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Abstract

This survey article is concerned with two basic approximation con-
cepts and their interrelation with the numerical solution of elliptic op-
erator equations, namely nonlinear and adaptive approximation. On
one hand, for nonlinear approximation based on wavelet expansions
the best possible approximation rate, which a function can have for
a given number of degrees of freedom, is characterized in terms of its
regularity in a certain scale of Besov spaces. Therefore, after demon-
strating the gain of nonlinear approximation over linear approxima-
tion measured in a Sobolev scale, we review some recent results on the
Sobolev and Besov regularity of solutions to elliptic boundary value



problems. On the other hand, nonlinear approximation requires infor-
mation that is generally not available in practice. Instead one has to
resort to the concept of adaptive approximation. We briefly summa-
rize some recent results on wavelet based adaptive schemes for elliptic
operator equations. In contrast to more conventional approaches one
can show that these schemes converge without prior assumptions on
the solution such as the saturation property. One central objective
of this paper is to contribute to interrelating nonlinear approximation
and adaptive methods in the context of elliptic operator equations.

Key Words: Nonlinear approximation, adaptive methods, elliptic equa-
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1 Introduction

Adaptive methods are an important tool for numerically solving elliptic equa-
tions. Their origins appear in the adaptive grid refinements in Finite Element
Methods. Heuristically, adaptive methods are effective when trying to recover
solutions u which exhibit singularities. Much impetus to the theory of adap-
tive finite element methods was provided by the introduction and analysis of
p and h-p methods by Babuska and his collaborators (see e.g. [2] and [3]).
A lot of further results on this subject have been developed in the last years,
see e.g. [4, 33, 52]. For an overview on the theory of adaptive finite elements,
the reader is referred to [28] and [53]. On the other hand, for most adaptive
algorithms, there exist no proofs of convergence.

The purpose of this paper is to phrase the problem of designing and
analyzing adaptive methods in the context of approximation of functions. In
this way, we shall introduce some analytical tools which may prove useful
for constructing and analyzing adaptive algorithms. In particular, we shall
utilize heavily the theory of multilevel methods and wavelets.

An outline of this paper is as follows. In §2, we introduce the elliptic
problems that we shall consider. They take the form

Au=f (1.1)



where A is a symmetric positive definite operator which is boundedly invert-
ible on some Sobolev space. Thus, (1.1) includes both integral equations and
boundary value problems.

In §3, we briefly recall the theory of Sobolev and Besov spaces which we
shall need for this paper. While these spaces have their classical definitions in
terms of derivatives and smoothness, we introduce them from the viewpoint of
wavelet decompositions. This gives a simple criterion for membership in these
spaces in terms of certain sequence norms applied to the wavelet coefficients.
This also gives us an opportunity to introduce wavelet decompositions for
various types of domains which will be important for both our numerical and
analytic considerations. We conclude this section with summarizing some
relevant facts about wavelet discretizations of (1.1).

In §4.5, we discuss some approximation concepts which are relevant for
numerically approximating the solution u to (1.1). We draw distinctions
between two cases:

o Linear methods where the approximation comes from a linear space.

o Nonlinear methods where the approximation takes place from a nonlin-
ear set.

Adaptive methods are a form of nonlinear approximation. In these sections,
we shall discuss the smoothness required of a function v in order that it can
be approximated with a certain efficiency by linear or nonlinear methods.
This is important, vis a vis (1.1), since it tells us the smoothness (regularity)
the solution w must have in order for it to be approximated with a given
efficiency.

There will be two scales of regularity: one for linear methods, the other for
nonlinear methods. The regularity for linear methods is given by the usual
scale H* of Sobolev spaces. This regularity is well-known and often used in
error estimates for Finite Element Methods. The corresponding regularity
for nonlinear methods takes place in a certain scale of Besov spaces. This
scale of spaces does not seem to be as fully understood in the Finite Element
literature. This type of regularity needs to be used (in place of Sobolev reg-
ularity) when analyzing nonlinear methods such as adaptive finite elements.
In particular, this type of regularity needs to be kept in mind when con-
structing adaptive numerical methods and in analyzing their performance
(establishing error estimates).



In §6, we discuss the regularity of solutions to (1.1) from the viewpoint
of the Sobolev and Besov scales noted above. The regularity of the solution
tells the maximum efficiency a numerical method can achieve.

However, the problem still exists to construct such numerical methods
and establish their convergence and error estimates in specific settings. In
87, we discuss how this might be accomplished in the context of wavelet
decompositions.

2 A class of elliptic problems

In this section, we shall introduce the generic elliptic problems which we wish
to analyze. We shall consider the model case of a linear operator equation

Au=f (2.2)

where A : H — H* is a boundedly invertible operator from some Hilbert
space H into its dual H*, i.e.,

[Av][ e < [0l v € H. (2.3)

We use the notation A < B to express that A < Band B < A. Here A < B
means that A < C'B for some constant (. In the case that A and B depend
on parameters or variables the constant C is to be independent of these
parameters or variables unless explicitly stated otherwise.

To simplify the exposition we will confine the discussion to selfadjoint
operators A, i.e.,

a(u,v) = (Au,v), (2.4)
is a bilinear symmetric form and (2.3) means that the energy norm
Jull = alu, u)? (2.5)
satisfies
A= -l - (2.6)

In variational (weak) form the solution u to (2.2) is a function v € H which
satisfies

a(u,v) = (f,v), veH. (2.7)



The following examples indicate the scope of problems we have in mind.

Suppose that @ C IR? is a domain. We shall always assume that € is
a bounded, open, and connected Lipschitz domain. This covers all domains
of practical interest. If k is positive integer, the Sobolev space H*(Q) :=
WH(Ly(9)) consists of all functions f € L(2) whose distributional deriva-
tives DV f, |v| = k, satisfy

|FlEm@y = 2 ID" I, (2.8)

lv|=Fk

is finite. The square root of (2.8) is the semi-norm for H*(Q)) and adding
to it ||f|lz,e) gives the norm || £z () in H*(2). The spaces H*(f)) can
then be defined for non—integer values o > 0 in several equivalent ways, for
example, using either interpolation theory, or viewing them as special cases
of Besov spaces. The Besov spaces on domains are defined using moduli of
smoothness (see e.g. [25]). For negative o one can employ duality.

Simple examples for A are in this case Au = —Aw or Au = —Au + cu

where A = 39, % is the Laplacian and ¢ > 0. Here H = Hg(f2) or

H = H'(Q) , respectively, where H* () is the closure of C5°(Q) with respect
to the || - ||gm-norm. Of course, when A is the biharmonic operator one has
H = HZ(Q) or similar spaces incorporating mixed boundary conditions.

The second example represents a different type of problems which still
fits into the present framework. In order to solve an exterior boundary value
problem

AU =0 in IR°\Q, U=/f on 09, (2.9)

it is tempting to transform this problem into a boundary integral equation.
For instance, the indirect method leads to the equation on the boundary

Au=f, A=TI+42K (2.10)

where K involves the double layer potential operator

Ku(z):=1[1/2 — 0q(x)]u(x) + ﬁ / %u(g)dy (2.11)

and Oq(x) denotes the interior angle at « € 92 located on an edge of 9. In
this case it is known that H = Ly(I'), I := 99Q. Solving (2.10) for u leads to

the solution of (2.9) by evaluating a singular integral.
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Alternatively, the direct method yields an integral equation of the first
kind |
Au=Vu= (§—|—K)f,

where V is the single layer potential operator
Vu(x) = / %dy.
drle —yl
59

It is known that this fits into the above framework with H = H~'/(T),
H* = H'Y*T'). Of course the latter context requires a proper definition of
Sobolev spaces on surfaces or manifolds. This is usually done by “lifting”
Sobolev spaces from domains in IR with the aid of an atlas and a partition
of unity (see e.g. [9, 19]). We shall comment on this issue later in more
detail.

Thus in what follows H typically stands for a Sobolev space H* = H'(Q)
(or some subspace determined by boundary conditions) while for ¢t > 0, H~*
is to be understood as the dual of H*.

We conclude pointing out one more property of the class of operators
under consideration. Note that in the above examples A has support of
measure zero or has a Schwarz kernel with certain asymptotic properties.
More precisely, we will assume that

(Av)(a) = [ K(a.y)oly)dy.

where K(z,y) is smooth off the diagonal @ = y and where we require that
whenever d + p + ||+ |v| > 0

1000, K (2, y)| < ¢y, dist ()~ Aol (2.12)

holds with constants ¢, , depending only on the multi-indices p,v € Zi.
Estimates of the type (2.12) are known to hold for a wide range of cases
including classical pseudo-differential operators and Calderén-Zygmund op-
erators (see e.g. [18, 50]). Thus the single and double layer potential operator
above as well as classical differential operators fall into this category.



3 Smoothness spaces and wavelet decompo-
sitions

We wish to treat the above type of problems by means of wavelet methods.
To this end, we have to explain first what is meant by wavelets defined on the
various types of domains appearing in the previous section and how wavelet
expansions are related to smoothness spaces on such domains. The simplest
setting is Q = IR?. Although this is of limited use for problems of the above
nature it is particularly well suited for bringing out the essentials of wavelet
analysis and serves as a core ingredient for the construction of wavelets on
other domains.

3.1 Wavelets on Euclidean space

We begin by discussing smoothness spaces on IR?. As above, if k is positive
integer, the Sobolev space H*¥(IR") := W*(Ly(IR")) is defined as before with
Q = IR?, compare with (2.8). The Sobolev spaces H*(IR") for other values of
«a € IR are usually defined by Fourier transforms. In particular, HO(Rd) =
Ly(IRY) and H=(IR") is the dual space of H(IR").

There is an equivalent definition of the Sobolev spaces in terms of wavelet
decompositions which is of primary importance in the present context and
which we now describe. Let D denote the set of all dyadic cubes in IR? and
let D; be the collection of all dyadic cubes at level j. Then, I € D; if and
only if I = 279(k +[0,1]%), for some j € Z, k € Z*. If 5 € Ly(IR"), we
define

nr(x) = |17V (22 — k), I=277(k+[0,1]%). (3.1.13)

Then 5y is a scaled, shifted, dilate of 5 and |91, rey = ||z, ey for all
1 eD.

We begin our discussion of wavelet bases with the biorthogonal bases of
compactly supported basis functions. We recall briefly how such bases are
constructed from multiresolution analysis. A function 7 is said to satisfy a
refinement equation (sometimes called a two scale relation) if

n(z)= > a2z — k). (3.1.14)

kez?



We shall only deal with compactly supported functions 5. In this case, only
a finite number of the coeflicients @, are nonzero.

The starting point for constructing biorthogonal wavelets is a pair of uni-
variate functions  and ¢ of compact support which each satisfy a refinement
equation and are in duality

/99 (¢ — k)= 6(k), ke Z, (3.1.15)

with é the Kronecker delta function on Z. From ¢ and ¢ we construct the
multivariate functions ¢(x) := (1) - @(xq) and ¢(x) := S(xq1) - @(aq)
which are also in duality:

/ S(z)d(z — k) = 8(k), ke Z° (3.1.16)

Let Vy be the Ly(IR?) closure of the linear span of the shifts ¢(- — k),
ke Z°, of ¢. From the existence of a compactly supported dual function ¢
it follows that the functions ¢(- — k), k € Z", are a Riesz basis for V; and
each element v € V; has the representation

v= Z <v7 q;( - k)>¢( - k)v (3'1'17)

kez?
with

(f.9)={/, LQRd: /f

the inner product for L,(IR?).
By dilation, we obtain the spaces

V= {v(2) 1 v e 4} (3.1.18)
Then V; is spanned by the functions ¢7, I € D;, and each v € V; has the

representation .
v=Y_ (v,61)dr. (3.1.19)
IeD,

Because ¢ satisfies a refinement equation, the spaces V; are nested

ViCVip, JjEZ. (3.1.20)
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It follows [7] that U;V; is dense in Lo(IR?).
Let P; be the projector from Ly (IR?) onto V; given by

Pif= 3 {f.énér (3.1.21)

IeD,

The projectors P; are uniformly bounded on Lg(ﬂ%d) and for each [ €
LQ(Rd)v
1S = Lifll,mey — 0. (3.1.22)

The operators Q; := P;,1 — P; are also uniformly bounded on Ly(IR") and
their range W, C Lg(ﬂ%d) is called a wavelet space. The spaces W; inherit the
same structure as the V. For example, each W; is the dilate (by 2/) of W,.
Also, W, is a shift invariant space generated by a set W° of 2¢ — 1 functions
. That is, Wy is the closed linear span of the functions (- — k), k € Z*,
W € U°. Moreover, there is a dual set U° of 2¢ — 1 functions 1 such that

(- — k)il = ) = 8(k = )o( — ), jok € Z' by € W, (3.0.23)

Now suppose that ¢, ¢ are exact of order N, N, respectively, i.e.,

S Zkezd<(')av¢(' —k))o(x —k), wz€ Rd? la| <N,
(3.1.24)

2% = Ypezal()% 6(- = k)yd(z — k), =€ R, |a| < N,

where |a| denotes the sum of the components of the multi-indices o € Zi.
An immediate consequence of (3.1.23) and (3.1.24) is that the ¢» € U° have
vanishing moments, i.e.,

/ P(e)(e)de =0, o € U, (3.1.25)

for all polynomials P of coordinate degree less than N. An analogous state-
ment holds for 1 and N replaced by v and N, respectively. It is known that
for any N, N € IN such that N 4+ N is even there exist compactly supported
dual pairs ¢, ¢ whose order of polynomial exactness is N, N, respectively
[11]. Thus the biorthogonal setting not only offers more flexibility in con-
structing compactly supported wavelets, where all filters have finite support
and therefore give rise to fast reconstruction and decomposition algorithms,
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but also allows one to construct wavelets with an arbitrarily high number of
vanishing moments which is crucial for treating integral equations.
It follows that each function in Lg(ﬂ%d) has the wavelet decomposition

F=3 Y v (3.1.26)

IeD pewe

An alternative wavelet decomposition and the one preferred in numer-
ical considerations starts at a finite dyadic level (which we, for notational
convenience, will take as level 0). Then, for each f € Ly(IR?), we have

f = FR(f)+ Z Z<f77z)[>¢l

IeD+ yeve

= S (Lo =k — k) + S0 S (Fddr (3.1.27)

keZ¢ IeD+ yewe

with Dt the set of dyadic cubes with measure < 1.
The set of functions {¢;}1ep yewe is a Riesz basis for Lg(ﬂ%d) (sometimes
called a stable basis). This means that

HinQ(Rd) =D DRI A (3.1.28)

IED o

As mentioned earlier the constants in (3.1.28) are independent of f and we
will use similar notation throughout this paper.
The set {11} 1epyewe is also a Riesz basis for H*, and

1 W ramey =< 2o 2o HIZ ML, 00, (3.1.29)

IeD pewe

for a certain range —3 < a < 7 that depends on the sets ¥° and W¥°.

The equivalence (3.1.29) gives us a simple way to compute equivalent H®
norms in terms of wavelet coefficients. Also note that in this form, we see
that we scale up or scale down the Sobolev spaces by simply multiplying
wavelet coefficients by |7]*/¢. Namely, let

L) =3 3 [P b, (3.1.30)

1ED YeT©
Then Z,(f) € Hot*(IR") if and only if f € H*(IRY), s + o € (=4, ) and

HIsfHHs+a(Rd) = HfHHa(/Rd)- (3.1.31)

10



The Besov spaces B?(Lp(ﬂ%d)), a > 0,0 < pg < oo are smoothness
spaces in Lp(ﬂ%d). The index « is the primary index and gives the order of
smoothness (analogous to the number of derivatives). The second parameter
¢ gives a finer scaling. For example, the space Bg(L,(IR?)) = H*(IRY) and
B (L,(IR%)) is the Lipschitz space of order o in L,(IR?) provided a > 0 is
not an integer.

Besov spaces are usually defined by Fourier transforms or moduli of
smoothness (see e.g. [25]). There is, however, an equivalent definition in
terms of wavelet decompositions which we shall employ. In fact, for the
above range of « one has

1 W ey = 2 2o ITH/HFEI(f )T < o0, (3.132)

IED o

whenever f € B?(Lp(ﬂ%d)). We shall mainly be concerned with a particular
scale of these spaces which will replace the role of the Sobolev spaces when
treating nonlinear approximation. If o > 0, we let

7= (a/d+ 1/2)_1 (3.1.33)

so that 7 < 2. Then the Besov space Ba(ﬂ%d) = Bf(LT(Rd)) is the set of
all function in Ly(IR?) which have a wavelet decomposition (3.1.26) and the
wavelet coefficients of f satisfy

1 pagmey =< 22 22 1{fsdn)]" < 0. (3.1.34)
IeD pewe
Then, (3.1.34) gives an equivalent quasi-norm for B®. Note that B°(IR") =
Ly(IRY) with equivalent norms. As a gets larger, the spaces B*(IR") get
smaller: B*(IRY) C BP(IRY), a > §.

Wavelets of the above type are still of limited use for the numerical treat-
ment of operator equations. Below we will briefly indicate how to obtain
wavelet bases with the above properties (3.1.28), (3.1.29), (3.1.34) in several
other cases of practical relevance.

3.2 Wavelets on the interval

As the simplest example of a bounded domain let us consider first Q = [0, 1].
This case deserves particular attention because it will also serve as a core
ingredient of constructions for more complex situations.
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The common starting point (see e.g. [1, 8, 12, 17]) is to construct collec-
tions @ = {¢r.m : m € A} C Ly(]0,1]) such that the spaces S := span @
are nested and contain all polynomials up to a certain desired degree. Taking
some dual pair ¢, ¢ as in (3.1.15) and fixing ¢ such that for & > kg we have
supp ¢(2F - —m), supp p(2% - —m) C (0,1), m = (,...,2¥ — {, the collections
®; are comprised of these interior translates 25/2(2F - —m) together with
certain boundary functions which are needed to preserve the desired degree of
polynomial exactness. If ¢ has exactness order N these boundary functions
are simply obtained by truncating the expansions (3.1.24). For instance, for
the left end of the interval one adds the N functions

(@)= (R = m)2 (2 —m) o, (3.2.35)

m=—00

r=20,...,N — 1, and analogously at the right end. One easily infers from
(3.1.24) that these boundary functions together with the interior translates
reconstruct all polynomials up to degree N — 1 on [0, 1]. Thus the resulting
spaces inherit the approximation properties of their shift-invariant counter-
parts defined on all of [R. Moreover, since ¢£7£_H+T(x) behaves near 0 like
261227 it is relatively easy to incorporate homogeneous boundary conditions.

The construction of dual collections ®, differs somewhat in the above
mentioned papers. In [17], it is shown that also ®;, can be made to be exact
of order N in an analogous fashion and that the resulting sets can indeed
be biorthogonalized, compare with (3.1.23) and (3.1.24). Let us denote the
biorthogonalized sets again by &y, ®;, with elements Ok s qE,m Except for
a finite number of boundary functions the ¢y .., q;km still have the form
K2 (2% - —m), n € {p, ¢}, respectively. Moreover, compactly supported
biorthogonal wavelets ¥y ., @/Njkm, m =1,...,2%, are constructed which form
Riesz bases for L([0, 1]).

Due to the modifications of the basis functions near the end points of
the interval the simple recipe from (3.1.13) of taking translates of dilated
functions is no longer applicable. Nevertheless, it will be convenient to accept
the slight abuse of notation and still write ¢, ;. In fact, setting in this case
D, :={ko} x {{ —n,....,20 — 0+ n}, Dy =k} x {1,...2571}, k > ko we
can still identify the indices (k,m) with dyadic cubes I = 27%(m + [0, 1]).
Defining DT := Ugsk, D and D := D. U D, we obtain essentially the same
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format as above:

f=Y(fonsr+ Y (Hdndn (3.2.36)

IeD. (v,1)evox D+
as well as
1oy < 2 I, oD+ S TSN (3.2.37)
IeD. (¢, 1)ewoxD+
or

1Al Baqony =< 22 KhHenl™+ > K¢l (3.2.38)
IeD. (4, ])Ee x D+
where 7 := (a + 1/2)7!. Of course, in this case one has #W¥° = 1 but in
anticipation of the tensor product case below this redundance is useful. Also
one should note, that for notational simplicity we have suppressed the fact
that, due to boundary modifications, W° actually depends on 7. Again the
range for which (3.2.37) is valid is (=4, ) where

y:=sup{a:p € H*(R)}, F:=sup{a:¢ € H*(IR)}

(see [17]). The case a = 0, of course, recovers the Riesz basis property.
Since by construction the spaces S := span ®; are exact of order N one

has )
/xwl(x)dx —0, [eD", r=0,... N—L (3.2.39)
0

3.3 The isoparametric case

Taking tensor products of wavelets on [0, 1] immediately yields biorthogonal
wavelet bases on the unit d-cube O := [0,1]? with analogues of (3.2.37),
(3.2.38), (3.2.39). Ome can push this line a little further in the following
direction. Suppose that for some d’ > d, s is a regular mapping from IR?
into Rd/, i.e., k 1s smooth and its Jacobian is bounded away from 0, and let
Q) := x(0). Sobolev spaces or Besov spaces on ) can be defined by lifting
corresponding spaces from O with the aid of x. In fact,

(f.9) = /f(ff(l‘))g(/f(w))Idet/f’(/f‘l(x))ldw

13



is a natural inner product which can be used to define Sobolev norms. On
the other hand,

(Fog) = [ Fr())gln(e))de (3.3.40)

a

induces equivalent norms whenever x is sufficiently regular. Taking ten-
sor products of the above mentioned wavelets on the interval, readily yields
biorthogonal wavelet bases W = {¢; : [ € D.} U {3y :p € ¥°, [ € DT},
U = {¢; : ¢y € ¥} on O. Here we have used the convention ¢; := ¢; for
I € D.. Of course, in this case one has #W° = 2¢ — 1 and the structure
of the sets D., DT is clear from the tensor product construction. Then the

Vg = {p¥ :=prox~t:ypy € U},

collections

. . . . . (3.3.41)
Vg = {¥ =0t 12py € U},

are obviously biorthogonal relative to the inner product (-,-) in (3.3.40) which
again satisfy (3.2.37) and (3.2.38). The moment conditions take the form

(Ppf) =0, (i,1) € ¥° x D, (3.3.42)

whenever Pogr™!

is a polynomial of coordinate degree less than N. Here and
in the following we reserve the notation D. for those dyadic cubes associated
to the scaling functions on the coarsest level. The importance of this case

will become clearer below.

3.4 Wavelets on manifolds

When d = d’ = 2 the above construction yields for instance wavelet bases on
various planar domains. However the case d’ > d is important too. In fact,
the examples in Section 2 show that one needs wavelets defined on manifolds
which are embedded in some higher dimensional Euclidean space.

The simplest case is the d-torus. Functions defined on the d-torus corre-
spond in a one-to-one way to l-periodic functions f(x+m) = f(x), m € Z".
Clearly every compactly supported function 5 in Lg(ﬂ%d) is easily periodized

by
)(x) :== > n(z+k). (3.4.43)

keZ
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Moreover this is easily seen to preserve orthogonality relations, i.e.,

Re a

Thus, given wavelets by, 107 on IR?, the functions [¢7], [¢b;] form corresponding
wavelet bases on the d-torus. The ease of this construction is exploited in
many papers.

Again the case d = 1, the circle, deserves special attention. Suppose C
is any smooth closed curve (without selfintersection) in IR*. Then C can be
written as a parametric image C = ([0, 1]) of a smooth 1-periodic mapping «.
Thus combining periodization with the isoparametric approach from Section
3.3 immediately provides wavelet bases on C giving rise to analogous norm
equivalences and moment conditions. These wavelets can be used to dicretize
for instance boundary integral equations of the type mentioned in Section
2 arising from exterior boundary value problems for planar domains with
smooth boundaries.

When the curve is not smooth but has corners it may have to be sub-
divided into smooth sections and wavelet bases can be obtained by piecing
together parametric images of wavelets on the interval. This gives stable
bases for L,. However, for the characterization of smoothness spaces, this is
not sufficient. Here the transition between adjacent segments requires special
care. We will briefly indicate a systematic approach to this problem below
in the context of a more general situation.

Note that example (2.11) requires wavelets defined on two-dimensional
closed surfaces in IR, In such a case periodization does not help. Instead
one can use the tools developed in Computer Aided Geometric Design where
such surfaces are modeled as a union of parametric patches. Thus assume
that I" is a piecewise smooth d-dimensional manifold of the form

M
P=Uln TinDi=0, 41, (3.4.44)
=1

where I'; = k;(0) and &; are regular sufficiently smooth parametrizations.
Again one can consider function spaces F(I') where F(I') = H*(I') or F(I') =
B (Ly(T')) and the range of a depends on the global regularity of I'. For in-
stance, when I is at least Lipschitz it makes sense to consider Sobolev spaces
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with index o < 1. For practical purposes and for the sake of constructing
wavelets on I' the characterization of F via an atlas and a partition of unity
is rather useless. An interesting alternative was offered in [9] where a charac-
terization of F(I') is directly based on a decomposition of I' into patches I';.
The following brief indication of the basic ideas is taken from [19] where an
attempt is made to make the existence statements from [9] constructive and
where the details of the following comments are given. First one orders the
patches I'; in a certain fashion. If T; N 1T := €1 1s a common face and ¢ < [,

then ¢;; is called an outflow (inflow) face for I'; (I'}). ar}, 8F} are called the

outflow and inflow boundary of the patch I';. Let FZT denote an extension of
I'; in I' which contains the outflow boundary 8FZT in its relative interior and
whose boundary contains the inflow boundary 8F} of I';. Now suppose that
FE; is an extension operator from the domain I'; to FZT such that

1By S I lswos WD ey < W legry (3:4.45)
where (2)
T L f x), ¥& Fiv
and

FI):={feFIy): fleFrhH)

consists of those elements in the local space F(I';) whose trace vanishes on
the outflow boundary aff. Such extensions can be constructed explicitly as
tensor products of Hestenes-type extensions [9, 19]. Then, denoting by xgq
the characteristic function of €2 and defining

,Plf =k (XF1f)7 ,Plf = EZ(XFz(f_Z,Plf))? i:27"'7N7

I<e

one can prove that the mapping

T fe {xr Pl (3.4.46)
defines a topological isomorphism acting from F(I') onto the product space

Y, F(T;)!, where the spaces F(I;)! are defined analogously to F(T;)T.

Since in view of (3.4.45), an analogous statement holds for the mapping
R:fw— {XFz‘Pi*f}f\;lv
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which takes F(T') onto the product space IIIY, F(T;)!, T is also isomorphic
for the dual F*(I'), i.e.,

N
£l = 2 NPifllze (3.4.47)
=1

and likewise for F(T'), F(T;)! replaced by the duals F*(T'), F*(T;)!, respec-
tively.

Recall that the component spaces F(I';)! are Sobolev or Besov spaces
with certain boundary conditions (while their duals satisfy complementary
boundary conditions) which can be viewed as liftings of analogous spaces
defined on the unit cube O as described in Section 3.3. Biorthogonal wavelet
bases for these spaces, in turn, can be constructed via tensor products of
suitable wavelet bases on the interval [0, 1] satisfying certain boundary con-
ditions [19]. Lifting such bases for each patch I'; and then applying 7!
produces biorthogonal wavelet bases on I' which due to (3.4.47) gives again
rise to norm equivalences of the type (3.2.37) but this time for I'. Note that
the latter step is only done for the sake of analysis. In practical calculations
one would avoid executing 7'~! but rather transfer all the computations to
the component spaces and thereby to functions defined on the unit cube.
Likewise moment conditions are formulated as in (3.3.42) ultimately on O.
For corresponding consequences with regard to domain decomposition see
again [19].

3.5 Lipschitz domains

The above techniques are of limited use when dealing with bounded domains
in IR? with complicated boundaries. We shall always assume that Q is an
open and connected Lipschitz domain. This covers all domains of practical
interest. In the following we shall briefly recall the results from [10].

One can also realize the Sobolev and Besov spaces by extension operators.
The conditions we assume on ) guarantee that there is an extension operator
FE which simultaneously extends Sobolev and Besov spaces. For example,
in the cases of interest to us, if r is any positive real number, there is an
extension operator £ = F, such that

E: HYQ) — HY(RY), 0<a<r
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E: B*(Q) — B*(R%Y), 0<a<r (3.5.48)
Efla =T, Fe L), NESfzumey S N llx@)>

where F' = H* or F = B®.

In principle, the extension F can be used to generate a wavelet basis
for  from a wavelet basis on IR?. To this end, suppose that ¥ = {¢; :
I € DYU{Yr : b € U°, 1 € Dt} and analogously W are biorthogonal
wavelet bases for Ly(IR?). Given f € Ly(f) it follows that Ef has a wavelet
expansion (3.1.26). Let P, be the projector defined in (3.1.21). Then, for
each f € Ly(Q), we have on {2,

F=P(Ef+ Y S (Efdr)dr (3.5.49)

IeD+ yeve

with DT the set of dyadic cubes with measure < 1. The sum in (3.5.49)
can be restricted to those 1; whose support nontrivially intersects 2. The
function f is in H*(Q) (respectively B*()) if and only if for the series in
(3.5.49) the expressions (3.1.29) (respectively (3.1.34)) are finite.

Denoting again by E* the adjoint of £ this can be interpreted as

ey < 2 [(f E"ér)al’ (3.5.50)

1eD,

Y S PN E el e HN Q).

IeD+ yewe

where (f,¢)q := [ f(x)g(x)dx. This requires evaluating £* which is in gen-
Q

eral not feasible numerically. Moreover, the above procedure does not nec-
essarily preserve biorthogonality. Therefore this approach is useful as an
analytical tool, but not for practical purposes.

For somewhat more specialized domains, it is possible to develop an ex-
tension strategy which is more numerically accessible. Indeed, we can uti-
lize multiresolution analysis to construct £ and E*. For this, we shall use
the approach described in [10]. The class of suitable domains is specified
there. Roughly speaking, these domains are coordinatewise Lipschitz. Given
such a domain and a dual pair ¢, as in (3.1.16), biorthogonal collections
Q) = {dkm : m € Ak}, d, = {q;km :m € Ag} on  were constructed where
the ¢y, are adapted to the boundary so as to ensure polynomial exactness
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while the qE,m involve only translates qz(Zk - —m) which are fully supported
in . Now, we define

Py f = Z <f7 q;km>ﬂ¢km

mEAk

It was shown in [10] that for 0 < a < v

[l ey = 1P Fllzaiy + D0 2°°F(Pe = Pr-t) fIIZ, (@) (3.5.51)
k=ko+1

where again v = sup{s > 0 : ¢ € H*(IR)}. Each ¢y, is either of the
form 29%/24(2F . —m) or is a linear combination of such functions restricted
to Q. Therefore the functions ¢y, possess a canonical extension ¢}, to R
Note that since the q;km are supported in O the collections ®¢, ®, are still
biorthogonal. Thus, the operators

Pif= > {f, sz,mh(ﬁ,m

mEAk

take Lo(2) into Lg(ﬂ%d) and its adjoint

(P f = 30 Afs 0 Orim

mEAk

takes Ly(IR?) into Ly(Q). Moreover, the mapping

Ef = PS4 30 (P — ) (3.5.52)

k=kg

is an extension satisfying (3.5.48) for any r < ~.

Due to biorthogonality, evaluating E*; requires computing the inner
products <;/~)I, G ) e for levels k larger than the level of I. In numerical
implementations, by using decay properties, this can in turn be restricted to
finitely many levels depending on the required accuracy.

In view of the above comments, we shall assume in the following that we
always have a pair of biorthogonal bases ¥ = {«; : v € U9, [ € D, U D"}
and U = {¢b; : ¢ € U3, 1 € D, U Dt} where D, corresponds to functions
on the coarsest level while for I € DT the 17,1 play the role of wavelets.
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Again the sets U§ will generally depend on I but will always contain at
most finitely many functions. Setting as above D := D, U DT, on one hand
moment conditions of the form (3.2.39) or (3.3.42) hold, while on the other
hand relations like

1 VB2 (£, () = ST It/ 2T (g |, (3.5.53)

IED e

and

ey < D D 1729 (f o0 2, o € (=3,7), (3.5.54)

IED yews

are valid when () is a domain or manifold of dimension d as discussed above.
As in all the above examples it will be convenient to identify always the
indices I with dyadic cubes of volume |/|.

So far, we have outlined several principles to construct wavelets on various
types of domains and manifolds.

It one wants to employ such wavelet bases for solving an operator equa-
tion, the issue of boundary conditions is, of course, important. When dealing
with boundary integral equations on a closed manifold this problem does not
arise. It may also not be severe in connection with natural boundary condi-
tions for elliptic problems on bounded domains. Appending essential bound-
ary conditions is, in principle, a possibility to avoid incorporating boundary
conditions in the trial spaces and to preserve possibly many favorable prop-
erties of wavelets defined on simple domains [41]. For domains which can
be represented as a union of parametric images of a cube the approach out-
lined above also facilitates incorporating essential boundary conditions in the
wavelet spaces. We dispense here with elaborating further on this issue and
refer to [19, 36] for details of corresponding recent progress in this problem.

3.6 Wavelet discretization of operator equations

We return now to the operator equation (2.2) where in the following H = H'
and * = H™" where either H' = H'(Q}) when  is a closed surface or when
natural boundary conditions are assumed or H is a closed subspace of H'(Q)
determined by boundary conditions so that A is injective on H'. In fact, we

will assume that (2.3) holds with H = H".

20



The standard Galerkin method for approximating the solution u of (2.2)
begins with a finite dimensional space S C H' and finds the function ug € S
such that

(Ausg, s) = (f,s), s€S. (3.6.55)

By choosing a basis {si} for S, (3.6.55) becomes a system of linear equations
(a(si, sj))ije =1, (3.6.56)

with £ := (fi) and f; := (f, s;), ¢ the vector of coefficients of ug with respect
to this basis and the matrix (a(s;, s;));; the stiffness matrix.

In the sections that follow, we shall be interested in the efficiency in which
ug approximates the exact solution u of (2.2). The typical choices for S
in the standard Finite Element Theory are spaces of piecewise polynomials
on some partition associated to 2. An analogous choice in the context of
wavelets are spaces S = S; := span{ty; : ¥ € U3, |I| < 274} or more
generally S = Sy :=span {¢o; : (¢, ) € A}, where A is some finite subset of
Vi=A{@,I):v €V, 1eD.UD}.

The efficiency of Galerkin methods depends on:

(i) the approximation power of the spaces S;

(ii) properties of the stiffness matrix (condition number and sparsity).

We shall see in the following sections how the accuracy of the approximation
of ug to u depends on the regularity of wu.

The properties of the stiffness matrix including its amenability to precon-
ditioning is a central theme in Finite Element Methods amply reported on
e.g. in [16, 18, 48, 49]. Wavelet discretizations offer the following advantages
with regard to (ii). To describe this let for A C V as above

Pafi= 3 (fodn)er. (3.6.57)

(¥, 1)eA

Note that under the assumption (2.3), which we will quantify as,
Al Av| - < o]l < || Av||g-, v e HY, (3.6.58)

and the selfadjointness of A, the Galerkin schemes are stable. In this case,
this means in terms of the projectors Py that

HPA*AUHH—t = HvHHt, RS SA. (3659)
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A first important relation between the wavelet bases and A is
1] < 7.7 (3.6.60)

To explain its relevance for preconditioning consider the general version of

the scale shift (3.1.30)
Tf = > HPIf 00, (3.6.61)

(¥, 1)eV

so that by (3.5.54)

IZ_s fllze = || fllzeras s +a € (=3,7). (3.6.62)

Thus considering w := Z_,v for v € Sy, (3.6.62) and (3.6.59) yield under the
assumption (3.6.60)

[wl[z, < vl[ge < [[PRAv|| - < || T PRAPAT w1, (3.6.63)
where we have used that
Is_l =1,
since W, U are biorthogonal. Clearly (3.6.63) means that the operator

BA = I;PA*APAIt
satisfies
condy(By) := ||Balle, |Bx ||, = O(1),  #A — oo, (3.6.64)

where || - ||s, denotes the spectral norm. It is not hard to verify that the
matrix representation of B, is given by

Ax = (AL ) ()t imens AL T) = (1113 Ay )| T4
(3.6.65)
Thus, a suitable diagonal scaling applied to the stiffness matrix relative to the
wavelet basis results in a matrix with uniformly bounded condition numbers
[18].
This suggests to reformulate the equation (2.2) as an infinite discrete
system by representing v and f with respect to the primal and dual wavelet
basis, respectively, i.e.,

u= > (), =Y ([,

(¥, 1)eV (¥,1)ev
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In view of (3.6.64) and (3.6.65), it is useful to introduce the following rescal-
ing. Let £ := (fy.7) with fy7:= [I|/%(f, 1) and let @ := (@y7) with @, :=
[T]=4 4w, ;/N)I> and let A be the infinite matrix with entries A((1,4),(J,n)) :=
[I1Y%a(xpr,ny)| T2 Then, (2.2) becomes

Aa=T. (3.6.66)

Clearly A, is a finite submatrix of A and A is boundedly invertible on (5(V).
Another important advantage of the wavelet basis is that the matrix A
is almost diagonal in the sense that

=&l N LY
A((, 1), (n,J)) < (1 + max(|1]. |J|)1/d) (mln(mv m)) .
(3.6.67)

where £; is a point in the support of ¥; and where r > d/2 depends on the
regularity of the wavelets. The parameter N again denotes the number of
vanishing moments of the wavelets 1>, [ € Dt. Thus in the present biorthog-

onal framework r and N can be made a large as one wishes by proper choice
of the wavelet basis.

We shall make a distinction in what follows between the cases of linear
methods in which the space S is chosen independent of u and nonlinear or
adaptive methods in which S depends on u and previous choices for 5. We
wish in particular to understand what, if any, are the advantages of adaptive
methods.

4 Linear approximation

For simplicity we confine the following discussion to the case that O C IR?
is a bounded and connected Lipschitz domain. We have noted above that in
standard Finite Element Theory one seeks an approximation to the solution
u of (2.2) from a finite dimensional linear space S. It is well understood in
approximation theory that for standard spaces S, consisting for example of
polynomials, splines, or wavelets, the efficiency of the approximation to u by
elements of S is related to the regularity of u in the scale of Sobolev spaces
H“. To briefly recall this theory, we shall restrict ourselves to the case where
S is chosen from a sequence (.5,,) of spaces of the following two general types:
(i) S, is a linear space of piecewise polynomials on a partition related to ;
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(ii) Sy, is a subspace of a multiresolution space V; with the V; as described in
§3. We assume that S, has dimension ~ n?. In case (i), this corresponds to
partitions with cell size h ~ n~" and in case (ii) this corresponds to taking
Sp = Viu, n = 2" or a subspace of V,,, reflecting boundary conditions. We
let

E(f) = B S0) o= it I = sl (4.68)

The following is a generic theorem for approximation by the elements of
Sp. It requires additional conditions on 5, which we shall discuss after the
theorem is stated.

Theorem 1 For a > 0, and a function g € Ly(Q2), the following are equiv-
alent

(i) g € H*(Q);

(i) 330, [0 Bu(g)PL is finite.
The sum in (ii) is equivalent to the semi-norm for H*(Y). Moreover, a
similar results holds for approzimation in H'(Q) provided E,(g) is replaced
by the error in approximation by functions from S, in the norm of H' and

H? is replaced by H*Y' in (ii).

Remark 1 The condition (i) is slightly stronger than requiring F,(g) =
O(n=%). The class of functions which satisfy the latter condition is precisely
the Besov space B (L2(9)) in the case of approzimation in Ly(Q). A similar
result holds for approximation in H'(Q).

We are purposefully not being precise about the conditions needed on
the spaces 5, so that Theorem 1 is valid. In the case that 5, is a wavelet
space V,, with n = 2™ then there is a real number r such that Theorem
1 holds for 0 < a < r. The number r is related to the smoothness and
polynomial exactness of the wavelet basis. It is the same number r such
that the Sobolev spaces H® are characterized by the wavelet coefficients as
in (3.1.29) for 0 < a < r. To see precise conditions under which Theorem 1
holds for wavelets, we refer the reader to any of the standard treatments on
wavelets such as Meyer [47], DeVore and Lucier [23], or Frazier and Jawerth
[29]. In the case of spline approximation, necessary and sufficient conditions
for the validity of Theorem 1 can be quite subtle (see e.g. Jia [34]). We refer
the reader to one of the standard texts on Finite Elements, e.g. Oswald [48].
We should also mention that if boundary conditions are to be incorporated
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in H* then these boundary conditions must be incorporated into .5,, and this
must be incorporated into the analysis.

We can use Theorem 1 to infer the potential accuracy of numerical meth-
ods for solving (2.2) based on Galerkin solutions. Since the numerical solution
ug, comes from the space 5,, it will provide efficiency of approximation of
order O(n™) in the Ly norm in the sense of (i) of Theorem 1 only if the
solution u has smoothness of order « in the scale of Sobolev spaces. Thus
the maximum regularity of w in this scale determines the maximum efficiency
a linear numerical scheme can have.

We shall see in the next section that using nonlinear methods changes
the scale of smoothness spaces in the generic theorem.

5 Nonlinear wavelet approximation in L,())

We are ultimately interested in adaptive methods for solving (2.2). Adaptive
methods are a form of nonlinear approximation. For the purposes of orien-
tation, it will be useful to consider the following simpler (but related) form
of nonlinear wavelet approximation called n-term approximation.

Recall that V = {(, 1) : ¢ € U}, 1 € D.UD*}. Let ¥, denote the set

of all function
S = Z Cll,]@/)[
(¢,1)eA

where A C V and #A < n. Then ¥, is a nonlinear space. We let
on(f) = ol |If = S, (5.69)

SEx,
be the error in approximating f by the elements of ¥,,.
We are interested in characterizing the functions f € Ly(€) for which

o, (f) tends to zero like O(n=2/) for some o > 0. It is not difficult (see [24])
to prove the following theorem.

Theorem 2 For each 0 < o < r, we have that the following two statements
are equivalent

(i) | € BY,

(i) o2y [ o ()] < oo
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Condition (ii) in Theorem 2.1 is the analogue of (ii) of Theorem 1. Notice
that in Theorem 1 the dimension of S, is O(nd) but in Theorem 2 ¥,, 1s of
dimension n which explains the difference in the form of (ii) in these two
theorems. Thus both theorems talk about the same approximation rate in
terms of space dimension. As noted before (ii) of Theorem 2 is close to
oalf) = O,

We shall now make several remarks which will bring out the differences
between Theorem 1 for linear approximation and Theorem 2 for nonlinear
approximation. Both theorems characterize functions with a prescribed ac-
curacy of approximation by smoothness conditions. But these smoothness
conditions are of quite a different nature. In Theorem 1 the function ¢ should
be in H* and thus have a orders of smoothness in L. In contrast, Theorem
2 requires (for the same approximation rate) only that ¢ € B®. Recall that
B® measures smoothness of order « in a space L., with 7 := (a/d 4+ 1/2)7".
Since 7 is generally much smaller than 2 this is a much weaker smoothness
condition. Another view of the spaces B* comes from the Sobolev embed-
ding theorem. These are in some sense the smallest spaces of smoothness «
which are embedded in Ly; for example for y < 7, Bf(L,)) is not embedded
i Loy.

The spaces B® contain functions which are very unsmooth in the classical
sense. For example when d = 1, any piecewise analytic function is contained
in all of the spaces B but only in H* if o < 2.

Since the wavelet basis is a Riesz basis, the following simple algorithm
asymptotically realizes the best n-term approximation.

Remark 2 We take A to be a set of n pairs (I,v) for which |{f, 77/~)I>| is
largest. Then,

Sp=:Pof= 3 (f,dn)r

(I)en
s 1n X, and

1f = Sallzo) < ou(f)

with constants depending only on the constants in (3.1.28). It follows that
that
(iii) The property

o0

|
S f - Sulla@)— < o0

n=1
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is equivalent to (i) and (ii) in Theorem 2.

Note that this algorithm requires knowledge of all of the wavelet coeffi-
cients of f.

The n-term approximation is not directly applicable to numerical methods
for operator equations since the wavelet coefficients of the solution u are
not available to us. Instead, one constructs nonlinear approximations to
the solution w using adaptive algorithms. An adaptive wavelet method for
approximating the solution u of (2.2) would select the wavelet terms to be
retained in the approximation from prior computations combined with any
additional information that may be available. We discuss specific adaptive
methods later in this paper. For the present, we want only to draw out the
distinction in the form of the approximation between these adaptive methods
and the n-term approximation just described.

We shall discuss adaptive wavelet approximation based on the wavelet
decomposition (3.1.27). It is notationally convenient to combine all wavelet
terms that correspond to a fixed dyadic cube. Therefore, for I € D.U D,
we define

fr= " (f,dr)r (5.70)

pewe

and

)= (X 1 90F) " (571
Ppewe

If we assume to work with wavelets adapted in some way to the underlying
domain the sets D., D% of dyadic cubes is to be understood in the above
sense. In what follows we could likewise employ wavelets defined on all of
IR* when Q is a bounded domain in IR?. In this case one can always assume
that there is a fixed dyadic cube () such that supp; N Q = 0 unless I C Q.
For notational convenience, we assume that = [0,1]?. We shall adopt the
following notational conventions. We let D. U Dt denote the set of dyadic
cubes I C Q. If I C D, U DT, and supp 'y N = ), then define f; = 0 and
cr(f) = 0. In this way, we can always consider the wavelet decomposition in

(3.1.27) to be indexed on all the cubes of D := D. U D*.

An adaptive procedure usually creates approximations of the form

Po(f)+ > fi (5.72)

Ieg
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where J is a set of dyadic cubes which have a certain tree structure. If
I € D, we say that J is a child of I (and I is a parent of J), iff |.J| = 27¢|1
and J C I. We denote the set of all children of I by C(I). We say .J is a
sibling of I if they are both children of the same parent.

Trees typically arise in an adaptive algorithm where at each inductive
stage cubes are refined by adding all their children to the tree. The trees
J C D that arise in adaptive algorithms have the following two properties:

P1 If I € J with |I] < 1, then its parent is in 7.

P2 If I € 7, then all of its siblings are in 7.

We call a set J C Dy which satisfies P1, P2 an admissible tree. For an
admissible tree J, we let F(J) C J denote the set of final leaves of 7, i.e.,
the set of those I € J such that [ has no children in 7.

It is of interest to know what is the overhead (in efficiency when compared
to n—term approximation) in forcing such a tree structure in the approximant.
In [10] a simple adaptive wavelet algorithm was given that shows that this
cost is quite minimal. To describe this algorithm, we define for any J C D,

ij:ZfI

Ieg

where f; is defined by (5.70). It follows that

If = Prilie S 2 le(DF. (5.73)

1eD\J

For a dyadic cube I € D, we let T(I) be the tower of I which is the
collection of all J € D such that J C I, J # [ and we let

R i= (3 Jesf?)”. (5.74)

JET(I)

Algorithm 1 Fiz e > 0 and choose an initial admissible tree Jo. Set B. =
{JeF(To): R(J)> ¢}, T = To. If B. =0 stop. Otherwise, for I € B. do:

o replace J. by J.UC(I)
o replace B. by (B-\{IHu{JeC(): R(J)>¢}
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Since HPjnf—fHL2(Q) —0,n — oo, J, ={I € D: |I| <27} the
above algorithm terminates for every ¢ > 0 after finitely many refinement
steps, i.e., eventually one obtains B. = () and the resulting tree J. has the
property that

R(J) < e for J € F(T.). (5.75)

The following theorem from [10] estimates the approximation error of the
adaptive algorithm.

Theorem 3 Let o > 0 and 7 := (a/d + 1/2)7" be as in Theorem 2. If
g€ Bﬁ([m(ﬂ)) for any B > « and p > 7, then

Hg - PJEfHLQ(Q) S HgHBE(LM(Q)) (#js) a4, (576)

with a constant depending only on d and «.

When compared to Theorem 2, this theorem shows that with only a
slightly stronger assumption on ¢, we obtain the same approximation order
as in n-term approximation.

There is an analysis, similar to the above, for adaptive approximation
based on piecewise polynomials. In [26], this was carried out for adaptive
algorithms which use partitions into cubes. It should be possible to carry
over the arguments in [26] to more general adaptive partitions, for example,
to triangulations, provided the refining triangulation are always done in the
same manner and lead to shape preserving triangulations.

The above analysis shows that it is the regularity of the solution u in the
Besov scale B which determines its approximability by nonlinear methods.
Adaptive methods therefore should be evaluated against the optimal value
that is theoretically possible. In this context the Besov spaces B® replace the
role of the Sobolev spaces H* when analyzing adaptive numerical methods.

6 Regularity of solutions to PDE’s and ap-
proximation order

In the proceeding sections, we have already seen that the maximal possi-
ble efficiency that a numerical method to recover the solution of (2.2) can
have is determined by the regularity of the exact solution of (2.2) in specific
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smoothness spaces. It was emphasized that the approximation order of lin-
ear methods is related to the Sobolev scale H*(2), compare with Theorem
1, whereas the efficiency of nonlinear and adaptive methods is determined
by the Besov scale B, compare with Theorem 2 and Theorem 3. There-
fore, in this section, we shall give a short survey on the regularity theorems
for partial differential equation for both kinds of smoothness spaces. Let L
be an elliptic differential operator of order 2m on a bounded and connected
Lipschitz domain €,

L= Y (-1)'"Day()D",  ars € Loo(9). (6.77)

[k|<m |[|<m

For simplicity, we shall restrict ourselves to Dirichlet boundary conditions,
i.e., we consider the problem: find v € HJ'(€) such that

alu,v) = Z /le Dk Dl d:z;—/f (6.78)
k]I <m G

holds for all v € HJ* ().

Let us start with the usual Sobolev scale H¥. We want to investigate how
the regularity of the solution u of (6.78) depends on the coefficients aj, the
right—hand side f and on the shape of the domain 2. Most of the time, this
question is formulated in the following form. Suppose that f is contained
in H*=(Q) for some o > 0. What are the conditions which imply that the
variational solution u € H['(Q) is in fact in H™T(Q) and satisfies

lullzmsa S NS l[ma=m + [[ullam 7 (6.79)

A boundary value problem with these properties is called a—regular. A first
answer is that a—regularity holds if the coefficients and the domain are suf-
ficiently smooth.

Theorem 4 Let Q) € C*T™ for some s > 0. Let a > 0 satisfy
a+1/2¢{1,2,---.m}; 0<a<s, ifse IN; 0<a<s, ifs€ IN.
For the coefficients let the following hold:

D"ay; € Loo(Q) for all k1, n with |n| < max(0,s + |l —m), if s € IV,
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ag; € CH=(Q) for |l = m, ap; € Loo(Q) otherwise, if s & IN.

Then the solution w € HF"() of (6.78) with f € H™™T*(Q) belongs to
H™ ()N H(Q) and satisfies

[lullmea < A1 Fllzamm + |Jullzm.

Results of this form were e.g. obtained by Lions and Magenes [42], see
also Hackbusch [32]. Theorem 4 implies that for problems satisfying the
conditions of that theorem linear methods are sufficient in the sense that they
can provide a convergence rate of order O(n~("+%)) compare with Theorem
1 and Remark 1. Such a result does not hold for nonsmooth domains, e.g.
for domains with edges and corners, even if the coefficients are arbitrarily
smooth. In this case, the regularity is only preserved strictly in the interior

32].

Theorem 5 Let Q) be a Lipschitz domain and let Qo CC Q) C Q and o > 0.
Let us assume that the cocfficients satisfy the conditions of Theorem 4 with
Q replaced by Q1 and with s > «, where o € IN, s > «, where o ¢ IN,
respectively. Suppose that the restriction fq, belongs to H=™T*(Qy). Then
the restriction of u to Qg belongs to H™* () and satisfies

[ellmrmsaiao) < N Fll=mtaqan) + ullam@).

In general the smoothness of the solution u will decrease significantly
as one approaches the boundary. Therefore, the estimation of the Sobolev
regularity on nonsmooth domains is a delicate task. Roughly speaking, the
results can be divided into three types: results on specific operators and
specific domains, see e.g. Grisvard [30, 31], results on specific operators
and general domains, see e.g. Jerison and Kenig [35], and results on general
operators on general domains, see e.g. Dauge [21], Kondrat’ev [37, 38, 39, 40]
and Maz’ja and Plamenevskii [43, 44, 45, 46]. Among other things, Grisvard
has intensively studied the Poisson equation, i.e., L = —/ on polyhedral
domains in IR* and IR®, respectively, primarily with f € L. Let us first
describe a typical result in IR?.

Let © be a polygonal domain with vertices ¢;, y = 1,2,... and let w;
denote the measure of the interior angle at ¢;. We introduce polar coordinates
r;,0; in the vicinity of each vertex ¢;. Furthermore, let ¥; denote a suitable
truncation function which depends only on the distance r; to ¢;. Then the

following holds.
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Theorem 6 Assume that Q is a bounded polygonal open subset of IR*. For
f € La(Q) let u denote the unique solution of

/Vu-Vvd:Jc:/fvd:Jc
Q Q

Jor every v € Hy(Q). Then there exist unique numbers c; such that

u— Y cjﬂj(rj)r;/% sin(w;/w;) € H*(Q). (6.80)

wy>T

The explicit expression (6.80) enables one to determine exactly the Sobolev
regularity of the solution u. Since only the nonconvex corners contribute, we
obtain that u € H? for convex polygonal domains. In the worst case, u will
only be contained in H>/?*¢ for some ¢ > 0 which can be arbitrary small.
This result implies that for general polygonal domains linear method can
only provide an approximation of order O(n=%/2).

A similar result holds for polyhedral domains in IR®. However, the treat-
ment of this case is much more complicated since one has to deal with dif-
ferent types of singularities according to edges and vertices. The regularity
along edges can in principle be reduced to a two—dimensional problem with
parameters, see again [30] for details. To keep the technical difficulties at
a reasonable level, we shall not discuss this case here and confine ourselves
to a typical result concerning the behavior of the solution at one particular
vertex. We need some further notation. Let I';,I'; be two faces of £ and let
¢;; denote the edge between I'; and I'y whenever T; and T, intersect. The
measure of the interior angle of the edge ¢;; is denoted by w;;. We set

T :=inf{mr/w, €0,1[; T,NT, €0, m > 1}.

For convenience, we translate the typical vertex to zero. Thus, in a neigh-
borhood V of 0, £ coincides with a cone ' whose intersection with the unit
sphere 52 is denoted by (G. Thus (¢ is an open subset of the unit sphere whose
boundary is the union of a finite number of arcs of great circles. We introduce
spherical coordinates g, and denote by A’ the Laplace-Beltrami operator
on S2. It can be shown that the spectrum of A’ is an infinite sequence of real
numbers —(;, [ = 1,2,--- where (; > 0, with no limit points. We denote by
v, [ =1,2,... the orthonormalized sequence of related eigenfunctions, i.e.,

—A’vl = Clvl.
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The following theorem was shown in [30].

Theorem 7 Let Q be a bounded polyhedral open subset of IR>. For f € Lay()
let u denote the solution of

/Vu-Vvd:Jc:/fvd:Jc
Q Q

Jor all v € H5(Q). Then there exist unique numbers ¢; such that

u— Z co” (Cl+1/4)vl(a) € HY(V) (6.81)
]

for every a < 2 such that a« < Y 4 1, where the sum is over the | such that
G <a?—2a+3/4.

It is an easy consequence of (6.81) that again the critical value for regularity
is 3/2. Similar results hold for the biharmonic problem and for elasticity
systems in 2 and 3D, see again [30] for details.

Jerison and Kenig [35] have studied the Poisson equation on arbitrary
Lipschitz domains. Their work can be interpreted as the continuation of
Grisvard’s study. One of their results is the famous “H?/?>~Theorem”.

Theorem 8 Let Q be a bounded Lipschitz domain in IR®. If f € Ly(Q), then
u € H3*Q).

The value 3/2 in Theorem 8 is best possible. For example, for d = 2,3,
Grisvard’s results stated above give examples of domains where regularity
bigger than 3/2 cannot be obtained.

For general operators, the technical and notational difficulties increase
alarmingly. Therefore, we shall only give a theorem for domains with regular
cones. For the general case, the reader is referred to [21] from which also the
following result is quoted. Again we translate the vertex of the cone C' to zero
and introduce spherical coordinates g, 0. The set (G is defined as above. The
cone is called regularif G has a smooth boundary and C' = {z € IR?| o] € G'Y.

Suppose that the coefficients of L are in C*(€Q) and let L, be the principal
part of L, frozen in . We define

SYC) = {v]v="0" > wy(o)log 0, v, € HJ'(G)}. (6.82)

0<q<Q
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We say that L, is injective modulo polynomials on S¢(C') if whenever v €
S¢(C) is such that L,v is polynomial, v is a polynomial itself. For regular
conical domains, the following theorem holds.

Theorem 9 Let o > 0, € {1/2,...,m — 1/2}. Then (6.78) is a—regular if
and only if for all { € C satisfying

RC € [m—d/2,a+m —d/2], (6.83)
L, is injective modulo polynomials on S¢(C').

There exist also a lot of regularity theorems for Besov and non—Hilbertian
Sobolev spaces. They are concerned with questions of the form: Given f €
By~ (Lp(82)), what are the conditions that imply that v € By+™(L,(Q))?
Consequently, these theorems provide us with information concerning the
approximation order of linear methods as measured in L,. We shall state two
typical results for the spaces W(L,(Q)) and By(L,(12)), respectively. For

instance, Theorem 6 has the following extension to non—Hilbertian Sobolev
spaces.

Theorem 10 Let Q be a bounded polygonal open subset of IR*. For each
fFeLl,(),1 <p<oo, there exists a unique solution u of

/Vu-Vv d:z;:/fv dx
Q Q
Jor every v € H3 () and in addition there exist numbers ¢; such that
U — Z cjﬂj(rj)r;/% sin(7f;/w;) € WQ(LP(Q))
m/wj<2-2/p
provided that none of the numbers 7 /w; is equal to 2 —2/p.

For the case of Lipschitz domains, the most general results were again
obtained by Jerison and Kenig [35]. We shall restrict ourselves here to the
case d > 3, a similar result holds for d = 2.

Theorem 11 Let Q be a bounded Lipschitz domain in IR®, d > 3. There
exists ¢, 0 < & < 1, depending only on the Lipschitz constant of ) such that
Jor every f € Wo(L,(Q)) there is a unique solution u € WoTH(L,(Q)) to

—Au = f on €, (6.84)
u = 0 on 09,
provided one of the following holds:
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(a) po < p < pg and;—)—1<0z<;—)
3 1
(b)) 1<p<poand5—-2—c<a<;
! 1_ 3 _
(c)p0§p<ooandp l<a<s—1l+e¢

where 1/py = 1/24¢/2 and 1/pyy = 1/2—¢/2. Moreover, we have the estimate

[wllwati(z,@) S IFllwa-1(L,0)
Jor all f € WoL(L,()).

So far, we have seen that linear methods are only suitable for smooth and
convex domains, even if the coefficients are arbitrarily smooth. Therefore,
the hope is to gain efficiency by employing an adaptive numerical scheme.
According to Theorem 2 the use on nonlinear methods is justified if the weak
solution w is contained in the scale B, 0 < a < a*, where the maximal index
o is significantly higher than the one for usual Sobolev scale H. Therefore,
the first step of a systematic study of adaptive schemes should consist in
the derivation of regularity theorems for u with respect to B®. It seems that
this kind of study is still in its infancy. First regularity theorems for the
specific scale BY(L-(Q)), L = (% + ) were given for certain model problems
by Dahlke and DeVore [15]. We give the following example for the Poisson

].

equation taken from [13

Theorem 12 Let Q be a bounded Lipschitz domain in R?. Let u denote
the solution of (6.84) with f € BS™'(Ly(Q) for some a > —1/2. Then the
following holds:

1 1 3d
uEBf_(LT(Q)), —:<§+§), 0<S<mlﬂ{m,a+l}

T

We observe that for a large range of the parameter o we have a jump of
two for the smoothness of the solution in the special scale B*(L,(Q)), L =
(5 + %) For instance, for d = 2, we obtain the condition o < 2, whereas for
the usual scale H* = B3 (L2(€2)) we have the jump of two only for a < 1/2,
compare with Theorem 11. Therefore, the maximal index for the spaces B

is in general much larger than the one for H®. Consequently, Theorem 12
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can be interpreted as a justification for adaptive and nonlinear methods. In-
deed, this theorem implies that adaptive methods on Lipschitz domains can
perform as good as linear methods on smooth domains, provided that the
right—hand side f is contained in a suitable smoothness space.

7 An adaptive scheme for elliptic equations

In this section, we discuss possible connections between the above concept of
nonlinear approximation and certain adaptive schemes for elliptic problems
of the type considered above. We adhere to the assumptions made in Sections
2 and 3. While nonlinear approximation uses idealized information about the
approximand any adaptive solver has to contend itself with information ac-
quired during the computation combined perhaps with some information of
the given data. In fact, the basic idea of adaptive schemes is to refine step
by step the discretization only at those places where the behaviour of the
searched object requires a higher resolution so that the error is more or less
balanced throughout the domain. In the presence of singularities this results
in highly nonuniform meshes. In the present context we do not have to think
though in terms of refined meshes but rather in terms of refined spaces. By
this we mean the following. How can one find possibly few further wavelets
which when added to the current trial space guarantee a prescribed decay of
the error of the corresponding Galerkin approximation. One can therefore
perhaps not expect to obtain equally strong theoretically founded results in
this latter context. Nevertheless, an issue of central importance will be to
interrelate both concepts.

7.1 Prelimary remarks

In the context of elliptic problems it is natural to measure errors in the energy
norm || - || defined in (2.5) or equivalently in || - ||g+ while the concept of
nonlinear approximation has so far been formulated for the Ly-norm || - ||z,.
It is easy though to carry this over to measuring errors in Sobolev norms
which will be indicated first. To this end, it will be convenient to economize
our notation a little further by subsuming all information on a wavelet in
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one index A containing its type (if applicable), location and scale. For V =

{(,I): ¢ € U9, 1 € D, UD"} as before let
A= (. 1), (A= |]|1/d7

so that the biorthogonal bases are briefly denoted by ¥ = {hr : A € V},
U = {¢y: A € V} and T, takes the form

Tg = > AP {g: da)n.

AEV
In analogy to (5.69) let

Oni(g) = inf {Hg ~ S dviby|gr s dy € R, ANEACY, #A = n} .
AEA
We have the following analog to Remark 2.
Remark 3 Let g € H'. We take A, to be a set of n indices X for which
IA7"(g,¥2)| is largest. Then, for Py defined by (3.6.57) one has
onil9) < |lg = Pr.(lae, ne N, (7.1.85)

Thus picking the n first largest weighted coefficients realizes asymptotically
the best n-term approximation relative to the norm ||-|| g and hence, by (2.6),
also relative to the energy norm || - ||.

Proof: Under the assumption (3.6.60) the assertion is an immediate conse-
quence of the norm equivalence (3.5.54) which implies that

Tni(9) ~ Ono(Zo1g) = ou(T_19); (7.1.86)
compare with (3.6.62). O
Again the Besov regularity of a function g can be characterized in terms

of its best n-term approximation relative to || - || g:.

Proposition 1 Assume that o —t <~ and let fort < «

1 a—1 1
—_— = 4 —. 1.
- 7 + 5 (7.1.87)
Then one has .
> (n(a_t)/dam(g))T < 00 (7.1.88)

n=1

if and only if g € Bo(L+(2)).
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Proof: Combining Theorem 2 with (7.1.86) ensures that Z_,g belongs to
BT L,+(Q)) if and only if

o0 *

Z (n(a—t)/do_mt(g))q— < 0.

n=1

So it remains to verify that Z; not only shifts between Sobolev but also be-
tween Besov scales. In fact, one easily infers from (3.1.32) that the statements

I—tg € B?*_t(LT*(Q))v g€ B?*(LT*(Q))v and

> T g o) < o0

AEV

are equivalent. a

Proposition 1 has an interesting application to the Poisson equation (6.84).
We have already discussed the efficiency of the best n—term approximation
when applied to the solution of (6.84); compare with Theorem 12. How-
ever, these results were formulated with respect to approximation in Lo(2).
For elliptic equations, the energy norm is slightly more natural. A combina-
tion of Proposition 1 and Theorem 12 provides us with the following result
concerning approximation relative to || - || 1.

Proposition 2 Let u denote the solution of (6.84) with f € BS™'(Ly(Q)),
a>1. Then

> (ns/daml(u))T < oo forall 0<s<s"/3, (7.1.89)
n=1

where s* = min{Q(s—il),Oz—l- 1} andT=(s—1)/d+1/2.

Proof: Since a > 1, the right-hand side f is contained in Ly(§). Therefore,

Theorem 8 implies that « € H>?(Q) = BQS/Z(LQ(Q)). On the other hand, we
know from Theorem 12 that

u € BY(L,(Q)), %: (§+%) , 0<B< s

By interpolation and embeddings of Besov spaces, we can conclude that u is
in a family of Besov spaces B;(L,(f2)) for a certain range of parameters ¢ and
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s, i.e., u € By(L,()) whenever (1/¢,s) is in the interior of the quadrilateral
with vertices (1/2,0),(1/2,3/2),(s*/d+1/2,0),(s*/d+1/2, s*). Therefore, to
compute the range of parameters s for which u is contained in B(L.(Q)), 7 =
(s —1)/d 4 1/2, we have to determine the intersection of the lines

12 () ()

and

11 s—1

g 2 d
which is the point (s*/(3d) + 1/2,5*/3 + 1). An application of Proposition 1
with ¢t = 1 yields the result. a

To illustrate this result, we consider the example where d = 2. If a >
2, then s* = 3. Hence, in this case, the nonlinear method gives an H'-
approximation to u of order up to n='/?, whereas a linear method using n
terms could only give n='/2¢ in the worst case.

In general, a-priori knowledge about the Besov regularity of the solution
u to (2.2) would give lower bounds for the errors produced by any adaptive
method. Conversely, if we knew that a particular adaptive scheme is asymp-
totically as efficient as best n-term approximation in || - || g+ its performance
would allow us to infer the regularity of u. Of course, since the wavelet co-
efficients of the solution u are not known a-priori, one cannot apply Remark
3 directly. There are several possible ways of dealing with this problem.

Let dy(g) denote the sequence of wavelet coefficients of ¢ relative to
U, e, dya(g) = <g,@/~u>, A € V, and analogously dy(¢g). By (3.6.66) the
solution u of (2.2) is determined by

do(T_u) = A7 dg(T; /). (7.1.90)

Recall from (7.1.86) that the best n-term approximation of w in || - || g+ corre-
sponds to the best n-term approximation of Z_;u in the Ly-norm ||- ||z, which,
by Remark 2, corresponds to selecting the n largest terms |dy \(Z_;u)| =
|AI7"|dg A (u)]. Tt is known that in certain cases the decay properties of
(3.6.67) of the infinite matrix A imply similar decay properties for A~
perhaps with different parameters, see e.g. [51]. In such a case the largest
coefficients of Z_,u are expected to appear in a ‘neighborhood’ of the (acces-
sible) largest coefficients fy = [A[*dg \(f). The effect of the smearing caused
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by the application of A~! can in principle be estimated by the same methods
as used in connection with matrix compression [18]. However, this assumes
that the singular behavior of u is completely governed by the right hand side
f

Here we shall describe next a somewhat different approach from [14]. To
motivate this let us briefly recall first a basic strategy employed by many
adaptive finite element schemes. A key observation is the equivalence be-
tween the validity of two-sided error estimates and the so called saturation
property. In the context of finite element methods this issue is discussed in [5].
The basic reasoning can be sketched as follows. Suppose that S C V C H!
are two trial spaces with respective Galerkin solutions ug,uy. By orthogo-
nality one has

ey — usl] < fJu — usl],

where || - || denotes again the energy norm. Moreover, one easily checks that
one has

v —uv|] < Bllu— us|| (7.1.91)
for some § < 1 if and only if

(1= Bl = us]| < v — us]. (7.1.92)

Thus if the refined solution uy captures a sufficiently large portion of the
remainder (7.1.92) the global energy error is guaranteed to decrease by a
factor 3 when passing to the refined solution uy and one has the bounds

luv = us|| < JJu—us| < (1= 5%) 7 juy — us]), (7.1.93)

which are computable. In practice one controls the local behavior of uy —ug
and refines the mesh at places where (an estimate for) this difference is
largest. This results in balancing the error bounds. Although this has been
observed to work well in many cases, the principal problem remains that
something like (7.1.92) has to be assumed to prove convergence of the overall
adaptive algorithm.

It is perhaps worth stressing that wavelet analysis allows us to remedy
this conceptual deficiency and derive much stronger information about re-
mainders. In fact, we shall see below that the assumption (7.1.92) about
the unknown solution u can be replaced (quite in the spirit of the previous
comments) by some (rather weak) information on the accessible data f.
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To this end, let us first relate the type of estimates (7.1.93) to n-term
approximation. Instead of minimizing the error for a given allowance of n
terms one can minimize the number of terms needed to meet a given error
tolerance. Specifically, given any strictly decreasing sequence {7;};cpv, we
can look for a sequence {A(7;)}ien of index sets A(7;) C V such that

Ounirye(u) X, 1€ IV, (7.1.94)
The following observation is an immediate consequence of Remark 3.
Remark 4 One has
|l = Prgrpyul] <1, 1€ N, (7.1.95)
and the sets A(1;) can be chosen to be nested, i.e.,
A7) C A(Tip1), 1€ INV. (7.1.96)

Let, with a slight abuse of notation, u, denote the solution of Galerkin

problem (3.6.55) with
S =Sy :=span {1 : A € A},
If A C A we have
lu — ugll* = [lu —uall* = Jlua — uzll?,

since the Galerkin approximation is an orthogonal projection relative to the
energy inner product. Therefore, we obtain

Remark 5 Consider the following sequence {A'};cp:
(I) Fiz some A* C'V and £ < 1. Define 7 := ||u — up1]|.
(II) Given A® choose AT C V, A" C A such that

(7.1.97)

|uai — upitr]| > &lju — wpi

while for any A C V with A" C A and #(A\ A") < #(AF\AY) one
has

(7.1.98)

|uai — upl| < &lju — wail|.

Set 141 1= (1 — /432)1/2”u — upill.
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(III) Replace i + 1 by i and go to (II).

Then one has
|lu — upn|| X oganqer(u), n €N, (7.1.99)

where ¢ s some constant.

In practice, it will generally not be possible to realize the above strategy
of capturing a significant portion of the remainder by a possibly small set of
additional indices since the exact estimation required in (7.1.97) and (7.1.98)
is generally not possible. However, it will be possible to bound quantities
of the form |jup — uj|[, for A C A, from below and above by computable
local quantities times constants which are independent of the sets A, A but
different from one.

7.2 A-posteriori error estimates

Suppose that for some A C V., Sy is the current trial space and that we have
computed the solution uy of (3.6.55) (within some appropriate tolerance).
According to Remark 5, the next step is to estimate the error |[u — u,|| in
the energy norm in a way that indicates how to select next a bigger set A € V,
A C A, of wavelet indices so that, on one hand, A stays still possibly small
while, on the other hand, the error ||u — uz|| is guaranteed to decrease by a
certain amount. As mentioned before, selecting the index sets A implicitly
corresponds to creating possibly nonuniform meshes. In fact, the spaces
S, = span{¢ : |\ < 27"} correspond to uniformly refined meshes and
taking only subsets of the complement bases {t\ : |A| = ¢} corresponds to
a nonuniform refinement.

To this end, we exploit the commonly used fact that, the error in the
energy norm can be estimated by the residual in a dual norm which, at least
in principle, can be evaluated. In fact, since

ra = Aupy — [ = A(up — u),
by (3.6.58) and (2.6), one has
e |rally—e <lu—uall < e llrally—: - (7.2.100)

Expanding the residual 7y by the dual basis ¥ and taking the Galerkin
conditions

P Auy = Pif (7.2.101)
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into account, yields

ra = (ra, )ty = D0 (ra, ).

AEV AEVAA

Bearing (3.6.60) in mind, and quantifying the constants in (3.5.54), ensures
the existence of finite positive constants ¢z, ¢4 such that

03( Z |)\|2t|<TA7¢A>|2)% < lrall = < c4( Z |)‘|2t|<rA777Z)/\>|2)%.

AEV\A AEV\A
(7.2.102)

Thus, in principle, the nonnegative quantities
O =6(A) == A [(ra, )], A€ VA,

are in some sense the desired local quantities bounding the error ||u — u,||
from below and above. However, in the present form, (7.2.102) is still useless
since the bounds involve generally infinitely many terms 6.

To understand these bounds a little better, suppose that wuy, denote the
wavelet coefficients of the current solution

UpA = Z u/\/77/)/\/.

MeA

Straightforward calculations then yield

Sy = N[ = X (At (7.2.103)

MeA

where as above f\ := (f,v)) denote the wavelet coefficients of the right
hand side f relative to the dual basis W. (7.2.103) shows that the size of
0y 1s influenced by two quantities. First, if the right hand side f itself has
singularities this will result in large wavelet coefficients f\. Second, the sum
Soven(Aa, oy )uy gives the contribution of the current solution which, for
instance, could reflect the influence of the boundary.

Thus replacing the bounds in (7.2.102) by finitely many computable but
still sufficiently accurate terms requires

a) estimating the smearing effect of A as well as
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b) some a-priori knowledge about f.

So far we have only used the ellipticity (2.3) or (2.6) of A and the norm
equivalence (3.5.54). To deal with problem a) one has to make essential use
of the decay estimates (3.6.67). These estimates are usually deduced from
(2.12) with the aid of moment conditions (see (3.1.25)). We describe now
how they can be utilized. Let again N denote the order of vanishing moments
of the wavelets ¢\ and let 6 < r — d/2, where r is the constant in (3.6.67).
Choose for any ¢ > 0 positive numbers ¢4, g5 such that

T ) (7.2.104)
For each A € V, we define the influence sets

Vie = {N eV :|llog)l—|logN|| <log2e;" and
min{ [\ 7" N7 ) dist(Q, Q) <7t

where €1y denotes the support of 1»y. The sets V. describe that portion of
the sum

ZA,A = Z <A77Z)A'7 ¢A>u/\'7

MeA

appearing in the residual weights 6, (7.2.103), which is significant. In fact,
the remainder

€y = Z <A77/)/\/,77/)/\>u/\/

NEA\V ¢

can be estimated as follows [14].

Proposition 3 For ey and V. as above there exists a constant cs indepen-

dent of f and A such that

(S0 I leal’)” < eselluall- (7.2.105)
AEVAA

Note that, again by (3.5.54),

1
luall ~ luall e ~ (32 A7 ual?)

AEA
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so that the right hand side in (7.2.105) can be evaluated by means of the
wavelet coefficients of the current solution u,. Moreover, one can even give
an a-priori bound. In fact, the stability of the Galerkin scheme assured by
(3.6.59) says, on account of the uniform boundedness of the Py in H~", that

Juall < PR M= S I 1 - (7.2.106)
As for b) above, by construction, the significant neighborhood of A in W\ A
Neoi= {0 € VA : ANV, 0} (7.2.107)
is finite
#Ny, < 00.

Outside N, . the quantities 6, in (7.2.103) are essentially influenced by wavelet
coefficients of f. But this portion is essentially a remainder of f. In fact, by

(3.5.54),
> WHIAP) < allf - Pio,.

AEVN\(AUN, )

H-t

<cg dnf  ||f —ollg- <o inf |[f =0,
vESAUN, . vESH

for some cg < co. This suggests defining

di(Ae) =\ X (Apw,un|, A e VA,
MeEANV .
Note that, in view of (7.2.107),
d/\(A,aS) = 0, AEV \ A, A € N/\ﬁ. (72108)

The main result can now be formulated as follows [14].

Theorem 13 Under the above assumptions, one has

lu = uall < coea(( 30 dn(A,2))" + csellfllge + o inf 1 = lly)
VEOA

AGJ\TA,E

as well as,

| .
(% dA?)* < —fu—usll+ e[l fllgs +co inf 1 = vllgr.
vVESA

NEN, . C1C3
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Moreover, for any A C ¥V, A C A, one has

L 1 .
(X o)) £ —llug = uall+ el + co inf 11 =l
VEOA

AEANN, .

This result provides, up to the controllable tolerance
T(Ay€) = e | fll = + co inf |If = vl
UESA

computable lower and upper bounds for the error |[u — up||. Usually under
more specialized assumptions results of similar nature have been obtained
also in the finite element context (see e.g. [27]). Furthermore, one expects
that nonlinear problems can be handled by combining such estimates with
known abstract results.

7.3 Convergence of an adaptive refinement scheme

In the present setting, it can be shown with the aid of Theorem 13 that under
mild assumptions on the right hand side f a suitable adaptive choice of A
enforces the validity of the saturation property (7.1.92). We continue with
the notation of Section 7.2. The following theorem was proved in [14].

Theorem 14 Let tol > 0 be a given tolerance and fix 6 € (0,1). Define

11—
C* = (— + ) : (7.3.109)

C1C3 202 Cyq

choose 1 > 0 such that

1—-0
e 311
IMC - 2(2 — 0)02047 (7 3 0)
and set ‘ol
i to
gi= — 7.3.111
3 e A

Suppose that for A C'V, one has

1
cg inf — 0|l < =p tol.
o Inf 7= ol < 3
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Then, whenever A C ¥V, A C A is chosen so that

(Y ane?) =a-0( X )

NEANN, . AEN, .

there exists a constant v € (0,1) depending only on the constants u, 0, ¢,
t=1,...,6, such that either

[ = uzll < wfJu = ual]

or

(I

(> dre?) =(> dA(A,e)Q)% < tol.

AEN) . AEV\A

Of course, the idea is to choose A D A as small as possible, i.e., in any

case A \ A C Nj.. This leads to the following

Algorithm 2 0. Choose tol >0, 0 € (0,1) and compute C*, i according
to (7.3.109), (7.3.110).

1. Compute ¢ = e(u, tol) by (7.3.111).

2. Determine A C V such that

1
cg inf — 0|l < =p tol.
o inf 17 = vllger < 3o

3. Solve
(Aup,v) = (f,v), Yv €& S).

4. Compute

(I

A e 2:( Z d/\(A,aS)z) .

AENA75

If na . < tol stop, accept up as solution.

5. Determine A with A C A C AU Np,. such that

(X di(d,2)?) > (1= O

AEA

Set A — A and go to (3).
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Although quite different with regard to its technical ingredients the above
algorithm is very similar in spirit to the adaptive scheme proposed in [27] for
bivariate piecewise linear finite element discretizations of Poisson’s equation.
As above the coarsest grid is chosen in [27] in such a way that all errors
stemming from data are kept below any desired tolerance. In that sense the
approach in [27] has motivated part of the developments described above and
in [14].

We wish to add a few more comments on the above scheme. It may
not be practically efficient to shoot for the final accuracy in the first step.
One would rather select a sequence tol, = %eg_l, (=1,...,N, say where
toly =: Tol is the final accuracy. One would then proceed as follows:

Algorithm 3 0. Choose Tol = 2=Ntol,. Set tol = toly.
1. Apply Algorithm 2 with tol.

2. If tol < Tol stop, accept up as solution. Otherwise set %01 — tol and go
to (1).

A brief comment on Step 3 in Algorithm 2 is in order. By (3.6.64), the
principal sections of the matrix A are well-conditioned. This can be used to
update a current Galerkin approximation u, as follows. Let uy := dy(ua)
be the vector of wavelet coefficients of u). To compute the coefficient vector
uj of uz we choose an initial approximation v according to

{u/\, )\EA
Uy =

o A e ALA (7.3.112)

where Wi = dq;(wA\A) are the coeflicients of the Galerkin solution Wi\ A of
the complement system

<Aw[\\Avv> =(fv), ve S[\\Av

where S5, 1= span{y : A € A\ A}. The corresponding matrix entries have
to be determined anyway for the adaptive refinement. Since by (3.6.64), the
corresponding section A[\\A of A is well-conditioned only a few conjugate
gradient iterations are expected to be necessary to approximate wj,, well
enough to provide a good starting approximation of the form (7.3.112) which
will then have to be improved by (a few) further iterations on the system
matrix Aj.
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