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Abstract

We study traces of certain subspaces of shearlet coorbit spaces on smooth domains in Rd

with d = 2, 3. Our results are based on embedding theorems into Besov spaces which enable
us to establish embedding relations of traces on the boundary of these domains.

1 Introduction

In recent years shearlets have shown the potential to retrieve directional information so that they
became interesting for various applications. Moreover, quite surprisingly, the shearlet transform
has the outstanding property to stem from a square integrable group representation [1]. This
remarkable fact provides the opportunity to design associated canonical smoothness spaces, so-
called shearlet coorbit spaces [4,5] by applying the general coorbit theory derived by Feichtinger
and Gröchenig [6–9]. To understand the structure of shearlet coorbit spaces and in view of
possible applications it would be desirable to know how these new spaces behave under trace
operations.
The aim of this short note is to provide a first approach on how to derive traces for shearlet
coorbit spaces on smooth domains. First trace results for hyperplanes have been established
in [2,3]. Therefore, our hope was that these results carry over to boundaries of smooth domains.
However, it turns out that the corresponding problem on domains is somewhat delicate to solve
since a lot of standard tools are not available in the framework of shearlet coorbit spaces.
One natural idea would be to use the fact that shearlet coorbit spaces are can be embedded into
sums of homogeneous Besov spaces Ḃs

p,q(Rd). However, these spaces lack a lot of properties in
comparison with their inhomogeneous counterparts, e.g. smooth functions are not multipliers
in these spaces and they turn out not to be invariant with respect to diffeomorphisms, which
are necessary properties in order to reduce the problem of determining traces on domains to the
corresponding problem on hyperplanes.
To overcome these difficulties, our trace results are established for certain subspaces of shearlet
coorbit spaces within the framework of Lp-spaces. We make use of the embeddings into sums of
homogeneous Besov spaces and the fact that

Ḃs
p,q(Rd) ∩ Lp(Rd) = Bs

p,q(Rd), s > 0,

1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞. Concerning the homogeneous spaces we refer to [10, Ch. 5]. This
enables us to benefit from trace results for inhomogeneous Besov spaces Bs

p,q on domains, which
are well-known. Our main results are stated in Theorem 3.1.
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2 Shearlet Coorbit Spaces

In this section, we recall basic facts from shearlet coorbit theory [3, 5] which are necessary to
understand our new trace results. For a ∈ R∗ := R \ {0} and s ∈ Rd−1, let

Aa :=

(
a 0T

d−1

0d−1 sgn(a)|a|
1
d Id−1

)
and Ss :=

(
1 sT

0d−1 Id−1

)

be the parabolic scaling matrix and the shear matrix, respectively, where sgn(a) denotes the sign
of a. The shearlet group S is defined to be the set R∗ × Rd−1 × Rd endowed with the group
operation

(a, s, t) (a′, s′, t′) = (aa′, s+ |a|1−1/ds′, t+ SsAat
′).

The left-invariant Haar measure of S is given by µS = |a|−d−1 da ds dt. The mapping π : S →
U(L2(Rd)) defined by π(a, s, t)ψ(x) := |detAa|−

1
2ψ(A−1

a S−1
s (x− t)) is a unitary representation

of S, see [4, 5]. It is also square integrable, i.e., it is irreducible and there exists a nontrivial
shearlet ψ ∈ L2(Rd) fulfilling the admissibility condition∫

S
|〈f, π(a, s, t)ψ〉|2 dµS(a, s, t) <∞.

For a shearlet ψ the transform SHψ : L2(Rd)→ L2(S) defined by

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉,

is called continuous shearlet transform.
Let w be a real-valued, continuous and submultiplicative weight on S which fulfills in addition all
the coorbit-theory conditions as stated in [9, Section 2.2]. For 1 ≤ p ≤ ∞, consider Lp,w(S) :=

{F measurable : Fw ∈ Lp(S)} with the norm ‖F‖Lp,w :=
(∫

S |F (g)w(g)|p dµS(g)
)1/p

. For a
vector ψ contained in

Aw := {ψ ∈ L2(Rd) : SHψ(ψ) = 〈ψ, π(·)ψ〉 ∈ L1,w(S)},

we introduce the space

H1,w := {f ∈ L2(Rd) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)},

with norm ‖f‖H1,w := ‖SHψ(f)‖L1,w(S) and its anti-dual H∼1,w, the space of all continuous
conjugate-linear functionals on H1,w. The spaces H1,w and H∼1,w are π-invariant Banach spaces

with continuous embedding H1,w ↪→ L2(Rd) ↪→ H∼1,w. Then the following sesquilinear form on
H∼1,w ×H1,w is well-defined:

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼1,w×H1,w .

We are interested in the special weights

m(a, s, t) = m(a) := |a|−r, r ≥ 0

and use the abbreviation Lp,r(S) := Lp,m(S). Then the following Banach spaces are called shearlet
coorbit spaces

SCp,r(Rd) := {f ∈ H∼1,w : SHψ(f) ∈ Lp,r(S)}, ‖f‖SCp,r := ‖SHψ(f)‖Lp,r(S).
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Note that the definition of SCp,r(Rd) is independent of the analyzing vector ψ, see [6, Theorem
4.2].
A (countable) family X = {gi := (ai, si, ti) : i ∈ I} in S is said to be U -dense if

⋃
i∈I giU = S,

and separated if for some compact neighborhood Q of e = (1, 0, 0) ∈ R∗ × Rd−1 × Rd we have
giQ ∩ gjQ = ∅, i 6= j, and relatively separated if X is a finite union of separated sets. Based
on U -dense and relatively separated sets we can state the existence of atomic decompositions of
shearlet coorbit spaces [4, 6].

Theorem 2.1 (Atomic decompositions) Let 1 ≤ p ≤ ∞ and ψ ∈ Bw, ψ 6= 0, where Bw
denotes the so-called better subset Bw of Aw defined in [3]. Then there exists a (sufficiently small)
neighborhood U of e so that for any U -dense and relatively separated set X = {(ai, si, ti) : i ∈ I}
the set {π(gi)ψ)} provides an atomic decomposition for SCp,r(Rd): If f ∈ SCp,r(Rd), then

f =
∑
i∈I

ci(f)π(ai, si, ti)ψ,

where the sequence of coefficients depends linearly on f and satisfies

‖(ci(f))i∈I‖`p,r . ‖f‖SCp,r
with `p,r being defined by `p,r := {c = (ci)i∈I : ‖c‖`p,r := ‖c |a|−r‖`p < ∞}, where a = (ai)i∈I .
Conversely, if (ci)i∈I ∈ `p,r, then f =

∑
i∈I ciπ(gi)ψ is in SCp,r and

‖f‖SCp,r . ‖(ci)i∈I‖`p,r .

It was shown in [3] that for a neighborhood

U ⊃ [α
1
d
−1, α

1
d )× [−β

2
,
β

2
)d−1 × [−τ

2
,
τ

2
)d, α > 1, β, τ > 0

of the identity (1, 0, 0) ∈ R∗ × Rd−1 × Rd, the set

X :=
{

(εα−j , βα−j(1−
1
d

)k, S
βα−j(1−

1
d
)k
Aα−jτ l) : j ∈ Z, k ∈ Zd−1, l ∈ Zd, ε ∈ {−1, 1}

}
is U -dense and relatively separated. Without loss of generality, we can restrict our attention to
to the case a > 0 such that ε = +1. For a := α−j , s := βα−j(1−

1
d

)k and t := S
βα−j(1−

1
d
)k
Aα−jτ l

we use the abbreviation ψj,k,l := π(a, s, t)ψ.
By Theorem 2.1, every function f ∈ SCp,r(Rd) can be written as

f(x) =
∑
j∈Z

∑
k∈Zd−1

∑
l∈Zd

c(j, k, l)ψj,k,l(x). (2.1)

To derive our embedding theorems, we introduce the following cone-like subspaces of SCp,r(Rd):
For fixed ψ ∈ Bw, we denote by SCCp,r the closed subspace of SCp,r(Rd) consisting of those

functions which are representable as in (2.1) but with integers |ki| ≤ αj(1−
1
d

), i = 1, . . . , d− 1:

f(x) =
∑
j∈Z

∑
|k|≤αj(1−

1
d
)

∑
l∈Zd

c(j, k, l)ψj,k,l(x).

We will further need the decomposition f = f1 + f2 given by

f1(x) :=
∑
j≥0

∑
|k|≤αj(1−

1
d
)

∑
l∈Zd

c(j, k, l)ψj,k,l(x) (2.2)

f2(x) :=
∑
j<0

∑
l∈Zd

c(j, 0, l)ψj,k,l(x) (2.3)
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and denote the space containing functions of the form (2.2) by SCC(1)
p,r(Rd) and those of the form

(2.3) by SCC(2)
p,r(Rd).

The following embedding results of the described subspaces of shearlet coorbit spaces in R2 and
R3 into (sums of) homogeneous Besov spaces may be found in [3, Thm. 4.1] and [2, Thm. 5.1],
respectively.

Theorem 2.2 (Embeddings into Besov spaces)

(i) The embedding SCCp,r(R2) ⊂ Ḃσ1
p,p(R2) + Ḃσ2

p,p(R2), holds true, where

σ1 + bσ1c = 2r − 9

2
+

4

p
and σ2 −

bσ2c
2

= r +
3

2p
+

1

4
. (2.4)

(ii) The embedding SCCp,r(R3) ⊂ Ḃσ1
p,p(R3) + Ḃσ2

p,p(R3), holds true, where

σ1 + 2bσ1c = 3r − 21

2
+

9

p
and σ2 −

2

3
bσ2c = r +

5

3p
+

7

6
. (2.5)

The sums of homogeneous Besov spaces arises from the splitting (2.2) - (2.3). More precisely it

is shown that SCC(1)
p,r(Rd) ⊂ Ḃσ1

p,p(Rd) and SCC(2)
p,r(Rd) ⊂ Ḃσ2

p,p(Rd), d = 2, 3.

3 Trace Results

So far we have only dealt with functions on the whole Euclidean plane. We define spaces on
smooth domains Ω ⊂ Rd via restriction, i.e.,

‖f‖Ḃσp,p(Ω) := inf{‖g‖Ḃσp,p(Rd) : g|Ω = f}.

In terms of traces on domains in the context of shearlet coorbit spaces we obtain the following
theorem.

Theorem 3.1 (Traces on domains)

(i) Let Ω ⊂ R2 be a smooth domain with boundary Γ, 1 ≤ p ≤ ∞, r > 7
4 −

1
p , and σ1 as in

(2.4). Then for the trace operator we have

TrΓ

(
SCC(1)

p,r ∩ Lp + SCC(2)
p,r ∩ Lp

)
(Ω) ⊂ B

σ1− 1
p

p,p (Γ).

(ii) Let Ω ⊂ R3 be a smooth domain with boundary Γ, 1 ≤ p ≤ ∞, r > 17
6 −

2
p , and σ1 as in

(2.5). Then for the trace operator we have

TrΓ

(
SCC(1)

p,r ∩ Lp + SCC(2)
p,r ∩ Lp

)
(Ω) ⊂ B

σ1− 1
p

p,p (Γ).

P r o o f : Since SCCp,r(Rd) = SCC(1)
p,r(Rd) + SCC(2)

p,r(Rd), where SCC(1)
p,r(Rd) ⊂ Ḃσ1

p,p(Rd) and

SCC(2)
p,r(Rd) ⊂ Ḃσ2

p,p(Rd) we see that

SCC(1)
p,r(Rd) ∩ Lp(Rd) + SCC(2)

p,r(Rd) ∩ Lp(Rd)
⊂ Ḃσ1

p,p(Rd) ∩ Lp(Rd) + Ḃσ2
p,p(R2) ∩ Lp(Rd)

= Bσ1
p,p(Rd) +Bσ2

p,p(Rd)

↪→ Bmin(σ1,σ2)
p,p (Rd), (3.1)
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where we used the fact that Bσi
p,p(Rd) = Ḃσi

p,p(Rd)∩Lp(Rd) if σi > 0 and 1 ≤ p ≤ ∞, cf. Remark
3 in [10, Sect. 5.2.3]. Since the spaces on domains Ω are defined via restriction, we see from
(3.1) that (

SCC(1)
p,r ∩ Lp + SCC(2)

p,r ∩ Lp
)

(Ω) ↪→ Bmin(σ1,σ2)
p,p (Ω).

Concerning traces this yields

TrΓ

(
SCC(1)

p,r ∩ Lp + SCC(2)
p,r ∩ Lp

)
(Ω) ⊂ TrΓB

min(σ1,σ2)
p,p (Ω) = B

min(σ1,σ2)− 1
p

p,p (Γ),

where the results on traces for Besov spaces may be found in [10, Sect. 3.3] and hold true if
min(σ1, σ2) > 1

p is satisfied.

Let us show that min(σ1, σ2) = σ1. In R2 we use the restriction (2.4) and have

σ1 + bσ1c = 2r − 9

2
+

4

p
, i.e., σ1 = 2r − 9

2
+

4

p
− bσ1c.

This leads to

σ1 ≤ 2r − 9

2
+

4

p
− (σ1 − 1), i.e., σ1 ≤ r −

7

4
+

2

p
. (3.2)

The condition for σ2 gives

r +
3

2p
+

1

4
= σ2 −

bσ2c
2
≤ σ2 −

σ2 − 1

2
, i.e.,

σ2

2
≥ r +

3

2p
− 1

4
,

which yields

σ2 ≥ 2r +
3

p
− 1

2
. (3.3)

Combining (3.2) and (3.3) we obtain

σ1 ≤ r −
7

4
+

2

p
≤ 2r +

3

p
− 1

2
≤ σ2,

thus, min(σ1, σ2) = σ1. Finally, for the traces to make sense we require 1
p < σ1 ≤ r − 7

4 + 2
p ,

which is satisfied for

r >
7

4
− 1

p
.

In R3 we use the restriction (2.5) and a similar calculation as above gives min(σ1, σ2) = σ1. By
the condition on σ1 we have

σ1 + 2bσ1c = 3r − 21

2
+

9

p
, i.e., σ1 = 3r − 21

2
+

9

p
− 2bσ1c.

which gives

σ1 ≤ 3r − 21

2
+

9

p
− 2(σ1 − 1), i.e., σ1 ≤ r −

17

6
+

3

p
.

Again we require 1
p < σ1 ≤ r − 17

6 + 3
p , which is satisfied if

r >
17

6
− 2

p
.

This completes the proof.
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[7] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group repre-
sentations and their atomic decomposition I, J. Funct. Anal. 86, 307 - 340 (1989).
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