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Abstract

In the spirit of subatomic or quarkonial decomposition of function spaces [26],
we construct compactly supported, piecewise polynomial functions whose properly
weighted dilates and translates generate frames for Sobolev spaces on the real line.
All frame elements except for those on the coarsest level have vanishing moment
properties. As a consequence, the matrix representation of certain elliptic operators
in frame coordinates is compressible, i.e., well-approximable by sparse submatrices.
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1 Introduction

The theory of function spaces and their decompositions is an intensively studied field of
research with many potential applications. Stable decompositions of function spaces by
means of atoms or molecules usually give rise to equivalences of smoothness norms and
weighted sequence norms of expansion coefficients. This property enables one to switch
from a continuous to a discrete setting which is essential for practical applications.
Prominent examples are atomic decompositions by means of wavelets. In this case, the
atoms are designed by dilating, translating and scaling of a finite set of functions. These
wavelet atoms give rise to stable decompositions for many important function spaces
such as Besov and Triebel-Lizorkin spaces, see [16,18,28]. However, in the last years,
many more decomposition techniques have been designed. In particular, the concept of
subatomic or quarkonial decompositions seems to be a quite powerful approach. These
decompositions are based on a partition of unity (PUM) whose elements are not only
translated and dilated as in the wavelet case, but also multiplied by polynomials up to
a certain order. By proceeding this way, the collection of atoms is highly enriched and
therefore allows for much more flexible decomposition strategies. However, on the other
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hand, the representation of a given function then gets highly redundant. Therefore, we
do not end up with a basis, but with a frame. Nevertheless, these frames are again
stable in the sense that they give rise to norm equivalences for certain function spaces,
see, e.g, [25-27].

Stable decompositions also have successful applications in numerical analysis. In
recent years, in particular the design of adaptive numerical algorithms for operator
equations has become more and more the center of attraction. In general, an adaptive
algorithm is an updating strategy. Based on a local a posteriori error estimator, a
partition of a domain (or more general a finite-dimensional subspace of a function space)
is refined (enriched) only in regions where the approximation is still far away from the
exact solution. We refer, e.g., to the monograph [29] for an overview. Once again,
the wavelet setting stands out since the strong analytical properties of wavelets can be
used to design refinement strategies that are guaranteed to converge for a large set of
problems, including operators of negative order [5-7]. Moreover, the order of convergence
is optimal in the sense that the convergence order of best IN-term wavelet approximation
is asymptotically realized. In the meantime, these algorithms have also been generalized
to the case of (wavelet) frames [9,10,23].

Once we know how adaptive numerical algorithms based on wavelet frames can be
designed, it is clearly an interesting and challenging task to design adaptive numeri-
cal schemes based on quarkonial decompositions. The motivation can be explained as
follows: Standard adaptive wavelet methods are essentially based on space refinements
(h-method). In the case of quarks, also the p-enrichment induced by the polynomials
comes into play, so that the resulting algorithm would resemble an hp-method. It is
well-known that Ap-methods for operator equations usually converge quite fast, how-
ever, rigorous proofs are often missing. So there is some hope that in the long run, by
combining the knowledge on the design of adaptive wavelet methods with the concept
of quarkonial decompositions, it might be possible to derive very powerful schemes with
a provable order of convergence. However, to achieve this goal, it is a long way to go,
and this paper can be viewed as one first step in this direction.

The idea to use subatomic decompositions for numerical purposes has some history.
Variants of the (PUM)-method have already been employed in numerical analysis under
various names (meshless particle methods, generalized finite element methods, hp-clouds,
etc.). Formally, this method has been introduced by Babuska and Melenk [1,2]. There
also exist combinations with multiscale methods (MPUM), see [22].

From the viewpoint of wavelet methods, the design of numerical solvers based on sub-
atomic decompositions may be structured into the following two major steps. First of
all, one should establish the approximation and stability properties of the desired ansatz
system. When using subatomic decompositions, we can expect that the set of basis func-
tions will form at least a frame for the solution space which typically is a Sobolev space
on a domain or on a closed manifold. The second step entails the choice of a suitable
convergent refinement strategy. Here, at least two alternative refinement strategies are
available from the wavelet context. On the one hand, one may consider Galerkin-type
methods, where a finite subset of active frame elements is iteratively refined, e.g., by chas-



ing the large residual coefficients of the associated Galerkin projections. This choice is
closely related with prominent refinement strategies of adaptive finite element methods.
However, due to the redundancy of the quarkonial frame, the uniform well-posedness of
the finite-dimensional Galerkin subproblems would not be guaranteed without spending
additional effort. On the other hand, one may reinterpret the given operator equation as
an equivalent, biinfinite system of equations for the expansion coefficients of the unknown
solution in the quarkonial frame. In order to realize well-known iterative schemes from
numerical linear algebra within this infinite-dimensional setting, it turns out that the
infinite-dimensional stiffness matrices should have certain compression properties which
are enforced, e.g., by vanishing moment properties of the individual frame elements, see
again [6] for details.

The investigations in this paper exactly follow these observations. Based on a given
biorthogonal wavelet basis, we construct a quarkonial frame system that indeed possesses
the same order of vanishing moments as the underlying wavelet basis. Moreover, these
frame systems are stable in the Sobolev spaces H?® for a certain range of parameters
0 < s < 7, where v depends on the properties of the wavelet basis. The techniques are
based on smoothness (Bernstein) and approximation (Jackson) estimates combined with
abstract axiomatic principles to design multi-scale frames of hp-type.

In a certain sense, this paper supplements the investigations in [11]. In loc. cit., also
stable quarkonial systems for function spaces have been designed. However, the basis
functions used there usually do not possess vanishing moments. On the other hand,
the analysis in [11] is more general in the sense that whole scales of Besov spaces are
considered, whereas in this paper we confine the discussion to the case of Lo Sobolev
spaces.

This paper is organized as follows. In Section 2, we introduce the basic quarkonial
setting and fixe some notation. In Section 3 we derive Jackson- and Berstein estimates
related to our specific quarkonial decompositions. Then, in Section 4 we show that by
switching to generalized wavelets associated with the underlying PUM, we end up with a
frame for Lo. In Section 5, we show that by combining the investigations in the Sections
3 and 4 with an abstract approach to design multiscale hp-frames we also obtain stable
frames in H®,0 < s < ~. Finally, in Section 6, we prove first compression results for
stiffness matrices induced by classical elliptic differential operators backed up by some
numerical experiments.

2 Preliminaries and Notation

For v > 0, let ¢ € HY(R) N Loo(R) have compact support in [—M, M|, M € N, and
suppose that it holds the partition of unity property

Y plr—k)=1, forallzeR (1)
keZ
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Figure 1: Some B-spline quarks ¢, of order m = 2

We assume that the integer translates of ¢ are f2-stable and therefore a Riesz basis for
their closed span
V = closp, gy span {¢(- — k) : k € Z}. (2)

In particular, there exist stability constants c,, C, > 0, such that

collelleaey < || D ewel- = k)HLQ(R) < Cyllellyz), for all € = (cr)rez € 2(Z).  (3)
kEZ

As a typical example in which these requirements are satisfied, we think of ¢ being
m

a symmetrized cardinal B-spline of order m > v + 1, ie., ¢ = Np(- + [%]) with

2
suppp = [=| 5], [5]] and M = [Z].
Our aim is to analyze systems of dilates and integer translates of the quarks

(Pp(x) = ([mx/Q] )p(p(x)7 fOI‘ all p Z va € R7 (4)

and their stability properties in relevant function spaces, see also Figure 1. In particular,
let us define
Qpin(r) =220, (2x — k), forallp,j>0kecZxcR (5)
For given j,p > 0, we shall consider the closed subspaces
Vip = closp, gy span{y; jx : 0 <i <p,k € Z}. (6)

In case that ¢ = Ny, (- + [2]), the spaces Vj, = {f(27-) : f € Vo } are closely related to
certain polynomial spline spaces. In fact, it obviously holds that Vp ), C closg, ) Sﬁ;ﬁ,
where S) is the polynomial spline space of order n and regularity r with respect to

integer nodes of multiplicity n —r — 1,
STTZ = {f S LQ(R) : f|[k,k+1) eP, 1,k € Z} N CT(R)

However, for m > 2, Sn”;;]% is strictly larger than span{p;(- — k) : 0 < i < p,k € Z}.

A simple counterexample for m = 2 is the quadratic B-spline with respect to double



integer knots, s(x) = max{0,1—|1—z|}2. s € S{ does not have a finite linear expansion
with respect to the integer translates of Nao(z + 1) and zNa(x + 1).

In the sequel, it is our aim to verify the following three properties. First, we will
prove a Jackson estimate of the form

1£17 @) + D 27 Eip(£)® < Adllfll3o@), forall f € H(R),0<s<v,p>0, (7)
j=0

where Ej,(f) := infyev, , [ f — vl 1,(r) is the error of the best La(R) approximation from
Vjp- Second, we will establish a Bernstein estimate,

gl s (ry < Bsp2”llllam),  for all g € Vip,0<'s <7,p > 0. (8)

Finally, we will prove that the system {; ;5 : 0 < i < p,k € Z} forms an La(R) frame
for its closed span Vj,, i.e.

p
(Cp)*lugj,p”%z(R) < ) inf ZZ |Ci,k|2 < Dp||gj7pH%2(R), for all g;, € Vj,,
gj,P:ZO kZZCi,k%,j,k i=0 keZ
1= (S

(9)
where the frame constants C),, D, only depend on the current maximal polynomial
degree p > 0. Under the conditions (7), (8) and (9), the stability of a properly weighted
system of dilates and translates of ¢,, p > 0, follows from general principles via the
theory of stable subspace splittings.

3 Direct and Inverse Estimates

3.1 Direct Estimates

We shall first derive direct estimates for the approximation spaces Vj, from (6). They
are closely related to known results from spline theory, however we do not yet need that
© is a B-spline.

Theorem 3.1. Assume that (1) holds. There exists A, > 0, such that

(p+1)*> 2%°E;,(f)° < Anl ey, Jor all f € H*(R),0 < s <m, (10)
j=0

In particular, it holds that
Ejp(f) < AP0+ 1) 27| fllus gy, for all f € H¥R),0 < s <m. (1)

Proof. Let j,p >0 and f € La(R) be fixed. In view of (4), (5) and (6), Vj, contains at
least all v € Ly(R) of the form

v(@) =Y pr(x)p(2z — k), (12)

kEZ



where py, € P, are polynomials of degree at most p, for all k € Z, and the sum converges
in Ly(R). From the partition property (1) and from (12), we can deduce that

flz) —v(z) = Z (f(z) — pi(x))p(2’z — k), for almost every x € R.
kEZ

Define I;; := 279[I,1 + 1] and S;j, := supp p(2/ - —k), for all [,k € Z. By the compact
support of ¢, #{k € Z : Sj, N 1;; # 0} is uniformly bounded in ! € Z and j > 0. For
any f € Lo(R), we can therefore estimate

1 = ol = 3 / > (@) - pela)) @ — b)) do

ez keZ
< 0122/ b(@) (@ — k)’ do
IEZ kEZ
oY / Pr(2)) o2z — k)* dx
keZ
2
< 01H<P||LOO(R) Z I/ _pkHM(Sj,k)'
kEZ

with Cl == Cl((p)

Now let f € H™(R) and let py € P, be the orthogonal projection of f[s;, onto P,
in Lo(Sj). It follows that |pgllzys;,) < [1fllzocs,,) and due to ¢ € Lo(R), the sum
(12) really converges in Lo(R), so that this particular v is contained in Vj,. Moreover,
standard results from polynomial approximation tell us that

1 = PrllLo(s; ) < Colp+1)"™277™ Flam(s, )

where Cy = Cy(m, ¢) > 0 is independent of j, k and p, see [21, Cor. 3.12]. We deduce
that with C3 = C3(m, ) > 0,

Ejp(f) < If = vllpom) < Cs(p+1)7"277 | flm ) (13)

For arbitrary f € La(R), using the triangle inequality and (13), we see that for each
g € H™(R), we have

Ejp(f) < I1f = 9llam) + Bip(9) < 1 = gllo@) + Calp+1)7"277"|g| g g).

By consequence, taking the infimum over g € H™(R), E;,(f) can be estimated by values
of the K functional K(f,t) := inf cgmm) [|f — 9llro®) + tlglmm®),

Ejp(f) < C4K(f, (p+1)"m277™). (14)

We will now use the fact that for 0 < s < m, an equivalent norm on H*(R) is given by

© dty1/2
stz @ s = Wi+ ([ ¢ m(0)°5)



with constants in the norm equivalence only depending on m, see [3] for details. Similar
to [3, Lemma 3.1.3], we can replace the latter integral by a discrete sum, losing constants
that only depend on m. In fact, for (p +1)"™277" <t < (p+ 1)_m2_(j_1)m, it follows
from the monotonicity property K(f,as) < max{l,a}K(f,s) of the K functional that

27 (pH+1)° 2K (f, (p+1)7"277™) <t MK (f,t) < 2™ (p+ 1) 2K (f, (p+1)7m270™).
We can therefore estimate
0o _o/m o dt (p+1)—m2-(G-1m e L dt
0 JEZ (p4+1)—m2—3m

<22 (log2™)(p +1)** 32 jep 22K (f, (p+1)7™277™)
> 27 (log 2™)(p + 1) 3 jeg 22K (f, (p + 1)7277™)

2

2

so that the claim follows from (14) and summation over j > 0. O

3.2 Norm estimates

We will now establish sharp bounds for the L, norms of single B-spline quarks, as p — 0.
In view of ¢ € Lo (R), (4) and the identity

1 ([m/21pq+1+tm/2qu+1

) 1/q
( [m/2] )pHLq(_meJ,(mm) = Tm/2]P pat1 ) ; forall 0 <g<oo,

we obtain the simple estimate

lpllz, @y < CLEH Y4 p)l gy, forallp>0,0<q< . (15)

These asymptotics in p are already sharp, e.g., if ¢ is the step function x[g 1), with

Iepllr, ) = (pa+1)"19, forall p>0,0 < q < oo. (16)

In case that ¢ has higher regularity in Lo, the Ly norms of ¢, decay even faster with
p. As the most important example, let us establish sharp bounds for the L, norms of
monomial B-spline quarks ¢,, as p — oo. We start with an auxiliary result on the
location of the extrema of ).

Lemma 3.2. Let 2 <m €N, ¢ = Ny, (- + [F]) and ¢, be given by (4). Then

R X %, if m is even, for allp > (% —1)(m — 1),
ol = [ep@)]. &= 2 i m s odd, for all p > 5V,

(17)
Proof. Let 2 < m € N be fixed. Consider first the case that m is even, and let p € N
with p > (% —1)(m—1) be fixed. It is sufficient to determine the extrema of ¢ in [0, c0),
because ¢,(—z) = (—1)Ppp(x) for all z € R. We will prove that ¢, is nondecreasing

7



n [0,% — 1]. For m = 2, there is nothing to prove. For m > 4, ¢, is continuously
differentiable and for all x € [0, % — 1], we have min{z + §,m — 2z — F} > 1 and thus

(5)Pep(@) = 2P~ (pNim(x + 3) + 2N, (2 + )
> 2" (pNm(a+ %) — (3 = D|No(@ + 3)])
= xp_l(me(:U + 2 = (2 =1)|Np—1(z+ %) = N1 (o + % — )D
> P! (me(a: +2) — (2 —1)(Np—1(z + 2) + Npp1 (2 + 2 — 1)))
> 27 (pNmle + %) = (3 = V(@ + Z)Na (2 + )

which is nonnegative because p > (% — 1)(m — 1). Therefore, all local maxima of
@p are located in I := [ — 1,7%], whenever p > (%% — 1)(m — 1). On I, we have
Np(z+5) = (mi 7 (% —x)™ !, so that from
(5)P(m — Dlgp(a) = pa? ' (% — )" — (m — DaP (G —2)™ 7
=2 )" (O (b~ 1)a),
we obtain the critical points 5 € I and Z := %. Using that p > (5 —1)(m — 1)
we observe that indeed & € I, since
— (m—1)/2 (m=1)/2 _
% - 1= % B (m/Qinl)Tmfl)+mfl < % o mme T < %

Due to ¢,(%5) = 0 and by the symmetry of ¢, the global maximum of ¢, is attained in
I, so that the unique local maximum % is also global.

In case that m > 3 is odd, let p € N with p > (m—1)7 ) be fixed. Using the symmetry
of Ny, we derive for z € [ -1 1] that

|op()] = |52 [P Nin (2 + 51)
= |25 [P N (m = (2 + ™51))
= |2 PN (—z + 1 + 75
< PR Nn(—e + 1+ 2571
= ‘gpp(—x+ 1)’

By consequence, the global maximum of || is located in [, 1], On this very interval,
because ¢, is continuously differentiable for m > 3, and analogously to the case of even



m—1

] and hence min{z + 51, m —z — -1} > 1 that

M\»—*
I\

m, we obtain for z € |3,

("3 )P (a) = 2P~ (PN (@

12
which is nonnegative because p > (m 1) . Therefore, all local maxima of ¢, are located

in J:= [25L, 4 On J, we have N (3;+ m-1) = (mil)!(mjl —x)™1 so that from

(3P (m — Dy () = pa? = (M5 = 2)™ 7 — (m — D)aP (T — 2)"

— xp—l(mTH _ $)m—2(p(m2+1) —(p+m-— 1)55)

we obtain the critical points 251 € J and & := %. Since
m—1 _ m+41 _ (m?-1)/2 < m+l _ (m —1)/2 7 < mtl
2 = 2 m—1)2/24m—1 > 2 prm— S

indeed £ € J. Due to ¢(™) = 0, the local maximum & € J is also global, and the
claim is proved. O

Proposition 3.3. Let m € N, ¢ = Ny, (- + |5]) and ¢, be given by (4). For each
1 < g < o0, there exist ¢ = ¢(m,q),C = C(m,q) > 0 such that

c(p+ )"V <oyl g, @ < Clp+ 1)~V forallp > (m = 1) (18)

Proof. The special case m = 1 is already covered by (16), so we can assume that m > 2,
without loss of generality, and hence p > (m — 1)% > 1.

In order to show the upper bound in (18), we study the extremal values ¢ € {1, 00}
and conclude by real interpolation. For ¢ = 1, we exploit that for any g € C"™[0, m],

[ oMt o = ’i(l)m—'f (7)ot

=0

1

In the case that m and p are even, we can use g(x) := W(w

— P and the



nonnegativity of ¢, to infer that with Ci(m) := > 7", (7)) |k — 2™

2\7? m/2
leolliaey = (2) [ oMt + ) s

)

B <:1)p/gm(y = 3)"Nm(y) dy

_ z p m (_1)m7k(T£)(k_ %)erm
_<m> kzo (p+m)-(p+1)
<Cilp+1)™™ (19)

If m is odd and p is even, we obtain by analogous arguments that

9 P r(m+1)/2 .
| — p m + m—1\d
H‘PpHLl(JR) (m—i— 1) /_(m_l)/2:ﬂ Ny ( 5 ) dx

2 P rm m—l\p
- (22) [ ra
_ 92 p m (—1)m_k(7;j)(/€— mT)p—f—m
_<m+1> kzo (p+m)-(p+1)
<Cilp+1)™™, (20)

where Cj(m) = Y1ty (%) |k — 252 ™. Finally, if p > 1 is odd and m is arbitrary, the
estimate [z| <[] for all 2 € supp ¢, yields

leplly @) < llep-illL,®) < Cip™™ < C12™(p+1)7™. (21)
For ¢ = oo and m even, Lemma 3.2 tells us that for all p > (% — 1)(m — 1) and
Ti=t0 e [2—1,2]

2(p+m—1)

H‘PPHLOO(R) = (%%)me(i' + %)

— ()P — 2y
m(m—1 m—1
= (mil)! (p+m—1 )p(Q(pEi-m—i) )

Analogously, if m is odd, Lemma 3.2 tells us that for all p > (m—1)? and & := Splmtl)

2(p+m—1)
[m2+1 -1 m+1]

)

)

lopll Loe(®) = (g )" Non (&

4+ m
= G ) (5
)’

_ x)m—l

1
(m 1)! (p+m 1

2
(m+1)(m—1) \m
( 2(p+m—1) )

Combining both cases, we obtain that for each m and p > (m — 1)? that

ca(p+ 1) < lgpllr @) < Ca(p+1)"™ D, forall p > (m— 1), (22)

10



with ca = ca(m), Cy = Ca(m) > 0 independent of p, thereby already showing the lower
estimate in (18) for ¢ = oo

Finally, let 1 < ¢ < oo and p > (m — 1)2. By real interpolation between L;(R) and
L (R) and due to ¢, € L1(R) N Loo(R), we obtain from (19), (20), (21) and (22) the
upper estimate in (18)

1 m—
lepllz,m < Ca(@llepll G leplly ) < Ca(m, q)(p+1)~(m=141/9),

It remains to show the lower estimate in (18) for 1 < ¢ < co. Let us consider first
the case ¢ € N. For m > 2 even, we can estimate

m m
2

1 2 .
ol 2 [ entaiae = L [ g oy

71 ((m =) Jm

1 1 .

1

For m > 1 odd, analogous steps lead to the same estimate. Due to ¢ € N, the latter
integral can be computed explicitly, by means of (m — 1)g times partial integration,

1 1
_ \Pe,,(m=1)q 3, _ ((m _ )q)! _ . \(p+m—1)q
/0 =9 W (pQ+1)"'(PQ+(m—1)Q)/0 (1-9) v
_ ((m — 1)q)!
(pg+1)--- (pg+ (m—1)g+1)

> COs(m)(p + 1)~

from which the lower estimate in (18) immediately follows. Finally, let 1 < ¢ < oo be
arbitrary. If 1 < ¢ < 2, real interpolation between L,(R) and L. (R) yields that

2 1 2
lepllzo@y < Collonl ¥ im,llenll e,

where Cg > 0 does not depend on g. Isolating ||¢pl|r, (k) and an application of (18) for
the Ly and Lo, case yields

2 2 1-2
leallzam > Co llepl gy ol
> Cy(m, q)(p + 1) 2m=1/2/a(py 4 1)~ (m=1)1-2/q)
= Cr(m, q)(p+ 1)~ "1+,
Analogously, if 2 < ¢ < oo, real interpolation between Lq(R) and L4(R) yields

1—1 21 1 1 21 1
lellzace) < Cllenll 1y ™™ llpll /557,

11



so that isolation of ||¢p|[z, ) and an application of (18) for Ly and Ly prove the claim,

leallza = GOl el
> Co(m, q)(p + 1)~ 1/2AC=2/0) () 4 1)=m(2/a-1)
= Cy(m, q)(p+ 1)~ (m=1+1/a),

3.3 Inverse Estimates

Theorem 3.4. Let m € N, ¢ = N,,, and let Vj,, be given by (6). Then for 1 < q < oo,
there exists C = C(m) > 0, such that for all f € Vj,,

. i ym—141
wm(f: D)L, < Cmin {1, (p+ 12276}V 1|, . (23)
Proof. Let [ = Zogigp Y owez CikPijk € Vip. It > (p+ 1)2277, we simply use

Wi (f, ) L) < 2" fll Ly ry = 2™ min{1, (p + 1)27t}™ V9 £l gy
Now let t < (p+1)~2279. By using V;, C W™ 1(L,(R)) and standard arithmetics for the
moduli of smoothness, see [14, Ch. 2 §7], we see that wm (f, 1)1, ) < tm Loy (fOm=D), t) Ly (R)-

But f(mY is piecewise polynomial of degree p without continuity assumptions at the
nodes x; := 2771, 1 € Z. We compute for 0 < h <t < 277 and ¢ < oo that

£ D6+ ) = f DN gy = DO VC ) = f D

Lg(z1,2141)
leZ

=2 (e - f“”‘”Hiq(zl,wh) DR =PI )
S

1-1 19 1)
D S Al T il ORI ol VAN §
l€Z
An application of standard estimates for polynomials yields

FUFIYL L < GBI

with C1 > 0 independent of m, p and ¢g. Using the L, Markov inequality for algebraic
polynomials P of degree ¢ on an interval I,

Tall

Lg(zi41—h,x141) (x1,2141)

;2
1P|z, ) < C2| |HPHLq s

with Cy = C3(q) independent of i, we end up with
m—1)q m—1 m—1)||4
wm(fat)qu(]R) t( 7 sup Hf )('+h) - f( )HLq(R)

|h|<t
< Cy(m, )t =1 (d(p + 1)2mag7ma 4 poI(HHen-DOZAmDa) N pya
leZ
< Cy(m, @)t "=V (p 4 1)2m =Dtz =) 8
The case ¢ = oo is completely analogous. O

12



Corollary 3.5. Let m € N, ¢ = Ny, and let V), be given by (6). Then for 1 < ¢ < oo,
there exists C = C(m,q) > 0, such that for all f € Vj,

1F Pz, ) < Co+ 22| fllL,m),  for all 0 <k <m—1. (24)

Proof. Without loss of generality, let m > 2 and 1 < & < m — 1. Note that V;, C
Wm=(L,(R)), so that f(*) is well-defined for each f € Vj,. Let us first consider the
case k = 1. We can use that for all f € W(L,(R)), 1 < ¢ < oo,

(),
1 Lyr) = %g% fq’
see [17, Prop. 2.4]. Using a Marchaud-type inequality
> Wm(f, S)L R
wi(f,t),mr) < Clt/t Tq()ds’

with C1 = C1(m), confer [14, Ch. 2 §8] for details, we derive from (23) that
/°° wm (fy8)Ly(R) ds
t

£l L, (r) < C1limsup 5

t—0 S
(p+1)—2277 wm(f, s & wWm\J, S
:Cl(limsup/ (fQ)L‘?@R)dS_F/ (fz)Lq@R)d5>
t—0 t S (p+1)—22-3 S
(p+1)72277

< 02((<p + 1)223')’”1““/ s ds) 111z, )

o0
g3t/ g 4 /
0

(p+1)—227

= G 1)+ D2l @),

with Cy = Cy(m,q). The case of general 2 < k < m — 1 can be treated by induction
over k, repeating the previous Marchaud-type estimate k times. ]

Corollary 3.6. Letm € N, ¢ = N, and let V}, be given by (6). For each0 < s < m—%,
there exists C = C(m,s) > 0, such that

[flie@) < O+ D*2(|f | rym),  for all p,j € No, f € Vjp. (25)

Proof. Let s > 0, without loss of generality. In view of the norm estimate

© dt
|flmsr) < Cl(/o (t ™ wm(f, t)Lz(R)>27

where C1 = C1(s) > 0, we can compute that by (23),

1/2
) . forall 0 < s <m,

. (p+1)—2277
|f|%]5(R) < (Cz(p-i- 1)2(2m1)2j(2m1)/ $2s+2m=2 34
0

s [T e,
(p+1)—22-J

& Cy 4562j 2 1
< |/ 4 50278 4
_<2m_1_28+28>(p+1) 2% fll7,my, forall 0 <s<m 5

13



with Cy = Ca(m, s). Due to the fact that (25) trivially holds for s = 0 with C' =1, an
interpolation argument shows that C does in fact only depend on s as s — m — % O

We note, however, that (25) is not sharp for single quarks. If ¢ = No(- + 1) is the
symmetrized hat function and s = 1, one can explicitly compute that

1
_ 2
HM&®:2Aw%%wﬁwﬂn)®

1 1 1
= 2<p2/ 2?2 dx — 2p(p+ 1) / 2P Ve + (p + 1)2/ z2P dx)
0 0 0

PCp+1)—(p+DC2p-D2p+ 1)+ 2p—1(p+1)°

=2 @ —1)(2p+1)

_ %
CAp?2 -1

e, lepllam ~ (0 +1)7Y2 = (p+ Dll@llrym), as p — oo, while (25) only yields
loplr gy < Cp + 1)*l@pll Lo r)s as p — .

4 Quarklet frames for Ly(R)

We have seen that systems of dilated and translated quarks ¢, ;x alone can only be
stable in H*(R) for s > 0 when being properly rescaled. Stability of quarkonial systems
in Ly(R) and Sobolev spaces of negative order requires further conditions on the frame
elements. We will show now that certain moment conditions by means of a wavelet-type
modification of the quark system are sufficient to ensure stability in La(R).

In the sequel, we restrict the discussion to the case of symmetrized cardinal B-splines
© = Ny (- + [2]) of order m € N. As shown in (8], for a given m € N such that m > m
and m + m is even, there exists a compactly supported wavelet 1 with

Y(x) = (2w — k), forallz €R, (26)
keZ

and m vanishing moments, (¢, P) = 0 for deg P < m. Moreover, the collection
Vg = {p(-— k), 2227 - —k): j € No,k € Z} (27)

is a Riesz basis for La(R).
In complete analogy to the wavelet 1), let us consider the following quarklets 1),

Pp(x) = Zbkgop(Qa? — k), forallpe Ng,zeR. (28)
kEZ

We refer to Figure 2 for an illustrative example. By assumption, ¢y = v has m vanishing
moments. The following lemma shows that the other v, have the same property.

Lemma 4.1. For each p > 0, the quarklet 1, has m vanishing moments.

14



() p=0 (b)p=1 (c)p=2

Figure 2: Some B-spline quarklets v, of order m = 2 with m = 2 vanishing moments,

where {b;} are the Cohen/Daubechies/Feauveau wavelet coefficients b_o = by = I,

b_i1=b = %, bg = —%, by, = 0 otherwise.

Proof. Let us first prove the auxiliary result that the coefficient sequence {by}rez has
m discrete moments,
> kb =0, forall 0<q<m. (29)
keZ

We proceed by induction over ¢q. For ¢ = 0, p := [, p(z) dz # 0, the compact support
of ¢ and (26) imply that

2
by, = b —k)de =— [ ¢(z)dz =0.
A

Now assume that (29) holds for all 0 < r < g — 1, where 0 < ¢ < . By the vanishing
moment property of 1, we compute that

1
0= [amp@)de =3 b [ ato(ze—K)do = 5ir S b [ (4 K e() dy,
R kez R kez. 7R
so that the induction hypothesis yields (29),
q
0= Zbk/ Z < >kr Tro(y)dy = <z) / Y o(y)dy > Kby =Y kb
keZ r=0 R kEZ kEZ

In view of (29), the vanishing moment property of v, easily follows from

/ )y (x) dae = Z bk/ 29,2z — k) dz

kEZ
= q+12bk/ y+ k) pp(y) dy
keZ
1
= Sert Z (?) / yq_lgpp(y) dka‘lbk =0, forall0<qg<m.
1=0 R keZ
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In the sequel, we consider the usual dyadic dilates and translates of the quarklets,
Ppik(x) = 2/2p, (22 — k), forallz € R,p>0,5>0,k€Z (30)

Based on the vanishing moment properties of the quarklets 1), we immediately get the
following cancellation estimates for inner products of the 1, ;; with smooth functions,
using standard techniques from wavelet analysis.

Lemma 4.2. There ezists C = C(m, 1)), such that for all f € W' (Lso(R)), r <m —1,

[ p k) Loy < CoAD) ™27 YD flym 1 quppey, s 0, Jor allp > 0,5 >0,k € Z.
(31)

Proof. By Lemma 4.1, each quarklet 1, and hence v, ;; has m vanishing moments.
Therefore, given some f € Lo(R), an application of the Hélder inequality implies that

[(fs Ppik) Loy | = Anf [(f = Py o) oy | < A 1f = Pl Loo (supp ¢y ) | ¥piike | 21 (R)-
A Whitney-type estimate on suppp jk, (28) and (18) immediately yield (31),
[(f s pjk) La(ry| < Cl(w)Q_j(T—i_l/Q)|f’WT(Loo(supp1/1p7j7k))||SOPHL1(R)
< Ca(m, )0+ 172D flyr (1 supp 5.0
O

We shall now study the stability properties of the full quarklet system. In particular,
we will investigate under which conditions on the weights w, > 0, the weighted system

Vo = {wppp(- — k), wp2/ %4 (20 - —k) : p,j € No, k € Z}. (32)

is a frame for Ly(R). Setting wo := 1, W, contains the Ly Riesz basis Wg, so that we
are left with proving the Bessel property of Vg ,,. We have to show that the synthesis
operator T': £5(Ng x Z) @ l2(Ng x Ny x Z) — La(R),

T(C, d) = Z Z prk’wp(pp(' - k‘) + Z Z Z dp7j7kwpwp7j7k (33)
p=0 keZ p=0 j=0 k€Z

is bounded. We will exploit the following proposition.

Proposition 4.3. Let m > 2. There exists C = C(m,1) > 0, such that the Gramian
matrices

Gy = (- = 1), 000 =)} ) Hy = (gt Y i) 2w

kk'€Z (J,k), (4 k") ENo X Z

(34)
are bounded operators on ly(Z) and l2(Ng x Z), respectively, with

Gl Lieazy) < Clo+1)" "D [ Hpllppavgxzy) < Clo+1)7",  for all p € No. (35)
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Proof. Let us discuss Gy, first. By the Schur lemma, it is sufficient to prove that G, is
bounded on ¢1(Z) and ¢ (Z), where the operator norms are independent of p. Due to
the symmetry of G,, a norm bound in £ (Z) is sufficient. Let k' € Z and ¢ = (¢g)kez €
lo(Z). Then

= ‘ch<§0p('_k/)7¢p('_k)>L2(R)‘ < lellew@z Y ‘<‘Pp(‘—k/)7¢p<'—k)>L2(R)"

keZ keZ

Gpc)k/

In view of the compact support of ¢, the latter sum is finite. Therefore, using the
Cauchy-Schwarz inequality, it can be bounded independently of &’ by a constant multiple
of Hg0p||%2(R), where the constant only depends on m. An application of (18) yields

showing the estimate (35) for G,,.
Concerning the boundedness of H,, we shall exploit the compression property (31).
Let 7/ € No, k' € Z, and d = (dj ) jeny kez € loo(No X Z). We start estimating with

|(Hyd) | = ‘ > diwltpw, ¢p,j,k>L2(R)‘
7j=0 kez
7' =1

< |Idlle., (NoxZ) <Z Z ‘ (Vp.jr ks Upjk) La(R) ‘ + Z Z ‘ (Upjt s Upje) Ly R)D
j=0 keZ 7j=j" keZ

In the first sum over k, where j < j’, we can estimate the nonzero inner products between
quarklets by an application of (31), the Markov inequality for the piecewise polynomial

function ¢§m’1), and (22)

| (Wit s Vo) Lo () | < C2 —mo I (m=1/2)|y,

Gkl Wm=1(L. (R))
—mg—(j’—j)(m—1/2)W](Dm—l)HL ®)
m—29—(j'=j)(m—1/2) [4p

1y (=) (m=1/2)

| Lo (R)

~—_— ~— ~—  —

The number of nonzero inner products per j in the first sum is bounded by a constant
independent of j and j’,

i1 i1
Z Z | (Wp it ks Vo) Loy | < Co(m, ) (p+ 1)~ Z 9—(i'=j)(m=1/2)
J=0 kezZ s

In a completely analogous way, using that the number of nonzero inner products per j
in the second sum is bounded by a constant multiple of 2777, the second sum can be
estimated by

ZZ‘¢P7]/k7¢p,]k VLo@®)| < Cr(m, ) (p+1)~ ZQ (j=3")(m=3/2)

7j=j" keZ

17



Therefore, due to m > 2, we obtain (35),

|(Hpd) jr gy | < Cs(m,)[|d]lo vgxzy (P + 1)
]

In case that the weights w, decay sufficiently fast, we finally obtain the boundedness
of T and hence the Lo frame property.

Theorem 4.4. Let wy, > 0 be chosen such that wo = 1 and wy,(p + 1)7Y/2 is summable.
Then V¢ . is a frame for La(R).

Proof. For (c,d) € £2(Ng x Z) @ ¢2(Ny x Ny x Z), we compute by using Proposition 4.3
and the Cauchy-Schwarz inequality that

ITe,d)l,,, )ng AN et =0, +ZwPHZZduwmkHQR
= kez

=0 kez
< ol pr p+1) 1/2<<Z|Cp,k\ ) (ZZ’%H?)l 2>
keZ J=0keZ
= C1(m, ) Z wy(p + 1)71/2H(C= d)H@(Non)@zz(NoxNon)‘
p=0
O

5 The Frame Property in H*(R), s > 0

In the preceding sections, we have derived all the necessary building blocks that are
needed to construct stable quarklet frames not only for La(R), but also for scales of La-
Sobolev spaces H*(R), 0 < s < . We will follow an abstract axiomatic approach to build
multi-scale hp—frames (frames build by dyadic dilation, translation and p—enrichment)
from families of multi-scale h-frames (built by dyadic dilation and translation). We refer
to the manuscript [19] and the references therein for further details.
Suppose we have a family of MRAs U,, = {U;,};>0,p > po satisfying the monotonic-
ity constraints
Uj—1p CUjp CUjpta CH'(R), j=1,p=>po, (36)

where v > 0 is fixed. Then, we make the following assumptions:

Assumption A. For the smallest p = pg, assume that one has proved a Jackson theorem
such that with certain constants A, the bound

IFI7, +> 2% B ()7, < Asl fllrs (37)
j=0
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holds for arbitrary f € H® and 0 < s < 7.

Assumption B. Suppose for p > pg,j > 0, and 0 < s < v a Bernstein estimate holds:

gl ) < Bsp2®llgll o), for all g € Uy (38)

Assumption C. For every j, the ladder
Z/Nlj Ujpo C...CUjp CUjpp1 C ..

possesses a hierarchical frame system W; = Up>, ¥, where W;, = {4 k}rez C Ujp.
More precisely, we assume that the sections

. — P .
‘I/.]yp - Uq:po\P]»q

of ¥; form frames in U; ,, (considered as subspaces of Lo ), with frame bounds independent
of j, but dependent on p:

P
(Cp)legj,pH%ﬂR) = ) inf ZZ ei k] < Dp||9j7pH%2(R)v for all gjp € Ujp.
9j,p= 2. > Ci ki jk =0 kEZ
i=0keZ
(39)

These three assumptions together with standard Sobolev spaces properties allow us
to conclude the frame property in H*,0 < s < v, see again [19] for details.

Theorem 5.1. Under the assumptions A, B, C, there exist weights wp j s > 0 such that

W= Uj20 Upzpy Wp,j,sWiip
has the frame property in H*,0 < s < 7.

Now we want to apply this abstract machinery and in addition pinpoint exact weights
to our special case.

Theorem 5.2. For a given v > 0, let ¢ = Np,(- + [5]),m > v+ 1/2. Then, for the

scaling factors wy, j s == 2795(p 4+ 1)72579 with § > 1, the system

Vs = {Wp0,50p(- = k) wp 352720 (2 - —k) = p,j € No,k € Z}
has the frame property in H*,0 < s < .
Proof. We define

U,p = {wppp(- — k),wp2l/2¢p(21 c=k):keZl<j}, Ujp:= ClosL2(R)span{U§:0\I!j,q},)
(40
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cf. (32). Then the sequences Uj, is obviously nested in the sense of (36). For the
existence of weights w), ;s > 0 so that Wq , s constitutes a frame in H?, it remains to
check conditions A,B, and C.

Assumptions A. For p = 0, the corresponding elements of ¥, coincide with the pri-
mal wavelets of a biorthogonal B-spline wavelet basis. In this case, it is well-known that
for m > v+ 1/2, a Jackson-type estimate of the form (37) holds.

Assumption B. Due to the two-scale-equation (28) the function 1,;4,0 < ¢ < p is
contained in the space Viy1 ), as defined in (6). As we will show in the appendix, the
sequence {V;,};>0 is nested. Consequently, it follows that

Uj’p - ‘/jap'
Therefore, Corollary 3.6 implies (38) with By, = C(p + 1)%.

Assumption C. In Section 4 we have already shown that the system Vg ,, is a frame
for Lo(R). The collections W, are subsets of g ,,, and it is well-known that a subset of
a given frame constitutes a frame for its span, see, e.g., [4], Example 5.1.4. Furthermore
let us denote that due to this fact the frame bounds in (39) are not only independent of
4 but also on p, which will be important in the following part of the proof.

By Theorem 5.1 it follows the existence of weights ;s > 0 such that
VQ.uw,s = Uj>0 Up>0 Wjp,sWip

has the frame property in H*, 0 < s < 7. Now we want to determine the weights
Wjps = Wjps Wp. In Theorem 4.4 we have already shown, that the weights w,, only need
to be nonnegative and wy,(p 4+ 1)~/ has to be summable, such that w, = (p + 1)7%,
with §; > % would do the job. To choose the weights w;, s we look at the proof of
Proposition 1 in [19]. There it is shown in a first step, that for fixed p > 0, 0 < s < 7
the system

\ifp = Uj>0 Uf]):(] 2_j8\1’j’q

constitutes a frame in H® with frame bounds ¢ = ¢(p,s,e) > 0,0 < s—e < s+e <7y
and C' = C(p,s) > 0. The first constant is of the form ¢ = (C}_ Boicp Bs—cp)t =
Cse(p+1)7%, with 0;75, Cs.c > 0 independently of p. The independence of p relies on
the aforementioned fact, that in our case the frame bounds in (39) are independent of
p. We are choosing now ;s = 277%(p +1)7257%2 with 65 > § and show that W, is
a frame in H°. With f € H*(R) and ¢, jr € {wp ©p,0,k, Wp ¥pjk} it holds

inf lepinl® < inf okl
=3 > > Cp,j,kﬂ)p,j,s%,j,kzzz od: = > CO,j,kQ_jS¢O,j,kZZ o

SoiSoich p>0 j>0 keZ = §>0 kez

< C(0,s) ”f”?{ff(R) )
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showing the lower bound estimate. To show the upper bound estimate we assume

Do >0 > CpjkWpjs Pp ik to be a fixed decomposition of f. Furthermore for p, j € Ny,
p>035>0 keZ

k € Z we define f, :== > > ¢p ik Wpj,s Ppjk and Cp ik = cpjn(p+ 1)~257%, By using
>0 kez

the frame property of \i/p with the lower frame bound ¢ = Cs.(p + 1)~*° we compute

ZZZ|CPJ7]€|2 Z(p+1 4s+26222|0pd k|

p>0 j>0 keZ p>0 7>0 keZ
> (p 4 1)4s+2% inf \d
;) fo=2 >0 dp k27750 5k gkz ’
P> j>0keEZ =
p
. 2
> 3+ inf D> |kl
p=0 fp:qgo jgo kze:Z dq k2T T2 ¢q,5,k 4=0 j=0 kEZ
5 2
> Oy Z(p +1)%% 1ol ers )
p=>0

Exploiting the Cauchy-Schwarz-inequality leads to

S el 2 Coca D+ Y 0+ D2l

p>0 j>0 keZ p'>0 p=0
2
> Cses, ZHfPHHS(]R)
p=>0
2
Z 08,5762 pr

Cae.0 | 1o gy -

~1
where Cs ¢ 5, = Cs ¢ (Zp/zo(pl + 1)*252) . Taking the infimum finally shows the upper

bound estimate and so the claim is proofed.
O

6 Compressibility of differential operators in quarklet co-
ordinates

As already mentioned in the introduction, the stability of weighted quarkonial frames in

Sobolev spaces and the compression properties of the individual quarklets can be used

to derive adaptive discretization schemes for linear elliptic operator equations in a quite
systematic way, see [7,9,10,23] for the general reasoning.
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In order to briefly illustrate the main ideas of such schemes, let us consider a linear
elliptic variational problem of the form

a(u,v) = F(v), forallve H, (41)

where H is the solution Hilbert space and a : H x H — R a symmetric, bounded
and coercive bilinear form and F' : H — R a continuous functional. Given a frame
U = {¢r}ren for H with countable index set A, it is well-known [7,9,23] that (41) is
equivalent to the linear system of equations

Au=F, (42)

where A := (a(¥u, ¥)))urea € L(€2(A)) is the biinfinite stiffness matrix, u := (uy)ren
is a coefficient array of the unknown solution u = )y -, ux®y with respect to the frame
U, and F := (F(¢x)rea) contains the values of the right-hand side F' at individual frame
elements. Due to the redundancy of the frame ¥, the system matrix A has a non-trivial
kernel, so that (42) is not uniquely solvable. Straightforward Galerkin-type approaches
might hence run into stability problems.

Nonetheless, classical iterative schemes like the damped Richardson iteration

ult) = ul) 4 w(F - AuY)), O<w< #, j=0,1,... (43)
A £es(a))

or variations thereof, like steepest descent or conjugate gradient iterations, can still be ap-
plied in a numerically stable way, and the associated expansions ul) := Y ren ug\])¢ NEH
will converge to the solution v under quite general assumptions. By judiciously choosing
the respective tolerances, convergence can even be preserved under perturbation of the
exact iterations when, e.g., each evaluation of the infinite-dimensional right-hand side
F and each matrix-vector product Av are replaced by suitable numerical approxima-
tions [7,9,10,12,23].

Inexact matrix-vector multiplications play a key role within adaptive wavelet meth-
ods. In order to realize them in a computationally efficient way, it is essential to exploit
that the system matrix A is not arbitrarily structured but features certain compressibil-
ity properties. By this we mean that A can be approximated well by sparse matrices
with a finite number of entries per row and column. Such approximations can be con-
structed in a quite generic way, see [6,23,24] if the entries of A have a sufficiently fast
off-diagonal decay.

In the sequel, we will show that similar to wavelet systems, also quarklet frames can
induce compressible stiffness matrices in the aforementioned sense. As a concrete exam-
ple, let us consider the variational formulation of the one-dimensional Poisson equation
with periodic boundary conditions and a right-hand side f € Ly(0,1). Let

H! . (0,1) := {v € Ly(0,1) : v € Ly(0,1),v(0) = v(1)}

per

be the periodic first-order Sobolev space on the unit interval, with norm
o 2 2 1/2
””HH;er(o,l) = (HUHLQ(OJ) + HU/HLQ(O,I)) , forallve Hl;l)er(oa 1).
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We are looking for
1
u€ H:= {v € Hll,er((), 1): /0 v(x)de = O}

which solves (41) on H, where we set a(u,v) := fo v'dz and F(v fo fvdz. This
variational problem is well-posed because of Wirtinger’s 1nequahty, see [15], for weakly
differentiable, moment-free periodic functions.

Our aim to discretize the periodic Poisson equation with a periodic quarkonial frame
UH for H. To this end, assume that for suitable weights wy, ; > 0,

= {wp00p(- = k), w0y up(2 - —k) i pj € Nosk € Z

is a B-spline quarklet frame for H'(R) with at least one vanishing moment of the
quarklets 1, ; 1, as constructed in the previous section. Similar to the case of periodic
wavelet bases on the unit inverval, see [13], we consider the 1-periodized quarks

pf;;’ ZQDMO, —1), forallp>0,0<k< 200 _ 1,
lEZ

and the 1-periodized quarklets

bk = D Ypgn( D), forallp>0,j>jo, 0< k<2 —1,
leZ

with jo € Np. To avoid some overlap we choose jg as the smallest integer so that the
support length of the nonperiodized quarklets on the coarsest level is lower or equal to
one. Then the system

0P i Ly BT 1 W URT P € Noyj 2 Go,0 S U< 200 =1, 0< k<27 — 1}

is readily shown to be a frame for per(O 1). Because of their vanishing moment property,
the periodized quarklets ¢p 1, are contained in H, while the periodized quarks gpgejz , are

not. By using that each v € per(O 1) can be written as v = vy + vg with vy := fol vde,

v =v—vy € H and [[v]m 01) = llvrllmy, 01) + lv2llzs,, 0,1), we simply project the
periodized quarks onto H via

1
~per __ per per 1
Pp.jo.k *= Ppjo.k _/O Pp.jo.k dx’ forallp >0, 0 <k <2? -1,

and we obtain the desired frame
Ui L o @00 U P € Nosj 2 o, 0 <1< 20 —1,0< k<27 1]

for H.
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By using similar ideas as in Proposition 4.3, one can prove the following compression
estimate, which is important to get compression results for the biinfinite stiffness matrix
of the one-dimensional Laplacian in quarklet coordinates. For the readers convenience
and to keep it simple the following results are stated for the non-periodized quarks and
quarklets on the real line. One can easily check that these results can be transfered to
the case of periodic quarks and quarklets on the interval [0, 1].

Proposition 6.1. Let m >3, ¢ = Ny, (- + [m/2]), e € {0,1}, 60 = ¢ and ¢ = 4.
There exists C = C(m, ), such that
9—(i+3")

(O O i) ey | < Clp+ D™ f + iz 2 agy

Proof. Note first that by m > 3, ¢ and hence 1 and 1, have m — 1 weak derivatives
in Ly(R), 1 < g < co. We first consider the case were both functions are quarklets 1.
For j/ > j we use the compact support of 1 and the fact that 1) has m + 1 vanishing
moments to compute that for each 0 < r < m,

[ Yt g Loy | = JnE [ 50 = Pty o) Loy
. / /
< Puélfg)r ||¢p,j,k - PHLoo(SUppd)p/}j/,k/)|’1/)p/7j’,k’HL1(R)'

On the one hand, from (30), (28), (24) and (18), we obtain that with C; = Ci(¢) > 0
and Cy = Ca(m, 1)) > 0

10y 3wl )y = 27219 2y < C127 2|l |y m) < Ca(p! + 1)~ (m=227/2,
On the other hand, by Whitney’s theorem, for each choice of p, j, k,p’, j', k', there exists
Q@ € P, such that with C3 = C5(r) > 0 and Cy = Cy(r) > 0,

Vg = Qll oo supptys 1 ) = Cawrit (W e 277 ) Loy < Ca27 D1 w1 (1o @) -

Due to ¢’ € W™ 2(Ls(R)), the latter norm is finite for all 0 < r < m — 3. Picking r =
m — 3 > 0, an application of (30), (28), (24) and (18) shows that with C5 = C5(m) > 0,
Cs = CG(m,’lﬁ) >0 and C7; = C7(m,7,b) >0

pdlf 0 = Pllistoupp sy ) < G527 2N w1 (R)

= C5277 (m=2)9i(m=1/2) H%(amfl) L oo (R)
< G277 (m=2)i(m=1/2) Hspz(;m_l)HLoo(R)

< Cqr(p + 1)m*12*j’(m*2)2j(m*1/2).
Combining the previous estimates, we obtain that with Cs = Cg(m, ) > 0

|<¢;/o7j,k7Tzz);’,j/,k’>L2(R)| < Cs(p + 1)m—1(p/ + 1)—(m_2)2j+j/2—(j/_j)(m_3/2),
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If 7/ < j, we obtain in a completely analogous way that
[ Uy g o] < Co(p' + 1) (p+ 1)~ (2197008,

In the case that both functions are quarks ¢, we estimate

[(ehok o) a@ | <1601 L gy 19 1|y -

Previously in the proof we have already seen that ||¢!, ||z, &) < Co(p’ + 1)~m=2) with
Cg = Cg(m) > 0 and from (18) and (24) we obtain ||¢} |1 &) < Cro(p’ + 1)~ (m=3) with
C1o = Cip(m) > 0. With Cy1 = C11(m) > 0, this leads to

(@p0.k> Por0k) La(®)| < Crr(p + 1)~ 4 1)~ (=3,

If both ¢ and 1 are involved with Ci9 = Ci2(1p,m) > 0, we obtain similar to the first
case

(oo Vi) o) = b [(Phok = Pty i) o)

< P}glgr H‘)O;;,O,k - PHLoo(suppwp/%k/) ngly’,j’,k’HLﬂR)

< Chap+ 1)™ L + 1)~ (m=2)g=7"(m=3/2)9]"
and therefore (44). B

To discretize the one-dimensional Laplacian we will exploit the H!(R)-frame W, 1
with the weights wy ;1 = 277(p + 1)7279. The entries of the corresponding biinfinite
stiffness matrix A g1 () are

iy =29 (p+ 1) 20+ 1) 200, 6 ), (45)

with \, X € T = {(p,j,e,k) . p,j € Noye € {0,1},k € Z}, #0 = o and ¢ = 4.
Combining (44) and (45) leads to

lax x| < Cp+ 1)m=3=0 (4 1)m—3=09—1i=i'l(m=3/2)

Ifr:=0+3—m >0, it holds

so in this case we get the crucial compression result
lax x| < C(1+ [p—p/|) T2 I 1m=3/2), (46)

With this result at hand we can proof the compressibility of the stiffness matrix Az (g).
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Theorem 6.2. Let m > 3. For J € Ny, we define the biinfinite matriz Ay by dropping
the entries ay - from A gy when

alogy(1+p—p'|) +blj" —j| > J, (47)

with a > 1, b > %5 and —7 + M < —1. Then the number of non-zero entries in

each row and colum of Ay is of order 27, and

A g1 ) — Adllamy) S 27720 (48)
Proof. For fixed indices A € Z, p’ € Ny the number of indices N € Z for which
vol(supp ¢ Nsupp ¢x) > 0 is of order max(1, 21" =i ), since the support of the quarklets
is local. In the case j' > j we use the definition of A ; and get the estimation

{J7a10g2(1+\plfp\)J {J*alogz(lﬂp”\)J
b b

+Jj

> DI SEED DR

Pl —pl=27e -1 =i pilp/|<27/a—1 5'=0
L2J/aJ 1
< Z 2J/bp//—a/b
p"'=0
5 2J/b2J/a
9J(1/a+1/0)

for the number of non-zero entries in each row and column of A ;. For j’ < j it holds

= [272] 1 J — alogy(1+ p")
> > s Y { — alogy w
- b
Py —pl <27/ -1 -,_»_[Ml p'=0
=7 .

J
< 9Jla”
~ b

This shows that for a > 1 and b > —%; the number of non-zero entries in each row and
column of A is of order 27. Now we want to estimate the operator norm in the space
l2(Z) of Apiry — Ay. For that purpose we use the Schur-lemma which states that for
a matrix B, an index set J and weights wy > 0 it suffices to show

-1 / —1
sup wy Z ‘b,\’,\/ wy < C, sup wy Z ‘b,\)\/
AT NeJ NeJ reJ

Wx < C, (49)

to proof [|Bl| 4, (7)) < €. We define a := SUPyez W T Do wer laxn — @ |w) and get

— '/7 y ~
a S supw) 1 g g max(1,2/ 77) ‘a)\’x —ay
AL y>04/>0

wh.
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Using the definition of A ; and (46) we find

a < supwit max 1,2j/7j ay v| wh
~ A ) A
ASE 00> T
< supwy ! g max(1,27 ) (1 + lp— p")_T2_‘j1_j‘(m_3/2)wf\,

AL r0(x)>J

with (%) := a logy(1 + |p — p'|) + b5’ — j|. By choosing the weights wy = 279/2, for the
case j' > 7 we obtain

< 1+ lp—9p'N7 97/29=(7"=5)(m=5/2)9—3'/2
a < i‘é%z( Ry

P20 §720/()>
e . .
< sup > (I+p—p/)7 D 2 m A,
AT 20 i'=i+B

with = {J_a 1°g2g)1+|p_pl|)—‘. Substitution leads to

o0
a S osup Z(l +lp=7|)" Z 9= (m=2)k
)\EZP/ZO k=3

S sup Z (1 + |p _ p/‘)—7+a(m—2)/b 2—J(m—2)/b.
AT 555

If =7 +a(m —2)/b < —1, the sum in the last expression converges and we reach
a < 2—J(m—2)/b'

For j' < j we do similar conversions and for —7 + a(m — 2)/b < —1 we obtain again

a < sup Z(l +lp-7|)" Z 97/29=(m=3/2)(j=3")9—j'/2

A0 20[(x)>J
Jj—B8 o
< sup Z(l +lp=7|)" Z 9—(m=2)(j—J")
T 55 ot
J
= sup Z (1+p=p|)" Z o—(m—2)k
AT 55 =
oo
< sup Y (L4 [|p-p))7 > 27Dk
AT 55 =

g 27J(m72)/b

)

what finally claimes the proof. O
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m=3,m =3, jmax =11, puax =6,a =2,b=2,7=3
T T T

[|A = Al ciea(a))

Figure 3: Numerical results in logarithmic scale. The red and black line are the functions
27057 regpectively 27987 whereas the blue line shows the actual scaled results.

In numerical experiments we were able to verify the result of the last theorem for
the case of the Poisson-equation with periodic boundary conditions. Actually they seem
to be even better than expected. This indicates that it might be possible to improve
the result of Proposition 6.1, e.g., by using second compression ideas as outlined in [20]
or [24]. In the numerical experiments we computed the operatornorm of A — A j, where
A is the stiffness matrix of the Poisson-equation in the periodical setting and A j are the
corresponding sparse matrices. As parameters we chose m =m =7=3and a =b= 2
so that after Theorem 6.2 we could expect

A — Al ey S 27772

The maximal refinement level and the maximal polynomial order are jn.x = 11 and
Pmax = 6. In Figure 3 the red line shows this expected results whereas the blue line
stands for the actual scaled results. We would like to emphasize that the constants
appearing in the norm-estimation seem to be of moderate size. The black line shows a
possible better estimation. The stronger decay of the blue line for big J occurs due to
the inevitable cap of the involved parameters p and j.

A Appendix

In this section, we show a refinement property of the functions o, ...,¢,. Although
each individual ¢, is usually not a refinable function, the whole collection (¢, ... ¥p)
forms a refinable function vector. Consequently, the sequence Vj ), as defined in (6) is
nested.
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Proposition A.1. For any p > 0, the vector (¢o,...,pp) is refinable, i.e., there exist
(p+1) x (p+ 1)-matrices Cy, such that

wo(z) wo(2x — k)

:ch

e(x) ) W\ gy(2r— k)

Proof. By using the definition of ¢, and the refinability of ¢ = ¢y we obtain:

pq(r) = 2p(x)

= 0. 00)" Y arp(2e — k)
keZ
= 2% Z a2z — k + k)1p(2x — k)
keZ
1 - 14 ;.q-1
— @Z“kz(% — k) ( )kq (2 — k)
k€Z  1=0
1 (a I
= qakz<l)kq @12z — k)
keZ 1=0

Now setting

yields the result. ]
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