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Abstract

This paper is concerned with frame constructions on domains and manifolds.
The starting point is a unitary group representation which is square integrable
modulo a suitable subgroup and therefore gives rise to a generalized continuous
wavelet transform. Then generalized coorbit spaces can be defined by collecting
all functions for which this wavelet transform is contained in a weighted L,—space.
Moreover, we show that a judicious discretization of the representation leads to
an atomic decomposition and to Banach frames for these coorbit spaces.
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1 Introduction

One of the classical tasks in applied analysis is the efficient representation/analysis of
a given signal. Usually, the first step is the decomposition of the signal into suitable
building blocks. Starting with Fourier analysis around 1820, many more or less successful
approaches have been suggested. Current interest especially centers around multiscale
representations of wavelet type. Wavelet bases have several remarkable advantages.
Among others, they give rise to characterizations of function spaces such as Besov spaces
and provide powerful approximation schemes, see, e.g., [4, 5]. However, in recent studies,
it has turned out that the use of Riesz bases may have some serious drawbacks. One
important problem is the lack of flexibility which is in some sense a consequence of the
uniqueness of the representation. Therefore, one natural way out suggests itself: why not
using a slightly weaker concept and allowing some redundancies, i.e., why not working
with frames? In general, given a Hilbert space #, a collection of elements {e;};cz is
called a frame if there exit constants 0 < A; < A, < oo such that

AR < Do IF edul® < AllF 115 (1.1)

1EL

The frame concept has been introduced by Duffin and Schéfer [6] in 1952. However, the
starting point of the modern frame theory was the fundamental Feichtinger/Gro6chenig
theory which has been developed since 1986 in a series of papers [8, 9, 10, 11, 12]. This
very aestetic and subtle theory is essentially based on group theory. Given a space N,
the first step is to find a suitable group G that admits a (square) integrable representa-
tion in Lo (N') and therefore gives rise to a generalized (continuous) wavelet transform.
Then, so—called coorbit spaces can be defined by collecting all functions for which this
wavelet transform is contained in some (weighted) L,-space. Finally, a judicious dis-
cretization of the representation produces the desired frames for the coorbit spaces. This
approach works fine for the whole Euclidean plane and produces a general framework
that covers, e.g., the classical wavelet and Weyl-Heisenberg frames. However, when
it comes to practical applications, also the case of bounded domains and manifolds is
important. Then, very often the problem arises that the group acting on the manifold
is too ‘large’, i.e., its representation is not square-integrable. One natural remedy as
suggested, e.g., by Ali et al. [1] and Torresani [16], is the concept of square-integrability
modulo quotients. In this case, one has to find a certain subgroup P such that, af-
ter restricting the representation to the induced quotient space G/P by fixing a Borel
section o : G/P — G, one is again in a square—integrable setting. However, by this
passage to quotients the very convenient group structure gets lost, so that many of the
building blocks used in the Feichtinger/Grochenig theory such as convolutions are no



longer available. Nevertheless, in the previous paper [3], we have shown that a quite
natural generalization of the Feichtinger/Grochenig theory to quotient spaces is indeed
possible. The major tool was a generalized reproducing kernel. The application of the
corresponding integral operator in some sense replaces the usual convolution. Then,
under certain integrability conditions on this kernel it has turned out that all the ba-
sic steps of the Feichtinger/Grochenig approach can still be performed. By employing
the concept of square integrability modulo quotients, generalized coorbit spaces may be
defined. Moreover, one can define an approximation operator which produces atomic
decompositions for these coobit spaces. Furthermore, a reconstruction operator can be
introduced in a similar fashion and the frame bounds can be established.

To keep the technical difficulties at a reasonable level, in [3] only the ‘simplest’ class
of coorbit spaces was considered. However, the coorbit approach allows the definition of
whole scales of smoothness spaces by collecting all functions for which the generalized
wavelet transform has certain decay properties, i.e., by considering weighted spaces. To
fill this gap is the major aim of the present work.

This paper is organized as follows. In Section 2, we collect all the facts on group
theory that are needed for our purposes. Then, in Section 3, we introduce and analyze
our generalized weighted coorbit spaces. Section 4 contains the main results of this paper.
In Subsection 4.1 we explain the setting and state all the conditions that are needed to
establish atomic decompositions and Banach frames for the generalized weighted coorbit
spaces. Subsection 4.2 is devoted to the definition and the analysis of the underlying
approximation operators. Finally, in Subsection 4.3 we establish the frame bounds. This
part of our analysis is essentially based on a version of the Riesz—Thorin interpolation
theorem. Since this specific version was not found in the literature, we have included a
proof based on complex interpolation in the appendix. There, we also state and prove a
version of the generalized Young inequality for weighted L,-spaces.

2 Group Theoretical Background

Let H be a Hilbert space and let G be a separable Lie group with (right) Haar measure
v. A continuous representation of G in H is defined as a mapping

U:G— L(H)

of G into the space L£(H) of unitary operators on H, such that U(gg') = U(g)U(g’) for
all g,¢' € G, U(e) = Id and for any ¢, € H, the function g € G — (¢, U(g)9))y is
continuous. The representation U is said to be square—integrable if it is irreducible and
there exists a nonzero 1 € H such that

[ 16Ul ntg) < o
g

Such a function 1 is called admissible. In the sequel, we shall always be concerned
with the case that the Hilbert space # is given as some Ly-space on a manifold NV, i.e.



H = Ly(N). Unfortunately, there are many cases of practical interest where no square
integrable representation exists. Very often, these cases can be handled by restricting
U to a convenient quotient G/P, where P is a closed subgroup of G. Unless otherwise
stated, we shall always consider right coset spaces, i.e.,

g1~ go if and only if g1 =hogy for some heP.

Because U is not directly defined on G/P, it is necessary to embed G/P in G. This can be
realized by using the canonical fiber bundle structure of G with projection IT1: G — G/P.
Let 0 : G/P — G be a Borel section of this fiber bundle, i.e., [l o o(h) = h for all
h € G/P. We introduce U o ¢ and suppose that G/P carries a G-invariant measure p.
An attractive notation of square integrability on a homogeneous space appears in [1].
An irreducible representation U is square integrable mod (P, o), if there exists a nonzero
function ¢ € Ly(N), called admissible (with respect to o), such that

[ .U P duh) < oo forall £ € Ly(w),

G/P
i.e., the operator V,, given by
Vi f(h) = (f,U(a(h)"")e) (2.1)

maps Ls(N) into Ly(G/P). Unless otherwise stated, in this paper (-, -) always denotes
the Lyo-inner product with respect to Ly(G/P) or Ly(N), e.g.,

(F,G) = /N F2)G@)da

whenever the integral is defined. The admissibility condition can be rewritten as

0< [ KEUG) ) Pdu(h) = (1. Auf) < o0 forall ] € La(),
G/P
where A, is a positive, bounded, and invertible operator. If A, = AZ for some A > 0,
then U is called strictly square integrable mod (P, o) and v strictly admissible. Moreover,

we say that (1, 0) is a strictly admissible pair [16]. In order to keep the notation simple
we focus our attention to strictly square integrable representations, where we normalize
¥ so that A = 1. Then Vj, : Ly(N) — Ly(G/P) in (2.1) is an isometry.

Assume now that (¢, 0) is a strictly admissible pair for our setting. Then the follow-
ing facts are well-known [1]:

e The set S, := {U(c(h)™")1 : h € G/P} is total in Ly(N), i.e., (S,)* = {0}.
e The map Vj is an isometry from Ls(N) onto the reproducing kernel Hilbert space

My :={F € Ly(G/P) : (F(-),R(h,-)) = F(h)}

4



with reproducing kernel

R(h,1) = Ry(h,0) = (U(a(h)™),U(e())"")¥) (2.2)

(2.3)

In other words, the spaces Ly(N) and M, are isometrically isomorphic. In parti-

cular, ||f||,ovy = ||V fllLog/p). Note that R(h,1) = R(l,h). Further, we see by
(2.3) that R(h,-) € Ly(G/P) for any fixed h € G/P and by applying Schwarz’s
inequality in (2.2) that R € L(G/P x G/P).

e The map Vj can be inverted on its image by its adjoint V,j, which is obviously
given by

%ﬂﬁ:/FWWWWW®wW.
G/P

This provides us with the reconstruction formula

f= VIV, = / (F Ulo(h) )e)U (o () ) dyu(h) (2.4)

G/P

for f € LQ(N)

3 Weighted Coorbit Spaces on Homogeneous Spaces

In this section we extend our considerations of functions belonging to coorbit spaces on
manifolds, cf. [3], to the concept of weighted coorbit spaces. By this extention we are
able to characterize a wide range of function spaces on manifolds, e.g., in dependence on
the underlying group we may obtain general modulation and Besov spaces, respectively,
or some mixed function spaces. In order to keep comparisons as simple as possible, we
adapt the notations given in [3, 8, 9, 10, 11, 12].

Let U be a strictly square integrable representation of G mod (P, o) with a strictly
admissible function . Furthermore, we introduce a positive, continuous weight function
w on G which is in addition submultiplicative, i.e., w(g g) < w(g) w(g) for all g,g € G,
and uniformly bounded from below, i.e., inf,cg w(g) > C, > 0. Associated with w we
are concerned with the weighted L,—spaces on G/P defined for 1 < p < oo by

1/p
Lp.w(G/P) :={f measurable on G/P : ||fL,.0/P) := </g/7: |f(h)|l’w(a(h,))pdu(h)> < oo},

and for p = oo by

Lo w(G/P) := {f measurable on G/P : || f||1o..(g/p) := €SS suE) |f(h)|w(o(h)) < co}.
heg /P



In the following we suppose the fundamental condition

[ 18 Dlwto) du) < © 3.)
G/P
with a constant C independent of h. This condition is equivalent with the assumption

that the functions Vi (U(o(h)~")¢) are in Ly, with norm bounded independently of h.
In addition to the kernel R we define a non-symmetric kernel R by

R(h,1) == R(h, ”Z((Z((};))))' (3.2)

Of course, (3.1) together with the lower boundedness of our weight function w implies
that

/|Rhl|du B < CQ Cy. (3.3)

Moreover, we assume conversely that

[ 1Rk 01dn0 < (3.4)
G/P
and finally that B
sup |R(h,1)| < Cy. (3.5)
h,leG

These requirements replace the usual integrability conditions in the group case. In our
setting, the general problem occurs that a group structure does no longer exist and
therefore we need a substitute for the usual convolution operation. It seems to us that a
powerful approach is to use the weighted Young inequality as presented in the appendix,
Theorem 5.1. However, the application of this inequality requires exactly integrability
conditions of the form (3.3) and (3.4).

The first problem is to provide a suitable large set that may serve as a reservoir
of selection for the objects of our coorbit spaces. By Hj, we denote the space of all
continuous linear functionals on

Hyw:=A{f € La(N): Vi f € L1w(G/P)}.
As usual, the norm || - ||, , on Hy,, is defined as

1l = Ve fllesw@m):

By (3.1) we observe that the elements U(c(h) 1)1 of our Ly(N) total set are in Hy .
Further, for f € H,,, we have by the Schwarz inequality and since w is uniformly



bounded from below that

Iy = [Vaflliugm = /|<f,U(0(h)_1)1l)>|Iwa(h)ldu(h)

G/P

< W leowy sy [ 1V ()]

G/P
< N W eoory 1 Loy IV f 1rwig/mCo

which implies the following dense continuous embeddings
Hl,w — LQ(N) — H{,w' (36)

Since U(o(h) ')y € Hy,, for every h € G/P, the following generalization of the operator
Vy in (2.1) on Hj , is well-defined

Vi f = (f, U(U(h)fl)WH;,wal,w (3.7)

where f € H} . For any f € Hj ,, we obtain by (3.3) that

1w»

Vsl G/P)

1
Tw

@wm = IKALTEM) D
1

1
< A fllay, eSShSeléI/)PWHU(U(h) Vllm, .,

gl

IN

1
Ml e b it )

< Cyllfllay, - (3-8)

Thus, Vi : Hi ,, — L, 1(G/P) is a bounded operator. For F' € L 1(G/P), we define
Vy F by

(VuF, gy et = (FVag) = / FO)Vog(0) du()
G/P

_ / F(1){g, U(e(1)"1)¢) dull)

G/P

for all g € Hy,. It is easy to check that Vi, : Ly 1(G/P) — Hi, is also a bounded
operator. Now we obtain for F' € L 1 (G/P) that

1
w

VoVoF = (VyF,U(o(B) ™))y xrm = (F.Ve(U(a(h)™)))
= (F,R(h,-)) . (3.9)



Similar to the definition of coorbit spaces in [3] we define weighted coorbit spaces by
My :={f € Hy,, : Vof €L, 1(G/P)},
with 1 < p < oo and norm

112z = VoS llz,  /p)-

' w

As we shall see in the following , the choice of L, 1 (G/P) is natural. It is straightforward
that || - ||a,, defines a seminorm. The property that || f||,, = 0,i.e.,Vy f = 0, implies
f = 0 follows similarly as in [9] since {U(c(h) )¢ : h € G/P} is a dense subset of
H, , and since w is positive. The basic step for the investigations outlined below is a
correspondence principle between these weighted coorbit spaces and certain subspaces
on the quotient group G/P which are defined by means of the reproducing kernel R. To
this end, we consider the subspaces

Mpw :={F € L, 1(G/P) : (F,R(h,-)) = F(h)}

of L,1(G/P) with 1 < p < co. Then the desired correspondence principle can be
formuiuated as follows:

Theorem 3.1 Let U be a strictly square integrable representation of G mod (P, o) and
Y a strictly admissible function. Let Vi, be defined by (3.7) and let R in (2.2) fulfill (3.3)
and (3.5).

i) For every f € M,,, the following equation is satisfied
i.e., V¢f S Mpyw.

ii) For every F € M,,, 1 < p < oo, there exists a uniquely determined functional
f € M,,, such that F' =V f.

Consequently, the spaces M, ., and M,.,, 1 < p < 0o, are isometrically isomorphic.

Proof: i) Since U(o(h)™")y € Ly(N) we have by (2.4) that
Vyf(h) = (f,U(a(h)” )¢>H’ wXHiw

— f/ R(h, U (o (1)) dpu(l)) my < -

G/P

By (3.1), the Fubini theorem and (3.6) we can change the order of integration and get

Vof(h) = / RIS U)oy ey disl])
G/P

= (Vuf, R(h,")) .

8



ii). For F € M, ,, 1 < p < oo, we have that

Fllyorm = I [ FORBD DI o)
G/P
_ 1
= ess sup F()R(h, ) dp(l ,
o ] TORE DO )

and further, by applying Holder’s inequality with 1/p + 1/g = 1, the assumptions (3.3)
and (3.5),

| [ FORBD a0 < [ IOl (RODlwlo )7/ du)
G/P G/P
1/p

L R(h, Do )du(l) | x

@pwmmﬂw»

VAN

1/q

|B(h, D)|w(o(1))du(l)

\o/P

< Oy |Fllz, , @/pyw(o(h)) -

tw

Consequently, we have that

1ENL, 2@ < CullFll, , @/p) -

0w Yw

Thus, F' € L, 1(G/P) and by (3.9) we obtain that F' = Vi (Vi F), where V,, F € Hj , and

since F' € L, 1(G/P) also VyF € M,,,. The uniqueness condition follows by definition
of M, . ’ |

Applying Theorem 3.1 4) and (3.9) we get for f € H] , that
VpVo(Vof) = (VoS R(h,-)) = Vi f .
Hence, ‘N/wVw is the identity in H] ,, and we have the reconstruction formula

f=WWf=/Uwa*mwww*mwwy

G/P
We finish this section by establishing the relationship

_ !
Myw = Hy,



This can be seen as follows: For f € Hj, we have by (3.8) that [[Vyf|z_
Cyllfllm; - Conversely, we have for f € My

G/P) <

gl

e, = suwp Kf,9)m xm.l= sup (Vi f, 9y Xy ]
lgllr, , =1 lgllr =1
= sup  [(Vf, Ve < Vo flle_ .
llgll e,y =1 "

4 Atomic Decompositions and Banach Frames for
Weighted Coorbit Spaces

Once our generalized coorbit spaces are established, the next step is to derive some
atomic decompositions for these spaces and to construct suitable Banach frames. This
program is performed in several steps. In the next subsection, we present some prepara-
tions and state our main results. The remaining two subsections are devoted to the build-
ing blocks which are necessary to prove these results. The major step is the construction
of suitable approximation operators which are defined and analyzed in Subsection 4.2.

The results in this section are again inspired by the pioneering work of Feichtinger
and Grochenig, [9, 10, 11, 12]. Furthermore, they are a generalization of [3].

4.1 Setting and Main Results

Before we can state and prove our main results, some preparations are necessary. Given
some neighborhood U of the identity in G, a family X = (x;);ez in G is called U -dense
if UjezUry = G. A family X = (2)iez in G is called relatively separated, if for any
compact set @ C G there exists a finite partition of the index set Z, i.e., T = >, Z,,
such that Qu;NQux; = 0 for all i, j € Z, with i # j. Note that these technical conditions
can be easily fulfilled by some families X in all the settings we are interested in.

Let U be an arbitrary compact neighborhood of the identity in G. By [7], there exists
a bounded uniform partition of unity (of size i), i.e., a family of continuous functions
(¢i)ier on G such that

e 0<y;(g) <lforall geg;

e there is a U—dense, relatively separated family (x;);e7 in G such that
supp ¢; © U;;

> . crpilg)=1forallgeg.

Furthermore, we define the (left and right) U —oscillation with respect to the analyzing
wavelet ¢ as

osy (I, h) = sup [(,U(c(D)o(h) ™) = Uu™'o(D)a(h) ™" )i,

ueU

oscy (I, h) = sup [(,U(o(l)o(h) ")y — Ulo(l)o(h) "u)i)|.

ueU

10



In analogy to (3.2) we need for applying the weighted Young inequality the w-modified
U-oscillations

oscl, ,(I,h) = oscl(l,h)
’ w

oscy (I, h) == oscz’"/(l,h)w(a(l)
’ w

In the sequel, we shall always assume that (x;);cz can be chosen such that o(G/P)"\Ux; #
(0 implies x; € 0(G/P). Let

I, ={i1€Z: o(G/P)NUz; # 0} .
Then there exist h; € G/P such that x; = o(h;), where i € Z,. Note that

Y wilo(h) =1,
i€Z,
where h € G/P.

In this setting, we can formulate our main theorems which we shall prove in the
following subsections. The first one is a decomposition theorem which says that dis-
cretizing the representation U(o(-)~!) by means of a U-dense set indeed produces an
atomic decomposition of M, ,,.

Theorem 4.1 Let G be a separable Lie group with closed subgroup P, w a weight func-
tion and let pn be an invariant measure on G/P. Further, let U be a strictly square
integrable representation of G mod (P, o) in Ly(N) with strictly admissible function .
Let a compact neighborhood U of the identity in G be chosen such that

/ oscy (L, h)du(l) < v and / oscy (1, h)du(h) < v, (4.1)
G/P Gg/P

wherey < 1. Let X = (x;);ez be a U—~dense and relatively separated family. Furthermore,
suppose that for any compact neighborhood Q of the identity in G

w{h € G/P :o(h) € Qu(h)} > Co > 0 (4.2)

holds for all i € Z,. Finally, let us assume that for any compact neighborhood Q of the
identity in G our analyzing function ¥ fulfills the following inequality

-1 -1 w(g o))
g//P sup (U0 ()0 U~ a))

du(l) < Cg (4.3)

with a constant C’Q < oo independent of h € G/P. Then M,,,, 1 < p < oo, has the
following atomic decomposition: if f € My,,, 1 <p < 0o, then f can be represented as



where the sequence of coefficients (¢;)icr, = (¢i(f))ier, € L,
satisfies

1 depends linearly on [ and

L < Allfllag (4.4
If (¢i)ier, € ly,1, then [ = > ez, GU(o(hi)™" )i is contained in M, and

(eies e

1oz < Bll(ci)ics, e, (4.5)

1
Here we use w = (w(z;));c; as discretized weight sequence and
bpw = {c = (ciies, : llclle, ., = llewlle, < oo}

for 1 <p < oc.

Given such an atomic decomposition, the problem arises under which conditions a
function f is completely determined by the moments or coefficients ( f, U(U(hi)_l)¢>Hi,w X Hi
and how f can be reconstructed from these coefficients. This question is answered by
the following theorem which shows that our generalized coherent states indeed give rise
to Banach frames.

Theorem 4.2 Impose the same assumptions as in Theorem 4.1 with

where ¥ < 1, instead of (4.1) and with

/ sup |(U (o ()™ )b, U ()" q) ) ap(l) < Cg (4.7)

qeQ w(qila(l))
G/P

where Cg < 00 is a constant independent of h € G/P, instead of (4.3). Then the set
{ti = Ulo(hi) )¢ i € Lo}
is a Banach frame for My ,,. This means that
(1) f € My if and only if ((f, i) uy  xm,.)iez, € 6,15

(ii) there exist two constants 0 < A" < B' < oo such that

A, ||f||Mp,w S ||(<f7 wi>Hi’w><Hl,w)i€Io-||lp’ S B, ||f||Mp,w’ (48)

gl

(ii) there exists a bounded, linear reconstruction operator S from [,

that S (((f, 1/)z'>HwaH1,w)z'eIa> = f.

to M, ., such

1
Yw

For further information concerning Banach frames see [14].

12



4.2 Approximation Operators

In this section, we examine two different approximation operators on M, ,,. We use the
results to construct expansions for the spaces M, ,,, which then, by the correspondence
principle in Theorem 3.1, lead to expansions for the coorbit spaces M, ,,.

We consider the following approximation operators on M, ,:

T,F(h) = Y (F,pio0)R(hih)

1€,

-y / F(l)pi(o (1)) du() R(hi, h),
ieI"g/P

S,F(h) == Y F(hi){gioo,R(h,-))

1€,

= 3 [ Fheo@) RO du).

iEIo-g/P

So far, it is not clear a prior whether these formal expressions make sense at all
and on which spaces they are bounded operators. This will be clarified in Theorem 4.3
below. Another remark is required on the meaning of the sum over I,. We order the
finite subsets of I, by inclusion, then ), . ... will be understood as the limit of the
partial sums over finite subsets of I,.

The first step is to establish the invertibility of the operators T}, and S,,.

Theorem 4.3 i) If the conditions (4.1) are fulfilled, then the operator T, : M,,, —
M, 18 bounded with bounded inverse.

i) If the conditions (4.6) are fulfilled, then the operator S, : My, — M, ., is bounded
with bounded inverse.

Proof: By definition of M, ,,, we have for F' € M, ,, that

nm=<ﬂmm»=/nwmwwm
G/P

_ Z/F(l)goi(a(l))R(l,h)du(l)
€logp
and consequently

F(h) =ToF(h) = Y | F)@iloD) [R( R) = R(hi, b)] dp(l),

iGIag/P

F(h) = S,F(h) = Y [ [F() = F(h)lpi(a(D) R h) du(l)- (4.9)
iEIag/P
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Let us first consider F' — T,,F". By the definition of R we obtain

[F(h) = T,F()] < Y [ IEOlei(o(D)IRA h) = R(hi, h)] dp(l)

i€Tog)p
= Y [ POl x
i€Zog)p
(¥, U(e(Da(h) ")v — U(a(hi)o(h) ")) du(l).
Now o(l) € Ux; implies that there exists v € U such that o(l) = uz; = wo(h;). Thus
lo(l) and we get

olh;)) =uto

[E(h) = T,F(h) <Y [ 1FD)gpio(l) oscy (1, k) dp(l) = / (1) osc (1, h) dul).
oG /p g/P

By recalling the assumptions (4.1) and applying the weighted Young inequality (see

(G/P)-

&=

appendix), we obtain
@m) <VIFL,

&=

1= TP, 4 ey = I = T5)Fllz,,
Consequently |||/ — T,||| < 1, i.e., I — T, is a contraction on M,,,. Thus, regarding
that |||T,||| < |||T, — I||| + |||I]||, we see that T}, is a bounded operator with bounded

inverse.
Next we consider F' — S,F. Since F' € M, ,, and by the definition of R we obtain

[ 1F@) 1RG0, = R(g. 1| duto)

|E(l) = F(hi)] <
g/P
= / IF(9)I(¢, U(a(9)o ()™ — Ula(g)o(hi) ™)) | dulg).
g/P
By (4.9) we are only interested in [ € G/P with o(l) € Ux;, i.e., o(l) = uo(h;) for some

uw €U and o(h;) ™t = o(l) " 'u. Thus
FO) - Pt < [ 1Pl osci(g, 1 duto)
g/P

and since (i;) is a partition of unity

S IPW - Fbloito) < [ 1F(9)losc0.1) dulo)
1€, G/P

14



By the weighted Young inequality and (4.6) this implies

1> 1) hi)lei(o(D)le, 1 @/p) < —||F||L | (G/P)-

Py Prw
ZEIO'

It is easy to check that the order of summation and integration in (4.9) can be changed.
Then we obtain by (4.9), (3.3) — (3.4) and the weighted Young inequality

1F' = SoFllL @p) < Cyll D IF(1) = F(hy)|pi(o Dz, 1 @rey < ANFIlL, 4 0/P)-

Pw Prw Prw

1€1s

Consequently, I — S, is a contraction on M, , and S, is a bounded operator with
bounded inverse on M, ,,. [ |

Using the correspondence principle we can derive the following representation of
functions from our coorbit spaces.

Corollary 4.1 Any function f € M,,, can be decomposed as
F=> aU(o(h) ), (4.10)

where

and F =V, f.
Proof: By Theorem 3.1 i) and Theorem 4.3 i) we have that

Vif (h) = F(h) = T,T,'F(h) = ) (T, 'F,¢i00)R(hi, h).
iEIa
Since V,,V, is the identity on Hj , and V is bounded on L, 1, we obtain
f=VoVof =) (T;'F pi 0 0)Vy(R(hi, ). (4.11)
€L

Now, for any g € Hy ,

(Vi (R(is ) 9Oy e = (B(Bis-), Vog () = Vog(hi)
= (Ulo(ha) ), 9)i; <

so that Vi (R(hi,)) = U(o(h;)~1)4. Together with (4.11) this yields the assertion. M

Moreover, the operator S, induces the reconstruction operator as stated in Theorem
4.2 iii).

15



Corollary 4.2 Any function f € M,,, can be reconstructed as

F= (L U(h) O e, i

1€,

where .
e; = Vy(Ei), Ei:=S;'({pio0,R(h,)))

Proof: Since S, has a continuous inverse, we obtain for F':=V,, f € M, ,, that

F(h) = S,'S, F(h)

ZF gploaR ZF

€L, 1€,

Now the correspondence principle and the continuity of f/¢ on L, 1 implies

fo=VeVof =V, (ZV¢(f)(hi)Ei)
= D (LU ) ") uy e Vo B) = Y (FU0R) )iy ey 6o B

1€1s 1€1s

4.3 Frame Bounds

In this section, we want to prove the norm equivalences in Theorem 4.1 and 4.2. For
the verification that the infinite sums appearing in the following lemmatas converge
(unconditionally) in M, ,, respectively M, ,, it suffices to obtain for p < oo the esti-
mates for finite sequences. Then all the estimates can be extended in the usual way, see
again [9, 10, 11] for details. Only the case p = oo requires some additional effort. The
necessary modifications are left to the reader.

In the following, ‘C” always denotes a generic constant which is independent of all
the other parameters under consideration, but whose concrete value may be different in
each particular estimate.

We start with Theorem 4.1, relation (4.4).

Lemma 4.1 Suppose that the conditions in Theorem 4.1 are satisfied. For any f € My,
let

(¢i)iez, = (<T£1V¢f; ©i ©0))icz, -
Then there exists a constant A < oo such that the following inequality holds:

||(Ci)i€Ia||fp,1 < A”f“Mp,w :

w

In particular, we have that (ci)iez, € €, 1

16



Proof: 1. First we show that for any sequence (7););cz, the inequality

lm)iezlle, , <CUY Inilluw 00l /e (4.12)

w Py
€L,

g

holds, where again z; = o(h;) and where 1;,,, denotes the characteristic function of Uwx;.

Since (z;);ez is a relatively separated family, there exists a splitting Z = ;% Z, such
that Uz;NUz; = O for i, j € Z, and i # j. This results in a decomposition Z, = UT 1 Loy,
where

Iy ={i€Z,: Ur;No(G/P) £ 0D} .

Then we obtain

ro 1 p
| Z 17 Ltz OU“L 1(G/P) = / <Z Z |77i|1uqzi(0(hf))w(a(h))> du(h)

€Ly G/P r=1 i€Zyp
r:lg/,P 1ELyr
= 3 [ b o) gy
g/P 1€Lyy

Moreover, since w(o(h)) < w(u)w(z;) for o(h) € Uz;, we can conlude from (4.2) that

||Z|77z|1u:ploo||L L@ 2 (maxw 1oy pr

1€2 €2

which implies (4.12) by continuity of w and since U is compact.
2. Let FF € L, 1(G/P). Then the application of (4.12) yields

VAN

I(CE, @i 0 0))ie, lle, IKIE]s @i 0 0)iez, e,

Tw T w

< O AFI pioo)luz o0l , (9/p) -

Py
ZEIO'

N

Further, we see for an arbitrary fixed h € G/P that

Y (IFl,pi00)lys,(o(h)) = Y (IF|,pic0)

€L, 1€Ly

where I, :={i € Z, : z; e U 'o(h)}, and

Y (Flwica) = Y (IFleio()) < (IF], luu-1(o()a(h) ) -

€T 1€Ty

17



Now o(l)o(h)™" € UU~' means that there exist some u;, uy € U depending on h, [ such
that o(l)o(h)™ = uju,'. Then the submultiplicativity of our weight function implies
that

w(o(l)) = w(uuy'o(h)) < wluuy*) w(o(h)),

and since YU ! is compact and w continuous

w(o()
wlo(h) = ¢

with a constant independent of h and [. Consequently, since

/mWwwmwﬁg%wmsc/mwwmwwwmsa (4.13)

g/P g/P

for all h € G/P and similarly for the integration with respect to du(h) for all l € G/P,
we obtain by the weighted Young inequality, compare again with the appendix, Theorem
5.1, where K(I,h) := L1 (o(l)o(h)™"), that
I(CF eioo)ierlle, . < CIIF| Luw-2(o (Yo (h) Ne, @)
< ClFlz, , w@/p) -

YW YW
Prw

3. Finally, we conclude by the correspondence principle and by using F' = T Wyl €
M, in the above inequality that

1T Vi i 0 0))iez, lle,

IN

C||T_1V¢f||L 1(0/P)
C T ||wa||L L (G/P)

’w

S C|||Tnp1||| ||f||Mp,w '

w

IN

The next step is to establish (4.5).

Lemma 4.2 Suppose that the conditions in Theorem 4.1 are satisfied. Then there exists
a constant B < oo such that for any sequence (c;)icz, € £, , 1 < p < o0, the following
inequality holds:

1> cU(o(h) ™). < Blleiez,lle, . -

1€1,

Tw

Proof: 1. First we prove that

1> ciR(ha, b2 1P < Bll(cierlle, , -

lEIa'

Tw

18



To this end, we want to use the Riesz—Thorin Interpolation Theorem as outlined in the
appendix. That is, we show that

T : (¢i)ier, — ZCiR h
i€l

is a bounded operator from ¢, 1 to L, 1 and from ¢__ 1 to L 1. Then the weighted
Riesz—Thorin Theorem 1mp11es that 7 is also a bounde(if operator from £, L to L, L for
all 1 <p < oo.

For p = 1, we obtain by (3.4) that

1
I Rt yom < [ Sl |R(hi,h>|mdu(h>

€1, g/P €2,
w(o(hi))
< Slel g s / R, b))~ du(h)
ZEZI i ZEIGQ’/P O'(h))

< Cyll(ciiez, ||£1,% :
For p = oo it follows that

1
|| Cl hlvh’ ||L 1(G/P) — sup | CZR(hZJh’)
2 UL DY eI

L, o)
S P P ILL Ll

= leierlle,, o Sup >R (hi ). (4.14)

Picz,

€L,

Since (x;);ez is a relatively separated family, we have for any compact neighborhood Q
of the identity in G that Z, = U:0:1 T, and Qz; N Qu; = 0 for i,j € Z,, and i # j.

Hence we obtain "
D IR(hi, h) = |R(hi, b))

1€1s r=1i€Zs,

For all [ € G/P with the property that o(l) € Qo(h;), we have that o(h;) ! € o(1)'Q
and hence

sup [(U(a(h) ™), U(o (1) q)v)]

qeQ W
> |<U(J(h)_1)z/),U(U(hi)_l)z/)ﬂw
hi

- |R<hi,h>|% — Rk ).

19



Let B;:={l € G/P: o(l) € Qo(h;)}. Then the above inequality implies

[ w0, Ul ) wlg”o(l)

geQ w(o(h)) dp(l) > |R(hi, h)|u(B;) -

B;

Now we have that for i, j € Z,, and ¢ # j the sets B; and B; are disjoint. Consequently,
we obtain by (4.2)

-1 -1 w(gto(l))
g / sup (U (0) 0 Ulo () a)i) S dutn) =
w(go(l))
> ¥ / sup (U (o)), Uo(t) )| 72 )
> > |R his 1) |1(B)
> Co 3 |R(hi,h)l
and further by (4.3) for all h € G/P
~ é ~ TOCN’
; [R(hi, )] < 0—2 , ij [R(hi, h)] < CQQ . (4.15)
Together with (4.14) this yields
Tgég

1> ciR(hi, b))

<
G/P) ||(CZ)Z€IO'||‘€ ,% CQ
€Ly

E\'—‘

2. Now it is easy to check that »_, ., c;R(hi, h) € M, 1. Since ViV is the identity on

Ly 1 and V,,V,, on H! w» We obtain
Y cR(hi,h) = VY, (Z Civw(U(U(hi)l)f/))>
lEIg— iEIa'
- (z Ulo(h) w)
iEIa'
Thus,
1Y aU(o(h) Vllag,. = 1Y cRlhi D)l
€Ly €Ty T
and we are done. [ |

Next let us turn to the estimates (4.8) in Theorem 4.2.
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Lemma 4.3 Suppose that the conditions in Theorem 4.2 are satisfied. For ¢ € I,, let
Vi :==Ul(o(h;)~'). Then, for f € M,,,, there exists a constant B' < 0o such that

(g ) e

o

S BI||f||Mp,w'

P
Proof: Let F':=V,f. By the correspondence principle the assertion is equivalent to

| (F(hi))ier, e, » < BIIFlL, , @/7): (4.16)

w w

We prove (4.16) for p = 1 and p = oo and apply again the weighted Riesz—Thorin
Interpolation Theorem to obtain the inequality for all 1 < p < co.
For p = 1, we conclude as follows

1
§|F ») = §|<F,R(hi,->>|—w(a(hi))
1
< Zg //P |F<Z>||R(hi,z>|mdua>
= [ POl SR DI
G/P
< 1Pl é‘;};Z [R(1,h).

Using (4.7) we obtain as in (4.15) that ), |R(1, h;)| < r0Cq/Cq and consequently

T CQ
Z|F )) < ; ||F||L1 (G/P)-
ZEIO' L
For p = oo, we get
1
sup |F'(h;)|———~ = sup [(F, R(h;,"))|—F——
s E )y — SR IERR NG,
1
< su F(O)||R(hi, )| ———— du(l
< sup [ IPOIRG Do du)
g/P
w(U(l))
< sup |F sup/ R(h;,1)] du(l
San E Oy o | 1R Dy 40
g/P
= sup |F(])] sup/|th, | dp(l)
leg/P i€l,
g/P
< CyllFllL 1 @/m)

0w
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where we have used (3.3) for the last estimate. This finishes the proof. |

Lemma 4.4 Suppose that the conditions in Theorem 4.2 are satisfied. For ¢ € I, let
V¥ = U(o(h;))™" ). Then, for ((f, Vi) Xle) € [, 1, there exists a constant
v /) iel, Sw
A" > 0 such that
il < 5 1 (0 0d )

Proof: 1. First we show that

T : (ci)ier, = (Z cipi o o, R(h,))

1€l

is a bounded operator from ¢, L to M, ., Again by the Riesz—Thorin Theorem, if suffices
to show the boundedness for p =1 and p = .
For p =1, we get by (3.3), (3.4) and the weighted Young inequality

I e o0 BNl y < Coll Dol yarm

< C / Z |Cl |<,0z OU| ((UU(( )))) ( )
G/P 1€l
< Cullteienlle y swp [ leatoln] 000 duihy (4.17)

Q’/P

By supp ¢; C Uo(h;) we consider h € G/P with o(h) = uo(h;). Then, by using similar
arguments as in the proof of Lemma 4.1, we obtain

<C (4.18)

with a constant C' independent of h; and h. Hence we can estimate (4.17) by

1Q_ciwioo, B(h e, , < Cy Cll(eidierle, ,

1€l

For p = oo, we obtain in a similar way by using the weighted Young inequality

1
||<l€zI;Cl Pi © 0, R(h,»”Lm% < Od) hSEIéI/DP|l€zI:CZ sz h))| w(a(h,))
su el su (o wio(h))
< Cosp ooty S, 2P ) LGy
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and further by (4.18) and since {¢;} is a partition of unity that

1D cir o0, R(h, )i

1€l

< Cy C|(ci)ier, |le_

g~
g

2. Next it is easy to check that
(Z cipi 00, R(h,+)) = Z ci(pio o, R(h,)).
1€l i€l

Since S;l is a bounded operator on M, 1, we conclude that

(¢i)ier, — S;l (Z ci{pioo, R(h, )>) = Z ciS;l ({(pioa,R(h,")))

1€l i€l,
is also bounded from £, 1 to M, .
Tw

3. Finally, we apply part 1 and 2 of the proof to the special sequence ((f, Vi) uy le,w>

(F'(hi))jer,» where F' =V f, and obtain <
14T ) iS5 (s 0 0 RO Nl g orm < O () e ) e,
i€l
and together with Corollary 4.2 and the correspondence principle
1l < O ) ), ey
[

5 Appendix

In this section, we want to collect some basic facts that were needed before. Let us start
with extending the classical Young inequality, see, e.g., [13], p. 185, Theorem 6.18, to
weighted L,-spaces.

Theorem 5.1 (Weighted Young Inequality) Let (X, .A,n) and (Y, B,() be o—finite
measure spaces, let K be an AQ B-measurable function on X XY, and let w be a positive
weight function. Suppose that K satisfies the following conditions

w(y)

/X |K(x,y>|% dn(z) < Cx

for a.e. y €Y and
w

/ |K(x,y>|# dc(y) < Cx

w(x)
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forae xeX. If f e Lp,i, 1 < p < oo, then the integral

/Kfcy ) d¢(y)

converges absolutely for a.e. v € X, the function T [ thus defined is in L, 1 and

17 flle, , < Cxllflle, ;-

w

Proof: To show that the operator 1" is bounded we apply the assumptions of Theo-
rem 5.1 and the Holder inequality with 1/p 4+ 1/g =1 as follows:

i, = [ Kenwamr oz ae
Sm/</ﬂK@me@»mHm“ﬂ)hK(0 S

w(y)

< [ ([t i, ) ([ 15w )),,/q
1

(@) ()

<arff |K(x,y>|w(>'f D e gy dn(a)

y)
_ P/q |p |K Z/
= " [wi / D dn(e) dc(o)
<o, . .

X

In order to establish the frame bounds, we need a variant of the Riesz—Thorin inter-
polation theorem for the case of weighted L,-spaces. For py,p; < 00, the desired result
is essentially a special case of the Stein-Weiss interpolation theorem, see, e.g., [2], Corol-
lary 5.5.4, for details. However, for our approach we definitely need the corresponding
result for po = 1, p; = oo. The resulting theorem is stated and proved below. It might
be already known to the specialists, however, in this special form, it was not found in
the literature.

The proof is based on complex interpolation. Therefore we start by briefly recalling
the basic setting. For further information concerning real and complex interpolation,
the reader is, e.g., refered to [2] and [15]. Let Ay and A; be two complex Banach spaces.
Then (A, A1) is called an interpolation couple if there exists a linear complex Hausdorff
space such that both Ay and A; are linearly and continuously embedded in this space.
Then Ay N Ay with norm ||a||4yna, = max{||al|,, [|a|la1} and A := Ay + A; with norm
|lal| ag+a, = . %Lnf {llal| 44, ||a|| a1} are also complex Banach spaces. Let

=ao 1

S={z€C: 0<Rz<1}

be a strip in the complex plane. The collection F of all functions f(z) defined on S with
values in A with the two properties
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i) f(z) is continuous in S and analytic in S with

sup [| f(2)[|a < oo,
z€S

ii) f(it) € Ag and f(1+it) € Ay, with ¢ € R, are continuous in the respective Banach
spaces and

1fll := max{sup [ f (i)l a9, sup [ F(1 + i), } < o0

is again a Banach space.

For a given interpolation couple (Ag, A1) and 6 € (0,1), the space (Ay, A1)}y is defined
as
(Ao, A1)jg :={a € A: there exists f(z) € F with f(0) = a}.

Equipped with the norm
laller := inf{[[f]|= = f(0) = a},
(Ao, A1)jg) becomes a Banach space which has the following interpolation property:

Theorem 5.2 Let (Ag, A1) and (By, By) be two interpolation couples and let T be a
linear operator from Ay + Ay into By + By such that its restriction to A; is a bounded
linear operator from A; into B;, with norm < M;,j = 0,1. Then for any 0 € (0,1), the
restriction of T to (Ag, A1) is a bounded linear operator from (Ay, A1)jg into (By, By)
with norm < M} M?.

Theorem 5.2 is the main ingredient for the proof of Theorem 5.3. For technical reasons,
we shall also need the so—called three line theorem, see (2], page 4 for details.

Lemma 5.1 (The three line theorem) Assume that F(z) is analytic on S and bounded
and continuous on S. If

then we have for 6 € [0,1] that
|F(0+it)| < Ny °NY, —00 <t < o0.

Now we are ready to establish the desired interpolation result with respect to L,
and L .

Theorem 5.3 Let T' be a bounded linear operator from Ly, into ly, with norm M,
and from Lo into Lo with norm My,. Then, for any 1 < p < 0o, the operator T' is

also a bounded from L, ,, into ¢, ,, with norm Mf/”Mé‘g‘”/”,
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Proof: According to Theorem 5.2, it remains to show that

(Ll,w; Loo,w)[@] = Lp,w and (gl,w; EOO,'U})[H} — ép,w y (51)

where

1
S=1-9.
p

We only prove the first statement in (5.1), the second one follows analogously. We have
to show that

lallioy = lallzyw Lowrm = ol -

We start with the proof of |la||jg < |la||z,.. Without loss of generality we may
assume that ||al|z,, = 1. For our purposes, it is convenient to define f as follows

F(2) = (@0 exple(s? — 6))|a(a)Pt )42

la()]

We observe that f is an analytic function on the strip S with f(f) = a. In order to
compute ||a||jg we note that

Ifll = max{sup || f(it) ]z, sup | F (1 + it) |0 } (5-2)

For || f(:t)|z,.,, we obtain

£, = [ @l exp(e(=# = a0 |ZE§§| d
- eXP(S(—ﬁ—02))/|a(3:)|pw(x)pdaj

= exple(—£ = )llall,, = exp(e(—£ — ).
Consequently, for some suitable ¢,

sup [|£ (i)l = exp(—e6") <1. (5:3)

The Lo norm of f(1+it) can be estimated as

70+ Dl = supulouloP® 0 exp(L+in? - 0)afa) 040 2
= exp(e(l —t* — 0%)) < exp(e) . (5.4)

Combining (5.3) and (5.4) we obtain by (5.2)
|fll7 <exp(e) =1 for e -0,

and taking the infimum yields
lallg < llallL,. sies Lpw C (Liw, Loow)) -
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The next step is to show ||al|z,., < [|al/g. Without loss of generality we may again
assume that ||al/y; = 1. Then we have

lallz, . = sup{[{a, b)wl = [1bllzy,,, =1},
where, for 1 < p < oo, the dual pairing can be written as
(a,b)y, = /a(x)b(x)w(x)p dx .

We define
F(z) = (f(2), 9(2))w
for some f € F satisfying f(#) = a and g given by

9(2) = w(2) P12 exp(=(2? — 82))p(a) /o)LL)

|b(z)]
for some b € L;, ,, with ||b]|; . = 1. We want to estimate F'(z) by means of Lemma 5.1.
Since ||a||jg = 1 we can find f € F with f(#)) = a such that || f(it)||z,, < 1+ ¢ and

|f(1+ it)HLw,w < 1+¢ for all e > 0. Any such function f provides us with suitable
bounds for |F'(it)| and |F(1 + it)|. Indeed,

F(it)] = |/fzt (it ()P da
= /VWWM@H““meMwmd4%w%

gt/mmwume@eﬂ—%>
< |If(@t)llL,., exp(e(—t* — 67))
< (L+¢)exp(—eb?) < exp(e) =: Ny
and
|F(1+4dt)] = |/g(1+it)f(1+it)w(x)pda:|
< 1+ it)||pw. / |b(a) [P @Dy ()P0HD d exp(e(1 — £ — 6%))

< (1+¢) /|b )P/ P~V (z)P da exp(e) exp(e(—t* — 62))

< exp(2e) =

Hence, by using Lemma 5.1,
|F(6+it)| <exp(2e) forall0<OH<1.

Consequently,
[{a, b)w| < [F(0)] < exp(2e) ,

that is, ||al/z,, < 1 and therefore (L1, Loow)ig C Lp,w- |
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