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to work with interpolating re�nable funtions, i.e., in addition to (1.1) one requires that� is at least ontinuous and satis�es�(k) = Æ0;k k 2 Zd: (1.2)Furthermore, funtions � whih are suÆiently smooth and well{loated are preferable.In reent studies, several examples of re�nable funtions satisfying these onditions havebeen onstruted, see, e.g., [2, 3, 4, 5, 6, 7, 12℄. In this paper, we present a new approahwhih yields ompatly supported funtions and has the advantage that Strang{Fix{onditions of a ertain order automatially hold. This is important sine the Strang{Fix{onditions always serve as indiators for a ertain smoothness, and, moreover, giverise to a ertain order of approximation. Our method turns out to be a quite naturalgeneralization of a well{known univariate onept, see Setion 2 for details. It appliesto saling matries A satisfying jdetAj = 2 and and an be used in arbitrary spatialdimensions.This paper is organized as follows. In Setion 2, we briey reall the setting ofinterpolating saling funtions. In Setion 3, we present our new onstrution and,�nally, in Setion 4 we disuss some examples to explain the appliability of our approah.For later use, let us �x some notation. Let q = jdetAj: Furthermore, let R =f�0; : : : ; �q�1g; RT = f~�0; : : : ; ~�q�1g denote omplete sets of representatives of Zd=AZdand Zd=BZd; B = AT ; respetively. Without loss of generality, we shall always assumethat �0 = ~�0 = 0:2 The SettingIn the sequel, we shall only onsider ompatly supported saling funtions. Moreover,we shall always assume that supp a := fk 2 Zd j ak 6= 0g is �nite. Computing theFourier transform of both sides of (1.1) yields�̂(!) = Xk2Zd 1qake�2�ihk;B�1!i�̂(B�1!): (2.1)By iterating (2.1) we obtain �̂(!) = 1Yj=1m(B�j!); (2.2)where the symbol m(!) is de�ned bym(!) := 1q Xk2Zd ake�2�ihk;!i: (2.3)Equation (2.2) means that instead of trying to onstrut a re�nable funtion diretlywe may also start with a symbol m(!): Then the question arises whih onditions on mguarantee that �̂ aording to (2.2) is well{de�ned in L2(Rd) and has some additionaldesirable properties suh as suÆient smoothness. Moreover, for our purposes, we have2



to larify how the interpolating property (1.2) an be guaranteed. Some suÆient on-ditions are summarized in the following theorem whih goes bak to Lemari�e [9, 10℄, seealso [2℄ for a further disussion.Theorem 2.1 Let m(!) be a trigonometri polynomial whih satis�es(C1) m(0) = 1;(C2) m(!) � 0;(C3) P~�2RT m(! +B�1~�) = 1;(C4) m(!) satis�es Cohens's ondition.Then m(!) is a symbol of an interpolating re�nable funtion �.In general, one wants to �nd saling funtions that have a ertain smoothness. Tothis end, one often requires that the Strang{Fix{onditions of order L are satis�ed, i.e.,(C5)  ��!!lm(B�1~�) = 0 for all jlj � L and all ~� 2 RTnf0g:In the univariate ase, there exist �ve major approahes to �nd symbols m(!) satisfying(C1){C(5), see, e.g., [2℄ for a detailed disussion. There also exist several approahes togeneralize some of these onepts to the multivariate ase [2, 4℄. In this note, we try to�nd a somewhat natural generalization of the following ansatz whih is due to Lemari�eand Meyer [10, 11℄: De�ne m(!) aording tom(!) := 1� K Z !0 sin2K�1(2�!)d! (2.4)and hoose L suh that m(1=2) = 0: Then (C5) is learly satis�ed with L = 2K � 1:It turns out that suh a generalization an indeed be found, at least for the asejdetAj = 2:3 The ConstrutionWe want to �nd multivariate versions of (2.4). In a �rst step, we on�ne the presentationto the 2D{ase. Generalizations to higher{dimensional ases will be disussed later. Fornotational onveniene, we shall always use the abbreviation ~�1 = ~�. (Reall that wealways hoose �0 = ~�0 = 0).Observing that in the univariate ase R = RT = f0; 1g; B�1~� = 1=2; a �rst guessould be m(!1; !2) = 1� K Z w10 sin2K�1(�(B�1~�)�11 t)dt: (3.1)Using the property sin(�(t+ 1)) = � sin(�t);3



it is easily heked that suh an approah may work in priniple. However, it has thedisadvantage that it always leads to some kind of `separable' symbol. We would learlyprefer a `non{separable', i.e., truly multivariate symbol. To this end, it is somewhatnatural to replae the right{hand side in (3.1) by an expression involving some kindof double integral. As we shall see in Theorem 3.1 stated below, this does not workdiretly but requires some additional orretion terms and further onditions on theintegrands. Nevertheless, as explained in Setion 4, examples an be onstruted insome very natural way.Theorem 3.1 Suppose that m1(t1); m2(t2) are trigonometri polynomials satisfyingm1((B�1~�)1 + t) = �m1(t); m2((B�1~�)2 + t) = m2(t); (3.2)Z (B�1~�)20 m2(t)dt = 0; (3.3)and  ddt!kmi((B�1~�)i) = 0 for all k � L � 1; i = 1; 2: (3.4)Furthermore, let the onstant 1 be de�ned by1 :=  Z (B�1~�)10 m1(t1)dt1!�1 (3.5)and suppose that 2 and 1;2 are related by2 = �1;221 : (3.6)Then the symbolm(!1; !2) = 1 � 1;2 Z !10 Z !20 m1(t1)m2(t2)dt1dt2 � 1 Z !10 m1(t1)dt1 � 2 Z !20 m2(t2)dt2(3.7)satis�es (C1), (C3) and Strang{Fix onditions (C5) of order L.Proof: Let us start by varifying the Strang{Fix onditions (C5). For l1; l2 > 0, weobtain by exploiting assumption (3.4) ��!!l (m(B�1~�)) = �1;2 ddt1!l1�1m1((B�1~�)1) ddt2!l2�1m2((B�1~�)2)�1  ddt1!l1�1m1((B�1~�)1)� 2  ddt2!l2�1m2((B�1~�)2) = 0:The ases l1 = 0; l2 > 0 and l2 = 0; l1 > 0 an be treated analogously. It remains tostudy the ase l1 = l2 = 0: By using (3.3) and (3.5) we getm(B�1~�) = 1� 1;2 Z (B�1~�)10 Z (B�1~�)20 m1(t1)m2(t2)dt1dt2 � 1 Z (B�1~�)10 m1(t1)dt14



�2 Z (B�1~�)20 m2(t2)dt2= 1� 1 Z (B�1~�)10 m1(t1)dt1= 0:The next step is to hek the ondition (C3). Splitting up the integrals yieldsm(!) +m(! +B�1~�)= 2� 1;2 Z !10 Z !20 m1(t1)m2(t2)dt1dt2 � 1 Z !10 m1(t1)dt1 � 2 Z !20 m2(t2)dt2�1;2 Z !1+(B�1~�)10 Z !2+(B�1~�)20 m1(t1)m2(t2)dt1dt2 � 1 Z !1+(B�1~�)10 m1(t1)dt1�2 Z !2+(B�1~�)20 m2(t2)dt2= 2� 1;2 Z !10 Z !20 m1(t1)m2(t2)dt1dt2 � 1 Z !10 m1(t1)dt1 � 2 Z !20 m2(t2)dt2�1;2 Z (B�1~�)10 m1(t1)dt1 + Z (B�1~�)1+!1(B�1~�)1 m1(t1)dt1! Z (B�1~�)20 m2(t2)dt2 + Z (B�1~�)2+!2(B�1~�)2 m2(t2)dt2!�1 Z (B�1~�)10 m1(t1)dt1+Z !1+(B�1~�)1(B�1~�)1 m1(t1)dt1!�2  Z (B�1~�)20 m2(t2)dt2+Z !2+(B�1~�)2(B�1~�)2 m2(t2)dt2! :Therefore, by employing the onditions (3.2) and (3.3), we getm(!) +m(! +B�1~�)= 2 � 1;2 Z !10 Z !20 m1(t1)m2(t2)dt1dt2 � 1 Z !10 m1(t1)dt1 � 2 Z !20 m2(t2)dt2�1;2 Z (B�1~�)10 m1(t1)dt1 � Z !10 m1(t1)dt1!Z !20 m2(t2)dt2�1  Z (B�1~�)10 m1(t1)dt1 � Z !1(0 m1(t1)dt1!� 2 Z !20 m2(t2)dt2= 2 � 2 Z !20 m2(t2)dt2 � 1;2 Z (B�1~�)10 m1(t1)dt1 Z !20 m2(t2)dt2�1 Z (B�1~�)10 m1(t1)dt1 � 2 Z !20 m2(t2)dt2:By using (3.5), we end up withm(!) +m(! +B�1~�) = 1 + (�22 � 1;2�11 ) Z !20 m2(t2)dt2and (C3) follows from (3.6). It is obvious that the symbol m(!1; !2) satis�es (C1). Thetheorem is proved. 25



Remark 3.1 The reader should observe that Theorem 3.1 an in fat be used simultane-ously for a whole lass of matries satisfying jdetAj = 2. Assume that a seond salingmatrix M exists with a representative ~Æ suh that A�T ~� = M�T ~Æ holds. Then a symbolm onstruted aording to (3.7) for A also works for M . Nevertheless, from (2.2) it islear that the resulting re�nable funtions may di�er dramatially.Theorem 3.1 learly generalizes to higher dimensional ases, although everythingbeomes muh more ompliated from the tehnial point of view. Therefore we onlystate one possible 3D{version of our approah. Several other variants are possible.Theorem 3.2 Suppose that m1(t1);m2(t2) and m3(t3) are trigonometri polynomialssatisfying (3.4). Let us furthermore assume that m2 and m3 both satisfy (3.3) and thatm1((B�1~�)1 + t) = �m1(t); m2((B�1~�)2 + t) = m2(t); m3((B�1~�)3 + t) = m3(t):(3.8)Let 1 be de�ned by (3.5) and suppose that 1;2;3 and 2;3 are related by2;3 = �1;2;321 : (3.9)Then the symbolm(!1; !2; !3) = 1� 1;2;3 Z !10 Z !20 Z !30 m1(t1)m2(t2)m3(t3)dt1dt2dt3 (3.10)�2;3 Z !20 Z !30 m2(t2)m3(t3)dt2dt3 � 1 Z !10 m1(t1)dt1satis�es (C1), (C3) and (C5).4 ExamplesWe have applied the onstrution presented above to the ase d = 2, A =  1 �11 1 !.In this ase, jdetAj = 2 as required and we may hoose ~� = �10� as the seond represen-tative. Quite natural hoies for m1(t1); m2(t2) are given bym1(t1) = sin2K�1(2�t1); m2(t2) = sin2K�1(4�t2): (4.1)Let us �rst disuss the ase K = 2: Then1 = 3�2 ; 2 = �1;23� (4.2)and (3.7) yieldsm(!1; !2) (4.3)= 1� 1;272�2 �� os(2�!1)(2 + sin2(2�!1)) + 2� �� os(4�!2)(2 + sin2(4�!2)) + 2��14 �� os(2�!1)(2 + sin2(2�!1)) + 2�+ 1;236�2 �� os(4�!2)(2 + sin2(4�!2)) + 2� :6



The nonvanishing oeÆients of the resulting mask an be omputed a follows.a(0;0) = 12; (4.4)a(1;2) = a(1;�2) = a(�1;2) = a(�1;�2) = � 811;24608�2 ;a(1;6) = a(1;�6) = a(�1;6) = a(�1;�6) = a(3;2) = a(3;�2) = a(�3;2) = a(�3;�2) = 91;24608�2 ;a(�3;�6) = a(�3;6) = a(3;�6) = a(3;6) = � 1;24608�2 ;a(�1;0) = a(1;0) = 91;2288�2 + 932;a(3;0) = a(�3;0) = � 1;2288�2 � 132 :A typial symbol obtained by this proedure is displayed in Figure 1.
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Figure 1: m(!1; !2) for 1;2 = �5It remains to estimate the smoothness of the resulting re�nable funtion �, i.e., we wantto �nd �� := supf� : � 2 C�g:It is well{known that �� � �sup, where �sup is de�ned by�sup := supf� : ZRd(1 + j!j)�j�̂(!)jd! <1g: (4.5)7



The regularity problem, i.e., the problem of estimating �sup from below, has attratedseveral people in the last few years, see, e.g., [1, 8, 12, 13℄. One typial result in thisdiretion reads as follows.Theorem 4.1 For an integer L, letVL := fv 2 `0(Zd) : Xk2Zd p(k)vk = 0; for all p 2 �Lg;where �L denotes the polynomials of total degree L. Assume that A is a dilation matrixwith a omplete set of orthonormal eigenvetors. If the symbol m(!) aording to (2.3)is nonnegative and satis�es Strang{Fix{onditions (C5) of order L, then for a suitablehoie 
 with supp a � 
, VL is invariant under the matrixH := [qaAk�l℄k;l2
 :Let % be the spetral radius of HjVL: Then the exponent �sup satis�es�sup � � log(%)log(j�maxj) : (4.6)We used Theorem 4.1 to test several values of 1;2: The results are shown in the followingtable. 1;2 � log(%)= log(j�maxj)�50 0:26569�10 0:55643�5 0:60106�3 0:61971�1 0:63884�0:5 0:64370 0:64860:5 0:653521 0:658483 0:6786450 0:7298100 0:0054245Remark 4.1 i) We see that the regularity of the resulting interpolating saling fun-tions dereases signi�antly for large values of j1;2j: For very large values of j1;2j,one does not even get an L2{funtion.ii) We also observe that in order to inrease the smoothness of the orresponding sal-ing funtion it seems to be a good idea to use positive values of 1;2. However, thenanother problem ours. To use Theorem 4.1, we have to work with a nonnegativesymbol, and it an be easily heked that this is only the ase for 1;2 in a er-tain interval ontained in (�1; 0℄. Therefore the results for positive values of 1;2are not ompletely justi�ed by Theorem 4.1. But the requirement of a nonnegativesymbol in Theorem 4.1 is a suÆient ondition whih does not need to be neessaryin all ases. 8



As already stressed in Remark 3.1, the symbol omputed aording to Theorem 3.1an also be used for other saling matries. In our ase, it is easy to hek that e.g. forthe matrix M =  1 11 �1 ! and ~Æ = �10� the onditions of Remark 3.1 are satis�ed. Itturns out that for this matrix the resulting re�nable funtions are in fat muh smootheras an be seen from the following table.1;2 � log(%)= log(j�maxj)�10 0:96322�5 1:2694�1 1:7589�0:5 1:86650 20:2 1:96781 1:856210 1:207350 0:045414We have also studied the ase K = 3: In this ase, eq. (3.7) yieldsm(!1; !2)= 1 � 1;2�2 �� 516 os(2�!1) + 596 os(6�!1)� 1160 os(10�!1) + 415���� 532 os(4�!2) + 5192 os(12�!2)� 1320 os(20�!2) + 215��158 �� 516 os(2�!1) + 596 os(6�!1)� 1160 os(10�!1) + 415�+41;215�2 �� 532 os(4�!2) + 5192 os(12�!2)� 1320 os(20�!2) + 215� :The nonvanishing oeÆients of the resulting mask are given bya(0;0) = 12; (4.7)a(1;2) = a(1;�2) = a(�1;2) = a(�1;�2) = � 251;22048�2 ;a(1;6) = a(1;�6) = a(�1;6) = a(�1;�6) = 251;212288�2 ;a(1;10) = a(1;�10) = a(�1;10) = a(�1;�10) = � 51;220480�2 ;a(1;0) = a(�1;0) = 75256 + 1;248�2 ;a(3;2) = a(3;�2) = a(�3;2) = a(�3;�2) = 451;212288�2 ;a(�3;�6) = a(�3;6) = a(3;�6) = a(3;6) = � 451;273728�2 ;9



a(3;10) = a(3;�10) = a(�3;10) = a(�3;�10) = 91;2122880�2 ;a(3;0) = a(�3;0) = � 91;21440�2 � 751536 ;a(5;2) = a(5;�2) = a(�5;2) = a(�5;�2) = � 51;220480�2 ;a(5;6) = a(5;�6) = a(�5;6) = a(�5;�6) = 51;2122880�2 ;a(5;10) = a(5;�10) = a(�5;10) = a(�5;�10) = � 1;2204800�2 ;a(5;0) = a(�5;0) = 152560 + 1;22400�2 :The regularity of the orresponding saling funtions an again be estimated by usingTheroem 4.1. 1;2 � log(%)= log(j�maxj)�50 0:42988�10 0:5938�3 0:61571�1 0:62137�0:5 0:622750 0:62413 0:6318110 0:6468320 0:6600230 0:62550 0:4986Remark 4.2 A MATLAB program to ompute the regularity of re�n{able funtions aording to Theorem 4.1 an be found on the IGPM{homepage, seehttp://el2.igpm.rwth-aahen.de/barinka/mattoys/soft.html.Aknowledgements. The authors feel grateful to N. Mulders and A. Barinka forhelping them to develop the software whih was used for the regularity estimates.Referenes[1℄ A. Cohen, K. Gr�ohenig, and L. Villemoes, Regularity of multivariate re�nablefuntions, Constr. Approx. 15 (1999), 241{255.[2℄ S. Dahlke, K. Gr�ohenig, and P. Maass, A new approah to interpolating salingfuntions, Appl. Anal. 72(3{4) (1999), 485{500.[3℄ S. Dahlke and P. Maass, Interpolating re�nable funtions and wavelets for generalsalings, Numer. Funt. Anal. Optim. 18(5&6) (1997), 521{539.10
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