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Key Words: Square integrable group representations, time{frequeny analysis, atomideompositions, frames, homogeneous spaes, weighted oorbit spaes.AMS Subjet lassi�ation: 57S25, 42C15, 42C40, 46E15, 46E35.1 IntrodutionOne of the lassial tasks in applied analysis is the eÆient representation/analysis ofa given signal. Usually, the �rst step is the deomposition of the signal into suitablebuilding bloks. Starting with Fourier analysis around 1820, many more or less suessfulapproahes have been suggested. Current interest espeially enters around multisalerepresentations of wavelet type. Wavelet bases have several remarkable advantages.Among others, they give rise to haraterizations of funtion spaes suh as Besov spaesand provide powerful approximation shemes, see, e.g., [4, 5℄. However, in reent studies,it has turned out that the use of Riesz bases may have some serious drawbaks. Oneimportant problem is the lak of exibility whih is in some sense a onsequene of theuniqueness of the representation. Therefore, one natural way out suggests itself: why notusing a slightly weaker onept and allowing some redundanies, i.e., why not workingwith frames? In general, given a Hilbert spae H, a olletion of elements feigi2Z isalled a frame if there exit onstants 0 < A1 � A2 <1 suh thatA1kfk2H �Xi2Z jhf; eiiHj2 � A2kfk2H: (1.1)The frame onept has been introdued by DuÆn and Sh�afer [6℄ in 1952. However, thestarting point of the modern frame theory was the fundamental Feihtinger/Gr�ohenigtheory whih has been developed sine 1986 in a series of papers [8, 9, 10, 11, 12℄. Thisvery aesteti and subtle theory is essentially based on group theory. Given a spae N ,the �rst step is to �nd a suitable group G that admits a (square) integrable representa-tion in L2(N ) and therefore gives rise to a generalized (ontinuous) wavelet transform.Then, so{alled oorbit spaes an be de�ned by olleting all funtions for whih thiswavelet transform is ontained in some (weighted) Lp{spae. Finally, a judiious dis-retization of the representation produes the desired frames for the oorbit spaes. Thisapproah works �ne for the whole Eulidean plane and produes a general frameworkthat overs, e.g., the lassial wavelet and Weyl{Heisenberg frames. However, whenit omes to pratial appliations, also the ase of bounded domains and manifolds isimportant. Then, very often the problem arises that the group ating on the manifoldis too `large', i.e., its representation is not square{integrable. One natural remedy assuggested, e.g., by Ali et al. [1℄ and Torresani [16℄, is the onept of square{integrabilitymodulo quotients. In this ase, one has to �nd a ertain subgroup P suh that, af-ter restriting the representation to the indued quotient spae G=P by �xing a Borelsetion � : G=P �! G, one is again in a square{integrable setting. However, by thispassage to quotients the very onvenient group struture gets lost, so that many of thebuilding bloks used in the Feihtinger/Gr�ohenig theory suh as onvolutions are no2



longer available. Nevertheless, in the previous paper [3℄, we have shown that a quitenatural generalization of the Feihtinger/Gr�ohenig theory to quotient spaes is indeedpossible. The major tool was a generalized reproduing kernel. The appliation of theorresponding integral operator in some sense replaes the usual onvolution. Then,under ertain integrability onditions on this kernel it has turned out that all the ba-si steps of the Feihtinger/Gr�ohenig approah an still be performed. By employingthe onept of square integrability modulo quotients, generalized oorbit spaes may bede�ned. Moreover, one an de�ne an approximation operator whih produes atomideompositions for these oobit spaes. Furthermore, a reonstrution operator an beintrodued in a similar fashion and the frame bounds an be established.To keep the tehnial diÆulties at a reasonable level, in [3℄ only the `simplest' lassof oorbit spaes was onsidered. However, the oorbit approah allows the de�nition ofwhole sales of smoothness spaes by olleting all funtions for whih the generalizedwavelet transform has ertain deay properties, i.e., by onsidering weighted spaes. To�ll this gap is the major aim of the present work.This paper is organized as follows. In Setion 2, we ollet all the fats on grouptheory that are needed for our purposes. Then, in Setion 3, we introdue and analyzeour generalized weighted oorbit spaes. Setion 4 ontains the main results of this paper.In Subsetion 4.1 we explain the setting and state all the onditions that are needed toestablish atomi deompositions and Banah frames for the generalized weighted oorbitspaes. Subsetion 4.2 is devoted to the de�nition and the analysis of the underlyingapproximation operators. Finally, in Subsetion 4.3 we establish the frame bounds. Thispart of our analysis is essentially based on a version of the Riesz{Thorin interpolationtheorem. Sine this spei� version was not found in the literature, we have inluded aproof based on omplex interpolation in the appendix. There, we also state and prove aversion of the generalized Young inequality for weighted Lp{spaes.2 Group Theoretial BakgroundLet H be a Hilbert spae and let G be a separable Lie group with (right) Haar measure�. A ontinuous representation of G in H is de�ned as a mappingU : G �! L(H)of G into the spae L(H) of unitary operators on H, suh that U(gg0) = U(g)U(g0) forall g; g0 2 G, U(e) = Id and for any �;  2 H, the funtion g 2 G ! h�; U(g) iH isontinuous. The representation U is said to be square{integrable if it is irreduible andthere exists a nonzero  2 H suh thatZG jh ; U(g) iHj2 d�(g) <1 :Suh a funtion  is alled admissible. In the sequel, we shall always be onernedwith the ase that the Hilbert spae H is given as some L2{spae on a manifold N , i.e.3



H = L2(N ): Unfortunately, there are many ases of pratial interest where no squareintegrable representation exists. Very often, these ases an be handled by restritingU to a onvenient quotient G=P, where P is a losed subgroup of G. Unless otherwisestated, we shall always onsider right oset spaes, i.e.,g1 � g2 if and only if g1 = h Æ g2 for some h 2 P:Beause U is not diretly de�ned on G=P, it is neessary to embed G=P in G. This an berealized by using the anonial �ber bundle struture of G with projetion � : G ! G=P.Let � : G=P ! G be a Borel setion of this �ber bundle, i.e., � Æ �(h) = h for allh 2 G=P. We introdue U Æ � and suppose that G=P arries a G{invariant measure �.An attrative notation of square integrability on a homogeneous spae appears in [1℄.An irreduible representation U is square integrable mod (P; �), if there exists a nonzerofuntion  2 L2(N ), alled admissible (with respet to �), suh thatZG=P jhf; U(�(h)�1) ij2 d�(h) <1 for all f 2 L2(N );i.e., the operator V given by V f(h) := hf; U(�(h)�1) i (2.1)maps L2(N ) into L2(G=P). Unless otherwise stated, in this paper h�; �i always denotesthe L2{inner produt with respet to L2(G=P) or L2(N ), e.g.,hF;Gi = ZN F (x)G(x)dxwhenever the integral is de�ned. The admissibility ondition an be rewritten as0 < ZG=P jhf; U(�(h)�1) ij2 d�(h) = hf; A�fi <1 for all f 2 L2(N );where A� is a positive, bounded, and invertible operator. If A� = �I for some � > 0,then U is alled stritly square integrablemod (P; �) and  stritly admissible. Moreover,we say that ( ; �) is a stritly admissible pair [16℄. In order to keep the notation simplewe fous our attention to stritly square integrable representations, where we normalize so that � = 1. Then V : L2(N )! L2(G=P) in (2.1) is an isometry.Assume now that ( ; �) is a stritly admissible pair for our setting. Then the follow-ing fats are well{known [1℄:� The set S� := fU(�(h)�1) : h 2 G=Pg is total in L2(N ), i.e., (S�)? = f0g.� The map V is an isometry from L2(N ) onto the reproduing kernel Hilbert spaeM2 := fF 2 L2(G=P) : hF (�); R(h; �)i = F (h)g4



with reproduing kernelR(h; l) = R (h; l) := hU(�(h)�1) ; U(�(l)�1) i (2.2)= h ; U(�(h)�(l)�1) i= V (U(�(h)�1) )(l): (2.3)In other words, the spaes L2(N ) and M2 are isometrially isomorphi. In parti-ular, jjf jjL2(N ) = jjV f jjL2(G=P). Note that R(h; l) = R(l; h). Further, we see by(2.3) that R(h; �) 2 L2(G=P) for any �xed h 2 G=P and by applying Shwarz'sinequality in (2.2) that R 2 L1(G=P � G=P).� The map V an be inverted on its image by its adjoint V � , whih is obviouslygiven by V � F (s) := ZG=P F (h)U(�(h)�1) (s) d�(h):This provides us with the reonstrution formulaf = V � V f = ZG=P hf; U(�(h)�1) iU(�(h)�1) d�(h) (2.4)for f 2 L2(N ).3 Weighted Coorbit Spaes on Homogeneous SpaesIn this setion we extend our onsiderations of funtions belonging to oorbit spaes onmanifolds, f. [3℄, to the onept of weighted oorbit spaes. By this extention we areable to haraterize a wide range of funtion spaes on manifolds, e.g., in dependene onthe underlying group we may obtain general modulation and Besov spaes, respetively,or some mixed funtion spaes. In order to keep omparisons as simple as possible, weadapt the notations given in [3, 8, 9, 10, 11, 12℄.Let U be a stritly square integrable representation of G mod (P; �) with a stritlyadmissible funtion  . Furthermore, we introdue a positive, ontinuous weight funtionw on G whih is in addition submultipliative, i.e., w(g ~g) � w(g)w(~g) for all g; ~g 2 G,and uniformly bounded from below, i.e., infg2G w(g) � Cw > 0. Assoiated with w weare onerned with the weighted Lp{spaes on G=P de�ned for 1 � p <1 byLp;w(G=P) := ff measurable on G=P : kfkLp;w(G=P) := �ZG=P jf(h)jpw(�(h))pd�(h)�1=p <1g;and for p =1 byL1;w(G=P) := ff measurable on G=P : kfkL1;w(G=P) := ess suph2G=P jf(h)jw(�(h)) <1g:5



In the following we suppose the fundamental onditionZG=P jR(h; l)jw(�(l)) d�(l) � C (3.1)with a onstant C independent of h. This ondition is equivalent with the assumptionthat the funtions V (U(�(h)�1) ) are in L1;w with norm bounded independently of h.In addition to the kernel R we de�ne a non{symmetri kernel ~R by~R(h; l) := R(h; l)w(�(h))w(�(l)) : (3.2)Of ourse, (3.1) together with the lower boundedness of our weight funtion w impliesthat ZG=P j ~R(h; l)j d�(h) � CCw � C : (3.3)Moreover, we assume onversely thatZG=P j ~R(h; l)j d�(l) � C (3.4)and �nally that suph;l2G j ~R(h; l)j � C : (3.5)These requirements replae the usual integrability onditions in the group ase. In oursetting, the general problem ours that a group struture does no longer exist andtherefore we need a substitute for the usual onvolution operation. It seems to us that apowerful approah is to use the weighted Young inequality as presented in the appendix,Theorem 5.1. However, the appliation of this inequality requires exatly integrabilityonditions of the form (3.3) and (3.4).The �rst problem is to provide a suitable large set that may serve as a reservoirof seletion for the objets of our oorbit spaes. By H 01;w we denote the spae of allontinuous linear funtionals onH1;w := ff 2 L2(N ) : V f 2 L1;w(G=P)g:As usual, the norm k � kH1;w on H1;w is de�ned askfkH1;w := kV fkL1;w(G=P):By (3.1) we observe that the elements U(�(h)�1) of our L2(N ) total set are in H1;w.Further, for f 2 H1;w, we have by the Shwarz inequality and sine w is uniformly6



bounded from below thatkfk2L2(N ) = jjV f jj2L2(G=P) = ZG=P jhf; U(�(h)�1) ij jV f(h)j d�(h)� jjf jjL2(N ) k kL2(N ) ZG=P jV f(h)j d�(h)� jjf jjL2(N ) k kL2(N ) jjV f jjL1;w(G=P)C�1wwhih implies the following dense ontinuous embeddingsH1;w ,! L2(N ) ,! H 01;w: (3.6)Sine U(�(h)�1) 2 H1;w for every h 2 G=P, the following generalization of the operatorV in (2.1) on H 01;w is well{de�nedV f := hf; U(�(h)�1) iH01;w�H1;w (3.7)where f 2 H 01;w. For any f 2 H 01;w, we obtain by (3.3) thatkV fkL1; 1w (G=P) = khf; U(�(h)�1) ikL1; 1w (G=P)� kfkH01;w ess suph2G=P 1w(�(h))kU(�(h)�1) kH1;w� kfkH01;w ess suph2G=P 1w(�(h)) C w(�(h))� C kfkH01;w : (3.8)Thus, V : H 01;w ! L1; 1w (G=P) is a bounded operator. For F 2 L1; 1w (G=P), we de�ne~V F by h ~V F; giH01;w�H1;w := hF; V gi = ZG=P F (l)V g(l) d�(l)= ZG=P F (l)hg; U(�(l)�1) i d�(l)for all g 2 H1;w. It is easy to hek that ~V : L1; 1w (G=P) ! H 01;w is also a boundedoperator. Now we obtain for F 2 L1; 1w (G=P) thatV ~V F = h ~V F; U(�(h)�1) iH01;w�H1;w = hF; V (U(�(h)�1) )i= hF;R(h; �)i : (3.9)7



Similar to the de�nition of oorbit spaes in [3℄ we de�ne weighted oorbit spaes byMp;w := ff 2 H 01;w : V f 2 Lp; 1w (G=P)g;with 1 � p � 1 and norm kfkMp;w := kV fkLp; 1w (G=P):As we shall see in the following , the hoie of Lp; 1w (G=P) is natural. It is straightforwardthat k � kMp;w de�nes a seminorm. The property that kfkMp;w = 0; i:e:; V f = 0, impliesf = 0 follows similarly as in [9℄ sine fU(�(h)�1) : h 2 G=Pg is a dense subset ofH1;w and sine w is positive. The basi step for the investigations outlined below is aorrespondene priniple between these weighted oorbit spaes and ertain subspaeson the quotient group G=P whih are de�ned by means of the reproduing kernel R. Tothis end, we onsider the subspaesMp;w := fF 2 Lp; 1w (G=P) : hF;R(h; �)i = F (h)gof Lp; 1w (G=P) with 1 � p � 1. Then the desired orrespondene priniple an beformulated as follows:Theorem 3.1 Let U be a stritly square integrable representation of G mod (P; �) and a stritly admissible funtion. Let V be de�ned by (3.7) and let R in (2.2) ful�ll (3.3)and (3.5).i) For every f 2 Mp;w, the following equation is satis�edhV f; R(h; �)i = V f(h) ;i.e., V f 2 Mp;w.ii) For every F 2 Mp;w, 1 � p � 1, there exists a uniquely determined funtionalf 2Mp;w suh that F = V f .Consequently, the spaes Mp;w and Mp;w, 1 � p � 1, are isometrially isomorphi.Proof: i) Sine U(�(h)�1) 2 L2(N ) we have by (2.4) thatV f(h) = hf; U(�(h)�1) iH01;w�H1;w= hf; ZG=P R(h; l)U(�(l)�1) d�(l)iH01;w�H1;w :By (3.1), the Fubini theorem and (3.6) we an hange the order of integration and getV f(h) = ZG=P R(h; l)hf; U(�(l)�1) iH01;w�H1;w d�(l)= hV f; R(h; �)i :8



ii). For F 2 Mp;w, 1 � p � 1, we have thatkFkL1; 1w (G=P) = k ZG=P F (l)R(h; l) d�(l)kL1; 1w (G=P)= ess suph2G=P j ZG=P F (l)R(h; l) d�(l)j 1w(�(h)) ;and further, by applying H�older's inequality with 1=p+ 1=q = 1, the assumptions (3.3)and (3.5),j ZG=P F (l)R(h; l) d�(l)j � ZG=P jF (l)j 1w(�(l))(jR(h; l)jw(�(l)))1=p+1=q d�(l)� 0B�ZG=P jF (l)jp 1wp(�(l)) jR(h; l)jw(�(l))d�(l)1CA1=p �0B�ZG=P jR(h; l)jw(�(l))d�(l)1CA1=q� C kFkLp; 1w (G=P)w(�(h)) :Consequently, we have thatkFkL1; 1w (G=P) � C kFkLp; 1w (G=P) :Thus, F 2 L1; 1w (G=P) and by (3.9) we obtain that F = V ( ~V F ), where ~V F 2 H 01;w andsine F 2 Lp; 1w (G=P) also ~V F 2 Mp;w. The uniqueness ondition follows by de�nitionof Mp;w. �Applying Theorem 3.1 i) and (3.9) we get for f 2 H 01;w thatV ~V (V f) = hV f; R(h; �)i = V f :Hene, ~V V is the identity in H 01;w and we have the reonstrution formulaf = ~V V f = ZG=P hf; U(�(h)�1) iU(�(h)�1) d�(h) :We �nish this setion by establishing the relationshipM1;w = H 01;w:9



This an be seen as follows: For f 2 H 01;w we have by (3.8) that kV fkL1; 1w (G=P) �C jjf jjH01;w . Conversely, we have for f 2M1;wkfkH01;w = supkgkH1;w=1 jhf; giH01;w�H1;w j = supkgkH1;w=1 jh ~V V f; giH01;w�H1;w j= supkgkH1;w=1 jhV f; V gij � kV fkL1; 1w :4 Atomi Deompositions and Banah Frames forWeighted Coorbit SpaesOne our generalized oorbit spaes are established, the next step is to derive someatomi deompositions for these spaes and to onstrut suitable Banah frames. Thisprogram is performed in several steps. In the next subsetion, we present some prepara-tions and state our main results. The remaining two subsetions are devoted to the build-ing bloks whih are neessary to prove these results. The major step is the onstrutionof suitable approximation operators whih are de�ned and analyzed in Subsetion 4.2.The results in this setion are again inspired by the pioneering work of Feihtingerand Gr�ohenig, [9, 10, 11, 12℄. Furthermore, they are a generalization of [3℄.4.1 Setting and Main ResultsBefore we an state and prove our main results, some preparations are neessary. Givensome neighborhood U of the identity in G, a family X = (xi)i2I in G is alled U{denseif Si2I Uxi = G. A family X = (xi)i2I in G is alled relatively separated, if for anyompat set Q � G there exists a �nite partition of the index set I, i.e., I = Sr0r=1 Ir,suh that Qxi\Qxj = ; for all i; j 2 Ir with i 6= j. Note that these tehnial onditionsan be easily ful�lled by some families X in all the settings we are interested in.Let U be an arbitrary ompat neighborhood of the identity in G. By [7℄, there existsa bounded uniform partition of unity (of size U), i.e., a family of ontinuous funtions('i)i2I on G suh that� 0 � 'i(g) � 1 for all g 2 G;� there is a U{dense, relatively separated family (xi)i2I in G suh thatsupp 'i � Uxi;� Pi2I 'i(g) � 1 for all g 2 G.Furthermore, we de�ne the (left and right) U{osillation with respet to the analyzingwavelet  asoslU(l; h) := supu2U jh ; U(�(l)�(h)�1) � U(u�1�(l)�(h)�1) ij;osrU(l; h) := supu2U jh ; U(�(l)�(h)�1) � U(�(l)�(h)�1u) ij:10



In analogy to (3.2) we need for applying the weighted Young inequality the w{modi�edU{osillations oslU ;w(l; h) := oslU(l; h) w(�(l))w(�(h)) ;osrU ;w(l; h) := osrU(l; h) w(�(l))w(�(h)) :In the sequel, we shall always assume that (xi)i2I an be hosen suh that �(G=P)\Uxi 6=; implies xi 2 �(G=P). LetI� := fi 2 I : �(G=P) \ Uxi 6= ;g :Then there exist hi 2 G=P suh that xi = �(hi), where i 2 I�. Note thatXi2I� 'i(�(h)) = 1 ;where h 2 G=P.In this setting, we an formulate our main theorems whih we shall prove in thefollowing subsetions. The �rst one is a deomposition theorem whih says that dis-retizing the representation U(�(�)�1) by means of a U{dense set indeed produes anatomi deomposition of Mp;w.Theorem 4.1 Let G be a separable Lie group with losed subgroup P, w a weight fun-tion and let � be an invariant measure on G=P. Further, let U be a stritly squareintegrable representation of G mod (P; �) in L2(N ) with stritly admissible funtion  .Let a ompat neighborhood U of the identity in G be hosen suh thatZG=P oslU ;w(l; h)d�(l) �  and ZG=P oslU ;w(l; h)d�(h) �  ; (4.1)where  < 1. Let X = (xi)i2I be a U{dense and relatively separated family. Furthermore,suppose that for any ompat neighborhood Q of the identity in G�fh 2 G=P : �(h) 2 Q�(hi)g � CQ > 0 (4.2)holds for all i 2 I�. Finally, let us assume that for any ompat neighborhood Q of theidentity in G our analyzing funtion  ful�lls the following inequalityZG=P supq2Q jhU(�(h)�1) ; U(�(l)�1q) ijw(q�1�(l))w(�(h)) d�(l) � ~CQ (4.3)with a onstant ~CQ < 1 independent of h 2 G=P. Then Mp;w, 1 � p � 1, has thefollowing atomi deomposition: if f 2Mp;w, 1 � p � 1, then f an be represented asf =Xi2I� iU(�(hi)�1) ;11



where the sequene of oeÆients (i)i2I� = (i(f))i2I� 2 `p; 1w depends linearly on f andsatis�es jj(i)i2I� jj`p; 1w � Ajjf jjMp;w: (4.4)If (i)i2I� 2 `p; 1w , then f =Pi2I� iU(�(hi)�1) is ontained in Mp;w andjjf jjMp;w � Bjj(i)i2I� jj`p; 1w : (4.5)Here we use w = (w(xi))i2I� as disretized weight sequene and`p;w := f = (i)i2I� : kk`p;w := k wk`p <1gfor 1 � p � 1.Given suh an atomi deomposition, the problem arises under whih onditions afuntion f is ompletely determined by the moments or oeÆients hf; U(�(hi)�1) iH01;w�H1;wand how f an be reonstruted from these oeÆients. This question is answered bythe following theorem whih shows that our generalized oherent states indeed give riseto Banah frames.Theorem 4.2 Impose the same assumptions as in Theorem 4.1 withZG=P osrU ;w(l; h)d�(l) � ~C and ZG=P osrU ;w(l; h)d�(h) � ~C ; (4.6)where ~ < 1, instead of (4.1) and withZG=P supq2Q jhU(�(h)�1) ; U(�(l)�1q) ij w(�(h))w(q�1�(l)) d�(l) � ~CQ (4.7)where ~CQ <1 is a onstant independent of h 2 G=P, instead of (4.3). Then the setf i := U(�(hi)�1) : i 2 I�gis a Banah frame for Mp;w. This means that(i) f 2Mp;w if and only if (hf;  iiH01;w�H1;w)i2I� 2 `p; 1w ;(ii) there exist two onstants 0 < A0 � B0 <1 suh thatA0 kfkMp;w � k(hf;  iiH01;w�H1;w)i2I�k`p; 1w � B0 kfkMp;w ; (4.8)(iii) there exists a bounded, linear reonstrution operator S from `p; 1w to Mp;w suhthat S �(hf;  iiH01;w�H1;w)i2I�� = f:For further information onerning Banah frames see [14℄.12



4.2 Approximation OperatorsIn this setion, we examine two di�erent approximation operators onMp;w. We use theresults to onstrut expansions for the spaes Mp;w, whih then, by the orrespondenepriniple in Theorem 3.1, lead to expansions for the oorbit spaes Mp;w.We onsider the following approximation operators on Mp;w:T'F (h) := Xi2I�hF; 'i Æ �iR(hi; h)= Xi2I� ZG=P F (l)'i(�(l)) d�(l)R(hi; h);S'F (h) := Xi2I� F (hi)h'i Æ �;R(h; �)i= Xi2I� ZG=P F (hi)'i(�(l))R(l; h) d�(l):So far, it is not lear a prior whether these formal expressions make sense at alland on whih spaes they are bounded operators. This will be lari�ed in Theorem 4.3below. Another remark is required on the meaning of the sum over I�. We order the�nite subsets of I� by inlusion, then Pi2I� ::: will be understood as the limit of thepartial sums over �nite subsets of I�.The �rst step is to establish the invertibility of the operators T' and S'.Theorem 4.3 i) If the onditions (4.1) are ful�lled, then the operator T' : Mp;w !Mp;w is bounded with bounded inverse.ii) If the onditions (4.6) are ful�lled, then the operator S' : Mp;w !Mp;w is boundedwith bounded inverse.Proof: By de�nition of Mp;w, we have for F 2 Mp;w thatF (h) = hF;R(h; �)i = ZG=P F (l)R(h; l) d�(l)= Xi2I� ZG=P F (l)'i(�(l))R(l; h) d�(l)and onsequentlyF (h)� T'F (h) = Xi2I� ZG=P F (l)'i(�(l)) [R(l; h)� R(hi; h)℄ d�(l);F (h)� S'F (h) = Xi2I� ZG=P [F (l)� F (hi)℄'i(�(l))R(l; h) d�(l): (4.9)13



Let us �rst onsider F � T'F . By the de�nition of R we obtainjF (h)� T'F (h)j � Xi2I� ZG=P jF (l)j'i(�(l))jR(l; h)� R(hi; h)j d�(l)= Xi2I� ZG=P jF (l)j'i(�(l))�jh ; U(�(l)�(h)�1) � U(�(hi)�(h)�1) ij d�(l):Now �(l) 2 Uxi implies that there exists u 2 U suh that �(l) = u xi = u �(hi). Thus�(hi) = u�1�(l) and we getjF (h)� T'F (h)j �Xi2I� ZG=P jF (l)j'i(�(l)) oslU(l; h) d�(l) = ZG=P jF (l)j oslU(l; h) d�(l):By realling the assumptions (4.1) and applying the weighted Young inequality (seeappendix), we obtainkF � T'FkLp; 1w (G=P) = k(I � T')FkLp; 1w (G=P) �  kFkLp; 1w (G=P):Consequently jjjI � T'jjj < 1, i.e., I � T' is a ontration on Mp;w. Thus, regardingthat jjjT'jjj � jjjT' � Ijjj + jjjIjjj, we see that T' is a bounded operator with boundedinverse.Next we onsider F � S'F . Sine F 2 Mp;w and by the de�nition of R we obtainjF (l)� F (hi)j � ZG=P jF (g)jjR(g; l)�R(g; hi)j d�(g)= ZG=P jF (g)jjh ; U(�(g)�(l)�1) � U(�(g)�(hi)�1) ij d�(g):By (4.9) we are only interested in l 2 G=P with �(l) 2 Uxi, i.e., �(l) = u �(hi) for someu 2 U and �(hi)�1 = �(l)�1u. ThusjF (l)� F (hi)j � ZG=P jF (g)j osrU(g; l) d�(g)and sine ('i) is a partition of unityXi2I� jF (l)� F (hi)j'i(�(l)) � ZG=P jF (g)j osrU(g; l) d�(g):14



By the weighted Young inequality and (4.6) this impliesjjXi2I� jF (l)� F (hi)j'i(�(l))jjLp; 1w (G=P) � ~C jjF jjLp; 1w (G=P):It is easy to hek that the order of summation and integration in (4.9) an be hanged.Then we obtain by (4.9), (3.3) { (3.4) and the weighted Young inequalitykF � S'FkLp; 1w (G=P) � C jjXi2I� jF (l)� F (hi)j'i(�(l))jjLp; 1w (G=P) � ~jjF jjLp; 1w (G=P):Consequently, I � S' is a ontration on Mp;w and S' is a bounded operator withbounded inverse on Mp;w. �Using the orrespondene priniple we an derive the following representation offuntions from our oorbit spaes.Corollary 4.1 Any funtion f 2Mp;w an be deomposed asf =Xi2I� i U(�(hi)�1) ; (4.10)where i = i(f) := hT�1' F; 'i Æ �iand F := V f .Proof: By Theorem 3.1 i) and Theorem 4.3 i) we have thatV f(h) = F (h) = T'T�1' F (h) =Xi2I�hT�1' F; 'i Æ �iR(hi; h):Sine ~V V is the identity on H 01;w and ~V is bounded on L1; 1w , we obtainf = ~V V f =Xi2I�hT�1' F; 'i Æ �i ~V (R(hi; �)): (4.11)Now, for any g 2 H1;w,h ~V (R(hi; �)); g(�)iH01;w�H1;w = hR(hi; �); V g(�)i = V g(hi)= hU(�(hi)�1) ; giH01;w�H1;wso that ~V (R(hi; �)) = U(�(hi)�1) . Together with (4.11) this yields the assertion. �Moreover, the operator S' indues the reonstrution operator as stated in Theorem4.2 iii). 15



Corollary 4.2 Any funtion f 2Mp;w an be reonstruted asf =Xi2I�hf; U(�(hi)�1 iH01;w�H1;wei;where ei = ~V (Ei); Ei := S�1' (h'i Æ �;R(h; �)i):Proof: Sine S' has a ontinuous inverse, we obtain for F := V f 2 Mp;w thatF (h) = S�1' S' F (h)= Xi2I� F (hi)S�1' h'i Æ �;R(h; �)i = Xi2I� F (hi)Ei:Now the orrespondene priniple and the ontinuity of ~V on L1; 1w impliesf = ~V V f = ~V  Xi2I� V (f)(hi)Ei!= Xi2I�hf; U(�(hi)�1 iH01;w�H1;w ~V (Ei) = Xi2I�hf; U(�(hi)�1 iH01;w�H1;wei: �4.3 Frame BoundsIn this setion, we want to prove the norm equivalenes in Theorem 4.1 and 4.2. Forthe veri�ation that the in�nite sums appearing in the following lemmatas onverge(unonditionally) in Mp;w, respetively Mp;w, it suÆes to obtain for p < 1 the esti-mates for �nite sequenes. Then all the estimates an be extended in the usual way, seeagain [9, 10, 11℄ for details. Only the ase p = 1 requires some additional e�ort. Theneessary modi�ations are left to the reader.In the following, `C' always denotes a generi onstant whih is independent of allthe other parameters under onsideration, but whose onrete value may be di�erent ineah partiular estimate.We start with Theorem 4.1, relation (4.4).Lemma 4.1 Suppose that the onditions in Theorem 4.1 are satis�ed. For any f 2Mp;wlet (i)i2I� := (hT�1' V f; 'i Æ �i)i2I� :Then there exists a onstant A <1 suh that the following inequality holds:k(i)i2I�k`p; 1w � AkfkMp;w :In partiular, we have that (i)i2I� 2 `p; 1w . 16



Proof: 1. First we show that for any sequene (�i)i2I� the inequalityk(�i)i2I�k`p; 1w � C kXi2I� j�ij1Uxi Æ �kLp; 1w (G=P) (4.12)holds, where again xi = �(hi) and where 1Uxi denotes the harateristi funtion of Uxi.Sine (xi)i2I is a relatively separated family, there exists a splitting I = Sr0r=1 Ir suhthat Uxi\Uxj = ; for i; j 2 Ir and i 6= j. This results in a deomposition I� = Sr0r=1 I�r,where I�r = fi 2 Ir : Uxi \ �(G=P) 6= ;g :Then we obtainkXi2I� j�ij1Uxi Æ �kpLp; 1w (G=P) = ZG=P  r0Xr=1 Xi2I�r j�ij1Uxi(�(h)) 1w(�(h))!p d�(h)� r0Xr=1 ZG=P  Xi2I�r j�ij1Uxi(�(h)) 1w(�(h))!p d�(h)= r0Xr=1 ZG=P Xi2I�r j�ijp1Uxi(�(h)) 1wp(�(h))d�(h):Moreover, sine w(�(h)) � w(u)w(xi) for �(h) 2 Uxi, we an onlude from (4.2) thatkXi2I� j�ij1Uxi Æ �kpLp; 1w (G=P) � (maxu2U w(u))�1CUXi2I� j�ijpwp(xi)whih implies (4.12) by ontinuity of w and sine U is ompat.2. Let F 2 Lp; 1w (G=P). Then the appliation of (4.12) yieldsk(hF; 'i Æ �i)i2I�k`p; 1w � k(hjF j; 'i Æ �i)i2I�k`p; 1w� C kXi2I�hjF j; 'i Æ �i1Uxi Æ �kLp; 1w (G=P) :Further, we see for an arbitrary �xed h 2 G=P thatXi2I�hjF j; 'i Æ �i1Uxi(�(h)) =Xi2IhhjF j; 'i Æ �i ;where Ih := fi 2 I� : xi 2 U�1�(h)g, andXi2IhhjF j; 'i Æ �i = Xi2IhhjF j; 'i(�(�))i � hjF j; 1UU�1(�(�)�(h)�1)i :
17



Now �(l)�(h)�1 2 UU�1 means that there exist some u1; u2 2 U depending on h; l suhthat �(l)�(h)�1 = u1u�12 . Then the submultipliativity of our weight funtion impliesthat w(�(l)) = w(u1u�12 �(h)) � w(u1u�12 )w(�(h));and sine UU�1 is ompat and w ontinuousw(�(l))w(�(h)) � Cwith a onstant independent of h and l. Consequently, sineZG=P 1UU�1(�(l)�(h)�1) w(�(l))w(�(h)) d�(l) � C ZG=P 1UU�1(�(l)�(h)�1) d�(l) � C; (4.13)for all h 2 G=P and similarly for the integration with respet to d�(h) for all l 2 G=P,we obtain by the weighted Young inequality, ompare again with the appendix, Theorem5.1, where K(l; h) := 1UU�1(�(l)�(h)�1), thatk(hF; 'i Æ �i)i2I�k`p; 1w � CkhjF j; 1UU�1(�(�)�(h)�1)ikLp; 1w (G=P)� CkFkLp; 1w (G=P) :3. Finally, we onlude by the orrespondene priniple and by using F = T�1' V f 2Mp;w in the above inequality thatk(hT�1' V f; 'i Æ �i)i2I�k`p; 1w � C kT�1' V fkLp; 1w (G=P)� C jjjT�1' jjj kV fkLp; 1w (G=P)� C jjjT�1' jjj kfkMp;w : �The next step is to establish (4.5).Lemma 4.2 Suppose that the onditions in Theorem 4.1 are satis�ed. Then there existsa onstant B <1 suh that for any sequene (i)i2I� 2 `p; 1w , 1 � p � 1, the followinginequality holds: kXi2I� iU(�(hi)�1) kMp;w � B k(i)i2I�k`p; 1w :Proof: 1. First we prove thatkXi2I� iR(hi; h)kLp; 1w (G=P) � Bk(i)i2I�k`p; 1w :18



To this end, we want to use the Riesz{Thorin Interpolation Theorem as outlined in theappendix. That is, we show thatT : (i)i2I� �!Xi2I� iR(hi; �)is a bounded operator from `1; 1w to L1; 1w and from `1; 1w to L1; 1w . Then the weightedRiesz{Thorin Theorem implies that T is also a bounded operator from `p; 1w to Lp; 1w forall 1 � p � 1:For p = 1, we obtain by (3.4) thatkXi2I� iR(hi; �)kL1; 1w (G=P) � ZG=P Xi2I� jij jR(hi; h)j 1w(�(h)) d�(h)� Xi2I� jij 1w(�(hi)) supi2I� ZG=P jR(hi; h)jw(�(hi))w(�(h)) d�(h)� C k(i)i2I�k`1; 1w :For p =1 it follows thatkXi2I� iR(hi; h)kL1; 1w (G=P) = suph2G=P jXi2I� iR(hi; h) 1w(�(h)) j� supi2I� jijw(�(hi)) suph2G=PXi2I� jR(hi; h)jw(�(hi))w(�(h))= k(i)i2I�k`1; 1w suph2G=PXi2I� j ~R(hi; h)j: (4.14)Sine (xi)i2I is a relatively separated family, we have for any ompat neighborhood Qof the identity in G that I� = Sr0r=1 I�r and Qxi \ Qxj = ; for i; j 2 I�r and i 6= j.Hene we obtain Xi2I� j ~R(hi; h)j = r0Xr=1 Xi2I�r j ~R(hi; h)j :For all l 2 G=P with the property that �(l) 2 Q�(hi), we have that �(hi)�1 2 �(l)�1Qand hene supq2Q jhU(�(h)�1) ; U(�(l)�1q) ij w(q�1�(l))w(�(h)) �� jhU(�(h)�1) ; U(�(hi)�1) ijw(�(hi))w(�(h))= jR(hi; h)jw(�(hi))w(�(h)) = j ~R(hi; h)j :19



Let Bi := fl 2 G=P : �(l) 2 Q�(hi)g. Then the above inequality impliesZBi supq2Q jhU(�(h)�1) ; U(�(l)�1q) ij w(q�1�(l))w(�(h)) d�(l) � j ~R(hi; h)j�(Bi) :Now we have that for i; j 2 I�r and i 6= j the sets Bi and Bj are disjoint. Consequently,we obtain by (4.2)ZG=P supq2Q jhU(�(h)�1) ; U(�(l)�1q) ijw(q�1�(l))w(�(h)) d�(l) �� Xi2I�r ZBi supq2Q jhU(�(h)�1) ; U(�(l)�1q) ijw(q�1�(l))w(�(h)) d�(l)� Xi2I�r j ~R(hi; h)j�(Bi)� CQ Xi2I�r j ~R(hi; h)jand further by (4.3) for all h 2 G=PXi2I�r j ~R(hi; h)j � ~CQCQ ; Xi2I� j ~R(hi; h)j � r0 ~CQCQ : (4.15)Together with (4.14) this yieldskXi2I� iR(hi; h)kL1; 1w (G=P) � k(i)i2I�k`1; 1w r0 ~CQCQ :2. Now it is easy to hek that Pi2I� iR(hi; h) 2 Mp; 1w . Sine V ~V is the identity onL1; 1w and ~V V on H 01;w, we obtainXi2I� iR(hi; h) = V ~V  Xi2I� iV (U(�(hi)�1) )!= V  Xi2I� iU(�(hi)�1) ! :Thus, kXi2I� iU(�(hi)�1) kMp;w = kXi2I� iR(hi; h)kLp; 1wand we are done. �Next let us turn to the estimates (4.8) in Theorem 4.2.20



Lemma 4.3 Suppose that the onditions in Theorem 4.2 are satis�ed. For i 2 I�, let i := U(�(hi)�1) . Then, for f 2Mp;w, there exists a onstant B0 <1 suh thatjj�hf;  iiH01;w�H1;w�i2I� jj`p; 1w � B0jjf jjMp;w:Proof: Let F := V f . By the orrespondene priniple the assertion is equivalent tojj (F (hi))i2I� jj`p; 1w � B0jjF jjLp; 1w (G=P): (4.16)We prove (4.16) for p = 1 and p = 1 and apply again the weighted Riesz{ThorinInterpolation Theorem to obtain the inequality for all 1 � p � 1.For p = 1, we onlude as followsXi2I� jF (hi)j 1w(�(hi)) = Xi2I� jhF;R(hi; �)ij 1w(�(hi))� Xi2I� ZG=P jF (l)jjR(hi; l)j 1w(�(hi)) d�(l)= ZG=P jF (l)j 1w(�(l))Xi2I� jR(hi; l)j w(�(l))w(�(hi)) d�(l)� jjF jjL1; 1w supl2G=PXi2I� j ~R(l; hi)j:Using (4.7) we obtain as in (4.15) that Pi2I� j ~R(l; hi)j � r0 ~CQ=CQ and onsequentlyXi2I� jF (hi)j 1w(�(hi)) � r0 ~CQCQ jjF jjL1(G=P):For p =1, we getsupi2I� jF (hi)j 1w(�(hi)) = supi2I� jhF;R(hi; �)ij 1w(�(hi))� supi2I� ZG=P jF (l)jjR(hi; l)j 1w(�(hi)) d�(l)� supl2G=P jF (l)j 1w(�(l)) supi2I� ZG=P jR(hi; l)j w(�(l))w(�(hi)) d�(l)= supl2G=P jF (l)j 1w(�(l)) supi2I� ZG=P j ~R(l; hi)j d�(l)� C jjF jjL1; 1w (G=P);21



where we have used (3.3) for the last estimate. This �nishes the proof. �Lemma 4.4 Suppose that the onditions in Theorem 4.2 are satis�ed. For i 2 I�, let i := U(�(hi)�1) . Then, for �hf;  iiH01;w�H1;w�i2I� 2 `p; 1w , there exists a onstantA0 > 0 suh that jjf jjMp;w � 1A0 jj�hf;  iiH01;w�H1;w�i2I� jj`p; 1w :Proof: 1. First we show that~T : (i)i2I� 7! hXi2I� i'i Æ �;R(h; �)iis a bounded operator from `p; 1w toMp;w Again by the Riesz{Thorin Theorem, if suÆesto show the boundedness for p = 1 and p =1.For p = 1, we get by (3.3), (3.4) and the weighted Young inequalityjjhXi2I� i 'i Æ �;R(h; �)ikL1; 1w � C jjXi2I� i 'i Æ �jjL1; 1w (G=P)� C ZG=P Xi2I� jijw(�(hi)) j'i Æ �j w(�(hi))w(�(h)) d�(h)� C jj(i)i2I� jj`1; 1w supi2I� ZG=P j'i(�(h))j w(�(hi))w(�(h)) d�(h): (4.17)By supp'i � U�(hi) we onsider h 2 G=P with �(h) = u�(hi). Then, by using similararguments as in the proof of Lemma 4.1, we obtainw(�(hi))w(�(h)) � C (4.18)with a onstant C independent of hi and h. Hene we an estimate (4.17) byjjhXi2I� i 'i Æ �;R(h; �)ikL1; 1w � C C jj(i)i2I� jj`1; 1w :For p =1, we obtain in a similar way by using the weighted Young inequalityjjhXi2I� i 'i Æ �;R(h; �)ikL1; 1w � C suph2G=P jXi2I� i 'i(�(h))j 1w(�(h))� C supi2I� jijw(�(hi)) suph2G=PXi2I� 'i(�(h)) w(�(hi))w(�(h)) ;22



and further by (4.18) and sine f'ig is a partition of unity thatjjhXi2I� i; 'i Æ �;R(h; �)ikL1; 1w � C C jj(i)i2I� jj`1; 1w :2. Next it is easy to hek thathXi2I� i'i Æ �;R(h; �)i =Xi2I� ih'i Æ �;R(h; �)i:Sine S�1' is a bounded operator on Mp; 1w , we onlude that(i)i2I� 7! S�1'  Xi2I� ih'i Æ �;R(h; �)i! =Xi2I� iS�1' (h'i Æ �;R(h; �)i)is also bounded from `p; 1w to Mp;w.3. Finally, we apply part 1 and 2 of the proof to the speial sequene �hf;  iiH01;w�H1;w�i2I� =(F (hi))i2I� , where F := V f , and obtainjjXi2I�hf;  iiH01;w�H1;wS�1' (h'i Æ �;R(h; �)i) jjLp; 1w (G=P) � C jj�hf;  iiH01;w�H1;w�i2I� jj`p; 1wand together with Corollary 4.2 and the orrespondene priniplejjf jjMp;w � C jj�hf;  iiH01;w�H1;w�i2I� jj`p; 1w : �
5 AppendixIn this setion, we want to ollet some basi fats that were needed before. Let us startwith extending the lassial Young inequality, see, e.g., [13℄, p. 185, Theorem 6.18, toweighted Lp{spaes.Theorem 5.1 (Weighted Young Inequality) Let (X;A; �) and (Y;B; �) be �{�nitemeasure spaes, let K be an A
B{measurable funtion on X�Y , and let w be a positiveweight funtion. Suppose that K satis�es the following onditionsZX jK(x; y)jw(y)w(x) d�(x) � CKfor a.e. y 2 Y and ZY jK(x; y)jw(y)w(x) d�(y) � CK23



for a.e. x 2 X. If f 2 Lp; 1w ; 1 � p � 1, then the integralTf(x) = ZY K(x; y)f(y) d�(y)onverges absolutely for a.e. x 2 X, the funtion Tf thus de�ned is in Lp; 1w andkTfkLp; 1w � CKkfkLp; 1w :Proof: To show that the operator T is bounded we apply the assumptions of Theo-rem 5.1 and the H�older inequality with 1=p+ 1=q = 1 as follows:kTfkpLp; 1w = Z j Z K(x; y)f(y)d�(y)jp 1wp(x) d�(x)� Z �Z (jK(x; y)jw(y))1=p+1=q jf(y)jw(y) d�(y)�p 1wp(x) d�(x)� Z �Z jK(x; y)jw(y) jf(y)jpwp(y) d�(y)�p=p�Z jK(x; y)jw(y)d�(y)�p=q� 1wp(x) d�(x)� Cp=qK Z Z jK(x; y)jw(y) jf(y)jpwp(y) d�(y)w(x)p=q�p d�(x)= Cp=qK Z w(y) jf(y)jpwp(y) Z jK(x; y)jw(x) d�(x) d�(y)� CpKkfkpLp; 1w : �In order to establish the frame bounds, we need a variant of the Riesz{Thorin inter-polation theorem for the ase of weighted Lp{spaes. For p0; p1 <1, the desired resultis essentially a speial ase of the Stein{Weiss interpolation theorem, see, e.g., [2℄, Corol-lary 5.5.4, for details. However, for our approah we de�nitely need the orrespondingresult for p0 = 1; p1 = 1: The resulting theorem is stated and proved below. It mightbe already known to the speialists, however, in this speial form, it was not found inthe literature.The proof is based on omplex interpolation. Therefore we start by briey reallingthe basi setting. For further information onerning real and omplex interpolation,the reader is, e.g., refered to [2℄ and [15℄. Let A0 and A1 be two omplex Banah spaes.Then (A0; A1) is alled an interpolation ouple if there exists a linear omplex Hausdor�spae suh that both A0 and A1 are linearly and ontinuously embedded in this spae.Then A0 \ A1 with norm kakA0\A1 = maxfkakA0; kakA1g and A := A0 + A1 with normkakA0+A1 = infa=a0+a1fkakA0; kakA1g are also omplex Banah spaes. LetS := fz 2 C : 0 < <z < 1gbe a strip in the omplex plane. The olletion F of all funtions f(z) de�ned on S withvalues in A with the two properties 24



i) f(z) is ontinuous in S and analyti in S withsupz2S kf(z)kA <1;ii) f(it) 2 A0 and f(1+ it) 2 A1, with t 2 R, are ontinuous in the respetive Banahspaes and kfkF := maxfsupt kf(it)kA0 ; supt kf(1 + it)kA1g <1is again a Banah spae.For a given interpolation ouple (A0; A1) and � 2 (0; 1), the spae (A0; A1)[�℄ is de�nedas (A0; A1)[�℄ := fa 2 A : there exists f(z) 2 F with f(�) = ag:Equipped with the norm kak[�℄ := inffkfkF : f(�) = ag;(A0; A1)[�℄ beomes a Banah spae whih has the following interpolation property:Theorem 5.2 Let (A0; A1) and (B0; B1) be two interpolation ouples and let T be alinear operator from A0 + A1 into B0 + B1 suh that its restrition to Aj is a boundedlinear operator from Aj into Bj, with norm �Mj; j = 0; 1: Then for any � 2 (0; 1), therestrition of T to (A0; A1) is a bounded linear operator from (A0; A1)[�℄ into (B0; B1)[�℄with norm � M1��0 M �1 :Theorem 5.2 is the main ingredient for the proof of Theorem 5.3. For tehnial reasons,we shall also need the so{alled three line theorem, see [2℄, page 4 for details.Lemma 5.1 (The three line theorem) Assume that F (z) is analyti on S and boundedand ontinuous on S. IfjF (it)j � N0; jF (1 + it)j � N1; �1 < t <1;then we have for � 2 [0; 1℄ thatjF (� + it)j � N1��0 N �1 ; �1 < t <1:Now we are ready to establish the desired interpolation result with respet to L1;wand L1;w.Theorem 5.3 Let T be a bounded linear operator from L1;w into `1;w with norm M1and from L1;w into `1;w with norm M1. Then, for any 1 < p < 1, the operator T isalso a bounded from Lp;w into `p;w with norm M1=p1 M (p�1)=p1 .25



Proof: Aording to Theorem 5.2, it remains to show that(L1;w; L1;w)[�℄ = Lp;w and (`1;w; `1;w)[�℄ = `p;w ; (5.1)where 1p = 1� �:We only prove the �rst statement in (5.1), the seond one follows analogously. We haveto show that kak[�℄ = kak(L1;w ;L1;w)[�℄ = kakLp;w :We start with the proof of kak[�℄ � kakLp;w . Without loss of generality we mayassume that kakLp;w = 1. For our purposes, it is onvenient to de�ne f as followsf(z) := w(x)p(1�z)�1 exp("(z2 � �2))ja(x)jp(1�z) a(x)ja(x)j :We observe that f is an analyti funtion on the strip S with f(�) = a. In order toompute kak[�℄ we note thatkfkF = maxfsupt kf(it)kL1;w ; supt kf(1 + it)kL1;wg : (5.2)For kf(it)kL1;w , we obtainkf(it)kL1;w = Z w(x)jw(x)p(1�it)�1 exp("(�t2 � �2))ja(x)jp(1�it) a(x)ja(x)j jdx= exp("(�t2 � �2)) Z ja(x)jpw(x)p dx= exp("(�t2 � �2)kakpLp;w = exp("(�t2 � �2):Consequently, for some suitable ",supt kf(it)kL1;w = exp(�"�2) � 1 : (5.3)The L1;w{norm of f(1 + it) an be estimated askf(1 + it)kL1;w = supx w(x)jw(x)p(1�(1+it))�1 exp("((1 + it)2 � �2))ja(x)jp(1�(1+it)) a(x)ja(x)j j= exp("(1� t2 � �2)) � exp(") : (5.4)Combining (5.3) and (5.4) we obtain by (5.2)kfkF � exp(")! 1 for "! 0 ;and taking the in�mum yieldskak[�℄ � kakLp;w ; i:e:; Lp;w � (L1;w; L1;w)[�℄ :26



The next step is to show kakLp;w � kak[�℄. Without loss of generality we may againassume that kak[�℄ = 1. Then we havekakLp;w = supfjha; biwj : kbkL0p;w = 1g;where, for 1 � p <1, the dual pairing an be written asha; biw := Z a(x)b(x)w(x)p dx :We de�ne F (z) := hf(z); g(z)iwfor some f 2 F satisfying f(�) = a and g given byg(z) := w(x)1�p(1�z) exp("(z2 � �2))jb(x)jpz=(p�1) b(x)jb(x)jfor some b 2 L0p;w with kbkL0p;w = 1. We want to estimate F (z) by means of Lemma 5.1.Sine kak[�℄ = 1 we an �nd f 2 F with f(�)) = a suh that kf(it)kL1;w � 1 + " andkf(1 + it)kL1;w � 1 + " for all " > 0. Any suh funtion f provides us with suitablebounds for jF (it)j and jF (1 + it)j. Indeed,jF (it)j = j Z f(it)g(it)w(x)p dxj� Z jf(it)jjw(x)1�p(1�it)jw(x)p dx exp("(�t2 � �2))� Z jf(it)jw(x) dx exp("(�t2 � �2))� kf(it)kL1;w exp("(�t2 � �2))� (1 + ") exp(�"�2) � exp(") =: N0andjF (1 + it)j = j Z g(1 + it)f(1 + it)w(x)p dxj� kf(1 + it)kL1;w Z jb(x)jp(1+it)=(p�1)w(x)p(1+it) dx exp("(1� t2 � �2))� (1 + ") Z jb(x)jp=(p�1)w(x)p dx exp(") exp("(�t2 � �2))� exp(2") =: N1 :Hene, by using Lemma 5.1,jF (� + it)j � exp(2") for all 0 � � � 1 :Consequently, jha; biwj � jF (�)j � exp(2") ;that is, kakLp;w � 1 and therefore (L1;w; L1;w)[�℄ � Lp;w. �27
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