one for linear methods, the other fornonlinear methods. The regularity for linear methods is given by the usualscale H� of Sobolev spaces. This regularity is well-known and often used inerror estimates for Finite Element Methods. The corresponding regularityfor nonlinear methods takes place in a certain scale of Besov spaces. Thisscale of spaces does not seem to be as fully understood in the Finite Elementliterature. This type of regularity needs to be used (in place of Sobolev reg-ularity) when analyzing nonlinear methods such as adaptive �nite elements.In particular, this type of regularity needs to be kept in mind when con-structing adaptive numerical methods and in analyzing their performance(establishing error estimates). 3



In x6, we discuss the regularity of solutions to (1.1) from the viewpointof the Sobolev and Besov scales noted above. The regularity of the solutiontells the maximum e�ciency a numerical method can achieve.However, the problem still exists to construct such numerical methodsand establish their convergence and error estimates in speci�c settings. Inx7, we discuss how this might be accomplished in the context of waveletdecompositions.2 A class of elliptic problemsIn this section, we shall introduce the generic elliptic problems which we wishto analyze. We shall consider the model case of a linear operator equationAu = f (2.2)where A : H ! H� is a boundedly invertible operator from some Hilbertspace H into its dual H�, i.e.,kAvkH� � kvkH ; v 2 H: (2.3)We use the notation A � B to express that A <� B and B <� A. Here A <� Bmeans that A � CB for some constant C. In the case that A and B dependon parameters or variables the constant C is to be independent of theseparameters or variables unless explicitly stated otherwise.To simplify the exposition we will con�ne the discussion to selfadjointoperators A, i.e., a(u; v) := hAu; vi; (2.4)is a bilinear symmetric form and (2.3) means that the energy normkuk = a(u; u) 12 (2.5)satis�es k�k � k�kH : (2.6)In variational (weak) form the solution u to (2.2) is a function u 2 H whichsatis�es a(u; v) = hf; vi; v 2 H: (2.7)4



The following examples indicate the scope of problems we have in mind.Suppose that 
 � IRd is a domain. We shall always assume that 
 isa bounded, open, and connected Lipschitz domain. This covers all domainsof practical interest. If k is positive integer, the Sobolev space Hk(
) :=W k(L2(
)) consists of all functions f 2 L2(
) whose distributional deriva-tives D�f , j�j = k, satisfyjf j2Hk(
) := Xj�j=k kD�fk2L2(
) (2.8)is �nite. The square root of (2.8) is the semi-norm for Hk(
) and addingto it kfkL2(
) gives the norm kfkHk(
) in Hk(
). The spaces H�(
) canthen be de�ned for non{integer values � � 0 in several equivalent ways, forexample, using either interpolation theory, or viewing them as special casesof Besov spaces. The Besov spaces on domains are de�ned using moduli ofsmoothness (see e.g. [25]). For negative � one can employ duality.Simple examples for A are in this case Au = ��u or Au = ��u + cuwhere � = Pdj=1 @2@x2j is the Laplacian and c > 0. Here H = H10 (
) orH = H1(
) , respectively, where Hm0 (
) is the closure of C10 (
) with respectto the k � kHm-norm. Of course, when A is the biharmonic operator one hasH = H20 (
) or similar spaces incorporating mixed boundary conditions.The second example represents a di�erent type of problems which still�ts into the present framework. In order to solve an exterior boundary valueproblem �U = 0 in IR3 n 
; U = f on @
; (2.9)it is tempting to transform this problem into a boundary integral equation.For instance, the indirect method leads to the equation on the boundaryAu = f; A = I + 2K (2.10)where K involves the double layer potential operatorKu(x) := [1=2 � �
(x)]u(x) + 14� Z@
 ny � (x� y)jy � xj3 u(y)dy (2.11)and �
(x) denotes the interior angle at x 2 @
 located on an edge of @
. Inthis case it is known that H = L2(�), � := @
. Solving (2.10) for u leads tothe solution of (2.9) by evaluating a singular integral.5



Alternatively, the direct method yields an integral equation of the �rstkind Au = V u = (12 +K)f;where V is the single layer potential operatorV u(x) = Z@
 u(y)4�jx� yjdy:It is known that this �ts into the above framework with H = H�1=2(�),H� = H1=2(�). Of course the latter context requires a proper de�nition ofSobolev spaces on surfaces or manifolds. This is usually done by \lifting"Sobolev spaces from domains in IRd with the aid of an atlas and a partitionof unity (see e.g. [9, 19]). We shall comment on this issue later in moredetail.Thus in what follows H typically stands for a Sobolev space H t = H t(
)(or some subspace determined by boundary conditions) while for t � 0, H�tis to be understood as the dual of H t.We conclude pointing out one more property of the class of operatorsunder consideration. Note that in the above examples A has support ofmeasure zero or has a Schwarz kernel with certain asymptotic properties.More precisely, we will assume that(Av)(x) = Z
 K(x; y)v(y)dy;where K(x; y) is smooth o� the diagonal x = y and where we require thatwhenever d+ � + j�j+ j�j > 0j@�x@�yK(x; y)j � c�;�dist (x; y)�(d+�+j�j+j�j) (2.12)holds with constants c�;� depending only on the multi-indices �; � 2 ZZd+.Estimates of the type (2.12) are known to hold for a wide range of casesincluding classical pseudo-di�erential operators and Calder�on-Zygmund op-erators (see e.g. [18, 50]). Thus the single and double layer potential operatorabove as well as classical di�erential operators fall into this category.6



3 Smoothness spaces and wavelet decompo-sitionsWe wish to treat the above type of problems by means of wavelet methods.To this end, we have to explain �rst what is meant by wavelets de�ned on thevarious types of domains appearing in the previous section and how waveletexpansions are related to smoothness spaces on such domains. The simplestsetting is 
 = IRd. Although this is of limited use for problems of the abovenature it is particularly well suited for bringing out the essentials of waveletanalysis and serves as a core ingredient for the construction of wavelets onother domains.3.1 Wavelets on Euclidean spaceWe begin by discussing smoothness spaces on IRd. As above, if k is positiveinteger, the Sobolev space Hk(IRd) := W k(L2(IRd)) is de�ned as before with
 = IRd, compare with (2.8). The Sobolev spaces H�(IRd) for other values of� 2 IR are usually de�ned by Fourier transforms. In particular, H0(IRd) =L2(IRd) and H��(IRd) is the dual space of H�(IRd).There is an equivalent de�nition of the Sobolev spaces in terms of waveletdecompositions which is of primary importance in the present context andwhich we now describe. Let D denote the set of all dyadic cubes in IRd andlet Dj be the collection of all dyadic cubes at level j. Then, I 2 Dj if andonly if I = 2�j(k + [0; 1]d), for some j 2 ZZ, k 2 ZZd. If � 2 L2(IRd), wede�ne �I(x) := jIj�1=2�(2jx� k); I = 2�j(k + [0; 1]d): (3.1.13)Then �I is a scaled, shifted, dilate of � and k�IkL2(IRd) = k�kL2(IRd) for allI 2 D.We begin our discussion of wavelet bases with the biorthogonal bases ofcompactly supported basis functions. We recall briey how such bases areconstructed from multiresolution analysis. A function � is said to satisfy are�nement equation (sometimes called a two scale relation) if�(x) = Xk2ZZd ak�(2x� k): (3.1.14)7



We shall only deal with compactly supported functions �. In this case, onlya �nite number of the coe�cients ak are nonzero.The starting point for constructing biorthogonal wavelets is a pair of uni-variate functions ' and ~' of compact support which each satisfy a re�nementequation and are in dualityZIR '(x) ~'(x� k) = �(k); k 2 ZZ; (3.1.15)with � the Kronecker delta function on ZZ. From ' and ~' we construct themultivariate functions �(x) := '(x1) � � �'(xd) and ~�(x) := ~'(x1) � � � ~'(xd)which are also in duality:ZIRd �(x)~�(x� k) = �(k); k 2 ZZd: (3.1.16)Let V0 be the L2(IRd) closure of the linear span of the shifts �(� � k),k 2 ZZd, of �. From the existence of a compactly supported dual function ~�it follows that the functions �(� � k), k 2 ZZd, are a Riesz basis for V0 andeach element v 2 V0 has the representationv = Xk2ZZdhv; ~�(� � k)i�(� � k); (3.1.17)with hf; gi = hf; giL2(IRd) := ZIRd f(x)�g(x) dxthe inner product for L2(IRd).By dilation, we obtain the spacesVj := fv(2j�) : v 2 V0g: (3.1.18)Then Vj is spanned by the functions �I, I 2 Dj , and each v 2 Vj has therepresentation v = XI2Djhv; ~�Ii�I : (3.1.19)Because � satis�es a re�nement equation, the spaces Vj are nestedVj � Vj+1; j 2 ZZ: (3.1.20)8



It follows [7] that [jVj is dense in L2(IRd).Let Pj be the projector from L2(IRd) onto Vj given byPjf = XI2Djhf; ~�Ii�I : (3.1.21)The projectors Pj are uniformly bounded on L2(IRd) and for each f 2L2(IRd), kf � PjfkL2(IRd) ! 0: (3.1.22)The operators Qj := Pj+1�Pj are also uniformly bounded on L2(IRd) andtheir rangeWj � L2(IRd) is called a wavelet space. The spacesWj inherit thesame structure as the Vj. For example, each Wj is the dilate (by 2j) of W0.Also, W0 is a shift invariant space generated by a set 	� of 2d � 1 functions . That is, W0 is the closed linear span of the functions  (� � k), k 2 ZZd, 2 	�. Moreover, there is a dual set ~	� of 2d � 1 functions ~ such thath (� � k); ~�(� � j)i = �(k � j)�( � �); j; k 2 ZZd;  ; � 2 	�: (3.1.23)Now suppose that �; ~� are exact of order N; ~N , respectively, i.e.,x� = Pk2ZZdh(�)�; ~�(� � k)i�(x� k); x 2 IRd; j�j < N;x� = Pk2ZZdh(�)�; �(� � k)i~�(x� k); x 2 IRd; j�j < ~N; (3.1.24)where j�j denotes the sum of the components of the multi-indices � 2 ZZd+.An immediate consequence of (3.1.23) and (3.1.24) is that the  2 	� havevanishing moments, i.e.,ZIRd P (x) (x)dx = 0;  2 	�; (3.1.25)for all polynomials P of coordinate degree less than ~N . An analogous state-ment holds for  and ~N replaced by ~ and N , respectively. It is known thatfor any N; ~N 2 IN such that N + ~N is even there exist compactly supporteddual pairs ', ~' whose order of polynomial exactness is N; ~N; respectively[11]. Thus the biorthogonal setting not only o�ers more exibility in con-structing compactly supported wavelets, where all �lters have �nite supportand therefore give rise to fast reconstruction and decomposition algorithms,9



but also allows one to construct wavelets with an arbitrarily high number ofvanishing moments which is crucial for treating integral equations.It follows that each function in L2(IRd) has the wavelet decompositionf = XI2D X 2	�hf; ~ Ii I : (3.1.26)An alternative wavelet decomposition and the one preferred in numer-ical considerations starts at a �nite dyadic level (which we, for notationalconvenience, will take as level 0). Then, for each f 2 L2(IRd), we havef = P0(f) + XI2D+ X 2	�hf; ~ Ii I= Xk2ZZdhf; ~�(� � k)i�(� � k) + XI2D+ X 2	�hf; ~ Ii I (3.1.27)with D+ the set of dyadic cubes with measure � 1.The set of functions f IgI2D; 2	� is a Riesz basis for L2(IRd) (sometimescalled a stable basis). This means thatkfk2L2(IRd) � XI2D X 2	� jhf; ~ Iij2: (3.1.28)As mentioned earlier the constants in (3.1.28) are independent of f and wewill use similar notation throughout this paper.The set f IgI2D; 2	� is also a Riesz basis for H�, andkfk2H�(IRd) � XI2D X 2	� jIj�2�=djhf; ~ Iij2: (3.1.29)for a certain range �~ < � <  that depends on the sets 	� and ~	�.The equivalence (3.1.29) gives us a simple way to compute equivalent H�norms in terms of wavelet coe�cients. Also note that in this form, we seethat we scale up or scale down the Sobolev spaces by simply multiplyingwavelet coe�cients by jIjs=d. Namely, letIs(f) := XI2D X 2	� jIjs=dhf; ~ Ii I : (3.1.30)Then Is(f) 2 H�+s(IRd) if and only if f 2 H�(IRd), s+ � 2 (�~; ) andkIsfkHs+�(IRd) � kfkH�(IRd): (3.1.31)10



The Besov spaces B�q (Lp(IRd)), � > 0, 0 < p; q � 1 are smoothnessspaces in Lp(IRd). The index � is the primary index and gives the order ofsmoothness (analogous to the number of derivatives). The second parameterq gives a �ner scaling. For example, the space B�2 (L2(IRd)) = H�(IRd) andB�1(Lp(IRd)) is the Lipschitz space of order � in Lp(IRd) provided � > 0 isnot an integer.Besov spaces are usually de�ned by Fourier transforms or moduli ofsmoothness (see e.g. [25]). There is, however, an equivalent de�nition interms of wavelet decompositions which we shall employ. In fact, for theabove range of � one haskfkqB�q (Lp(IRd)) � XI2D X 2	� jIj�q(�=d+1=2�1=p)jhf; ~ Iijq <1; (3.1.32)whenever f 2 B�q (Lp(IRd)). We shall mainly be concerned with a particularscale of these spaces which will replace the role of the Sobolev spaces whentreating nonlinear approximation. If � � 0, we let� := (�=d + 1=2)�1 (3.1.33)so that � � 2. Then the Besov space B�(IRd) := B�� (L� (IRd)) is the set ofall function in L2(IRd) which have a wavelet decomposition (3.1.26) and thewavelet coe�cients of f satisfykfk�B�(IRd) � XI2D X 2	� jhf; ~ Iij� <1: (3.1.34)Then, (3.1.34) gives an equivalent quasi-norm for B�. Note that B0(IRd) =L2(IRd) with equivalent norms. As � gets larger, the spaces B�(IRd) getsmaller: B�(IRd) � B�(IRd), � � �.Wavelets of the above type are still of limited use for the numerical treat-ment of operator equations. Below we will briey indicate how to obtainwavelet bases with the above properties (3.1.28), (3.1.29), (3.1.34) in severalother cases of practical relevance.3.2 Wavelets on the intervalAs the simplest example of a bounded domain let us consider �rst 
 = [0; 1].This case deserves particular attention because it will also serve as a coreingredient of constructions for more complex situations.11



The common starting point (see e.g. [1, 8, 12, 17]) is to construct collec-tions �k = f�k;m : m 2 �kg � L2([0; 1]) such that the spaces Sk := span�kare nested and contain all polynomials up to a certain desired degree. Takingsome dual pair '; ~' as in (3.1.15) and �xing ` such that for k > k0 we havesupp'(2k � �m); supp ~'(2k � �m) � (0; 1), m = `; : : : ; 2k � `; the collections�k are comprised of these interior translates 2k=2'(2k � �m) together withcertain boundary functions which are needed to preserve the desired degree ofpolynomial exactness. If ' has exactness order N these boundary functionsare simply obtained by truncating the expansions (3.1.24). For instance, forthe left end of the interval one adds the N functions'Lk;`�n+r(x) := `�1Xm=�1h(�)r; ~'(� �m)i2k=2'(2k � �m) j[0;1]; (3.2.35)r = 0; : : : ; N � 1, and analogously at the right end. One easily infers from(3.1.24) that these boundary functions together with the interior translatesreconstruct all polynomials up to degree N � 1 on [0; 1]. Thus the resultingspaces inherit the approximation properties of their shift-invariant counter-parts de�ned on all of IR. Moreover, since 'Lk;`�n+r(x) behaves near 0 like2k=2xr, it is relatively easy to incorporate homogeneous boundary conditions.The construction of dual collections ~�k di�ers somewhat in the abovementioned papers. In [17], it is shown that also ~�k can be made to be exactof order ~N in an analogous fashion and that the resulting sets can indeedbe biorthogonalized, compare with (3.1.23) and (3.1.24). Let us denote thebiorthogonalized sets again by �k; ~�k with elements �k;m; ~�k;m. Except fora �nite number of boundary functions the �k;m, ~�k;m still have the form2k=2�(2k � �m), � 2 f'; ~'g, respectively. Moreover, compactly supportedbiorthogonal wavelets  k;m; ~ k;m, m = 1; : : : ; 2k, are constructed which formRiesz bases for L2([0; 1]).Due to the modi�cations of the basis functions near the end points ofthe interval the simple recipe from (3.1.13) of taking translates of dilatedfunctions is no longer applicable. Nevertheless, it will be convenient to acceptthe slight abuse of notation and still write �I ;  I . In fact, setting in this caseDc := fk0g � f` � n; : : : ; 2k0 � ` + ng, Dk := fkg � f1; : : : 2k�1g, k > k0 wecan still identify the indices (k;m) with dyadic cubes I = 2�k(m + [0; 1]).De�ning D+ := [k>k0Dk and D := Dc [ D+, we obtain essentially the same12



format as above: f = XI2Dchf; ~�Ii�I + X( ;I)2	��D+hf; ~ Ii I ; (3.2.36)as well askfk2H�([0;1]) � XI2Dc jhf; ~�Iij2 + X( ;I)2	��D+ jIj�2�jhf; ~ Iij2; (3.2.37)or kfk�B�([0;1]) � XI2Dc jhf; ~�Iij� + X( ;I)2	��D+ jhf; ~ Iij� ; (3.2.38)where � := (� + 1=2)�1. Of course, in this case one has #	� = 1 but inanticipation of the tensor product case below this redundance is useful. Alsoone should note, that for notational simplicity we have suppressed the factthat, due to boundary modi�cations, 	� actually depends on I. Again therange for which (3.2.37) is valid is (�~; ) where := sup f� : ' 2 H�(IR)g; ~ := sup f� : ~' 2 H�(IR)g(see [17]). The case � = 0, of course, recovers the Riesz basis property.Since by construction the spaces ~Sk := span ~�k are exact of order ~N onehas 1Z0 xr I(x)dx = 0; I 2 D+; r = 0; : : : ; ~N � 1: (3.2.39)3.3 The isoparametric caseTaking tensor products of wavelets on [0; 1] immediately yields biorthogonalwavelet bases on the unit d-cube 2 := [0; 1]d with analogues of (3.2.37),(3.2.38), (3.2.39). One can push this line a little further in the followingdirection. Suppose that for some d0 � d, � is a regular mapping from IRdinto IRd0 ; i.e., � is smooth and its Jacobian is bounded away from 0; and let
 := �(2). Sobolev spaces or Besov spaces on 
 can be de�ned by liftingcorresponding spaces from 2 with the aid of �. In fact,hf; gi := Z2 f(�(x))g(�(x))jdet�0(��1(x))jdx13



is a natural inner product which can be used to de�ne Sobolev norms. Onthe other hand, (f; g) := Z2 f(�(x))g(�(x))dx (3.3.40)induces equivalent norms whenever � is su�ciently regular. Taking ten-sor products of the above mentioned wavelets on the interval, readily yieldsbiorthogonal wavelet bases 	 = f�I : I 2 Dcg [ f I :  2 	�; I 2 D+g,~	 = f ~ I :  I 2 	g on 2. Here we have used the convention  I := �I forI 2 Dc. Of course, in this case one has #	� = 2d � 1 and the structureof the sets Dc;D+ is clear from the tensor product construction. Then thecollections 	
 := f 
I :=  I � ��1 :  I 2 	g;~	
 := f ~ 
I := ~ I � ��1 : ~ I 2 ~	g; (3.3.41)are obviously biorthogonal relative to the inner product (�; �) in (3.3.40) whichagain satisfy (3.2.37) and (3.2.38). The moment conditions take the form(P; 
I ) = 0; ( ; I) 2 	� �D+; (3.3.42)whenever P ���1 is a polynomial of coordinate degree less than ~N . Here andin the following we reserve the notation Dc for those dyadic cubes associatedto the scaling functions on the coarsest level. The importance of this casewill become clearer below.3.4 Wavelets on manifoldsWhen d = d0 = 2 the above construction yields for instance wavelet bases onvarious planar domains. However the case d0 > d is important too. In fact,the examples in Section 2 show that one needs wavelets de�ned on manifoldswhich are embedded in some higher dimensional Euclidean space.The simplest case is the d-torus. Functions de�ned on the d-torus corre-spond in a one-to-one way to 1-periodic functions f(x+m) = f(x), m 2 ZZd.Clearly every compactly supported function � in L2(IRd) is easily periodizedby [�](x) := Xk2ZZd �(x+ k): (3.4.43)14



Moreover this is easily seen to preserve orthogonality relations, i.e.,ZIRd g(x)f(x)dx = 0 =) Z2 [f ](x)[g](x)dx = 0 :Thus, given wavelets  I; ~ I on IRd, the functions [ I]; [ ~ I] form correspondingwavelet bases on the d-torus. The ease of this construction is exploited inmany papers.Again the case d = 1, the circle, deserves special attention. Suppose Cis any smooth closed curve (without sel�ntersection) in IR2. Then C can bewritten as a parametric image C = �([0; 1]) of a smooth 1-periodic mapping �.Thus combining periodization with the isoparametric approach from Section3.3 immediately provides wavelet bases on C giving rise to analogous normequivalences and moment conditions. These wavelets can be used to dicretizefor instance boundary integral equations of the type mentioned in Section2 arising from exterior boundary value problems for planar domains withsmooth boundaries.When the curve is not smooth but has corners it may have to be sub-divided into smooth sections and wavelet bases can be obtained by piecingtogether parametric images of wavelets on the interval. This gives stablebases for L2: However, for the characterization of smoothness spaces, this isnot su�cient. Here the transition between adjacent segments requires specialcare. We will briey indicate a systematic approach to this problem belowin the context of a more general situation.Note that example (2.11) requires wavelets de�ned on two-dimensionalclosed surfaces in IR3. In such a case periodization does not help. Insteadone can use the tools developed in Computer Aided Geometric Design wheresuch surfaces are modeled as a union of parametric patches. Thus assumethat � is a piecewise smooth d-dimensional manifold of the form� = M[i=1 ��i; �i \ �l = ;; i 6= l; (3.4.44)where �i = �i(2) and �i are regular su�ciently smooth parametrizations.Again one can consider function spaces F(�) where F(�) = H�(�) or F(�) =B�q (Lp(�)) and the range of � depends on the global regularity of �. For in-stance, when � is at least Lipschitz it makes sense to consider Sobolev spaces15



with index � < 1. For practical purposes and for the sake of constructingwavelets on � the characterization of F via an atlas and a partition of unityis rather useless. An interesting alternative was o�ered in [9] where a charac-terization of F(�) is directly based on a decomposition of � into patches �i.The following brief indication of the basic ideas is taken from [19] where anattempt is made to make the existence statements from [9] constructive andwhere the details of the following comments are given. First one orders thepatches �i in a certain fashion. If �i \ �l := �i;l is a common face and i < l,then �i;l is called an outow (inow) face for �i (�l). @�"i , @�#i are called theoutow and inow boundary of the patch �i. Let �"i denote an extension of�i in � which contains the outow boundary @�"i in its relative interior andwhose boundary contains the inow boundary @�#i of �i. Now suppose thatEi is an extension operator from the domain �i to �"i such thatkEifkF(�"i ) <� kfkF(�i); k(E�i f)"kF(�i)" <� kfkF(�"i ); (3.4.45)where f"(x) := ( f(x); x 2 �i;0; x 2 �"i n �i;and F(�i)" := ff 2 F(�i) : f" 2 F(�"i )gconsists of those elements in the local space F(�i) whose trace vanishes onthe outow boundary @�#i . Such extensions can be constructed explicitly astensor products of Hestenes-type extensions [9, 19]. Then, denoting by �
the characteristic function of 
 and de�ningP1f := E1 (��1f) ; Pif := Ei(��i(f �Xl<i Plf)); i = 2; : : : ; N;one can prove that the mappingT : f 7! f��iPifgNi=1 (3.4.46)de�nes a topological isomorphism acting from F(�) onto the product space�Ni=1F(�i)#, where the spaces F(�i)# are de�ned analogously to F(�i)":Since in view of (3.4.45), an analogous statement holds for the mappingR : f 7! f��iP�i fgNi=1;16



which takes F(�) onto the product space �Ni=1F(�i)", T is also isomorphicfor the dual F�(�), i.e., kfkF(�) � NXi=1 kPifkF(�i)#; (3.4.47)and likewise for F(�), F(�i)# replaced by the duals F�(�), F�(�i)", respec-tively.Recall that the component spaces F(�i)# are Sobolev or Besov spaceswith certain boundary conditions (while their duals satisfy complementaryboundary conditions) which can be viewed as liftings of analogous spacesde�ned on the unit cube 2 as described in Section 3.3. Biorthogonal waveletbases for these spaces, in turn, can be constructed via tensor products ofsuitable wavelet bases on the interval [0; 1] satisfying certain boundary con-ditions [19]. Lifting such bases for each patch �i and then applying T�1produces biorthogonal wavelet bases on � which due to (3.4.47) gives againrise to norm equivalences of the type (3.2.37) but this time for �. Note thatthe latter step is only done for the sake of analysis. In practical calculationsone would avoid executing T�1 but rather transfer all the computations tothe component spaces and thereby to functions de�ned on the unit cube.Likewise moment conditions are formulated as in (3.3.42) ultimately on 2.For corresponding consequences with regard to domain decomposition seeagain [19].3.5 Lipschitz domainsThe above techniques are of limited use when dealing with bounded domainsin IRd with complicated boundaries. We shall always assume that 
 is anopen and connected Lipschitz domain. This covers all domains of practicalinterest. In the following we shall briey recall the results from [10].One can also realize the Sobolev and Besov spaces by extension operators.The conditions we assume on 
 guarantee that there is an extension operatorE which simultaneously extends Sobolev and Besov spaces. For example,in the cases of interest to us, if r is any positive real number, there is anextension operator E = Er such thatE : H�(
) ! H�(IRd); 0 � � � r17



E : B�(
) ! B�(IRd); 0 � � � r (3.5.48)Ef j
 = f; f 2 L2(
); kEfkF(IRd) <� kfkF(
);where F = H� or F = B�.In principle, the extension E can be used to generate a wavelet basisfor 
 from a wavelet basis on IRd. To this end, suppose that 	 = f�I :I 2 Dcg [ f I :  2 	�; I 2 D+g and analogously ~	 are biorthogonalwavelet bases for L2(IRd). Given f 2 L2(
) it follows that Ef has a waveletexpansion (3.1.26). Let P0 be the projector de�ned in (3.1.21). Then, foreach f 2 L2(
), we have on 
,f = P0(Ef) + XI2D+ X 2	�hEf; ~ Ii I (3.5.49)with D+ the set of dyadic cubes with measure � 1. The sum in (3.5.49)can be restricted to those  I whose support nontrivially intersects 
. Thefunction f is in H�(
) (respectively B�(
)) if and only if for the series in(3.5.49) the expressions (3.1.29) (respectively (3.1.34)) are �nite.Denoting again by E� the adjoint of E this can be interpreted askfk2H�(
) � XI2Dc jhf;E�~�Ii
j2 (3.5.50)+ XI2D+ X 2	� jIj2�=djhf;E� ~ Ii
j2; f 2 H�(
);where hf; gi
 := R
 f(x)g(x)dx. This requires evaluating E� which is in gen-eral not feasible numerically. Moreover, the above procedure does not nec-essarily preserve biorthogonality. Therefore this approach is useful as ananalytical tool, but not for practical purposes.For somewhat more specialized domains, it is possible to develop an ex-tension strategy which is more numerically accessible. Indeed, we can uti-lize multiresolution analysis to construct E and E�: For this, we shall usethe approach described in [10]. The class of suitable domains is speci�edthere. Roughly speaking, these domains are coordinatewise Lipschitz. Givensuch a domain and a dual pair �; ~� as in (3.1.16), biorthogonal collections�k = f�k;m : m 2 �kg, ~�k = f~�k;m : m 2 �kg on 
 were constructed wherethe �k;m are adapted to the boundary so as to ensure polynomial exactness18



while the ~�k;m involve only translates ~�(2k � �m) which are fully supportedin 
. Now, we de�ne Pkf := Xm2�khf; ~�k;mi
�k;m:It was shown in [10] that for 0 � � < kfk2H�(
) � kPk0fkL2(
) + 1Xk=k0+1 22�kk(Pk � Pk�1)fk2L2(
); (3.5.51)where again  = sup fs > 0 : � 2 Hs(IRd)g. Each �k;m is either of theform 2dk=2�(2k � �m) or is a linear combination of such functions restrictedto 
. Therefore the functions �k;m possess a canonical extension �ek;m to IRd.Note that since the ~�k;m are supported in 
 the collections �e, ~�k are stillbiorthogonal. Thus, the operatorsP ekf := Xm2�khf; ~�k;mi
�ek;mtake L2(
) into L2(IRd) and its adjoint(P ek )�f := Xm2�khf; �ek;mi~�k;mtakes L2(IRd) into L2(
). Moreover, the mappingEf := P ek0f + 1Xk=k0(P ek+1 � P ek )f (3.5.52)is an extension satisfying (3.5.48) for any r < .Due to biorthogonality, evaluating E� ~ I requires computing the innerproducts h ~ I ; �ek;miIRd for levels k larger than the level of I. In numericalimplementations, by using decay properties, this can in turn be restricted to�nitely many levels depending on the required accuracy.In view of the above comments, we shall assume in the following that wealways have a pair of biorthogonal bases 	 = f I :  2 	�I ; I 2 Dc [ D+gand ~	 = f ~ I : ~ 2 ~	�I ; I 2 Dc [ D+g where Dc corresponds to functionson the coarsest level while for I 2 D+ the  I; ~ I play the role of wavelets.19



Again the sets 	�I will generally depend on I but will always contain atmost �nitely many functions. Setting as above D := Dc [ D+, on one handmoment conditions of the form (3.2.39) or (3.3.42) hold, while on the otherhand relations likekfkqB�q (Lp(
)) � XI2D X 2	�I jIj�q(�=d+1=2�1=p)jhf; ~ Iijq; (3.5.53)and kfk2H�(
) � XI2D X 2	�I jIj�2�=djhf; ~ Iij2; � 2 (�~; ); (3.5.54)are valid when 
 is a domain or manifold of dimension d as discussed above.As in all the above examples it will be convenient to identify always theindices I with dyadic cubes of volume jIj.So far, we have outlined several principles to construct wavelets on varioustypes of domains and manifolds.If one wants to employ such wavelet bases for solving an operator equa-tion, the issue of boundary conditions is, of course, important. When dealingwith boundary integral equations on a closed manifold this problem does notarise. It may also not be severe in connection with natural boundary condi-tions for elliptic problems on bounded domains. Appending essential bound-ary conditions is, in principle, a possibility to avoid incorporating boundaryconditions in the trial spaces and to preserve possibly many favorable prop-erties of wavelets de�ned on simple domains [41]. For domains which canbe represented as a union of parametric images of a cube the approach out-lined above also facilitates incorporating essential boundary conditions in thewavelet spaces. We dispense here with elaborating further on this issue andrefer to [19, 36] for details of corresponding recent progress in this problem.3.6 Wavelet discretization of operator equationsWe return now to the operator equation (2.2) where in the following H = H tand H� = H�t where either H t = H t(
) when 
 is a closed surface or whennatural boundary conditions are assumed or H t is a closed subspace of H t(
)determined by boundary conditions so that A is injective on H t. In fact, wewill assume that (2.3) holds with H = H t.20



The standard Galerkin method for approximating the solution u of (2.2)begins with a �nite dimensional space S � H t and �nds the function uS 2 Ssuch that hAuS; si = hf; si; s 2 S: (3.6.55)By choosing a basis fskg for S, (3.6.55) becomes a system of linear equationsha(si; sj)ii;jc = f ; (3.6.56)with f := (fi) and fi := hf; sii, c the vector of coe�cients of uS with respectto this basis and the matrix ha(si; sj)ii;j the sti�ness matrix.In the sections that follow, we shall be interested in the e�ciency in whichuS approximates the exact solution u of (2.2). The typical choices for Sin the standard Finite Element Theory are spaces of piecewise polynomialson some partition associated to 
. An analogous choice in the context ofwavelets are spaces S = Sj := spanf I :  2 	�I ; jIj � 2�jdg or moregenerally S = S� := span f I : ( ; I) 2 �g, where � is some �nite subset ofr := f( ; I) :  2 	�I ; I 2 Dc [ D+g.The e�ciency of Galerkin methods depends on:(i) the approximation power of the spaces S;(ii) properties of the sti�ness matrix (condition number and sparsity).We shall see in the following sections how the accuracy of the approximationof uS to u depends on the regularity of u.The properties of the sti�ness matrix including its amenability to precon-ditioning is a central theme in Finite Element Methods amply reported one.g. in [16, 18, 48, 49]. Wavelet discretizations o�er the following advantageswith regard to (ii). To describe this let for � � r as aboveP�f := X( ;I)2�hf; ~ Ii I : (3.6.57)Note that under the assumption (2.3), which we will quantify as,c01kAvkH�t � kvkHt � c02kAvkH�t; v 2 H t; (3.6.58)and the selfadjointness of A, the Galerkin schemes are stable. In this case,this means in terms of the projectors P� thatkP ��AvkH�t � kvkHt; v 2 S�: (3.6.59)21



A �rst important relation between the wavelet bases and A isjtj < ; ~: (3.6.60)To explain its relevance for preconditioning consider the general version ofthe scale shift (3.1.30) Isf := X( ;I)2r jIjs=dhf; ~ Ii I ; (3.6.61)so that by (3.5.54)kI�sfkH� � kfkHs+�; s+ � 2 (�~; ): (3.6.62)Thus considering w := I�tv for v 2 S�, (3.6.62) and (3.6.59) yield under theassumption (3.6.60)kwkL2 � kvkHt � kP ��AvkH�t � kI�t P ��AP�ItwkL2 ; (3.6.63)where we have used that I�1s = I�s;since 	; ~	 are biorthogonal. Clearly (3.6.63) means that the operatorB� := I�t P ��AP�Itsatis�es cond2(B�) := kB�k`2 kB�1� k`2 = O(1); #�!1; (3.6.64)where k � k`2 denotes the spectral norm. It is not hard to verify that thematrix representation of B� is given byA� = hA((I;  ); (J; �))i(I; );(J;�)2�; A(I; J) = jIjt=dhA�J ;  IijJ jt=d:(3.6.65)Thus, a suitable diagonal scaling applied to the sti�ness matrix relative to thewavelet basis results in a matrix with uniformly bounded condition numbers[18].This suggests to reformulate the equation (2.2) as an in�nite discretesystem by representing u and f with respect to the primal and dual waveletbasis, respectively, i.e.,u = X( ;I)2rhu; ~ Ii I ; f = X( ;I)2rhf;  Ii ~ I :22



In view of (3.6.64) and (3.6.65), it is useful to introduce the following rescal-ing. Let �f := ( �f ;I) with �f ;I := jIjt=dhf;  Ii and let �u := (�u ;I) with �u ;I :=jIj�t=dhu; ~ Ii and let A be the in�nite matrix with entries A((I;  ); (J; �)) :=jIjt=da( I; �J)jJ jt=d. Then, (2.2) becomesA�u = �f : (3.6.66)ClearlyA� is a �nite submatrix of A and A is boundedly invertible on `2(r).Another important advantage of the wavelet basis is that the matrix Ais almost diagonal in the sense thatA(( ; I); (�; J)) <�  1 + j�I � �J jmax(jIj; jJ j)1=d!d+2 ~N+2t  min( jIjjJ j; jJ jjIj )!r ;(3.6.67)where �I is a point in the support of  I and where r > d=2 depends on theregularity of the wavelets. The parameter ~N again denotes the number ofvanishing moments of the wavelets  I ; I 2 D+. Thus in the present biorthog-onal framework r and ~N can be made a large as one wishes by proper choiceof the wavelet basis.We shall make a distinction in what follows between the cases of linearmethods in which the space S is chosen independent of u and nonlinear oradaptive methods in which S depends on u and previous choices for S. Wewish in particular to understand what, if any, are the advantages of adaptivemethods.4 Linear approximationFor simplicity we con�ne the following discussion to the case that 
 � IRdis a bounded and connected Lipschitz domain. We have noted above that instandard Finite Element Theory one seeks an approximation to the solutionu of (2.2) from a �nite dimensional linear space S. It is well understood inapproximation theory that for standard spaces S, consisting for example ofpolynomials, splines, or wavelets, the e�ciency of the approximation to u byelements of S is related to the regularity of u in the scale of Sobolev spacesH�. To briey recall this theory, we shall restrict ourselves to the case whereS is chosen from a sequence (Sn) of spaces of the following two general types:(i) Sn is a linear space of piecewise polynomials on a partition related to 
;23



(ii) Sn is a subspace of a multiresolution space Vj with the Vj as described inx3. We assume that Sn has dimension � nd. In case (i), this corresponds topartitions with cell size h � n�1 and in case (ii) this corresponds to takingSn = Vm, n = 2m, or a subspace of Vm reecting boundary conditions. Welet En(f) := E(f; Sn) := infs2Sn kf � skL2(
): (4.68)The following is a generic theorem for approximation by the elements ofSn. It requires additional conditions on Sn which we shall discuss after thetheorem is stated.Theorem 1 For � > 0, and a function g 2 L2(
), the following are equiv-alent(i) g 2 H�(
);(ii) P1n=1[n�En(g)]2 1n is �nite.The sum in (ii) is equivalent to the semi-norm for H�(
). Moreover, asimilar results holds for approximation in H t(
) provided En(g) is replacedby the error in approximation by functions from Sn in the norm of H t andH� is replaced by H�+t in (ii).Remark 1 The condition (i) is slightly stronger than requiring En(g) =O(n��). The class of functions which satisfy the latter condition is preciselythe Besov space B�1(L2(
)) in the case of approximation in L2(
). A similarresult holds for approximation in H t(
).We are purposefully not being precise about the conditions needed onthe spaces Sn so that Theorem 1 is valid. In the case that Sn is a waveletspace Vm with n = 2m then there is a real number r such that Theorem1 holds for 0 < � < r. The number r is related to the smoothness andpolynomial exactness of the wavelet basis. It is the same number r suchthat the Sobolev spaces H� are characterized by the wavelet coe�cients asin (3.1.29) for 0 < � < r. To see precise conditions under which Theorem 1holds for wavelets, we refer the reader to any of the standard treatments onwavelets such as Meyer [47], DeVore and Lucier [23], or Frazier and Jawerth[29]. In the case of spline approximation, necessary and su�cient conditionsfor the validity of Theorem 1 can be quite subtle (see e.g. Jia [34]). We referthe reader to one of the standard texts on Finite Elements, e.g. Oswald [48].We should also mention that if boundary conditions are to be incorporated24



in H� then these boundary conditions must be incorporated into Sn and thismust be incorporated into the analysis.We can use Theorem 1 to infer the potential accuracy of numerical meth-ods for solving (2.2) based on Galerkin solutions. Since the numerical solutionuSn comes from the space Sn, it will provide e�ciency of approximation oforder O(n��) in the L2 norm in the sense of (i) of Theorem 1 only if thesolution u has smoothness of order � in the scale of Sobolev spaces. Thusthe maximum regularity of u in this scale determines the maximum e�ciencya linear numerical scheme can have.We shall see in the next section that using nonlinear methods changesthe scale of smoothness spaces in the generic theorem.5 Nonlinear wavelet approximation in L2(
)We are ultimately interested in adaptive methods for solving (2.2). Adaptivemethods are a form of nonlinear approximation. For the purposes of orien-tation, it will be useful to consider the following simpler (but related) formof nonlinear wavelet approximation called n-term approximation.Recall that r = f( ; I) :  2 	�I ; I 2 Dc [ D+g. Let �n denote the setof all function S = X( ;I)2� c I Iwhere � � r and #� � n. Then �n is a nonlinear space. We let�n(f) := infS2�n kf � SkL2(
) (5.69)be the error in approximating f by the elements of �n.We are interested in characterizing the functions f 2 L2(
) for which�n(f) tends to zero like O(n��=d) for some � > 0. It is not di�cult (see [24])to prove the following theorem.Theorem 2 For each 0 � � < r, we have that the following two statementsare equivalent(i) f 2 B�,(ii) P1n=1[n�=d�n(f)]� 1n <1. 25



Condition (ii) in Theorem 2.1 is the analogue of (ii) of Theorem 1. Noticethat in Theorem 1 the dimension of Sn is O(nd) but in Theorem 2 �n is ofdimension n which explains the di�erence in the form of (ii) in these twotheorems. Thus both theorems talk about the same approximation rate interms of space dimension. As noted before (ii) of Theorem 2 is close to�n(f) = O(n��=d).We shall now make several remarks which will bring out the di�erencesbetween Theorem 1 for linear approximation and Theorem 2 for nonlinearapproximation. Both theorems characterize functions with a prescribed ac-curacy of approximation by smoothness conditions. But these smoothnessconditions are of quite a di�erent nature. In Theorem 1 the function g shouldbe in H� and thus have � orders of smoothness in L2. In contrast, Theorem2 requires (for the same approximation rate) only that g 2 B�. Recall thatB� measures smoothness of order � in a space L� , with � := (�=d + 1=2)�1.Since � is generally much smaller than 2 this is a much weaker smoothnesscondition. Another view of the spaces B� comes from the Sobolev embed-ding theorem. These are in some sense the smallest spaces of smoothness �which are embedded in L2; for example for � < � , B�� (L�)) is not embeddedin L2.The spaces B� contain functions which are very unsmooth in the classicalsense. For example when d = 1, any piecewise analytic function is containedin all of the spaces B� but only in H� if � < 2.Since the wavelet basis is a Riesz basis, the following simple algorithmasymptotically realizes the best n-term approximation.Remark 2 We take � to be a set of n pairs (I;  ) for which jhf; ~ Iij islargest. Then, Sn =: P�f = X(I; )2�hf; ~ Ii Iis in �n and kf � SnkL2(
) � �n(f)with constants depending only on the constants in (3.1.28). It follows thatthat(iii) The property 1Xn=1[n�=dkf � SnkL2(
)]� 1n <126



is equivalent to (i) and (ii) in Theorem 2.Note that this algorithm requires knowledge of all of the wavelet coe�-cients of f .The n-term approximation is not directly applicable to numericalmethodsfor operator equations since the wavelet coe�cients of the solution u arenot available to us. Instead, one constructs nonlinear approximations tothe solution u using adaptive algorithms. An adaptive wavelet method forapproximating the solution u of (2.2) would select the wavelet terms to beretained in the approximation from prior computations combined with anyadditional information that may be available. We discuss speci�c adaptivemethods later in this paper. For the present, we want only to draw out thedistinction in the form of the approximation between these adaptive methodsand the n-term approximation just described.We shall discuss adaptive wavelet approximation based on the waveletdecomposition (3.1.27). It is notationally convenient to combine all waveletterms that correspond to a �xed dyadic cube. Therefore, for I 2 Dc [ D+,we de�ne fI := X 2	�hf; ~ Ii I (5.70)and cI(f) := � X 2	� jhf; ~ Iij2�1=2: (5.71)If we assume to work with wavelets adapted in some way to the underlyingdomain the sets Dc;D+ of dyadic cubes is to be understood in the abovesense. In what follows we could likewise employ wavelets de�ned on all ofIRd when 
 is a bounded domain in IRd. In this case one can always assumethat there is a �xed dyadic cube Q such that supp I \
 = ; unless I � Q.For notational convenience, we assume that Q = [0; 1]d. We shall adopt thefollowing notational conventions. We let Dc [ D+ denote the set of dyadiccubes I � Q. If I � Dc [ D+, and supp I \ 
 = ;, then de�ne fI = 0 andcI(f) = 0. In this way, we can always consider the wavelet decomposition in(3.1.27) to be indexed on all the cubes of D := Dc [ D+.An adaptive procedure usually creates approximations of the formP0(f) + XI2J fI (5.72)27



where J is a set of dyadic cubes which have a certain tree structure. IfI 2 D, we say that J is a child of I (and I is a parent of J), i� jJ j = 2�djIjand J � I. We denote the set of all children of I by C(I). We say J is asibling of I if they are both children of the same parent.Trees typically arise in an adaptive algorithm where at each inductivestage cubes are re�ned by adding all their children to the tree. The treesJ � D that arise in adaptive algorithms have the following two properties:P1 If I 2 J with jIj < 1, then its parent is in J .P2 If I 2 J , then all of its siblings are in J .We call a set J � D+ which satis�es P1, P2 an admissible tree. For anadmissible tree J , we let F(J ) � J denote the set of �nal leaves of J , i.e.,the set of those I 2 J such that I has no children in J .It is of interest to know what is the overhead (in e�ciency when comparedto n{term approximation) in forcing such a tree structure in the approximant.In [10] a simple adaptive wavelet algorithm was given that shows that thiscost is quite minimal. To describe this algorithm, we de�ne for any J � D,PJ f := XI2J fIwhere fI is de�ned by (5.70). It follows thatkf � PJ fk2L2(
) <� XI2DnJ jcI(f)j2 : (5.73)For a dyadic cube I 2 D, we let T (I) be the tower of I which is thecollection of all J 2 D such that J � I, J 6= I and we letR(I) := � XJ2T (I) jcJ j2� 12 : (5.74)Algorithm 1 Fix " > 0 and choose an initial admissible tree J0. Set B" =fJ 2 F(J0) : R(J) > �g, J" = J0. If B" = ; stop. Otherwise, for I 2 B" do:� replace J" by J" [ C(I)� replace B" by (B" n fIg) [ fJ 2 C(I) : R(J) > "g28



Since kPJnf � fkL2(
) ! 0, n ! 1, Jn = fI 2 D : jIj � 2�ndg theabove algorithm terminates for every " > 0 after �nitely many re�nementsteps, i.e., eventually one obtains B" = ; and the resulting tree J" has theproperty that R(J) � " for J 2 F(J"): (5.75)The following theorem from [10] estimates the approximation error of theadaptive algorithm.Theorem 3 Let � > 0 and � := (�=d + 1=2)�1 be as in Theorem 2. Ifg 2 B��(L�(
)) for any � > � and � > � , thenkg � PJ"fkL2(
) <� kgkB��(L�(
)) (#J")��d : (5.76)with a constant depending only on d and �.When compared to Theorem 2, this theorem shows that with only aslightly stronger assumption on g, we obtain the same approximation orderas in n-term approximation.There is an analysis, similar to the above, for adaptive approximationbased on piecewise polynomials. In [26], this was carried out for adaptivealgorithms which use partitions into cubes. It should be possible to carryover the arguments in [26] to more general adaptive partitions, for example,to triangulations, provided the re�ning triangulation are always done in thesame manner and lead to shape preserving triangulations.The above analysis shows that it is the regularity of the solution u in theBesov scale B� which determines its approximability by nonlinear methods.Adaptive methods therefore should be evaluated against the optimal valuethat is theoretically possible. In this context the Besov spaces B� replace therole of the Sobolev spaces H� when analyzing adaptive numerical methods.6 Regularity of solutions to PDE's and ap-proximation orderIn the proceeding sections, we have already seen that the maximal possi-ble e�ciency that a numerical method to recover the solution of (2.2) canhave is determined by the regularity of the exact solution of (2.2) in speci�c29



smoothness spaces. It was emphasized that the approximation order of lin-ear methods is related to the Sobolev scale H�(
), compare with Theorem1, whereas the e�ciency of nonlinear and adaptive methods is determinedby the Besov scale B�; compare with Theorem 2 and Theorem 3. There-fore, in this section, we shall give a short survey on the regularity theoremsfor partial di�erential equation for both kinds of smoothness spaces. Let Lbe an elliptic di�erential operator of order 2m on a bounded and connectedLipschitz domain 
;L = Xjkj�m Xjlj�m(�1)jljDlak;l(x)Dk; ak;l 2 L1(
): (6.77)For simplicity, we shall restrict ourselves to Dirichlet boundary conditions,i.e., we consider the problem: �nd u 2 Hm0 (
) such thata(u; v) = Xjkj;jlj�m Z
 ak;l(x)(Dku)(Dlv) dx = Z
 f(x)v(x) dx (6.78)holds for all v 2 Hm0 (
):Let us start with the usual Sobolev scale H�:We want to investigate howthe regularity of the solution u of (6.78) depends on the coe�cients ak;l; theright{hand side f and on the shape of the domain 
: Most of the time, thisquestion is formulated in the following form. Suppose that f is containedin H��m(
) for some � � 0: What are the conditions which imply that thevariational solution u 2 Hm0 (
) is in fact in Hm+�(
) and satis�esjjujjHm+� <� kfkH��m + kukHm ? (6.79)A boundary value problem with these properties is called �{regular. A �rstanswer is that �{regularity holds if the coe�cients and the domain are suf-�ciently smooth.Theorem 4 Let 
 2 Cs+m for some s � 0: Let � � 0 satisfy� + 1=2 62 f1; 2; � � � ;mg; 0 � � � s; if s 2 IN ; 0 � � < s; if s 62 IN:For the coe�cients let the following hold:Dnak;l 2 L1(
) for all k; l; n with jnj � max(0; s+ jlj �m); if s 2 IN;30



ak;l 2 Cs+jlj�m(
) for jlj = m; ak;l 2 L1(
) otherwise, if s 62 IN:Then the solution u 2 Hm0 (
) of (6.78) with f 2 H�m+�(
) belongs toHm+�(
) \Hm0 (
) and satis�esjjujjHm+� <� kfkH��m + kukHm:Results of this form were e.g. obtained by Lions and Magenes [42], seealso Hackbusch [32]. Theorem 4 implies that for problems satisfying theconditions of that theorem linear methods are su�cient in the sense that theycan provide a convergence rate of order O(n�(m+�)); compare with Theorem1 and Remark 1. Such a result does not hold for nonsmooth domains, e.g.for domains with edges and corners, even if the coe�cients are arbitrarilysmooth. In this case, the regularity is only preserved strictly in the interior[32].Theorem 5 Let 
 be a Lipschitz domain and let 
0 �� 
1 � 
 and � � 0:Let us assume that the coe�cients satisfy the conditions of Theorem 4 with
 replaced by 
1 and with s � �; where � 2 IN; s > �; where � =2 IN;respectively. Suppose that the restriction f
1 belongs to H�m+�(
1): Thenthe restriction of u to 
0 belongs to Hm+�(
0) and satis�eskukHm+�(
0) <� kfkH�m+�(
1) + kukHm(
):In general the smoothness of the solution u will decrease signi�cantlyas one approaches the boundary. Therefore, the estimation of the Sobolevregularity on nonsmooth domains is a delicate task. Roughly speaking, theresults can be divided into three types: results on speci�c operators andspeci�c domains, see e.g. Grisvard [30, 31], results on speci�c operatorsand general domains, see e.g. Jerison and Kenig [35], and results on generaloperators on general domains, see e.g. Dauge [21], Kondrat'ev [37, 38, 39, 40]and Maz'ja and Plamenevskii [43, 44, 45, 46]. Among other things, Grisvardhas intensively studied the Poisson equation, i.e., L = �4 on polyhedraldomains in IR2 and IR3; respectively, primarily with f 2 L2: Let us �rstdescribe a typical result in IR2:Let 
 be a polygonal domain with vertices &j; j = 1; 2; ::: and let !jdenote the measure of the interior angle at &j:We introduce polar coordinatesrj; �j in the vicinity of each vertex &j: Furthermore, let #j denote a suitabletruncation function which depends only on the distance rj to &j: Then thefollowing holds. 31



Theorem 6 Assume that 
 is a bounded polygonal open subset of IR2: Forf 2 L2(
) let u denote the unique solution ofZ
 ru � rv dx = Z
 fv dxfor every v 2 H10 (
): Then there exist unique numbers cj such thatu� X!j>� cj#j(rj)r�=!jj sin(��j=!j) 2 H2(
): (6.80)The explicit expression (6.80) enables one to determine exactly the Sobolevregularity of the solution u: Since only the nonconvex corners contribute, weobtain that u 2 H2 for convex polygonal domains. In the worst case, u willonly be contained in H3=2+� for some � > 0 which can be arbitrary small.This result implies that for general polygonal domains linear method canonly provide an approximation of order O(n�3=2):A similar result holds for polyhedral domains in IR3: However, the treat-ment of this case is much more complicated since one has to deal with dif-ferent types of singularities according to edges and vertices. The regularityalong edges can in principle be reduced to a two{dimensional problem withparameters, see again [30] for details. To keep the technical di�culties ata reasonable level, we shall not discuss this case here and con�ne ourselvesto a typical result concerning the behavior of the solution at one particularvertex. We need some further notation. Let �i;�l be two faces of 
 and let�i;l denote the edge between �i and �l whenever �i and �l intersect. Themeasure of the interior angle of the edge �i;l is denoted by !i;l: We set� := inffm�=!i;l 2]0; 1[; �i \ �l 62 ;; m � 1g:For convenience, we translate the typical vertex to zero. Thus, in a neigh-borhood V of 0, 
 coincides with a cone C whose intersection with the unitsphere S2 is denoted by G. Thus G is an open subset of the unit sphere whoseboundary is the union of a �nite number of arcs of great circles. We introducespherical coordinates %; � and denote by 40 the Laplace{Beltrami operatoron S2: It can be shown that the spectrum of 40 is an in�nite sequence of realnumbers ��l; l = 1; 2; � � � where �l � 0; with no limit points. We denote byvl; l = 1; 2; : : : the orthonormalized sequence of related eigenfunctions, i.e.,�40vl = �lvl:32



The following theorem was shown in [30].Theorem 7 Let 
 be a bounded polyhedral open subset of IR3: For f 2 L2(
)let u denote the solution ofZ
 ru � rv dx = Z
 fv dxfor all v 2 H10 (
): Then there exist unique numbers cl such thatu�Xl cl%�1=2+p(�l+1=4)vl(�) 2 H�(V ) (6.81)for every � � 2 such that � < � + 1; where the sum is over the l such that�l � �2 � 2�+ 3=4:It is an easy consequence of (6.81) that again the critical value for regularityis 3=2: Similar results hold for the biharmonic problem and for elasticitysystems in 2 and 3D, see again [30] for details.Jerison and Kenig [35] have studied the Poisson equation on arbitraryLipschitz domains. Their work can be interpreted as the continuation ofGrisvard's study. One of their results is the famous \H3=2{Theorem".Theorem 8 Let 
 be a bounded Lipschitz domain in IRd: If f 2 L2(
); thenu 2 H3=2(
):The value 3=2 in Theorem 8 is best possible. For example, for d = 2; 3;Grisvard's results stated above give examples of domains where regularitybigger than 3=2 cannot be obtained.For general operators, the technical and notational di�culties increasealarmingly. Therefore, we shall only give a theorem for domains with regularcones. For the general case, the reader is referred to [21] from which also thefollowing result is quoted. Again we translate the vertex of the cone C to zeroand introduce spherical coordinates %; �: The set G is de�ned as above. Thecone is called regular ifG has a smooth boundary and C = fx 2 IRdj xjxj 2 Gg:Suppose that the coe�cients of L are in C1(
) and let Lx be the principalpart of L, frozen in x: We de�neS�(C) := fvj v = %� X0�q�Q vq(�) logq %; vq 2 Hm0 (G)g: (6.82)33



We say that Lx is injective modulo polynomials on S�(C) if whenever v 2S�(C) is such that Lxv is polynomial, v is a polynomial itself. For regularconical domains, the following theorem holds.Theorem 9 Let � � 0; � 62 f1=2; : : : ;m� 1=2g: Then (6.78) is �{regular ifand only if for all � 2 C satisfying<� 2 [m� d=2; � +m� d=2]; (6.83)Lx is injective modulo polynomials on S�(C):There exist also a lot of regularity theorems for Besov and non{HilbertianSobolev spaces. They are concerned with questions of the form: Given f 2B��mp (Lp(
)); what are the conditions that imply that u 2 B�+mp (Lp(
))?Consequently, these theorems provide us with information concerning theapproximation order of linear methods as measured in Lp:We shall state twotypical results for the spaces W �(Lp(
)) and B�p (Lp(
)); respectively. Forinstance, Theorem 6 has the following extension to non{Hilbertian Sobolevspaces.Theorem 10 Let 
 be a bounded polygonal open subset of IR2: For eachf 2 Lp(
); 1 < p <1; there exists a unique solution u ofZ
 ru � rv dx = Z
 fv dxfor every v 2 H10 (
) and in addition there exist numbers cj such thatu� X�=!j<2�2=p cj#j(rj)r�=!jj sin(��j=!j) 2 W 2(Lp(
))provided that none of the numbers �=!j is equal to 2 � 2=p:For the case of Lipschitz domains, the most general results were againobtained by Jerison and Kenig [35]. We shall restrict ourselves here to thecase d � 3; a similar result holds for d = 2:Theorem 11 Let 
 be a bounded Lipschitz domain in IRd; d � 3: Thereexists "; 0 < " � 1; depending only on the Lipschitz constant of 
 such thatfor every f 2 W ��1(Lp(
)) there is a unique solution u 2 W �+1(Lp(
)) to�4u = f on 
; (6.84)u = 0 on @
;provided one of the following holds: 34



(a) p0 < p < p00 and 1p � 1 < � < 1p(b) 1 < p � p0 and 3p � 2� " < � < 1p(c) p00 � p <1 and 1p � 1 < � < 3p � 1 + "where 1=p0 = 1=2+"=2 and 1=p00 = 1=2�"=2: Moreover, we have the estimatekukW�+1(Lp(
)) <� kfkW��1(Lp(
))for all f 2 W ��1(Lp(
)):So far, we have seen that linear methods are only suitable for smooth andconvex domains, even if the coe�cients are arbitrarily smooth. Therefore,the hope is to gain e�ciency by employing an adaptive numerical scheme.According to Theorem 2 the use on nonlinear methods is justi�ed if the weaksolution u is contained in the scaleB�; 0 � � < ��; where the maximal index�� is signi�cantly higher than the one for usual Sobolev scale H�: Therefore,the �rst step of a systematic study of adaptive schemes should consist inthe derivation of regularity theorems for u with respect to B�: It seems thatthis kind of study is still in its infancy. First regularity theorems for thespeci�c scale B�� (L�(
)); 1� = (�d + 12) were given for certain model problemsby Dahlke and DeVore [15]. We give the following example for the Poissonequation taken from [13].Theorem 12 Let 
 be a bounded Lipschitz domain in Rd: Let u denotethe solution of (6.84) with f 2 B��12 (L2(
) for some � > �1=2: Then thefollowing holds:u 2 Bs�(L� (
)); 1� = �sd + 12� ; 0 < s < min( 3d2(d � 1) ; �+ 1) :We observe that for a large range of the parameter � we have a jump oftwo for the smoothness of the solution in the special scale Bs� (L� (
)); 1� =( sd + 12): For instance, for d = 2; we obtain the condition � < 2; whereas forthe usual scale H� = B�2 (L2(
)) we have the jump of two only for � < 1=2;compare with Theorem 11. Therefore, the maximal index for the spaces B�is in general much larger than the one for H�: Consequently, Theorem 1235



can be interpreted as a justi�cation for adaptive and nonlinear methods. In-deed, this theorem implies that adaptive methods on Lipschitz domains canperform as good as linear methods on smooth domains, provided that theright{hand side f is contained in a suitable smoothness space.7 An adaptive scheme for elliptic equationsIn this section, we discuss possible connections between the above concept ofnonlinear approximation and certain adaptive schemes for elliptic problemsof the type considered above. We adhere to the assumptions made in Sections2 and 3. While nonlinear approximation uses idealized information about theapproximand any adaptive solver has to contend itself with information ac-quired during the computation combined perhaps with some information ofthe given data. In fact, the basic idea of adaptive schemes is to re�ne stepby step the discretization only at those places where the behaviour of thesearched object requires a higher resolution so that the error is more or lessbalanced throughout the domain. In the presence of singularities this resultsin highly nonuniform meshes. In the present context we do not have to thinkthough in terms of re�ned meshes but rather in terms of re�ned spaces. Bythis we mean the following. How can one �nd possibly few further waveletswhich when added to the current trial space guarantee a prescribed decay ofthe error of the corresponding Galerkin approximation. One can thereforeperhaps not expect to obtain equally strong theoretically founded results inthis latter context. Nevertheless, an issue of central importance will be tointerrelate both concepts.7.1 Prelimary remarksIn the context of elliptic problems it is natural to measure errors in the energynorm k � k de�ned in (2.5) or equivalently in k � kHt while the concept ofnonlinear approximation has so far been formulated for the L2-norm k � kL2.It is easy though to carry this over to measuring errors in Sobolev normswhich will be indicated �rst. To this end, it will be convenient to economizeour notation a little further by subsuming all information on a wavelet in36



one index � containing its type (if applicable), location and scale. For r =f( ; I) :  2 	�I ; I 2 Dc [ D+g as before let� := ( ; I); j�j := jIj1=d;so that the biorthogonal bases are briey denoted by 	 = f � : � 2 rg,~	 = f ~ � : � 2 rg and Is takes the formIsg = X�2r j�jshg; ~ �i �:In analogy to (5.69) let�n;t(g) := inf8<:kg �X�2� d� �kHt : d� 2 IR; � 2 � � r; #� = n9=; :We have the following analog to Remark 2.Remark 3 Let g 2 H t: We take �n to be a set of n indices � for whichj�j�tjhg; ~ �ij is largest. Then, for P� de�ned by (3.6.57) one has�n;t(g) � kg � P�n(g)kHt; n 2 IN: (7.1.85)Thus picking the n �rst largest weighted coe�cients realizes asymptoticallythe best n-term approximation relative to the norm k�kHt and hence, by (2.6),also relative to the energy norm k � k.Proof: Under the assumption (3.6.60) the assertion is an immediate conse-quence of the norm equivalence (3.5.54) which implies that�n;t(g) � �n;0(I�tg) := �n(I�tg); (7.1.86)compare with (3.6.62). 2Again the Besov regularity of a function g can be characterized in termsof its best n-term approximation relative to k � kHt.Proposition 1 Assume that �� t <  and let for t � �1� � := � � td + 12 : (7.1.87)Then one has 1Xn=1 �n(��t)=d�n;t(g)��� <1 (7.1.88)if and only if g 2 B���(L��(
)). 37



Proof: Combining Theorem 2 with (7.1.86) ensures that I�tg belongs toB��t�� (L��(
)) if and only if1Xn=1 �n(��t)=d�n;t(g)��� <1:So it remains to verify that Is not only shifts between Sobolev but also be-tween Besov scales. In fact, one easily infers from (3.1.32) that the statementsI�tg 2 B��t�� (L��(
)), g 2 B���(L��(
)), andX�2r j�j�t��jhg; ~ �ij�� <1are equivalent. 2Proposition 1 has an interesting application to the Poisson equation (6.84).We have already discussed the e�ciency of the best n{term approximationwhen applied to the solution of (6.84); compare with Theorem 12. How-ever, these results were formulated with respect to approximation in L2(
):For elliptic equations, the energy norm is slightly more natural. A combina-tion of Proposition 1 and Theorem 12 provides us with the following resultconcerning approximation relative to k � kH1:Proposition 2 Let u denote the solution of (6.84) with f 2 B��12 (L2(
));� � 1: Then1Xn=1 �ns=d�n;1(u)�� <1 for all 0 < s < s�=3; (7.1.89)where s� = minf 3d2(d�1); � + 1g and � = (s� 1)=d + 1=2:Proof: Since � � 1; the right{hand side f is contained in L2(
): Therefore,Theorem 8 implies that u 2 H3=2(
) = B3=22 (L2(
)): On the other hand, weknow from Theorem 12 thatu 2 B��(L�(
)); 1� =  �d + 12! ; 0 < � < s�:By interpolation and embeddings of Besov spaces, we can conclude that u isin a family of Besov spaces Bsq(Lq(
)) for a certain range of parameters q and38



s, i.e., u 2 Bsq(Lq(
)) whenever (1=q; s) is in the interior of the quadrilateralwith vertices (1=2; 0); (1=2; 3=2); (s�=d+1=2; 0); (s�=d+1=2; s�): Therefore, tocompute the range of parameters s for which u is contained inBs� (L�(
)); � =(s� 1)=d + 1=2; we have to determine the intersection of the lines1q � 12 =  2s�d(2s� � 3)!�s� 32�and 1q � 12 = s� 1dwhich is the point (s�=(3d) + 1=2; s�=3 + 1): An application of Proposition 1with t = 1 yields the result. 2To illustrate this result, we consider the example where d = 2: If � �2; then s� = 3: Hence, in this case, the nonlinear method gives an H1{approximation to u of order up to n�1=d; whereas a linear method using nterms could only give n�1=2d in the worst case.In general, a-priori knowledge about the Besov regularity of the solutionu to (2.2) would give lower bounds for the errors produced by any adaptivemethod. Conversely, if we knew that a particular adaptive scheme is asymp-totically as e�cient as best n-term approximation in k � kHt its performancewould allow us to infer the regularity of u. Of course, since the wavelet co-e�cients of the solution u are not known a-priori, one cannot apply Remark3 directly. There are several possible ways of dealing with this problem.Let d	(g) denote the sequence of wavelet coe�cients of g relative to	, i.e., d	;�(g) = hg; ~ �i, � 2 r, and analogously d~	(g). By (3.6.66) thesolution u of (2.2) is determined byd	(I�tu) = A�1d~	(I�t f): (7.1.90)Recall from (7.1.86) that the best n-term approximation of u in k � kHt corre-sponds to the best n-term approximation of I�tu in the L2-norm k�kL2 which,by Remark 2, corresponds to selecting the n largest terms jd	;�(I�tu)j =j�j�tjd	;�(u)j. It is known that in certain cases the decay properties of(3.6.67) of the in�nite matrix A imply similar decay properties for A�1;perhaps with di�erent parameters, see e.g. [51]. In such a case the largestcoe�cients of I�tu are expected to appear in a `neighborhood' of the (acces-sible) largest coe�cients �f� = j�jtd~	;�(f). The e�ect of the smearing caused39



by the application of A�1 can in principle be estimated by the same methodsas used in connection with matrix compression [18]. However, this assumesthat the singular behavior of u is completely governed by the right hand sidef . Here we shall describe next a somewhat di�erent approach from [14]. Tomotivate this let us briey recall �rst a basic strategy employed by manyadaptive �nite element schemes. A key observation is the equivalence be-tween the validity of two-sided error estimates and the so called saturationproperty. In the context of �nite elementmethods this issue is discussed in [5].The basic reasoning can be sketched as follows. Suppose that S � V � H tare two trial spaces with respective Galerkin solutions uS; uV . By orthogo-nality one has kuV � uSk � ku� uSk;where k � k denotes again the energy norm. Moreover, one easily checks thatone has ku� uV k � �ku� uSk (7.1.91)for some � < 1 if and only if(1 � �2)1=2ku� uSk � kuV � uSk: (7.1.92)Thus if the re�ned solution uV captures a su�ciently large portion of theremainder (7.1.92) the global energy error is guaranteed to decrease by afactor � when passing to the re�ned solution uV and one has the boundskuV � uSk � ku� uSk � (1� �2)�1=2kuV � uSk; (7.1.93)which are computable. In practice one controls the local behavior of uV �uSand re�nes the mesh at places where (an estimate for) this di�erence islargest. This results in balancing the error bounds. Although this has beenobserved to work well in many cases, the principal problem remains thatsomething like (7.1.92) has to be assumed to prove convergence of the overalladaptive algorithm.It is perhaps worth stressing that wavelet analysis allows us to remedythis conceptual de�ciency and derive much stronger information about re-mainders. In fact, we shall see below that the assumption (7.1.92) aboutthe unknown solution u can be replaced (quite in the spirit of the previouscomments) by some (rather weak) information on the accessible data f .40



To this end, let us �rst relate the type of estimates (7.1.93) to n-termapproximation. Instead of minimizing the error for a given allowance of nterms one can minimize the number of terms needed to meet a given errortolerance. Speci�cally, given any strictly decreasing sequence f�igi2IN , wecan look for a sequence f�(�i)gi2IN of index sets �(�i) � r such that�#�(�i);t(u) � �i; i 2 IN: (7.1.94)The following observation is an immediate consequence of Remark 3.Remark 4 One has ku� P�(�i)uk � �i; i 2 IN; (7.1.95)and the sets �(�i) can be chosen to be nested, i.e.,�(�i) � �(�i+1); i 2 IN: (7.1.96)Let, with a slight abuse of notation, u� denote the solution of Galerkinproblem (3.6.55) with S := S� := span f � : � 2 �g:If � � ~� we have ku� u~�k2 = ku� u�k2 � ku� � u~�k2;since the Galerkin approximation is an orthogonal projection relative to theenergy inner product. Therefore, we obtainRemark 5 Consider the following sequence f�igi2IN :(I) Fix some �1 � r and � < 1. De�ne �1 := ku� u�1k.(II) Given �i choose �i+1 � r, �i � �i+1 such thatku�i � u�i+1k � �ku� u�ik (7.1.97)while for any � � r with �i � � and #(� n �i) � #(�i+1 n �i) onehas ku�i � u�k < �ku� u�ik: (7.1.98)Set �i+1 := (1� �2)1=2ku� u�ik.41



(III) Replace i+ 1 by i and go to (II).Then one has ku� u�nk � �#�n+c;t(u); n 2 IN; (7.1.99)where c is some constant.In practice, it will generally not be possible to realize the above strategyof capturing a signi�cant portion of the remainder by a possibly small set ofadditional indices since the exact estimation required in (7.1.97) and (7.1.98)is generally not possible. However, it will be possible to bound quantitiesof the form ku� � u~�k; for � � ~�; from below and above by computablelocal quantities times constants which are independent of the sets �; ~� butdi�erent from one.7.2 A-posteriori error estimatesSuppose that for some � � r, S� is the current trial space and that we havecomputed the solution u� of (3.6.55) (within some appropriate tolerance).According to Remark 5, the next step is to estimate the error ku� u�k inthe energy norm in a way that indicates how to select next a bigger set ~� � r,� � ~�, of wavelet indices so that, on one hand, ~� stays still possibly smallwhile, on the other hand, the error ku� u~�k is guaranteed to decrease by acertain amount. As mentioned before, selecting the index sets � implicitlycorresponds to creating possibly nonuniform meshes. In fact, the spacesSn = spanf � : j�j � 2�ng correspond to uniformly re�ned meshes andtaking only subsets of the complement bases f � : j�j = `g corresponds toa nonuniform re�nement.To this end, we exploit the commonly used fact that, the error in theenergy norm can be estimated by the residual in a dual norm which, at leastin principle, can be evaluated. In fact, sincer� := Au� � f = A(u� � u);by (3.6.58) and (2.6), one hasc1 kr�kH�t � ku� u�k � c2 kr�kH�t : (7.2.100)Expanding the residual r� by the dual basis ~	 and taking the Galerkinconditions P ��Au� = P ��f (7.2.101)42



into account, yieldsr� = X�2rhr�;  �i ~ � = X�2rn�hr�;  �i ~ �:Bearing (3.6.60) in mind, and quantifying the constants in (3.5.54), ensuresthe existence of �nite positive constants c3; c4 such thatc3� X�2rn� j�j2t jhr�;  �ij2� 12 � kr�kH�t � c4� X�2rn� j�j2t jhr�;  �ij2� 12 :(7.2.102)Thus, in principle, the nonnegative quantities�� = ��(�) := j�jt jhr�;  �ij ; � 2 r n �;are in some sense the desired local quantities bounding the error ku� u�kfrom below and above. However, in the present form, (7.2.102) is still uselesssince the bounds involve generally in�nitely many terms ��.To understand these bounds a little better, suppose that u�0 denote thewavelet coe�cients of the current solutionu� = X�02�u�0 �0:Straightforward calculations then yield�� = j�jt ������f� � X�02�hA �0;  �iu�0������ ; (7.2.103)where as above f� := hf;  �i denote the wavelet coe�cients of the righthand side f relative to the dual basis ~	. (7.2.103) shows that the size of�� is inuenced by two quantities. First, if the right hand side f itself hassingularities this will result in large wavelet coe�cients f�. Second, the sumP�02�hA �0;  �iu�0 gives the contribution of the current solution which, forinstance, could reect the inuence of the boundary.Thus replacing the bounds in (7.2.102) by �nitely many computable butstill su�ciently accurate terms requiresa) estimating the smearing e�ect of A as well as43



b) some a-priori knowledge about f .So far we have only used the ellipticity (2.3) or (2.6) of A and the normequivalence (3.5.54). To deal with problem a) one has to make essential useof the decay estimates (3.6.67). These estimates are usually deduced from(2.12) with the aid of moment conditions (see (3.1.25)). We describe nowhow they can be utilized. Let again ~N denote the order of vanishing momentsof the wavelets  � and let � < r � d=2, where r is the constant in (3.6.67).Choose for any " > 0 positive numbers "1, "2 such that"2 ~N+2t1 + 2� �"2 � ": (7.2.104)For each � 2 r; we de�ne the inuence setsr�;" := f�0 2 r : jjlog �j � jlog �0jj � log 2 "�12 andminfj�j�1 ; j�0j�1gdist(
�;
�0) � "�11 g;where 
� denotes the support of  �. The sets r�;" describe that portion ofthe sum ��;� = X�02�hA �0;  �iu�0;appearing in the residual weights �� (7.2.103), which is signi�cant. In fact,the remainder e� := X�02�nr�;"hA �0;  �iu�0can be estimated as follows [14].Proposition 3 For e� and r�;" as above there exists a constant c5 indepen-dent of f and � such that� X�2rn� j�j2t je�j2� 12 � c5" ku�k : (7.2.105)Note that, again by (3.5.54),ku�k � ku�kHt � �X�2� j�j�2t ju�j2� 12 ;44



so that the right hand side in (7.2.105) can be evaluated by means of thewavelet coe�cients of the current solution u�. Moreover, one can even givean a-priori bound. In fact, the stability of the Galerkin scheme assured by(3.6.59) says, on account of the uniform boundedness of the P �� in H�t, thatku�k <� kP ��fkH�t <� kfkH�t : (7.2.106)As for b) above, by construction, the signi�cant neighborhood of � inrn�N�;" := f� 2 r n � : � \r�;" 6= ;g (7.2.107)is �nite #N�;" <1:OutsideN�;" the quantities �� in (7.2.103) are essentially inuenced by waveletcoe�cients of f . But this portion is essentially a remainder of f . In fact, by(3.5.54), � X�2rn(�[N�;") j�j2t jf�j2�12 � c2kf � P ��[N�;"kH�t� c6 infv2 ~S�[N�;" kf � vkH�t � c6 infv2~S� kf � vkH�t ;for some c6 <1. This suggests de�ningd�(�; ") := j�jt ��� X�02�\r�;"hA �0;  �iu�0���; � 2 r n �:Note that, in view of (7.2.107),d�(�; ") = 0; � 2 r n �; � 62 N�;": (7.2.108)The main result can now be formulated as follows [14].Theorem 13 Under the above assumptions, one hasku� u�k � c2c4�� X�2N�;" d�(�; ")2� 12 + c05" kfkH�t + c6 infv2 ~S� kf � vkH�t�as well as,� X�2N�;" d�(�; ")2�12 � 1c1c3 ku� u�k+ c05" kfkH�t + c6 infv2 ~S� kf � vkH�t :45



Moreover, for any ~� � r, � � ~�; one has� X�2~�\N�;" d�(�; ")2� 12 � 1c1c3 ku~� � u�k+ c05" kfkH�t + c6 infv2~S� kf � vkH�t :This result provides, up to the controllable tolerance� (�; �) := c05" kfkH�t + c6 infv2 ~S� kf � vkH�t ;computable lower and upper bounds for the error ku� u�k. Usually undermore specialized assumptions results of similar nature have been obtainedalso in the �nite element context (see e.g. [27]). Furthermore, one expectsthat nonlinear problems can be handled by combining such estimates withknown abstract results.7.3 Convergence of an adaptive re�nement schemeIn the present setting, it can be shown with the aid of Theorem 13 that undermild assumptions on the right hand side f a suitable adaptive choice of ~�enforces the validity of the saturation property (7.1.92). We continue withthe notation of Section 7.2. The following theorem was proved in [14].Theorem 14 Let tol > 0 be a given tolerance and �x � 2 (0; 1). De�neC� :=  1c1c3 + 1 � �2c2c4! ; (7.3.109)choose � > 0 such that �C� � 1� �2(2 � �)c2c4 ; (7.3.110)and set " := � tol2c05 kfkH�t : (7.3.111)Suppose that for � � r; one hasc6 infv2~S� kf � vkH�t < 12� tol:46



Then, whenever ~� � r, � � ~� is chosen so that� X�2~�\N�;" d�(�; ")2� 12 � (1 � �)� X�2N�;" d�(�; ")2� 12 ;there exists a constant � 2 (0; 1) depending only on the constants �, �, ci,i = 1; : : : ; 6, such that eitherku� u~�k � � ku� u�kor � X�2N�;" d�(�; ")2� 12 = � X�2rn� d�(�; ")2�12 < tol:Of course, the idea is to choose ~� � � as small as possible, i.e., in anycase ~� n � � N�;". This leads to the followingAlgorithm 2 0. Choose tol > 0, � 2 (0; 1) and compute C�, � accordingto (7.3.109), (7.3.110).1. Compute " = "(�; tol) by (7.3.111).2. Determine � � r such thatc6 infv2~S� kf � vkH�t < 12� tol:3. Solve hAu�; vi = hf; vi; 8v 2 S�:4. Compute ��;" := � X�2N�;" d�(�; ")2�12 :If ��;" < tol stop, accept u� as solution.5. Determine ~� with � � ~� � � [N�;" such that�X�2~� d�(�; ")2� 12 � (1� �)��;":Set ~�! � and go to (3). 47



Although quite di�erent with regard to its technical ingredients the abovealgorithm is very similar in spirit to the adaptive scheme proposed in [27] forbivariate piecewise linear �nite element discretizations of Poisson's equation.As above the coarsest grid is chosen in [27] in such a way that all errorsstemming from data are kept below any desired tolerance. In that sense theapproach in [27] has motivated part of the developments described above andin [14].We wish to add a few more comments on the above scheme. It maynot be practically e�cient to shoot for the �nal accuracy in the �rst step.One would rather select a sequence tol` = 12"`�1, ` = 1; : : : ; N , say wheretolN =: Tol is the �nal accuracy. One would then proceed as follows:Algorithm 3 0. Choose Tol = 2�N tol0. Set tol = tol0.1. Apply Algorithm 2 with tol.2. If tol � Tol stop, accept u� as solution. Otherwise set tol2 ! tol and goto (1).A brief comment on Step 3 in Algorithm 2 is in order. By (3.6.64), theprincipal sections of the matrix A are well-conditioned. This can be used toupdate a current Galerkin approximation u� as follows. Let u� := d	(u�)be the vector of wavelet coe�cients of u�. To compute the coe�cient vectoru~� of u~� we choose an initial approximation v according tov� = � u�; � 2 �w�; � 2 ~� n � ; (7.3.112)where w~�n� = d	(w~�n�) are the coe�cients of the Galerkin solution w~�n� ofthe complement systemhAw~�n�; vi = hf; vi; v 2 S~�n�;where S~�n� := spanf � : � 2 ~�n�g. The corresponding matrix entries haveto be determined anyway for the adaptive re�nement. Since by (3.6.64), thecorresponding section A~�n� of A is well-conditioned only a few conjugategradient iterations are expected to be necessary to approximate w~�n� wellenough to provide a good starting approximation of the form (7.3.112) whichwill then have to be improved by (a few) further iterations on the systemmatrix A~�. 48
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