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Abstract

In this paper, we present a new method to find interpolating refinable functions.
The construction can be interpreted as a natural generalization of a well-known
univariate approach and applies to scaling matrices A satisfying | det A| = 2. The
resulting scaling functions automatically satisfy certain Strang—Fix—conditions.
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1 Introduction

In this note, we present a new approach to construct interpolating scaling functions. In
general, a function ¢ € Ly(R?) is called a scaling function or a refinable function if it
satisfies a two—scale—relation

P(x) = Z axp(Azx — k), a={ax}reza € 52(Zd)a (L.1)

keZd

where A is an expanding integer scaling matrix, i.e., all its eigenvalues have modulus
larger than one. In several practical applications, e.g., in CAGD, it is often convenient
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to work with interpolating refinable functions, i.e., in addition to (1.1) one requires that
¢ is at least continuous and satisfies

p(k) = by ke Z° (1.2)

Furthermore, functions ¢ which are sufficiently smooth and well-located are preferable.
In recent studies, several examples of refinable functions satisfying these conditions have
been constructed, see, e.g., [2, 3,4, 5, 6, 7, 12]. In this paper, we present a new approach
which yields compactly supported functions and has the advantage that Strang—Fix—
conditions of a certain order automatically hold. This is important since the Strang—
Fix—conditions always serve as indicators for a certain smoothness, and, moreover, give
rise to a certain order of approximation. Our method turns out to be a quite natural
generalization of a well-known univariate concept, see Section 2 for details. It applies
to scaling matrices A satisfying |det A| = 2 and and can be used in arbitrary spatial
dimensions.

This paper is organized as follows. In Section 2, we briefly recall the setting of
interpolating scaling functions. In Section 3, we present our new construction and,
finally, in Section 4 we discuss some examples to explain the applicability of our approach.

For later use, let us fix some notation. Let ¢ = |det A|. Furthermore, let R =
{pos - spg1 by BT = {po,...,pq—1} denote complete sets of representatives of Z%/AZ?
and Z?/BZ?, B = AT, respectively. Without loss of generality, we shall always assume
that po = po = 0.

2 The Setting

In the sequel, we shall only consider compactly supported scaling functions. Moreover,
we shall always assume that supp a := {k € Z? | @y # 0} is finite. Computing the
Fourier transform of both sides of (1.1) yields

dw) =" lake_%i(k’B_l@qg(B_lw). (2.1)

kezd 4
By iterating (2.1) we obtain
o(w) = [ m(B~w), (2.2)
7=1
where the symbol m(w) is defined by
1 .
m(w) 1= — Z ape2milkw) (2.3)
1 yeza

Equation (2.2) means that instead of trying to construct a refinable function directly
we may also start with a symbol m(w). Then the question arises which conditions on m
guarantee that ¢ according to (2.2) is well-defined in Ly(R%) and has some additional
desirable properties such as sufficient smoothness. Moreover, for our purposes, we have



to clarify how the interpolating property (1.2) can be guaranteed. Some sufficient con-
ditions are summarized in the following theorem which goes back to Lemarié [9, 10], see
also [2] for a further discussion.

Theorem 2.1 Let m(w) be a trigonometric polynomial which satisfies

(0) =

C1)
) m(w) 2
)
)

3

C2

3

Q

3) Cpenr mlw+ B7p) = 1;

(
(
(
(C4

m(w) satisfies Cohens’s condition.

Then m(w) is a symbol of an interpolating refinable function ¢.

In general, one wants to find scaling functions that have a certain smoothness. To
this end, one often requires that the Strang—Fiz—conditions of order L are satisfied, i.e.,

!
(C'5) (ai) m(B~'p) =0 forall |I|] <L andall pe& RT\{0}.
w

In the univariate case, there exist five major approaches to find symbols m(w) satisfying
(C1)=C(5), see, e.g., [2] for a detailed discussion. There also exist several approaches to
generalize some of these concepts to the multivariate case [2, 4]. In this note, we try to
find a somewhat natural generalization of the following ansatz which is due to Lemarié
and Meyer [10, 11]: Define m(w) according to

m(w) :=1— ¢k /0W sinQI‘y_l(wa)dw (2.4)

and choose ¢y, such that m(1/2) = 0. Then (C5) is clearly satisfied with L = 2K — 1.
It turns out that such a generalization can indeed be found, at least for the case

|det A = 2.

3 The Construction

We want to find multivariate versions of (2.4). In a first step, we confine the presentation
to the 2D—case. Generalizations to higher—dimensional cases will be discussed later. For
notational convenience, we shall always use the abbreviation p; = p. (Recall that we
always choose pg = po = 0).

Observing that in the univariate case R = RT = {0,1}, B~!'p = 1/2, a first guess
could be

wq

mwi,ws) = 1 — cK/ sin? 1 (7 (B~15)7 1) dt. (3.1)
0
Using the property

sin(w(t 4+ 1)) = —sin(wt),
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it is easily checked that such an approach may work in principle. However, it has the
disadvantage that it always leads to some kind of ‘separable’ symbol. We would clearly
prefer a ‘non-separable’, i.e., truly multivariate symbol. To this end, it is somewhat
natural to replace the right—-hand side in (3.1) by an expression involving some kind
of double integral. As we shall see in Theorem 3.1 stated below, this does not work
directly but requires some additional correction terms and further conditions on the
integrands. Nevertheless, as explained in Section 4, examples can be constructed in
some very natural way.

Theorem 3.1 Suppose that m1(t1), mz(t2) are trigonometric polynomials satisfying

mi((B™'p) + 1) = —mu(t),  ma((B7'p)2 +1) = ma(t), (3.2)
/O(B_lﬁb ma(t)dt = 0, (3.3)
and i
DN (B ) = N k<L—1,i=1,2 (3.4)
(dt) m;((B™p);) =0 fora < , 1 =1,2. .

Furthermore, let the constant ¢, be defined by

o 1= (/O(B_lﬁ)l ml(tl)dtl) h (3.5)

and suppose thal ¢y and ¢y 5 are related by

C1,2
201

(3.6)

Coyp =

Then the symbol

m(wl,wg) =1- 0172/0 /0 ml(tl)mg(tg)dtldtz — Cl/o ml(tl)dtl — CQ/O mz(tg)dtg
(3.7)
satisfies (C1), (C3) and Strang—Fix conditions (C5) of order L.

Proof: Let us start by varifying the Strang-Fix conditions (C5). For l1,{y > 0, we
obtain by exploiting assumption (3.4)

&%y@m34m>= ﬂm(ﬁﬂ”4m«34mn(£ﬁb4mMB*mg

—q(gJHJm«B*mn—@(gﬁbAmMB*mgzu

The cases [ =0, {5 > 0 and [, = 0, [; > 0 can be treated analogously. It remains to
study the case [ = [ = 0. By using (3.3) and (3.5) we get

1. (B715)1 p(B715)2 (B~15)1
m(B p) = 1- 0172/ /0 ml(tl)mg(tg)dtldtz — Cl/o ml(tl)dtl

0
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(B™15)2
—C2 /0 mz(tg)dtg

(B~

= 1- Cl/ ml(tl)dtl
0

= 0.

The next step is to check the condition (C3). Splitting up the integrals yields

m(w) +m(w + B~ p)
= 2- 0172/0 /0 ml(tl)mz(tg)dtldtz — Cl/o ml(tl)dtl — CQ/O mz(tg)dtg

wiH(BT'9)1 pwat(BT)2 wi+(B™5),
—0172/0 /0 ml(tl)mg(tg)dtldtz —Cl/o ml(tl)dtl
wat+(B715)2
—CQ/O mz(tg)dtg
= 22— 0172/0 /0 ml(tl)mz(tg)dtldtz — Cl/o ml(tl)dtl — CQ/O mz(tg)dtg

(B~16) (B715)14w1 (B™15)2 (B™'5)2 4w
—C12 /0 ml(tl)dtl + ml(tl)dtl /0 mz(tz)dtz + /(B—l mz(tg)dtg

(B~ p)2
(B™'oh wi+(B™'on (B™'5)2 w2+ (B™15)2
—C1 / ml(tl)dt1+ ~ ml(tl)dtl —C2 / mg(tg)dt2+/ ~ mz(tz)dtg .
0 (B=15)1 0 (B=15)2

Therefore, by employing the conditions (3.2) and (3.3), we get
() + mio + B)

= 2- 0172/ / ml(tl)mg(tg)dtldtz — Cl/

o Jo 0

(B~ w1 w2
—C1,2 (/0 ml(tl)dtl —/0 ml(tl)dtl) /0 mz(tg)dtg
(B™1i w1 w2
—C1 /0 ml(tl)dtl — /(0 ml(tl)dtl — CQ/O mz(tg)dtg

w2 (B~ w2
= 2— CQ/O mz(tz)dtg — 0172/0 ml(tl)dtl/o mz(tg)dtg

(B~1on w2
—Cl/o ml(tl)dtl — CQ/O mz(tg)dtg.

W W

mz(tz)dtg

ml(tl)dtl — CQ/

0

By using (3.5), we end up with
m(w) +m(w+ B7'5) =1+ (—2¢, — 017201_1)/0 mo(ta)dts

and (C3) follows from (3.6). It is obvious that the symbol m(wy,w,) satisfies (C1). The

theorem is proved. a



Remark 3.1 The reader should observe that Theorem 3.1 can in fact be used simultane-
ously for a whole class of matrices satisfying | det A| = 2. Assume that a second scaling
matriz M exists with a representative & such that A=Tp = M~T§ holds. Then a symbol
m constructed according to (3.7) for A also works for M. Nevertheless, from (2.2) it is
clear that the resulting refinable functions may differ dramatically.

Theorem 3.1 clearly generalizes to higher dimensional cases, although everything
becomes much more complicated from the technical point of view. Therefore we only
state one possible 3D—version of our approach. Several other variants are possible.

Theorem 3.2 Suppose that my(t1),m2(ts) and ms(ts) are trigonometric polynomials
satisfying (3.4). Let us furthermore assume that mqy and ms both satisfy (3.3) and that

mi((B7ph +1) = —mu(t), ma((B7'p)z +1) = ma(t), ms((B™'p)s +1) = ms(t).

(3.8)
Let ¢y be defined by (3.5) and suppose that ¢y 25 and ¢35 are related by
€1,2,3
= == 3.9
€23 2 (3.9)

Then the symbol
m(wl,wg,wg) = 1- 017273/0 /0 /0 ml(tl)mz(tz)mg(tg)dtldtgdtg (310)

—0273/0 /0 mg(tg)mg(tg)dtzdtg — Cl/o ml(tl)dtl
satisfies (C1), (C3) and (C5).

4 Examples

We have applied the construction presented above to the case d =2, A = ( 1 _i )

In this case, | det A| = 2 as required and we may choose p = ((1)) as the second represen-

tative. Quite natural choices for my(t1), ma(tz) are given by
my(t) = sin2K_1(27rt1), mo(ty) = sin2K_1(47rt2). (4.1)

Let us first discuss the case K = 2. Then

3 —C1,2

Cc1p = 5 5 Cyp = 3 (42)
and (3.7) yields
m(wy,ws) (4.3)
B C1,2 .2 . 9
= 1- o2 (— cos(2mwy )(2 + sin”(27wy)) + 2) (— cos(4mws)(2 + sin”(4mws)) + 2)
1 &

~ (— cos(2mwq )(2 + sin2(27rw1)) + 2) + ’22 (— cos(4dmwy)(2 + sin2(47rw2)) + 2) )

367
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The regularity problem, i.e., the problem of estimating rg,p from below, has attracted
several people in the last few years, see, e.g., [1, 8, 12, 13]. One typical result in this
direction reads as follows.

Theorem 4.1 For an integer L, let
Vi = {v € lo(ZY) - > plk)ox =0,  for all p € 11},
kezd

where 117, denotes the polynomials of total degree L. Assume that A is a dilation matriz
with a complete set of orthonormal eigenvectors. If the symbol m(w) according to (2.3)
is nonnegative and satisfies Strang—Fiz—conditions (C5) of order L, then for a suitable
choice Q with supp a C Q, Vi is invariant under the matriz

H = [quk—l]k,leQ .
Let o be the spectral radius of H|v,. Then the exponent ke salisfies

log(e)
> ==
" = T 100 (Amax])

We used Theorem 4.1 to test several values of ¢; 3. The results are shown in the following
table.

(4.6)

C1,2 —log(g)/ log(|Amax|)
—50 | 0.26569
—10 | 0.55643
-5 0.60106
-3 0.61971
-1 0.63884
—0.5 | 0.6437

0 0.6486
0.5 0.65352

1 0.65848

3 0.67864
50 0.7298
100 | 0.0054245

Remark 4.1 i) We see that the reqularity of the resulting interpolating scaling func-
tions decreases significantly for large values of |¢1 2|. For very large values of e 2|,
one does not even get an Ly—function.

ii) We also observe that in order to increase the smoothness of the corresponding scal-
ing function it seems to be a good idea to use positive values of ¢; 5. However, then
another problem occurs. To use Theorem 4.1, we have to work with a nonnegative
symbol, and it can be easily checked that this is only the case for ¢15 in a cer-
tain interval contained in (—oo,0]. Therefore the results for positive values of ¢ »
are not completely justified by Theorem 4.1. But the requirement of a nonnegative
symbol in Theorem /.1 is a sufficient condition which does not need to be necessary
in all cases.



As already stressed in Remark 3.1, the symbol computed according to Theorem 3.1
can also be used for other scaling matrices. In our case, it is easy to check that e.g. for

the matrix M = ( 1 _1 ) and 6 = ((1)) the conditions of Remark 3.1 are satisfied. It
turns out that for this matrix the resulting refinable functions are in fact much smoother

as can be seen from the following table.

C1,2 —log(¢)/log(|Amax|)
—10 | 0.96322

-5 1.2694

—1 1.7589

—0.5 | 1.8665

0 2

0.2 1.9678

1 1.8562

10 1.2073

50 0.045414

We have also studied the case K = 3. In this case, eq. (3.7) yields

m(wy, ws)
C1,2

5 5 1 4
= 1 -—= <_E cos(2mwy) + % cos(6mwy) — @cos(l()mul) + E)

T2

1 2
. (—3% cos(4mrws) + % cos(12mwq) — 390 cos(20mwy) + E)
15

5 5 1 4
Yy <_E cos(2mw ) + % cos(6mwy) — 160 cos(107wy) + E)
40172

5 5 1 2
52 (—3—2 cos(4dmwy) + 102 cos(12mwsy) — 390 cos(20mws) + E) )

The nonvanishing coefficients of the resulting mask are given by

1
a(,0) = 5; (4.1)
250172
A2 = 0,-2) = A1) T G(-1,-2) T T 505
250172
a = 0(1,-6) = 4(-1,6) = U(~1,-6) = Too00_2’
(1,6) (1,-6) = 4(=1,6) = U=1,-6) = 75500 2"
50172
a0y = Q(1,-10) = G(=1,10) = G(=1,—10) = _204807T2;
75 C1,2
o) = A-10) = 5ee e
450172
a = 4(3,-2) = Q(-32) = U(-3,—2) = '
(3.2) (3-2) = 4=32) = U=3-2) T 990027
450172
(—3,_6) = 0(=3,6) = ((3,-6) = a - )
(~3,-6) (=3,6) = 4(3,-6) = 4(3,6) 7372872



90172
a(310) — G(3,-10) = 4(=3,10) — ¢(-3,-10) —

12283072
90172 75
a = Q(-30) = — o '
(3,0) (=3.0) 144072 1536’
5y 2
As2) = A(5,-2) = A(=52) = A(=5,-2) = ~ 500
50172
A56) = A(5,-6) = A(=56) = (=5,-6) = Tooo0 3
c
15 €12

Us0) = =50 = 5ee0 t 5005

The regularity of the corresponding scaling functions can again be estimated by using
Theroem 4.1.

C1,2 —log(¢)/log(|Amax|)
—50 | 0.42988
—10 | 0.5938
-3 0.61571
-1 0.62137
—0.5 | 0.62275
0 0.6241
3 0.63181
10 0.64683
20 0.66002
30 0.625
50 0.4986

Remark 4.2 A  MATLAB program to compute the regularity of refin—
able functions according to Theorem 4.1 can be found on the IGPM-homepage, see
http://elc2.igpm.rwth-aachen.de/barinka/mattoys/soft.html.

Acknowledgements. The authors feel grateful to N. Mulders and A. Barinka for
helping them to develop the software which was used for the regularity estimates.
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