
Quarkonial frames with compression properties

Stephan Dahlke∗, Philipp Keding, and Thorsten Raasch

October 13, 2015

Abstract

In the spirit of subatomic or quarkonial decomposition of function spaces [26],
we construct compactly supported, piecewise polynomial functions whose properly
weighted dilates and translates generate frames for Sobolev spaces on the real line.
All frame elements except for those on the coarsest level have vanishing moment
properties. As a consequence, the matrix representation of certain elliptic operators
in frame coordinates is compressible, i.e., well-approximable by sparse submatrices.
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1 Introduction

The theory of function spaces and their decompositions is an intensively studied field of
research with many potential applications. Stable decompositions of function spaces by
means of atoms or molecules usually give rise to equivalences of smoothness norms and
weighted sequence norms of expansion coefficients. This property enables one to switch
from a continuous to a discrete setting which is essential for practical applications.
Prominent examples are atomic decompositions by means of wavelets. In this case, the
atoms are designed by dilating, translating and scaling of a finite set of functions. These
wavelet atoms give rise to stable decompositions for many important function spaces
such as Besov and Triebel-Lizorkin spaces, see [16, 18, 28]. However, in the last years,
many more decomposition techniques have been designed. In particular, the concept of
subatomic or quarkonial decompositions seems to be a quite powerful approach. These
decompositions are based on a partition of unity (PUM) whose elements are not only
translated and dilated as in the wavelet case, but also multiplied by polynomials up to
a certain order. By proceeding this way, the collection of atoms is highly enriched and
therefore allows for much more flexible decomposition strategies. However, on the other
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hand, the representation of a given function then gets highly redundant. Therefore, we
do not end up with a basis, but with a frame. Nevertheless, these frames are again
stable in the sense that they give rise to norm equivalences for certain function spaces,
see, e.g, [25–27].

Stable decompositions also have successful applications in numerical analysis. In
recent years, in particular the design of adaptive numerical algorithms for operator
equations has become more and more the center of attraction. In general, an adaptive
algorithm is an updating strategy. Based on a local a posteriori error estimator, a
partition of a domain (or more general a finite-dimensional subspace of a function space)
is refined (enriched) only in regions where the approximation is still far away from the
exact solution. We refer, e.g., to the monograph [29] for an overview. Once again,
the wavelet setting stands out since the strong analytical properties of wavelets can be
used to design refinement strategies that are guaranteed to converge for a large set of
problems, including operators of negative order [5–7]. Moreover, the order of convergence
is optimal in the sense that the convergence order of best N -term wavelet approximation
is asymptotically realized. In the meantime, these algorithms have also been generalized
to the case of (wavelet) frames [9, 10,23].

Once we know how adaptive numerical algorithms based on wavelet frames can be
designed, it is clearly an interesting and challenging task to design adaptive numeri-
cal schemes based on quarkonial decompositions. The motivation can be explained as
follows: Standard adaptive wavelet methods are essentially based on space refinements
(h-method). In the case of quarks, also the p-enrichment induced by the polynomials
comes into play, so that the resulting algorithm would resemble an hp-method. It is
well-known that hp-methods for operator equations usually converge quite fast, how-
ever, rigorous proofs are often missing. So there is some hope that in the long run, by
combining the knowledge on the design of adaptive wavelet methods with the concept
of quarkonial decompositions, it might be possible to derive very powerful schemes with
a provable order of convergence. However, to achieve this goal, it is a long way to go,
and this paper can be viewed as one first step in this direction.

The idea to use subatomic decompositions for numerical purposes has some history.
Variants of the (PUM)-method have already been employed in numerical analysis under
various names (meshless particle methods, generalized finite element methods, hp-clouds,
etc.). Formally, this method has been introduced by Babuška and Melenk [1, 2]. There
also exist combinations with multiscale methods (MPUM), see [22].

From the viewpoint of wavelet methods, the design of numerical solvers based on sub-
atomic decompositions may be structured into the following two major steps. First of
all, one should establish the approximation and stability properties of the desired ansatz
system. When using subatomic decompositions, we can expect that the set of basis func-
tions will form at least a frame for the solution space which typically is a Sobolev space
on a domain or on a closed manifold. The second step entails the choice of a suitable
convergent refinement strategy. Here, at least two alternative refinement strategies are
available from the wavelet context. On the one hand, one may consider Galerkin-type
methods, where a finite subset of active frame elements is iteratively refined, e.g., by chas-
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ing the large residual coefficients of the associated Galerkin projections. This choice is
closely related with prominent refinement strategies of adaptive finite element methods.
However, due to the redundancy of the quarkonial frame, the uniform well-posedness of
the finite-dimensional Galerkin subproblems would not be guaranteed without spending
additional effort. On the other hand, one may reinterpret the given operator equation as
an equivalent, biinfinite system of equations for the expansion coefficients of the unknown
solution in the quarkonial frame. In order to realize well-known iterative schemes from
numerical linear algebra within this infinite-dimensional setting, it turns out that the
infinite-dimensional stiffness matrices should have certain compression properties which
are enforced, e.g., by vanishing moment properties of the individual frame elements, see
again [6] for details.

The investigations in this paper exactly follow these observations. Based on a given
biorthogonal wavelet basis, we construct a quarkonial frame system that indeed possesses
the same order of vanishing moments as the underlying wavelet basis. Moreover, these
frame systems are stable in the Sobolev spaces Hs for a certain range of parameters
0 < s < γ, where γ depends on the properties of the wavelet basis. The techniques are
based on smoothness (Bernstein) and approximation (Jackson) estimates combined with
abstract axiomatic principles to design multi-scale frames of hp-type.

In a certain sense, this paper supplements the investigations in [11]. In loc. cit., also
stable quarkonial systems for function spaces have been designed. However, the basis
functions used there usually do not possess vanishing moments. On the other hand,
the analysis in [11] is more general in the sense that whole scales of Besov spaces are
considered, whereas in this paper we confine the discussion to the case of L2 Sobolev
spaces.

This paper is organized as follows. In Section 2, we introduce the basic quarkonial
setting and fixe some notation. In Section 3 we derive Jackson- and Berstein estimates
related to our specific quarkonial decompositions. Then, in Section 4 we show that by
switching to generalized wavelets associated with the underlying PUM, we end up with a
frame for L2. In Section 5, we show that by combining the investigations in the Sections
3 and 4 with an abstract approach to design multiscale hp-frames we also obtain stable
frames in Hs, 0 < s < γ. Finally, in Section 6, we prove first compression results for
stiffness matrices induced by classical elliptic differential operators backed up by some
numerical experiments.

2 Preliminaries and Notation

For γ > 0, let ϕ ∈ Hγ(R) ∩ L∞(R) have compact support in [−M,M ], M ∈ N, and
suppose that it holds the partition of unity property∑

k∈Z
ϕ(x− k) = 1, for all x ∈ R. (1)
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Figure 1: Some B-spline quarks ϕp of order m = 2

We assume that the integer translates of ϕ are `2-stable and therefore a Riesz basis for
their closed span

V := closL2(R) span
{
ϕ(· − k) : k ∈ Z

}
. (2)

In particular, there exist stability constants cϕ, Cϕ > 0, such that

cϕ‖c‖`2(Z) ≤
∥∥∥∑
k∈Z

ckϕ(· − k)
∥∥∥
L2(R)

≤ Cϕ‖c‖`2(Z), for all c = (ck)k∈Z ∈ `2(Z). (3)

As a typical example in which these requirements are satisfied, we think of ϕ being
a symmetrized cardinal B-spline of order m > γ + 1

2 , i.e., ϕ = Nm(· + bm2 c) with
suppϕ = [−bm2 c, d

m
2 e] and M = dm2 e.

Our aim is to analyze systems of dilates and integer translates of the quarks

ϕp(x) := ( x
dm/2e)

pϕ(x), for all p ≥ 0, x ∈ R, (4)

and their stability properties in relevant function spaces, see also Figure 1. In particular,
let us define

ϕp,j,k(x) := 2j/2ϕp(2
jx− k), for all p, j ≥ 0, k ∈ Z, x ∈ R. (5)

For given j, p ≥ 0, we shall consider the closed subspaces

Vj,p := closL2(R) span{ϕi,j,k : 0 ≤ i ≤ p, k ∈ Z}. (6)

In case that ϕ = Nm(·+ bm2 c), the spaces Vj,p = {f(2j ·) : f ∈ V0,p} are closely related to
certain polynomial spline spaces. In fact, it obviously holds that V0,p ⊂ closL2(R) S

m−2
m+p ,

where Srn is the polynomial spline space of order n and regularity r with respect to
integer nodes of multiplicity n− r − 1,

Srn :=
{
f ∈ L2(R) : f |[k,k+1) ∈ Pn−1, k ∈ Z

}
∩ Cr(R).

However, for m ≥ 2, Sm−2
m+p is strictly larger than span{ϕi(· − k) : 0 ≤ i ≤ p, k ∈ Z}.

A simple counterexample for m = 2 is the quadratic B-spline with respect to double
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integer knots, s(x) = max{0, 1−|1−x|}2. s ∈ S0
3 does not have a finite linear expansion

with respect to the integer translates of N2(x+ 1) and xN2(x+ 1).
In the sequel, it is our aim to verify the following three properties. First, we will

prove a Jackson estimate of the form

‖f‖2L2(R) +
∞∑
j=0

22jsEj,p(f)2 ≤ As‖f‖2Hs(R), for all f ∈ Hs(R), 0 < s < γ, p ≥ 0, (7)

where Ej,p(f) := infv∈Vj,p ‖f −v‖L2(R) is the error of the best L2(R) approximation from
Vj,p. Second, we will establish a Bernstein estimate,

‖g‖Hs(R) ≤ Bs,p2js‖g‖L2(R), for all g ∈ Vj,p, 0 < s < γ, p ≥ 0. (8)

Finally, we will prove that the system {ϕi,j,k : 0 ≤ i ≤ p, k ∈ Z} forms an L2(R) frame
for its closed span Vj,p, i.e.

(Cp)
−1‖gj,p‖2L2(R) ≤ inf

gj,p=
p∑

i=0

∑
k∈Z

ci,kϕi,j,k

p∑
i=0

∑
k∈Z
|ci,k|2 ≤ Dp‖gj,p‖2L2(R), for all gj,p ∈ Vj,p,

(9)
where the frame constants Cp, Dp only depend on the current maximal polynomial
degree p ≥ 0. Under the conditions (7), (8) and (9), the stability of a properly weighted
system of dilates and translates of ϕp, p ≥ 0, follows from general principles via the
theory of stable subspace splittings.

3 Direct and Inverse Estimates

3.1 Direct Estimates

We shall first derive direct estimates for the approximation spaces Vj,p from (6). They
are closely related to known results from spline theory, however we do not yet need that
ϕ is a B-spline.

Theorem 3.1. Assume that (1) holds. There exists Am > 0, such that

(p+ 1)2s
∞∑
j=0

22jsEj,p(f)2 ≤ Am‖f‖2Hs(R), for all f ∈ Hs(R), 0 < s ≤ m. (10)

In particular, it holds that

Ej,p(f) ≤ A1/2
m (p+ 1)−s2−js‖f‖Hs(R), for all f ∈ Hs(R), 0 < s ≤ m. (11)

Proof. Let j, p ≥ 0 and f ∈ L2(R) be fixed. In view of (4), (5) and (6), Vj,p contains at
least all v ∈ L2(R) of the form

v(x) =
∑
k∈Z

pk(x)ϕ(2jx− k), (12)
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where pk ∈ Pp are polynomials of degree at most p, for all k ∈ Z, and the sum converges
in L2(R). From the partition property (1) and from (12), we can deduce that

f(x)− v(x) =
∑
k∈Z

(
f(x)− pk(x)

)
ϕ(2jx− k), for almost every x ∈ R.

Define Ij,l := 2−j [l, l + 1] and Sj,k := suppϕ(2j · −k), for all l, k ∈ Z. By the compact
support of ϕ, #{k ∈ Z : Sj,k ∩ Ij,l 6= ∅} is uniformly bounded in l ∈ Z and j ≥ 0. For
any f ∈ L2(R), we can therefore estimate

‖f − v‖2L2(R) =
∑
l∈Z

∫
Ij,l

(∑
k∈Z

(
f(x)− pk(x)

)
ϕ(2jx− k)

)2
dx

≤ C1

∑
l∈Z

∑
k∈Z

∫
Ij,l

(
f(x)− pk(x)

)2
ϕ(2jx− k)2 dx

= C1

∑
k∈Z

∫
Sj,k

(
f(x)− pk(x)

)2
ϕ(2jx− k)2 dx

≤ C1‖ϕ‖2L∞(R)

∑
k∈Z

∥∥f − pk∥∥2

L2(Sj,k)
.

with C1 = C1(ϕ).
Now let f ∈ Hm(R) and let pk ∈ Pp be the orthogonal projection of f |Sj,k

onto Pp
in L2(Sj,k). It follows that ‖pk‖L2(Sj,k) ≤ ‖f‖L2(Sj,k) and due to ϕ ∈ L∞(R), the sum
(12) really converges in L2(R), so that this particular v is contained in Vj,p. Moreover,
standard results from polynomial approximation tell us that

‖f − pk‖L2(Sj,k) ≤ C2(p+ 1)−m2−jm|f |Hm(Sj,k),

where C2 = C2(m,ϕ) > 0 is independent of j, k and p, see [21, Cor. 3.12]. We deduce
that with C3 = C3(m,ϕ) > 0,

Ej,p(f) ≤ ‖f − v‖L2(R) ≤ C3(p+ 1)−m2−jm|f |Hm(R). (13)

For arbitrary f ∈ L2(R), using the triangle inequality and (13), we see that for each
g ∈ Hm(R), we have

Ej,p(f) ≤ ‖f − g‖L2(R) + Ej,p(g) ≤ ‖f − g‖L2(R) + C4(p+ 1)−m2−jm|g|Hm(R).

By consequence, taking the infimum over g ∈ Hm(R), Ej,p(f) can be estimated by values
of the K functional K(f, t) := infg∈Hm(R) ‖f − g‖L2(R) + t|g|Hm(R),

Ej,p(f) ≤ C4K
(
f, (p+ 1)−m2−jm

)
. (14)

We will now use the fact that for 0 < s ≤ m, an equivalent norm on Hs(R) is given by

‖f‖[L2(R),Hm(R)]s/m,2
= ‖f‖L2(R) +

(∫ ∞
0

(
t−s/mK(f, t)

)2 dt

t

)1/2
,
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with constants in the norm equivalence only depending on m, see [3] for details. Similar
to [3, Lemma 3.1.3], we can replace the latter integral by a discrete sum, losing constants
that only depend on m. In fact, for (p+ 1)−m2−jm ≤ t ≤ (p+ 1)−m2−(j−1)m, it follows
from the monotonicity property K(f, as) ≤ max{1, a}K(f, s) of the K functional that

2−s(p+1)s2jsK
(
f, (p+1)−m2−jm

)
≤ t−s/mK(f, t) ≤ 2m(p+1)s2jsK

(
f, (p+1)−m2−jm

)
.

We can therefore estimate∫ ∞
0

(
t−s/mK(f, t)

)2 dt

t
=
∑
j∈Z

∫ (p+1)−m2−(j−1)m

(p+1)−m2−jm

(
t−s/mK(f, t)

)2 dt

t{
≤ 22m(log 2m)(p+ 1)2s

∑
j∈Z 22jsK

(
f, (p+ 1)−m2−jm

)2
≥ 2−2s(log 2m)(p+ 1)2s

∑
j∈Z 22jsK

(
f, (p+ 1)−m2−jm

)2 ,

so that the claim follows from (14) and summation over j ≥ 0.

3.2 Norm estimates

We will now establish sharp bounds for the Lq norms of single B-spline quarks, as p→∞.
In view of ϕ ∈ L∞(R), (4) and the identity∥∥( ·

dm/2e)
p
∥∥
Lq(−bm/2c,dm/2e) = 1

dm/2ep

(
dm/2epq+1+bm/2cpq+1

pq+1

)1/q
, for all 0 < q <∞,

we obtain the simple estimate

‖ϕp‖Lq(R) ≤ (2dm/2e
pq+1 )1/q‖ϕ‖L∞(R), for all p ≥ 0, 0 < q <∞. (15)

These asymptotics in p are already sharp, e.g., if ϕ is the step function χ[0,1), with

‖ϕp‖Lq(R) = (pq + 1)−1/q, for all p ≥ 0, 0 < q <∞. (16)

In case that ϕ has higher regularity in L∞, the Lq norms of ϕp decay even faster with
p. As the most important example, let us establish sharp bounds for the Lq norms of
monomial B-spline quarks ϕp, as p → ∞. We start with an auxiliary result on the
location of the extrema of ϕp.

Lemma 3.2. Let 2 ≤ m ∈ N, ϕ = Nm(·+ bm2 c) and ϕp be given by (4). Then

‖ϕp‖L∞(R) =
∣∣ϕp(x̂)

∣∣, x̂ :=

{ pm
2(p+m−1) , if m is even, for all p ≥ (m2 − 1)(m− 1),
p(m+1)

2(p+m−1) , if m is odd, for all p ≥ (m−1)2

2 .

(17)

Proof. Let 2 ≤ m ∈ N be fixed. Consider first the case that m is even, and let p ∈ N
with p ≥ (m2 −1)(m−1) be fixed. It is sufficient to determine the extrema of ϕ in [0,∞),
because ϕp(−x) = (−1)pϕp(x) for all x ∈ R. We will prove that ϕp is nondecreasing
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on [0, m2 − 1]. For m = 2, there is nothing to prove. For m ≥ 4, ϕp is continuously
differentiable and for all x ∈ [0, m2 − 1], we have min{x+ m

2 ,m− x−
m
2 } ≥ 1 and thus

(m2 )pϕ′p(x) = xp−1
(
pNm(x+ m

2 ) + xN ′m(x+ m
2 )
)

≥ xp−1
(
pNm(x+ m

2 )− (m2 − 1)
∣∣N ′m(x+ m

2 )
∣∣)

= xp−1
(
pNm(x+ m

2 )− (m2 − 1)
∣∣Nm−1(x+ m

2 )−Nm−1(x+ m
2 − 1)

∣∣)
≥ xp−1

(
pNm(x+ m

2 )− (m2 − 1)
(
Nm−1(x+ m

2 ) +Nm−1(x+ m
2 − 1)

))
≥ xp−1

(
pNm(x+ m

2 )− (m2 − 1)
(
(x+ m

2 )Nm−1(x+ m
2 )

+ (m− x− m
2 )Nm−1(x+ m

2 − 1)
))

= xp−1
(
p− (m2 − 1)(m− 1)

)
Nm(x+ m

2 ),

which is nonnegative because p ≥ (m2 − 1)(m − 1). Therefore, all local maxima of
ϕp are located in I := [m2 − 1, m2 ], whenever p ≥ (m2 − 1)(m − 1). On I, we have
Nm(x+ m

2 ) = 1
(m−1)!(

m
2 − x)m−1, so that from

(m2 )p(m− 1)!ϕ′p(x) = pxp−1(m2 − x)m−1 − (m− 1)xp(m2 − x)m−2

= xp−1(m2 − x)m−2
(pm

2 − (p+m− 1)x
)
,

we obtain the critical points m
2 ∈ I and x̂ := pm

2(p+m−1) . Using that p ≥ (m2 − 1)(m− 1)
we observe that indeed x̂ ∈ I, since

m
2 − 1 = m

2 −
m(m−1)/2

(m/2−1)(m−1)+m−1 ≤
m
2 −

m(m−1)/2
p+m−1 = x̂ ≤ m

2 .

Due to ϕp(
m
2 ) = 0 and by the symmetry of ϕp, the global maximum of ϕp is attained in

I, so that the unique local maximum x̂ is also global.

In case that m ≥ 3 is odd, let p ∈ N with p ≥ (m−1)2

2 be fixed. Using the symmetry
of Nm, we derive for x ∈ [−m−1

2 , 1
2 ] that∣∣ϕp(x)

∣∣ = | 2x
m+1 |

pNm(x+ m−1
2 )

= | 2x
m+1 |

pNm

(
m− (x+ m−1

2 )
)

= | 2x
m+1 |

pNm(−x+ 1 + m−1
2 )

≤ |2(−x+1)
m+1 |

pNm(−x+ 1 + m−1
2 )

=
∣∣ϕp(−x+ 1)

∣∣.
By consequence, the global maximum of |ϕp| is located in [1

2 ,
m+1

2 ]. On this very interval,
because ϕp is continuously differentiable for m ≥ 3, and analogously to the case of even
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m, we obtain for x ∈ [1
2 ,

m−1
2 ] and hence min{x+ m−1

2 ,m− x− m−1
2 } ≥ 1 that

(m+1
2 )pϕ′p(x) = xp−1

(
pNm(x+ m−1

2 ) + xN ′m(x+ m−1
2 )
)

≥ xp−1
(
pNm(x+ m−1

2 )− m−1
2

∣∣N ′m(x+ m−1
2 )
∣∣)

= xp−1
(
pNm(x+ m−1

2 )− m−1
2

∣∣Nm−1(x+ m−1
2 )−Nm−1(x+ m−1

2 − 1)
∣∣)

≥ xp−1
(
pNm(x+ m−1

2 )− m−1
2

(
Nm−1(x+ m−1

2 ) +Nm−1(x+ m−1
2 − 1)

))
≥ xp−1

(
pNm(x+ m−1

2 )− m−1
2

(
(x+ m−1

2 )Nm−1(x+ m−1
2 )

+ (m− x− m−1
2 )Nm−1(x+ m−1

2 − 1)
))

= xp−1
(
p− (m−1)2

2

)
Nm(x+ m−1

2 ),

which is nonnegative because p ≥ (m−1)2

2 . Therefore, all local maxima of ϕp are located
in J := [m−1

2 , m+1
2 ]. On J , we have Nm(x+ m−1

2 ) = 1
(m−1)!(

m+1
2 − x)m−1, so that from

(m+1
2 )p(m− 1)!ϕ′p(x) = pxp−1(m+1

2 − x)m−1 − (m− 1)xp(m+1
2 − x)m−2

= xp−1(m+1
2 − x)m−2

(p(m+1)
2 − (p+m− 1)x

)
we obtain the critical points m+1

2 ∈ J and x̂ := p(m+1)
2(p+m−1) . Since

m−1
2 = m+1

2 − (m2−1)/2
(m−1)2/2+m−1

≤ m+1
2 − (m2−1)/2

p+m−1 = x̂ ≤ m+1
2 ,

indeed x̂ ∈ J . Due to ϕ(m+1
2 ) = 0, the local maximum x̂ ∈ J is also global, and the

claim is proved.

Proposition 3.3. Let m ∈ N, ϕ = Nm(· + bm2 c) and ϕp be given by (4). For each
1 ≤ q ≤ ∞, there exist c = c(m, q), C = C(m, q) > 0 such that

c(p+ 1)−(m−1+1/q) ≤ ‖ϕp‖Lq(R) ≤ C(p+ 1)−(m−1+1/q), for all p ≥ (m− 1)2. (18)

Proof. The special case m = 1 is already covered by (16), so we can assume that m ≥ 2,
without loss of generality, and hence p ≥ (m− 1)2 ≥ 1.

In order to show the upper bound in (18), we study the extremal values q ∈ {1,∞}
and conclude by real interpolation. For q = 1, we exploit that for any g ∈ Cm[0,m],∫ m

0
g(m)(x)Nm(x) dx =

m∑
k=0

(−1)m−k
(
m

k

)
g(k).

In the case that m and p are even, we can use g(x) := 1
(p+m)···(p+1)(x− m

2 )p+m and the
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nonnegativity of ϕp to infer that with C1(m) :=
∑m

k=0

(
m
k

)
|k − m

2 |
m,

‖ϕp‖L1(R) =

(
2

m

)p ∫ m/2

−m/2
xpNm(x+ m

2 ) dx

=

(
2

m

)p ∫ m

0
(y − m

2 )pNm(y) dy

=

(
2

m

)p m∑
k=0

(−1)m−k
(
m
k

)
(k − m

2 )p+m

(p+m) · · · (p+ 1)

≤ C1(p+ 1)−m. (19)

If m is odd and p is even, we obtain by analogous arguments that

‖ϕp‖L1(R) =

(
2

m+ 1

)p ∫ (m+1)/2

−(m−1)/2
xpNm(x+ m−1

2 ) dx

=

(
2

m+ 1

)p ∫ m

0
(y − m−1

2 )pNm(y) dy

=

(
2

m+ 1

)p m∑
k=0

(−1)m−k
(
m
k

)
(k − m−1

2 )p+m

(p+m) · · · (p+ 1)

≤ C∗1 (p+ 1)−m, (20)

where C∗1 (m) :=
∑m

k=0

(
m
k

)
|k − m−1

2 |
m. Finally, if p ≥ 1 is odd and m is arbitrary, the

estimate |x| ≤ dm2 e for all x ∈ suppϕp yields

‖ϕp‖L1(R) ≤ ‖ϕp−1‖L1(R) ≤ C∗1p−m ≤ C∗12m(p+ 1)−m. (21)

For q = ∞ and m even, Lemma 3.2 tells us that for all p ≥ (m2 − 1)(m − 1) and
x̂ := pm

2(p+m−1) ∈ [m2 − 1, m2 ],

‖ϕp‖L∞(R) = (2x̂
m )pNm(x̂+ m

2 )

= 1
(m−1)!(

2x̂
m )p(m2 − x̂)m−1

= 1
(m−1)!(

p
p+m−1)p( m(m−1)

2(p+m−1))m−1.

Analogously, if m is odd, Lemma 3.2 tells us that for all p ≥ (m−1)2 and x̂ := p(m+1)
2(p+m−1) ∈

[m+1
2 − 1, m+1

2 ],

‖ϕp‖L∞(R) = ( 2x̂
m+1)pNm(x̂+ m−1

2 )

= 1
(m−1)!(

2x̂
m+1)p(m+1

2 − x̂)m−1

= 1
(m−1)!(

p
p+m−1)p( (m+1)(m−1)

2(p+m−1) )m−1.

Combining both cases, we obtain that for each m and p ≥ (m− 1)2 that

c2(p+ 1)−(m−1) ≤ ‖ϕp‖L∞(R) ≤ C2(p+ 1)−(m−1), for all p ≥ (m− 1)2, (22)
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with c2 = c2(m), C2 = C2(m) > 0 independent of p, thereby already showing the lower
estimate in (18) for q =∞.

Finally, let 1 < q < ∞ and p ≥ (m − 1)2. By real interpolation between L1(R) and
L∞(R) and due to ϕp ∈ L1(R) ∩ L∞(R), we obtain from (19), (20), (21) and (22) the
upper estimate in (18)

‖ϕp‖Lq(R) ≤ C3(q)‖ϕp‖1/qL1(R)‖ϕp‖
1−1/q
L∞(R) ≤ C4(m, q)(p+ 1)−(m−1+1/q).

It remains to show the lower estimate in (18) for 1 ≤ q < ∞. Let us consider first
the case q ∈ N. For m ≥ 2 even, we can estimate

‖ϕp‖qLq(R) ≥
∫ m

2

m
2
−1
ϕp(x)q dx =

1(
(m− 1)!

)q ∫ m
2

m
2
−1

(2x
m )pq(m2 − x)(m−1)q dx

=
1(

(m− 1)!
)q ∫ 1

0
(1− 2y

m )pqy(m−1)q dy

≥ 1(
(m− 1)!

)q ∫ 1

0
(1− y)pqy(m−1)q dy.

For m ≥ 1 odd, analogous steps lead to the same estimate. Due to q ∈ N, the latter
integral can be computed explicitly, by means of (m− 1)q times partial integration,∫ 1

0
(1− y)pqy(m−1)q dy =

(
(m− 1)q

)
!

(pq + 1) · · ·
(
pq + (m− 1)q

) ∫ 1

0
(1− y)(p+m−1)q dy

=

(
(m− 1)q

)
!

(pq + 1) · · ·
(
pq + (m− 1)q + 1

)
≥ C5(m)(p+ 1)−(m−1)q−1,

from which the lower estimate in (18) immediately follows. Finally, let 1 ≤ q < ∞ be
arbitrary. If 1 ≤ q ≤ 2, real interpolation between Lq(R) and L∞(R) yields that

‖ϕp‖L2(R) ≤ C6‖ϕp‖q/2Lq(R)‖ϕp‖
1−q/2
L∞(R),

where C6 > 0 does not depend on q. Isolating ‖ϕp‖Lq(R) and an application of (18) for
the L2 and L∞ case yields

‖ϕp‖Lq(R) ≥ C
2/q
6 ‖ϕp‖

2/q
L2(R)‖ϕp‖

1−2/q
L∞(R)

≥ C7(m, q)(p+ 1)−2(m−1/2)/q(p+ 1)−(m−1)(1−2/q)

= C7(m, q)(p+ 1)−(m−1+1/q).

Analogously, if 2 ≤ q <∞, real interpolation between L1(R) and Lq(R) yields

‖ϕp‖L2(R) ≤ C8‖ϕp‖1−1/(2(1−1/q))
L1(R) ‖ϕp‖1/(2(1−1/q))

Lq(R) ,
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so that isolation of ‖ϕp‖Lq(R) and an application of (18) for L1 and L2 prove the claim,

‖ϕp‖Lq(R) ≥ C
2(1−1/q)
8 ‖ϕp‖2−2/q

L2(R)‖ϕp‖
2/q−1
L1(R)

≥ C9(m, q)(p+ 1)−(m−1/2)(2−2/q)(p+ 1)−m(2/q−1)

= C9(m, q)(p+ 1)−(m−1+1/q).

3.3 Inverse Estimates

Theorem 3.4. Let m ∈ N, ϕ = Nm and let Vj,p be given by (6). Then for 1 ≤ q ≤ ∞,
there exists C = C(m) > 0, such that for all f ∈ Vj,p,

ωm(f, t)Lq(R) ≤ C min
{

1, (p+ 1)22jt
}m−1+1/q‖f‖Lq(R). (23)

Proof. Let f =
∑

0≤i≤p
∑

k∈Z ci,kϕi,j,k ∈ Vj,p. If t ≥ (p+ 1)−22−j , we simply use

ωm(f, t)Lq(R) ≤ 2m‖f‖Lq(R) = 2m min{1, (p+ 1)22jt}m−1+1/q‖f‖Lq(R).

Now let t < (p+1)−22−j . By using Vj,p ⊂Wm−1(Lq(R)) and standard arithmetics for the
moduli of smoothness, see [14, Ch. 2 §7], we see that ωm(f, t)Lq(R) ≤ tm−1ω1(f (m−1), t)Lq(R).

But f (m−1) is piecewise polynomial of degree p without continuity assumptions at the
nodes xl := 2−jl, l ∈ Z. We compute for 0 < h ≤ t ≤ 2−j and q <∞ that∥∥f (m−1)(·+ h)− f (m−1)

∥∥q
Lq(R)

=
∑
l∈Z

∥∥f (m−1)(·+ h)− f (m−1)
∥∥q
Lq(xl,xl+1)

=
∑
l∈Z

(∥∥f (m−1)(·+ h)− f (m−1)
∥∥q
Lq(xl,xl+1−h)

+
∥∥f (m−1)(·+ h)− f (m−1)

∥∥q
Lq(xl+1−h,xl+1)

)
≤ 21−1/q

∑
l∈Z

(
hq‖f (m)‖qLq(xl,xl+1) + ‖f (m−1)‖qLq(xl+1−h,xl+1) + ‖f (m−1)‖qLq(xl,xl+h)

)
.

An application of standard estimates for polynomials yields

‖f (m−1)‖qLq(xl+1−h,xl+1) + ‖f (m−1)‖qLq(xl,xl+h) ≤ C1h2jp2‖f (m−1)‖qLq(xl,xl+1)

with C1 > 0 independent of m, p and q. Using the Lq Markov inequality for algebraic
polynomials P of degree i on an interval I,

‖P ′‖Lq(I) ≤ C2
i2

|I|
‖P‖Lq(I),

with C2 = C2(q) independent of i, we end up with

ωm(f, t)qLq(R) ≤ t
(m−1)q sup

|h|≤t

∥∥f (m−1)(·+ h)− f (m−1)
∥∥q
Lq(R)

≤ C3(m, q)t(m−1)q
(
hq(p+ 1)2mq2jmq + h2j(1+(m−1)q)p2+2(m−1)q

)∑
l∈Z
‖f‖qLq(xl,xl+1)

≤ C4(m, q)t(m−1)q+1(p+ 1)2(m−1)q+22j(1+(m−1)q)‖f‖qLq(R).

The case q =∞ is completely analogous.
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Corollary 3.5. Let m ∈ N, ϕ = Nm and let Vj,p be given by (6). Then for 1 ≤ q <∞,
there exists C = C(m, q) > 0, such that for all f ∈ Vj,p

‖f (k)‖Lq(R) ≤ C(p+ 1)2k2jk‖f‖Lq(R), for all 0 ≤ k ≤ m− 1. (24)

Proof. Without loss of generality, let m ≥ 2 and 1 ≤ k ≤ m − 1. Note that Vj,p ⊂
Wm−1(Lq(R)), so that f (k) is well-defined for each f ∈ Vj,p. Let us first consider the
case k = 1. We can use that for all f ∈W 1(Lq(R)), 1 ≤ q <∞,

‖f ′‖Lq(R) = lim
t→0

ω1(f, t)Lq(R)

t
,

see [17, Prop. 2.4]. Using a Marchaud-type inequality

ω1(f, t)Lq(R) ≤ C1t

∫ ∞
t

ωm(f, s)Lq(R)

s2
ds,

with C1 = C1(m), confer [14, Ch. 2 §8] for details, we derive from (23) that

‖f ′‖Lq(R) ≤ C1 lim sup
t→0

∫ ∞
t

ωm(f, s)Lq(R)

s2
ds

= C1

(
lim sup
t→0

∫ (p+1)−22−j

t

ωm(f, s)Lq(R)

s2
ds+

∫ ∞
(p+1)−22−j

ωm(f, s)Lq(R)

s2
ds
)

≤ C2

((
(p+ 1)22j

)m−1+1/q
∫ (p+1)−22−j

0
sm−3+1/q ds+

∫ ∞
(p+1)−22−j

s−2 ds
)
‖f‖Lq(R)

= C2

( 1

m− 2 + 1
q

+ 1
)

(p+ 1)22j‖f‖Lq(R),

with C2 = C2(m, q). The case of general 2 ≤ k ≤ m − 1 can be treated by induction
over k, repeating the previous Marchaud-type estimate k times.

Corollary 3.6. Let m ∈ N, ϕ = Nm and let Vj,p be given by (6). For each 0 ≤ s < m− 1
2 ,

there exists C = C(m, s) > 0, such that

|f |Hs(R) ≤ C(p+ 1)2s2js‖f‖L2(R), for all p, j ∈ N0, f ∈ Vj,p. (25)

Proof. Let s > 0, without loss of generality. In view of the norm estimate

|f |Hs(R) ≤ C1

(∫ ∞
0

(
t−sωm(f, t)L2(R)

)2 dt

t

)1/2
, for all 0 < s < m,

where C1 = C1(s) > 0, we can compute that by (23),

|f |2Hs(R) ≤
(
C2(p+ 1)2(2m−1)2j(2m−1)

∫ (p+1)−22−j

0
t−2s+2m−2 dt

+ C2

∫ ∞
(p+1)−22−j

t−(2s+1) dt
)
‖f‖2L2(R)

≤
( C2

2m− 1− 2s
+
C2

2s

)
(p+ 1)4s22js‖f‖2L2(R), for all 0 < s < m− 1

2
,
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with C2 = C2(m, s). Due to the fact that (25) trivially holds for s = 0 with C = 1, an
interpolation argument shows that C does in fact only depend on s as s→ m− 1

2 .

We note, however, that (25) is not sharp for single quarks. If ϕ = N2(· + 1) is the
symmetrized hat function and s = 1, one can explicitly compute that

‖ϕ′‖2L2(R) = 2

∫ 1

0
x2p−2

(
p− (p+ 1)x

)2
dx

= 2
(
p2

∫ 1

0
x2p−2 dx− 2p(p+ 1)

∫ 1

0
x2p−1 dx+ (p+ 1)2

∫ 1

0
x2p dx

)
= 2

p2(2p+ 1)− (p+ 1)(2p− 1)(2p+ 1) + (2p− 1)(p+ 1)2

(2p− 1)(2p+ 1)

=
2p

4p2 − 1
,

i.e., ‖ϕ′p‖L2(R) h (p + 1)−1/2 h (p + 1)‖ϕ‖L2(R), as p → ∞, while (25) only yields
|ϕp|H1(R) ≤ C(p+ 1)2‖ϕp‖L2(R), as p→∞.

4 Quarklet frames for L2(R)

We have seen that systems of dilated and translated quarks ϕp,j,k alone can only be
stable in Hs(R) for s > 0 when being properly rescaled. Stability of quarkonial systems
in L2(R) and Sobolev spaces of negative order requires further conditions on the frame
elements. We will show now that certain moment conditions by means of a wavelet-type
modification of the quark system are sufficient to ensure stability in L2(R).

In the sequel, we restrict the discussion to the case of symmetrized cardinal B-splines
ϕ = Nm(·+ bm2 c) of order m ∈ N. As shown in [8], for a given m̃ ∈ N such that m̃ ≥ m
and m+ m̃ is even, there exists a compactly supported wavelet ψ with

ψ(x) =
∑
k∈Z

bkϕ(2x− k), for all x ∈ R, (26)

and m̃ vanishing moments, 〈ψ, P 〉 = 0 for degP < m̃. Moreover, the collection

ΨR :=
{
ϕ(· − k), 2j/2ψ(2j · −k) : j ∈ N0, k ∈ Z

}
(27)

is a Riesz basis for L2(R).
In complete analogy to the wavelet ψ, let us consider the following quarklets ψp,

ψp(x) :=
∑
k∈Z

bkϕp(2x− k), for all p ∈ N0, x ∈ R. (28)

We refer to Figure 2 for an illustrative example. By assumption, ψ0 = ψ has m̃ vanishing
moments. The following lemma shows that the other ψp have the same property.

Lemma 4.1. For each p ≥ 0, the quarklet ψp has m̃ vanishing moments.
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Figure 2: Some B-spline quarklets ψp of order m = 2 with m̃ = 2 vanishing moments,
where {bk} are the Cohen/Daubechies/Feauveau wavelet coefficients b−2 = b2 = 1

4 ,
b−1 = b1 = 1

2 , b0 = −3
2 , bk = 0 otherwise.

Proof. Let us first prove the auxiliary result that the coefficient sequence {bk}k∈Z has
m̃ discrete moments, ∑

k∈Z
kqbk = 0, for all 0 ≤ q < m̃. (29)

We proceed by induction over q. For q = 0, µ :=
∫
R ϕ(x) dx 6= 0, the compact support

of ϕ and (26) imply that∑
k∈Z

bk =
1

µ

∑
k∈Z

bk

∫
R
ϕ(x− k) dx =

2

µ

∫
R
ψ(x) dx = 0.

Now assume that (29) holds for all 0 ≤ r ≤ q − 1, where 0 ≤ q < m̃. By the vanishing
moment property of ψ, we compute that

0 =

∫
R
xqψ(x) dx =

∑
k∈Z

bk

∫
R
xqϕ(2x− k) dx =

1

2q+1

∑
k∈Z

bk

∫
R

(y + k)qϕ(y) dy,

so that the induction hypothesis yields (29),

0 =
∑
k∈Z

bk

∫
R

q∑
r=0

(
q

r

)
kryq−rϕ(y) dy =

q∑
r=0

(
q

r

)∫
R
yq−rϕ(y) dy

∑
k∈Z

krbk = µ
∑
k∈Z

kqbk.

In view of (29), the vanishing moment property of ψp easily follows from∫
R
xqψp(x) dx =

∑
k∈Z

bk

∫
R
xqϕp(2x− k) dx

=
1

2q+1

∑
k∈Z

bk

∫
R

(y + k)qϕp(y) dy

=
1

2q+1

q∑
l=0

(
q

l

)∫
R
yq−lϕp(y) dy

∑
k∈Z

klbk = 0, for all 0 ≤ q < m̃.
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In the sequel, we consider the usual dyadic dilates and translates of the quarklets,

ψp,j,k(x) := 2j/2ψp(2
jx− k), for all x ∈ R, p ≥ 0, j ≥ 0, k ∈ Z. (30)

Based on the vanishing moment properties of the quarklets ψp, we immediately get the
following cancellation estimates for inner products of the ψp,j,k with smooth functions,
using standard techniques from wavelet analysis.

Lemma 4.2. There exists C = C(m,ψ), such that for all f ∈W r(L∞(R)), r ≤ m̃− 1,∣∣〈f, ψp,j,k〉L2(R)

∣∣ ≤ C(p+1)−m2−j(r+1/2)|f |W r(L∞(suppψp,j,k)), for all p ≥ 0, j ≥ 0, k ∈ Z.
(31)

Proof. By Lemma 4.1, each quarklet ψp and hence ψp,j,k has m̃ vanishing moments.
Therefore, given some f ∈ L2(R), an application of the Hölder inequality implies that∣∣〈f, ψp,j,k〉L2(R)

∣∣ = inf
P∈Pr

∣∣〈f − P,ψp,j,k〉L2(R)

∣∣ ≤ inf
P∈Pr

‖f − P‖L∞(suppψp,j,k)‖ψp,j,k‖L1(R).

A Whitney-type estimate on suppψp,j,k, (28) and (18) immediately yield (31),∣∣〈f, ψp,j,k〉L2(R)

∣∣ ≤ C1(ψ)2−j(r+1/2)|f |W r(L∞(suppψp,j,k))‖ϕp‖L1(R)

≤ C2(m,ψ)(p+ 1)−m2−j(r+1/2)|f |W r(L∞(suppψp,j,k)).

We shall now study the stability properties of the full quarklet system. In particular,
we will investigate under which conditions on the weights wp ≥ 0, the weighted system

ΨQ,w :=
{
wpϕp(· − k), wp2

j/2ψp(2
j · −k) : p, j ∈ N0, k ∈ Z

}
. (32)

is a frame for L2(R). Setting w0 := 1, ΨQ,w contains the L2 Riesz basis ΨR, so that we
are left with proving the Bessel property of ΨQ,w. We have to show that the synthesis
operator T : `2(N0 × Z)⊕ `2(N0 × N0 × Z)→ L2(R),

T (c,d) :=

∞∑
p=0

∑
k∈Z

cp,kwpϕp(· − k) +

∞∑
p=0

∞∑
j=0

∑
k∈Z

dp,j,kwpψp,j,k (33)

is bounded. We will exploit the following proposition.

Proposition 4.3. Let m ≥ 2. There exists C = C(m,ψ) > 0, such that the Gramian
matrices

Gp :=
(〈
ϕp(·−k), ϕp(·−k′)

〉
L2(R)

)
k,k′∈Z

, Hp :=
(〈
ψp,j,k, ψp,j′,k′〉L2(R)

)
(j,k),(j′,k′)∈N0×Z

(34)
are bounded operators on `2(Z) and `2(N0 × Z), respectively, with

‖Gp‖L(`2(Z)) ≤ C(p+1)−(2m−1), ‖Hp‖L(`2(N0×Z)) ≤ C(p+1)−1, for all p ∈ N0. (35)
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Proof. Let us discuss Gp first. By the Schur lemma, it is sufficient to prove that Gp is
bounded on `1(Z) and `∞(Z), where the operator norms are independent of p. Due to
the symmetry of Gp, a norm bound in `∞(Z) is sufficient. Let k′ ∈ Z and c = (ck)k∈Z ∈
`∞(Z). Then∣∣(Gpc)k′

∣∣ =
∣∣∣∑
k∈Z

ck
〈
ϕp(·−k′), ϕp(·−k)

〉
L2(R)

∣∣∣ ≤ ‖c‖`∞(Z)

∑
k∈Z

∣∣∣〈ϕp(·−k′), ϕp(·−k)
〉
L2(R)

∣∣∣.
In view of the compact support of ϕ, the latter sum is finite. Therefore, using the
Cauchy-Schwarz inequality, it can be bounded independently of k′ by a constant multiple
of ‖ϕp‖2L2(R), where the constant only depends on m. An application of (18) yields

‖Gp‖L(`2(Z)) ≤ ‖Gp‖L(`∞(Z)) ≤ C1(m)(p+ 1)−(2m−1),

showing the estimate (35) for Gp.
Concerning the boundedness of Hp, we shall exploit the compression property (31).

Let j′ ∈ N0, k′ ∈ Z, and d = (dj,k)j∈N0,k∈Z ∈ `∞(N0 × Z). We start estimating with

∣∣(Hpd)(j′,k′)

∣∣ =
∣∣∣ ∞∑
j=0

∑
k∈Z

dj,k〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣∣
≤ ‖d‖`∞(N0×Z)

( j′−1∑
j=0

∑
k∈Z

∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣+
∞∑
j=j′

∑
k∈Z

∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣).
In the first sum over k, where j < j′, we can estimate the nonzero inner products between
quarklets by an application of (31), the Markov inequality for the piecewise polynomial

function ψ
(m−1)
p , and (22)∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣ ≤ C2(m,ψ)(p+ 1)−m2−j
′(m−1/2)|ψp,j,k|Wm−1(L∞(R))

≤ C3(m,ψ)(p+ 1)−m2−(j′−j)(m−1/2)‖ψ(m−1)
p ‖L∞(R)

≤ C4(m,ψ)(p+ 1)m−22−(j′−j)(m−1/2)‖ψp‖L∞(R)

≤ C5(m,ψ)(p+ 1)−12−(j′−j)(m−1/2).

The number of nonzero inner products per j in the first sum is bounded by a constant
independent of j and j′,

j′−1∑
j=0

∑
k∈Z

∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣ ≤ C6(m,ψ)(p+ 1)−1
j′−1∑
j=0

2−(j′−j)(m−1/2).

In a completely analogous way, using that the number of nonzero inner products per j
in the second sum is bounded by a constant multiple of 2j−j

′
, the second sum can be

estimated by

∞∑
j=j′

∑
k∈Z

∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣ ≤ C7(m,ψ)(p+ 1)−1
∞∑
j=j′

2−(j−j′)(m−3/2).
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Therefore, due to m ≥ 2, we obtain (35),∣∣(Hpd)(j′,k′)

∣∣ ≤ C8(m,ψ)‖d‖`∞(N0×Z)(p+ 1)−1.

In case that the weights wp decay sufficiently fast, we finally obtain the boundedness
of T and hence the L2 frame property.

Theorem 4.4. Let wp ≥ 0 be chosen such that w0 = 1 and wp(p+ 1)−1/2 is summable.
Then ΨQ,w is a frame for L2(R).

Proof. For (c,d) ∈ `2(N0 × Z)⊕ `2(N0 ×N0 × Z), we compute by using Proposition 4.3
and the Cauchy-Schwarz inequality that

∥∥T (c,d)
∥∥
L2(R)

≤
∞∑
p=0

wp

∥∥∥∑
k∈Z

cp,kϕp(· − k)
∥∥∥
L2(R)

+

∞∑
p=0

wp

∥∥∥ ∞∑
j=0

∑
k∈Z

dp,j,kψp,j,k

∥∥∥
L2(R)

≤ C1(m,ψ)

∞∑
p=0

wp(p+ 1)−1/2
((∑

k∈Z
|cp,k|2

)1/2
+
( ∞∑
j=0

∑
k∈Z
|dp,j,k|2

)1/2)
= C1(m,ψ)

∞∑
p=0

wp(p+ 1)−1/2
∥∥(c,d)

∥∥
`2(N0×Z)⊕`2(N0×N0×Z)

.

5 The Frame Property in Hs(R), s > 0

In the preceding sections, we have derived all the necessary building blocks that are
needed to construct stable quarklet frames not only for L2(R), but also for scales of L2-
Sobolev spacesHs(R), 0 < s < γ. We will follow an abstract axiomatic approach to build
multi-scale hp–frames (frames build by dyadic dilation, translation and p–enrichment)
from families of multi-scale h-frames (built by dyadic dilation and translation). We refer
to the manuscript [19] and the references therein for further details.

Suppose we have a family of MRAs Up = {Uj,p}j≥0, p ≥ p0 satisfying the monotonic-
ity constraints

Uj−1,p ⊂ Uj,p ⊂ Uj,p+1 ⊂ Hγ(R), j ≥ 1, p ≥ p0, (36)

where γ > 0 is fixed. Then, we make the following assumptions:

Assumption A. For the smallest p = p0, assume that one has proved a Jackson theorem
such that with certain constants As the bound

‖f‖2L2
+
∞∑
j=0

22jsEj,p(f)2
L2
≤ As‖f‖2Hs (37)
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holds for arbitrary f ∈ Hs and 0 < s < γ.

Assumption B. Suppose for p ≥ p0, j ≥ 0, and 0 < s < γ a Bernstein estimate holds:

‖g‖Hs(R) ≤ Bs,p2js‖g‖L2(R), for all g ∈ Uj,p. (38)

Assumption C. For every j, the ladder

Ũj : Uj,p0 ⊂ . . . ⊂ Uj,p ⊂ Uj,p+1 ⊂ . . .

possesses a hierarchical frame system Ψj = ∪p≥p0Ψj,p where Ψj,p = {ψp,j,k}k∈Z ⊂ Uj,p.
More precisely, we assume that the sections

Ψ̃j,p = ∪pq=p0Ψj,q

of Ψj form frames in Uj,p (considered as subspaces of L2), with frame bounds independent
of j, but dependent on p:

(Cp)
−1‖gj,p‖2L2(R) ≤ inf

gj,p=
p∑

i=0

∑
k∈Z

ci,kψi,j,k

p∑
i=0

∑
k∈Z
|ci,k|2 ≤ Dp‖gj,p‖2L2(R), for all gj,p ∈ Uj,p.

(39)
These three assumptions together with standard Sobolev spaces properties allow us

to conclude the frame property in Hs, 0 < s < γ, see again [19] for details.

Theorem 5.1. Under the assumptions A, B, C, there exist weights wp,j,s > 0 such that

Ψ̃ := ∪j≥0 ∪p≥p0 wp,j,sΨj,p

has the frame property in Hs, 0 < s < γ.

Now we want to apply this abstract machinery and in addition pinpoint exact weights
to our special case.

Theorem 5.2. For a given γ > 0, let ϕ = Nm(· + bm2 c),m > γ + 1/2. Then, for the
scaling factors wp,j,s := 2−js(p+ 1)−2s−δ, with δ > 1, the system

ΨQ,w,s = {wp,0,sϕp(· − k), wp,j,s2
j/2ψp(2

j · −k) : p, j ∈ N0, k ∈ Z}

has the frame property in Hs, 0 < s < γ.

Proof. We define

Ψj,p := {wpϕp(· − k), wp2
l/2ψp(2

l · −k) : k ∈ Z, l < j}, Uj,p := closL2(R)span{∪pq=0Ψj,q},
(40)

19



cf. (32). Then the sequences Uj,p is obviously nested in the sense of (36). For the
existence of weights wp,j,s > 0 so that ΨQ,ω,s constitutes a frame in Hs, it remains to
check conditions A,B, and C.

Assumptions A. For p = 0, the corresponding elements of Ψj,0 coincide with the pri-
mal wavelets of a biorthogonal B-spline wavelet basis. In this case, it is well-known that
for m > γ + 1/2, a Jackson-type estimate of the form (37) holds.

Assumption B. Due to the two-scale-equation (28) the function ψq,l,k, 0 ≤ q ≤ p is
contained in the space Vl+1,p as defined in (6). As we will show in the appendix, the
sequence {Vj,p}j≥0 is nested. Consequently, it follows that

Uj,p ⊂ Vj,p.

Therefore, Corollary 3.6 implies (38) with Bs,p = C(p+ 1)2s.

Assumption C. In Section 4 we have already shown that the system ΨQ,w is a frame
for L2(R). The collections Ψ̃j,p are subsets of ΨQ,w, and it is well-known that a subset of
a given frame constitutes a frame for its span, see, e.g., [4], Example 5.1.4. Furthermore
let us denote that due to this fact the frame bounds in (39) are not only independent of
j but also on p, which will be important in the following part of the proof.

By Theorem 5.1 it follows the existence of weights w̃j,p,s > 0 such that

ΨQ,w,s = ∪j≥0 ∪p≥0 w̃j,p,sΨj,p

has the frame property in Hs, 0 < s < γ. Now we want to determine the weights
wj,p,s = w̃j,p,swp. In Theorem 4.4 we have already shown, that the weights wp only need
to be nonnegative and wp(p + 1)−1/2 has to be summable, such that wp = (p + 1)−δ1 ,
with δ1 > 1

2 would do the job. To choose the weights w̃j,p,s we look at the proof of
Proposition 1 in [19]. There it is shown in a first step, that for fixed p ≥ 0, 0 < s < γ
the system

Ψ̃p := ∪j≥0 ∪pq=0 2−jsΨj,q

constitutes a frame in Hs with frame bounds c = c(p, s, ε) > 0, 0 < s − ε < s + ε < γ
and C = C(p, s) > 0. The first constant is of the form c = (C ′s,εBs+ε,pBs−ε,p)

−1 =
Cs,ε(p + 1)−4s, with C ′s,ε, Cs,ε > 0 independently of p. The independence of p relies on
the aforementioned fact, that in our case the frame bounds in (39) are independent of
p. We are choosing now w̃j,p,s = 2−js(p+ 1)−2s−δ2 with δ2 >

1
2 and show that ΨQ,w,s is

a frame in Hs. With f ∈ Hs(R) and φp,j,k ∈ {wp ϕp,0,k, wp ψp,j,k} it holds

inf
f=

∑
p≥0

∑
j≥0

∑
k∈Z

cp,j,kw̃p,j,sφp,j,k

∑
p≥0

∑
j≥0

∑
k∈Z
|cp,j,k|2 ≤ inf

f=
∑
j≥0

∑
k∈Z

c0,j,k2−jsφ0,j,k

∑
j≥0

∑
k∈Z
|c0,j,k|2

≤ C(0, s) ‖f‖2Hs(R) ,
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showing the lower bound estimate. To show the upper bound estimate we assume∑
p≥0

∑
j≥0

∑
k∈Z

cp,j,k w̃p,j,s φp,j,k to be a fixed decomposition of f . Furthermore for p, j ∈ N0,

k ∈ Z we define fp :=
∑
j≥0

∑
k∈Z

cp,j,k w̃p,j,s φp,j,k and c̃p,j,k := cp,j,k(p + 1)−2s−δ2 . By using

the frame property of Ψ̃p with the lower frame bound c = Cs,ε(p+ 1)−4s we compute∑
p≥0

∑
j≥0

∑
k∈Z
|cp,j,k|2 =

∑
p≥0

(p+ 1)4s+2 δ2
∑
j≥0

∑
k∈Z
|c̃p,j,k|2

≥
∑
p≥0

(p+ 1)4s+2 δ2 inf
fp=

∑
j≥0

∑
k∈Z

dp,j,k2−jsφp,j,k

∑
j≥0

∑
k∈Z
|dp,j,k|2

≥
∑
p≥0

(p+ 1)4s+2 δ2 inf
fp=

p∑
q=0

∑
j≥0

∑
k∈Z

d′q,j,k2−jsφq,j,k

p∑
q=0

∑
j≥0

∑
k∈Z

∣∣d′q,j,k∣∣2
≥ Cs,ε

∑
p≥0

(p+ 1)2 δ2 ‖fp‖2Hs(R) .

Exploiting the Cauchy-Schwarz-inequality leads to∑
p≥0

∑
j≥0

∑
k∈Z
|cp,j,k|2 ≥ Cs,ε,δ2

∑
p′≥0

(p′ + 1)−2 δ2
∑
p≥0

(p+ 1)2 δ2 ‖fp‖2Hs(R)

≥ Cs,ε,δ2

∑
p≥0

‖fp‖Hs(R)

2

≥ Cs,ε,δ2

∥∥∥∥∥∥
∑
p≥0

fp

∥∥∥∥∥∥
2

Hs(R)

= Cs,ε,δ2 ‖f‖
2
Hs(R) ,

where Cs,ε,δ2 = Cs,ε

(∑
p′≥0(p′ + 1)−2 δ2

)−1
. Taking the infimum finally shows the upper

bound estimate and so the claim is proofed.

6 Compressibility of differential operators in quarklet co-
ordinates

As already mentioned in the introduction, the stability of weighted quarkonial frames in
Sobolev spaces and the compression properties of the individual quarklets can be used
to derive adaptive discretization schemes for linear elliptic operator equations in a quite
systematic way, see [7, 9, 10,23] for the general reasoning.
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In order to briefly illustrate the main ideas of such schemes, let us consider a linear
elliptic variational problem of the form

a(u, v) = F (v), for all v ∈ H, (41)

where H is the solution Hilbert space and a : H × H → R a symmetric, bounded
and coercive bilinear form and F : H → R a continuous functional. Given a frame
Ψ = {ψλ}λ∈Λ for H with countable index set Λ, it is well-known [7, 9, 23] that (41) is
equivalent to the linear system of equations

Au = F, (42)

where A := (a(ψµ, ψλ))µ,λ∈Λ ∈ L(`2(Λ)) is the biinfinite stiffness matrix, u := (uλ)λ∈Λ

is a coefficient array of the unknown solution u =
∑

λ∈Λ uλψλ with respect to the frame
Ψ, and F := (F (ψλ)λ∈Λ) contains the values of the right-hand side F at individual frame
elements. Due to the redundancy of the frame Ψ, the system matrix A has a non-trivial
kernel, so that (42) is not uniquely solvable. Straightforward Galerkin-type approaches
might hence run into stability problems.

Nonetheless, classical iterative schemes like the damped Richardson iteration

u(j+1) := u(j) + ω(F−Au(j)), 0 < ω <
2

‖A‖L(`2(Λ))
, j = 0, 1, . . . (43)

or variations thereof, like steepest descent or conjugate gradient iterations, can still be ap-

plied in a numerically stable way, and the associated expansions u(j) :=
∑

λ∈Λ u
(j)
λ ψλ ∈ H

will converge to the solution u under quite general assumptions. By judiciously choosing
the respective tolerances, convergence can even be preserved under perturbation of the
exact iterations when, e.g., each evaluation of the infinite-dimensional right-hand side
F and each matrix-vector product Av are replaced by suitable numerical approxima-
tions [7, 9, 10,12,23].

Inexact matrix-vector multiplications play a key role within adaptive wavelet meth-
ods. In order to realize them in a computationally efficient way, it is essential to exploit
that the system matrix A is not arbitrarily structured but features certain compressibil-
ity properties. By this we mean that A can be approximated well by sparse matrices
with a finite number of entries per row and column. Such approximations can be con-
structed in a quite generic way, see [6, 23, 24] if the entries of A have a sufficiently fast
off-diagonal decay.

In the sequel, we will show that similar to wavelet systems, also quarklet frames can
induce compressible stiffness matrices in the aforementioned sense. As a concrete exam-
ple, let us consider the variational formulation of the one-dimensional Poisson equation
with periodic boundary conditions and a right-hand side f ∈ L2(0, 1). Let

H1
per(0, 1) :=

{
v ∈ L2(0, 1) : v′ ∈ L2(0, 1), v(0) = v(1)

}
be the periodic first-order Sobolev space on the unit interval, with norm

‖v‖H1
per(0,1) :=

(
‖v‖2L2(0,1) + ‖v′‖2L2(0,1)

)1/2
, for all v ∈ H1

per(0, 1).
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We are looking for

u ∈ H :=
{
v ∈ H1

per(0, 1) :

∫ 1

0
v(x) dx = 0

}
which solves (41) on H, where we set a(u, v) :=

∫ 1
0 u
′v′ dx and F (v) :=

∫ 1
0 fv dx. This

variational problem is well-posed because of Wirtinger’s inequality, see [15], for weakly
differentiable, moment-free periodic functions.

Our aim to discretize the periodic Poisson equation with a periodic quarkonial frame
ΨH for H. To this end, assume that for suitable weights wp,j > 0,

Ψ =
{
wp,0ϕp(· − k), wp,jψp,j,kp(2

j · −k) : p, j ∈ N0, k ∈ Z
}

is a B-spline quarklet frame for H1(R) with at least one vanishing moment of the
quarklets ψp,j,k, as constructed in the previous section. Similar to the case of periodic
wavelet bases on the unit inverval, see [13], we consider the 1-periodized quarks

ϕper
p,j0,k

:=
∑
l∈Z

ϕp,j0,k(· − l), for all p ≥ 0, 0 ≤ k ≤ 2j0 − 1,

and the 1-periodized quarklets

ψper
p,j,k :=

∑
l∈Z

ψp,j,k(·+ l), for all p ≥ 0, j ≥ j0, 0 ≤ k ≤ 2j − 1,

with j0 ∈ N0. To avoid some overlap we choose j0 as the smallest integer so that the
support length of the nonperiodized quarklets on the coarsest level is lower or equal to
one. Then the system

Ψper :=
{
wp,j0ϕ

per
p,j0,l

, wp,jψ
per
p,j,k : p ∈ N0, j ≥ j0, 0 ≤ l ≤ 2j0 − 1, 0 ≤ k ≤ 2j − 1

}
is readily shown to be a frame forH1

per(0, 1). Because of their vanishing moment property,
the periodized quarklets ψper

p,j,k are contained in H, while the periodized quarks ϕper
p,j0,k

are

not. By using that each v ∈ H1
per(0, 1) can be written as v = v1 + v2 with v2 :=

∫ 1
0 v dx,

v1 = v − v2 ∈ H and ‖v‖H1
per(0,1) h ‖v1‖H1

per(0,1) + ‖v2‖H1
per(0,1), we simply project the

periodized quarks onto H via

ϕ̌per
p,j0,k

:= ϕper
p,j0,k

−
∫ 1

0
ϕper
p,j0,k

dx, for all p ≥ 0, 0 ≤ k ≤ 2j0 − 1,

and we obtain the desired frame

ΨH :=
{
wp,j0ϕ̌

per
p,j0,l

, wp,jψ
per
p,j,k : p ∈ N0, j ≥ j0, 0 ≤ l ≤ 2j0 − 1, 0 ≤ k ≤ 2j − 1

}
for H.
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By using similar ideas as in Proposition 4.3, one can prove the following compression
estimate, which is important to get compression results for the biinfinite stiffness matrix
of the one-dimensional Laplacian in quarklet coordinates. For the readers convenience
and to keep it simple the following results are stated for the non-periodized quarks and
quarklets on the real line. One can easily check that these results can be transfered to
the case of periodic quarks and quarklets on the interval [0, 1].

Proposition 6.1. Let m ≥ 3, ϕ = Nm(· + bm/2c), e ∈ {0, 1}, φ(0) = ϕ and φ(1) = ψ.
There exists C = C(m,ψ), such that

2−(j+j′)
∣∣〈φ(e)′

p,j,k, φ
(e)′

p′,j′,k′〉L2(R)

∣∣ ≤ C(p+ 1)m−1(p′ + 1)m−12−|j−j
′|(m−3/2). (44)

Proof. Note first that by m ≥ 3, ϕ and hence ψ and ψp have m − 1 weak derivatives
in Lq(R), 1 ≤ q ≤ ∞. We first consider the case were both functions are quarklets ψ.
For j′ ≥ j we use the compact support of ψ and the fact that ψ′ has m̃ + 1 vanishing
moments to compute that for each 0 ≤ r ≤ m̃,∣∣〈ψ′p,j,k, ψ′p′,j′,k′〉L2(R)

∣∣ = inf
P∈Pr

∣∣〈ψ′p,j,k − P,ψ′p′,j′,k′〉L2(R)

∣∣
≤ inf

P∈Pr

‖ψ′p,j,k − P‖L∞(suppψp′,j′,k′ )
‖ψ′p′,j′,k′‖L1(R).

On the one hand, from (30), (28), (24) and (18), we obtain that with C1 = C1(ψ) > 0
and C2 = C2(m,ψ) > 0

‖ψ′p′,j′,k′‖L1(R) = 2j
′/2‖ψ′p′‖L1(R) ≤ C12j

′/2‖ϕ′p′‖L1(R) ≤ C2(p′ + 1)−(m−2)2j
′/2.

On the other hand, by Whitney’s theorem, for each choice of p, j, k, p′, j′, k′, there exists
Q ∈ Pr such that with C3 = C3(r) > 0 and C4 = C4(r) > 0,

‖ψ′p,j,k −Q‖L∞(suppψp′,j′,k′ )
= C3ωr+1(ψ′p,j,k, 2

−j′)L∞(R) ≤ C42−j
′(r+1)|ψ′p,j,k|W r+1(L∞(R)).

Due to ψ′ ∈Wm−2(L∞(R)), the latter norm is finite for all 0 ≤ r ≤ m− 3. Picking r =
m− 3 ≥ 0, an application of (30), (28), (24) and (18) shows that with C5 = C5(m) > 0,
C6 = C6(m,ψ) > 0 and C7 = C7(m,ψ) > 0

inf
P∈Pm−3

‖ψ′p,j,k − P‖L∞(suppψp′,j′,k′ )
≤ C52−j

′(m−2)|ψ′p,j,k|Wm−2(L∞(R))

= C52−j
′(m−2)2j(m−1/2)‖ψ(m−1)

p ‖L∞(R)

≤ C62−j
′(m−2)2j(m−1/2)‖ϕ(m−1)

p ‖L∞(R)

≤ C7(p+ 1)m−12−j
′(m−2)2j(m−1/2).

Combining the previous estimates, we obtain that with C8 = C8(m,ψ) > 0∣∣〈ψ′p,j,k, ψ′p′,j′,k′〉L2(R)

∣∣ ≤ C8(p+ 1)m−1(p′ + 1)−(m−2)2j+j
′
2−(j′−j)(m−3/2).
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If j′ ≤ j, we obtain in a completely analogous way that∣∣〈ψ′p,j,k, ψ′p′,j′,k′〉L2(R)

∣∣ ≤ C8(p′ + 1)m−1(p+ 1)−(m−2)2j+j
′
2−(j−j′)(m−3/2).

In the case that both functions are quarks ϕ, we estimate∣∣〈ϕ′p,0,k, ϕ′p′,0,k′〉L2(R)

∣∣ ≤ ∥∥ϕ′p∥∥L∞(R)

∥∥ϕ′p′∥∥L1(R)
.

Previously in the proof we have already seen that ||ϕ′p′ ||L1(R) ≤ C9(p′ + 1)−(m−2) with

C9 = C9(m) > 0 and from (18) and (24) we obtain ||ϕ′p||L∞(R) ≤ C10(p′+ 1)−(m−3) with
C10 = C10(m) > 0. With C11 = C11(m) > 0, this leads to∣∣〈ϕ′p,0,k, ϕ′p′,0,k′〉L2(R)

∣∣ ≤ C11(p+ 1)−(m−2)(p′ + 1)−(m−3).

If both ϕ and ψ are involved with C12 = C12(ψ,m) > 0, we obtain similar to the first
case ∣∣〈ϕ′p,0,k, ψ′p′,j′,k′〉L2(R)

∣∣ = inf
P∈Pr

∣∣〈ϕ′p,0,k − P,ψ′p′,j′,k′〉L2(R)

∣∣
≤ inf

P∈Pr

‖ϕ′p,0,k − P‖L∞(suppψp′,j′,k′ )
‖ψ′p′,j′,k′‖L1(R)

≤ C12(p+ 1)m−1(p′ + 1)−(m−2)2−j
′(m−3/2)2j

′
,

and therefore (44).

To discretize the one-dimensional Laplacian we will exploit the H1(R)-frame ΨQ,w,1

with the weights wp,j,1 = 2−j(p + 1)−2−δ. The entries of the corresponding biinfinite
stiffness matrix AH1(R) are

aλ,λ′ = 2−(j+j′)(p+ 1)−2−δ(p′ + 1)−2−δ〈φ(e)′

p,j,k, φ
(e)′

p′,j′,k′〉L2(R), (45)

with λ, λ′ ∈ I :=
{

(p, j, e, k) : p, j ∈ N0, e ∈ {0, 1}, k ∈ Z
}

, φ(0) = ϕ and φ(1) = ψ.

Combining (44) and (45) leads to

|aλ,λ′ | ≤ C(p+ 1)m−3−δ(p′ + 1)m−3−δ2−|j−j
′|(m−3/2).

If τ := δ + 3−m > 0, it holds(
1

(p+ 1)(p′ + 1)

)τ
≤
(

1

1 + |p− p′|

)τ
,

so in this case we get the crucial compression result

|aλ,λ′ | ≤ C(1 + |p− p′|)−τ2−|j−j
′|(m−3/2). (46)

With this result at hand we can proof the compressibility of the stiffness matrix AH1(R).
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Theorem 6.2. Let m ≥ 3. For J ∈ N0, we define the biinfinite matrix AJ by dropping
the entries aλ,λ′ from AH1(R) when

a log2(1 + |p− p′|) + b |j′ − j| > J, (47)

with a > 1, b ≥ a
a−1 and −τ + a(m−2)

b < −1. Then the number of non-zero entries in

each row and colum of AJ is of order 2J , and

||AH1(R) −AJ ||L(`2(I)) . 2−J(m−2)/b. (48)

Proof. For fixed indices λ ∈ I, p′ ∈ N0 the number of indices λ′ ∈ I for which
vol(suppφλ ∩ suppφλ′) > 0 is of order max(1, 2j

′−j), since the support of the quarklets
is local. In the case j′ ≥ j we use the definition of AJ and get the estimation

∑
p′:|p′−p|≤2J/a−1

⌊
J−a log2(1+|p′−p|)

b

⌋
+j∑

j′=j

2j
′−j .

∑
p′′:|p′′|≤2J/a−1

⌊
J−a log2(1+|p′′|)

b

⌋
∑
j′′=0

2j
′′

.

b2J/ac−1∑
p′′=0

2J/bp′′−a/b

. 2J/b2J/a

= 2J(1/a+1/b)

for the number of non-zero entries in each row and column of AJ . For j′ < j it holds

∑
p′:|p′−p|≤2J/a−1

j−1∑
j′=j−

⌈
J−a log2(1+|p′−p|)

b

⌉ 1 .

b2J/ac−1∑
p′′=0

⌈
J − a log2(1 + p′′)

b

⌉

. 2J/a
J

b
.

This shows that for a > 1 and b ≥ a
a−1 the number of non-zero entries in each row and

column of AJ is of order 2J . Now we want to estimate the operator norm in the space
`2(I) of AH1(R) −AJ . For that purpose we use the Schur-lemma which states that for
a matrix B, an index set J and weights ωλ > 0 it suffices to show

sup
λ∈J

ω−1
λ

∑
λ′∈J

∣∣bλ,λ′∣∣ω′λ ≤ C, sup
λ′∈J

ω′−1
λ

∑
λ∈J

∣∣bλ,λ′∣∣ωλ ≤ C, (49)

to proof ‖B‖L(`2(J )) ≤ C. We define α := supλ∈I ω
−1
λ

∑
λ′∈I

∣∣aλ,λ′ − ãλ,λ′∣∣ω′λ and get

α . sup
λ∈I

ω−1
λ

∑
p′≥0

∑
j′≥0

max(1, 2j
′−j)

∣∣aλ,λ′ − ãλ,λ′∣∣ω′λ.
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Using the definition of AJ and (46) we find

α . sup
λ∈I

ω−1
λ

∑
p′,j′≥0|(∗)>J

max(1, 2j
′−j)

∣∣aλ,λ′∣∣ω′λ
. sup

λ∈I
ω−1
λ

∑
p′,j′≥0|(∗)>J

max(1, 2j
′−j)(1 +

∣∣p− p′∣∣)−τ2−|j
′−j|(m−3/2)ω′λ,

with (∗) := a log2(1 + |p− p′|) + b |j′ − j|. By choosing the weights ωλ = 2−j/2, for the
case j′ ≥ j we obtain

α . sup
λ∈I

∑
p′≥0

(1 +
∣∣p− p′∣∣)−τ ∑

j′≥0|(∗)>J

2j/22−(j′−j)(m−5/2)2−j
′/2

≤ sup
λ∈I

∑
p′≥0

(1 +
∣∣p− p′∣∣)−τ ∞∑

j′=j+β

2−(m−2)(j′−j),

with β :=
⌈
J−a log2(1+|p−p′|)

b

⌉
. Substitution leads to

α . sup
λ∈I

∑
p′≥0

(1 +
∣∣p− p′∣∣)−τ ∞∑

k=β

2−(m−2)k

. sup
λ∈I

∑
p′≥0

(1 +
∣∣p− p′∣∣)−τ+a(m−2)/b 2−J(m−2)/b.

If −τ + a(m− 2)/b < −1, the sum in the last expression converges and we reach

α . 2−J(m−2)/b.

For j′ < j we do similar conversions and for −τ + a(m− 2)/b < −1 we obtain again

α . sup
λ∈I

∑
p′≥0

(1 +
∣∣p− p′∣∣)−τ ∑

j′≥0|(∗)>J

2j/22−(m−3/2)(j−j′)2−j
′/2

≤ sup
λ∈I

∑
p′≥0

(1 +
∣∣p− p′∣∣)−τ j−β∑

j′=0

2−(m−2)(j−j′)

= sup
λ∈I

∑
p′≥0

(1 +
∣∣p− p′∣∣)−τ j∑

k=β

2−(m−2)k

< sup
λ∈I

∑
p′≥0

(1 +
∣∣p− p′∣∣)−τ ∞∑

k=β

2−(m−2)k

. 2−J(m−2)/b,

what finally claimes the proof.
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Figure 3: Numerical results in logarithmic scale. The red and black line are the functions
2−0.5J respectively 2−0.8J , whereas the blue line shows the actual scaled results.

In numerical experiments we were able to verify the result of the last theorem for
the case of the Poisson-equation with periodic boundary conditions. Actually they seem
to be even better than expected. This indicates that it might be possible to improve
the result of Proposition 6.1, e.g., by using second compression ideas as outlined in [20]
or [24]. In the numerical experiments we computed the operatornorm of A−AJ , where
A is the stiffness matrix of the Poisson-equation in the periodical setting and AJ are the
corresponding sparse matrices. As parameters we chose m = m̃ = τ = 3 and a = b = 2
so that after Theorem 6.2 we could expect

||A−AJ ||L(`2(Λ)) . 2−J/2.

The maximal refinement level and the maximal polynomial order are jmax = 11 and
pmax = 6. In Figure 3 the red line shows this expected results whereas the blue line
stands for the actual scaled results. We would like to emphasize that the constants
appearing in the norm-estimation seem to be of moderate size. The black line shows a
possible better estimation. The stronger decay of the blue line for big J occurs due to
the inevitable cap of the involved parameters p and j.

A Appendix

In this section, we show a refinement property of the functions ϕ0, . . . , ϕp. Although
each individual ϕq is usually not a refinable function, the whole collection (ϕ0, . . . ϕp)
forms a refinable function vector. Consequently, the sequence Vj,p as defined in (6) is
nested.
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Proposition A.1. For any p ≥ 0, the vector (ϕ0, . . . , ϕp) is refinable, i.e., there exist
(p+ 1)× (p+ 1)-matrices Ck such that ϕ0(x)

...
ϕp(x)

 =
∑
k∈Z

Ck

 ϕ0(2x− k)
...

ϕp(2x− k)

 .

Proof. By using the definition of ϕp and the refinability of ϕ = ϕ0 we obtain:

ϕq(x) = xqϕ(x)

=
1

2q
(2x)q

∑
k∈Z

akϕ(2x− k)

=
1

2q

∑
k∈Z

ak(2x− k + k)qϕ(2x− k)

=
1

2q

∑
k∈Z

ak

q∑
l=0

(2x− k)l
(
q

l

)
kq−lϕ(2x− k)

=
∑
k∈Z

1

2q
ak

q∑
l=0

(
q

l

)
kq−lϕl(2x− k).

Now setting

(Ck)q,l :=
1

2q
aqk

(
q

l

)
kq−l

yields the result.
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