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tionOne of the 
lassi
al tasks in applied analysis is the eÆ
ient representation/analysis ofa given signal. Usually, the �rst step is the de
omposition of the signal into suitablebuilding blo
ks. Starting with Fourier analysis around 1820, many more or less su

essfulapproa
hes have been suggested. Current interest espe
ially 
enters around multis
alerepresentations of wavelet type. Wavelet bases have several remarkable advantages.Among others, they give rise to 
hara
terizations of fun
tion spa
es su
h as Besov spa
esand provide powerful approximation s
hemes, see, e.g., [4, 5℄. However, in re
ent studies,it has turned out that the use of Riesz bases may have some serious drawba
ks. Oneimportant problem is the la
k of 
exibility whi
h is in some sense a 
onsequen
e of theuniqueness of the representation. Therefore, one natural way out suggests itself: why notusing a slightly weaker 
on
ept and allowing some redundan
ies, i.e., why not workingwith frames? In general, given a Hilbert spa
e H, a 
olle
tion of elements feigi2Z is
alled a frame if there exit 
onstants 0 < A1 � A2 <1 su
h thatA1kfk2H �Xi2Z jhf; eiiHj2 � A2kfk2H: (1.1)The frame 
on
ept has been introdu
ed by DuÆn and S
h�afer [6℄ in 1952. However, thestarting point of the modern frame theory was the fundamental Fei
htinger/Gr�o
henigtheory whi
h has been developed sin
e 1986 in a series of papers [8, 9, 10, 11, 12℄. Thisvery aesteti
 and subtle theory is essentially based on group theory. Given a spa
e N ,the �rst step is to �nd a suitable group G that admits a (square) integrable representa-tion in L2(N ) and therefore gives rise to a generalized (
ontinuous) wavelet transform.Then, so{
alled 
oorbit spa
es 
an be de�ned by 
olle
ting all fun
tions for whi
h thiswavelet transform is 
ontained in some (weighted) Lp{spa
e. Finally, a judi
ious dis-
retization of the representation produ
es the desired frames for the 
oorbit spa
es. Thisapproa
h works �ne for the whole Eu
lidean plane and produ
es a general frameworkthat 
overs, e.g., the 
lassi
al wavelet and Weyl{Heisenberg frames. However, whenit 
omes to pra
ti
al appli
ations, also the 
ase of bounded domains and manifolds isimportant. Then, very often the problem arises that the group a
ting on the manifoldis too `large', i.e., its representation is not square{integrable. One natural remedy assuggested, e.g., by Ali et al. [1℄ and Torresani [16℄, is the 
on
ept of square{integrabilitymodulo quotients. In this 
ase, one has to �nd a 
ertain subgroup P su
h that, af-ter restri
ting the representation to the indu
ed quotient spa
e G=P by �xing a Borelse
tion � : G=P �! G, one is again in a square{integrable setting. However, by thispassage to quotients the very 
onvenient group stru
ture gets lost, so that many of thebuilding blo
ks used in the Fei
htinger/Gr�o
henig theory su
h as 
onvolutions are no2



longer available. Nevertheless, in the previous paper [3℄, we have shown that a quitenatural generalization of the Fei
htinger/Gr�o
henig theory to quotient spa
es is indeedpossible. The major tool was a generalized reprodu
ing kernel. The appli
ation of the
orresponding integral operator in some sense repla
es the usual 
onvolution. Then,under 
ertain integrability 
onditions on this kernel it has turned out that all the ba-si
 steps of the Fei
htinger/Gr�o
henig approa
h 
an still be performed. By employingthe 
on
ept of square integrability modulo quotients, generalized 
oorbit spa
es may bede�ned. Moreover, one 
an de�ne an approximation operator whi
h produ
es atomi
de
ompositions for these 
oobit spa
es. Furthermore, a re
onstru
tion operator 
an beintrodu
ed in a similar fashion and the frame bounds 
an be established.To keep the te
hni
al diÆ
ulties at a reasonable level, in [3℄ only the `simplest' 
lassof 
oorbit spa
es was 
onsidered. However, the 
oorbit approa
h allows the de�nition ofwhole s
ales of smoothness spa
es by 
olle
ting all fun
tions for whi
h the generalizedwavelet transform has 
ertain de
ay properties, i.e., by 
onsidering weighted spa
es. To�ll this gap is the major aim of the present work.This paper is organized as follows. In Se
tion 2, we 
olle
t all the fa
ts on grouptheory that are needed for our purposes. Then, in Se
tion 3, we introdu
e and analyzeour generalized weighted 
oorbit spa
es. Se
tion 4 
ontains the main results of this paper.In Subse
tion 4.1 we explain the setting and state all the 
onditions that are needed toestablish atomi
 de
ompositions and Bana
h frames for the generalized weighted 
oorbitspa
es. Subse
tion 4.2 is devoted to the de�nition and the analysis of the underlyingapproximation operators. Finally, in Subse
tion 4.3 we establish the frame bounds. Thispart of our analysis is essentially based on a version of the Riesz{Thorin interpolationtheorem. Sin
e this spe
i�
 version was not found in the literature, we have in
luded aproof based on 
omplex interpolation in the appendix. There, we also state and prove aversion of the generalized Young inequality for weighted Lp{spa
es.2 Group Theoreti
al Ba
kgroundLet H be a Hilbert spa
e and let G be a separable Lie group with (right) Haar measure�. A 
ontinuous representation of G in H is de�ned as a mappingU : G �! L(H)of G into the spa
e L(H) of unitary operators on H, su
h that U(gg0) = U(g)U(g0) forall g; g0 2 G, U(e) = Id and for any �;  2 H, the fun
tion g 2 G ! h�; U(g) iH is
ontinuous. The representation U is said to be square{integrable if it is irredu
ible andthere exists a nonzero  2 H su
h thatZG jh ; U(g) iHj2 d�(g) <1 :Su
h a fun
tion  is 
alled admissible. In the sequel, we shall always be 
on
ernedwith the 
ase that the Hilbert spa
e H is given as some L2{spa
e on a manifold N , i.e.3



H = L2(N ): Unfortunately, there are many 
ases of pra
ti
al interest where no squareintegrable representation exists. Very often, these 
ases 
an be handled by restri
tingU to a 
onvenient quotient G=P, where P is a 
losed subgroup of G. Unless otherwisestated, we shall always 
onsider right 
oset spa
es, i.e.,g1 � g2 if and only if g1 = h Æ g2 for some h 2 P:Be
ause U is not dire
tly de�ned on G=P, it is ne
essary to embed G=P in G. This 
an berealized by using the 
anoni
al �ber bundle stru
ture of G with proje
tion � : G ! G=P.Let � : G=P ! G be a Borel se
tion of this �ber bundle, i.e., � Æ �(h) = h for allh 2 G=P. We introdu
e U Æ � and suppose that G=P 
arries a G{invariant measure �.An attra
tive notation of square integrability on a homogeneous spa
e appears in [1℄.An irredu
ible representation U is square integrable mod (P; �), if there exists a nonzerofun
tion  2 L2(N ), 
alled admissible (with respe
t to �), su
h thatZG=P jhf; U(�(h)�1) ij2 d�(h) <1 for all f 2 L2(N );i.e., the operator V given by V f(h) := hf; U(�(h)�1) i (2.1)maps L2(N ) into L2(G=P). Unless otherwise stated, in this paper h�; �i always denotesthe L2{inner produ
t with respe
t to L2(G=P) or L2(N ), e.g.,hF;Gi = ZN F (x)G(x)dxwhenever the integral is de�ned. The admissibility 
ondition 
an be rewritten as0 < ZG=P jhf; U(�(h)�1) ij2 d�(h) = hf; A�fi <1 for all f 2 L2(N );where A� is a positive, bounded, and invertible operator. If A� = �I for some � > 0,then U is 
alled stri
tly square integrablemod (P; �) and  stri
tly admissible. Moreover,we say that ( ; �) is a stri
tly admissible pair [16℄. In order to keep the notation simplewe fo
us our attention to stri
tly square integrable representations, where we normalize so that � = 1. Then V : L2(N )! L2(G=P) in (2.1) is an isometry.Assume now that ( ; �) is a stri
tly admissible pair for our setting. Then the follow-ing fa
ts are well{known [1℄:� The set S� := fU(�(h)�1) : h 2 G=Pg is total in L2(N ), i.e., (S�)? = f0g.� The map V is an isometry from L2(N ) onto the reprodu
ing kernel Hilbert spa
eM2 := fF 2 L2(G=P) : hF (�); R(h; �)i = F (h)g4



with reprodu
ing kernelR(h; l) = R (h; l) := hU(�(h)�1) ; U(�(l)�1) i (2.2)= h ; U(�(h)�(l)�1) i= V (U(�(h)�1) )(l): (2.3)In other words, the spa
es L2(N ) and M2 are isometri
ally isomorphi
. In parti-
ular, jjf jjL2(N ) = jjV f jjL2(G=P). Note that R(h; l) = R(l; h). Further, we see by(2.3) that R(h; �) 2 L2(G=P) for any �xed h 2 G=P and by applying S
hwarz'sinequality in (2.2) that R 2 L1(G=P � G=P).� The map V 
an be inverted on its image by its adjoint V � , whi
h is obviouslygiven by V � F (s) := ZG=P F (h)U(�(h)�1) (s) d�(h):This provides us with the re
onstru
tion formulaf = V � V f = ZG=P hf; U(�(h)�1) iU(�(h)�1) d�(h) (2.4)for f 2 L2(N ).3 Weighted Coorbit Spa
es on Homogeneous Spa
esIn this se
tion we extend our 
onsiderations of fun
tions belonging to 
oorbit spa
es onmanifolds, 
f. [3℄, to the 
on
ept of weighted 
oorbit spa
es. By this extention we areable to 
hara
terize a wide range of fun
tion spa
es on manifolds, e.g., in dependen
e onthe underlying group we may obtain general modulation and Besov spa
es, respe
tively,or some mixed fun
tion spa
es. In order to keep 
omparisons as simple as possible, weadapt the notations given in [3, 8, 9, 10, 11, 12℄.Let U be a stri
tly square integrable representation of G mod (P; �) with a stri
tlyadmissible fun
tion  . Furthermore, we introdu
e a positive, 
ontinuous weight fun
tionw on G whi
h is in addition submultipli
ative, i.e., w(g ~g) � w(g)w(~g) for all g; ~g 2 G,and uniformly bounded from below, i.e., infg2G w(g) � Cw > 0. Asso
iated with w weare 
on
erned with the weighted Lp{spa
es on G=P de�ned for 1 � p <1 byLp;w(G=P) := ff measurable on G=P : kfkLp;w(G=P) := �ZG=P jf(h)jpw(�(h))pd�(h)�1=p <1g;and for p =1 byL1;w(G=P) := ff measurable on G=P : kfkL1;w(G=P) := ess suph2G=P jf(h)jw(�(h)) <1g:5



In the following we suppose the fundamental 
onditionZG=P jR(h; l)jw(�(l)) d�(l) � C (3.1)with a 
onstant C independent of h. This 
ondition is equivalent with the assumptionthat the fun
tions V (U(�(h)�1) ) are in L1;w with norm bounded independently of h.In addition to the kernel R we de�ne a non{symmetri
 kernel ~R by~R(h; l) := R(h; l)w(�(h))w(�(l)) : (3.2)Of 
ourse, (3.1) together with the lower boundedness of our weight fun
tion w impliesthat ZG=P j ~R(h; l)j d�(h) � CCw � C : (3.3)Moreover, we assume 
onversely thatZG=P j ~R(h; l)j d�(l) � C (3.4)and �nally that suph;l2G j ~R(h; l)j � C : (3.5)These requirements repla
e the usual integrability 
onditions in the group 
ase. In oursetting, the general problem o

urs that a group stru
ture does no longer exist andtherefore we need a substitute for the usual 
onvolution operation. It seems to us that apowerful approa
h is to use the weighted Young inequality as presented in the appendix,Theorem 5.1. However, the appli
ation of this inequality requires exa
tly integrability
onditions of the form (3.3) and (3.4).The �rst problem is to provide a suitable large set that may serve as a reservoirof sele
tion for the obje
ts of our 
oorbit spa
es. By H 01;w we denote the spa
e of all
ontinuous linear fun
tionals onH1;w := ff 2 L2(N ) : V f 2 L1;w(G=P)g:As usual, the norm k � kH1;w on H1;w is de�ned askfkH1;w := kV fkL1;w(G=P):By (3.1) we observe that the elements U(�(h)�1) of our L2(N ) total set are in H1;w.Further, for f 2 H1;w, we have by the S
hwarz inequality and sin
e w is uniformly6



bounded from below thatkfk2L2(N ) = jjV f jj2L2(G=P) = ZG=P jhf; U(�(h)�1) ij jV f(h)j d�(h)� jjf jjL2(N ) k kL2(N ) ZG=P jV f(h)j d�(h)� jjf jjL2(N ) k kL2(N ) jjV f jjL1;w(G=P)C�1wwhi
h implies the following dense 
ontinuous embeddingsH1;w ,! L2(N ) ,! H 01;w: (3.6)Sin
e U(�(h)�1) 2 H1;w for every h 2 G=P, the following generalization of the operatorV in (2.1) on H 01;w is well{de�nedV f := hf; U(�(h)�1) iH01;w�H1;w (3.7)where f 2 H 01;w. For any f 2 H 01;w, we obtain by (3.3) thatkV fkL1; 1w (G=P) = khf; U(�(h)�1) ikL1; 1w (G=P)� kfkH01;w ess suph2G=P 1w(�(h))kU(�(h)�1) kH1;w� kfkH01;w ess suph2G=P 1w(�(h)) C w(�(h))� C kfkH01;w : (3.8)Thus, V : H 01;w ! L1; 1w (G=P) is a bounded operator. For F 2 L1; 1w (G=P), we de�ne~V F by h ~V F; giH01;w�H1;w := hF; V gi = ZG=P F (l)V g(l) d�(l)= ZG=P F (l)hg; U(�(l)�1) i d�(l)for all g 2 H1;w. It is easy to 
he
k that ~V : L1; 1w (G=P) ! H 01;w is also a boundedoperator. Now we obtain for F 2 L1; 1w (G=P) thatV ~V F = h ~V F; U(�(h)�1) iH01;w�H1;w = hF; V (U(�(h)�1) )i= hF;R(h; �)i : (3.9)7



Similar to the de�nition of 
oorbit spa
es in [3℄ we de�ne weighted 
oorbit spa
es byMp;w := ff 2 H 01;w : V f 2 Lp; 1w (G=P)g;with 1 � p � 1 and norm kfkMp;w := kV fkLp; 1w (G=P):As we shall see in the following , the 
hoi
e of Lp; 1w (G=P) is natural. It is straightforwardthat k � kMp;w de�nes a seminorm. The property that kfkMp;w = 0; i:e:; V f = 0, impliesf = 0 follows similarly as in [9℄ sin
e fU(�(h)�1) : h 2 G=Pg is a dense subset ofH1;w and sin
e w is positive. The basi
 step for the investigations outlined below is a
orresponden
e prin
iple between these weighted 
oorbit spa
es and 
ertain subspa
eson the quotient group G=P whi
h are de�ned by means of the reprodu
ing kernel R. Tothis end, we 
onsider the subspa
esMp;w := fF 2 Lp; 1w (G=P) : hF;R(h; �)i = F (h)gof Lp; 1w (G=P) with 1 � p � 1. Then the desired 
orresponden
e prin
iple 
an beformulated as follows:Theorem 3.1 Let U be a stri
tly square integrable representation of G mod (P; �) and a stri
tly admissible fun
tion. Let V be de�ned by (3.7) and let R in (2.2) ful�ll (3.3)and (3.5).i) For every f 2 Mp;w, the following equation is satis�edhV f; R(h; �)i = V f(h) ;i.e., V f 2 Mp;w.ii) For every F 2 Mp;w, 1 � p � 1, there exists a uniquely determined fun
tionalf 2Mp;w su
h that F = V f .Consequently, the spa
es Mp;w and Mp;w, 1 � p � 1, are isometri
ally isomorphi
.Proof: i) Sin
e U(�(h)�1) 2 L2(N ) we have by (2.4) thatV f(h) = hf; U(�(h)�1) iH01;w�H1;w= hf; ZG=P R(h; l)U(�(l)�1) d�(l)iH01;w�H1;w :By (3.1), the Fubini theorem and (3.6) we 
an 
hange the order of integration and getV f(h) = ZG=P R(h; l)hf; U(�(l)�1) iH01;w�H1;w d�(l)= hV f; R(h; �)i :8



ii). For F 2 Mp;w, 1 � p � 1, we have thatkFkL1; 1w (G=P) = k ZG=P F (l)R(h; l) d�(l)kL1; 1w (G=P)= ess suph2G=P j ZG=P F (l)R(h; l) d�(l)j 1w(�(h)) ;and further, by applying H�older's inequality with 1=p+ 1=q = 1, the assumptions (3.3)and (3.5),j ZG=P F (l)R(h; l) d�(l)j � ZG=P jF (l)j 1w(�(l))(jR(h; l)jw(�(l)))1=p+1=q d�(l)� 0B�ZG=P jF (l)jp 1wp(�(l)) jR(h; l)jw(�(l))d�(l)1CA1=p �0B�ZG=P jR(h; l)jw(�(l))d�(l)1CA1=q� C kFkLp; 1w (G=P)w(�(h)) :Consequently, we have thatkFkL1; 1w (G=P) � C kFkLp; 1w (G=P) :Thus, F 2 L1; 1w (G=P) and by (3.9) we obtain that F = V ( ~V F ), where ~V F 2 H 01;w andsin
e F 2 Lp; 1w (G=P) also ~V F 2 Mp;w. The uniqueness 
ondition follows by de�nitionof Mp;w. �Applying Theorem 3.1 i) and (3.9) we get for f 2 H 01;w thatV ~V (V f) = hV f; R(h; �)i = V f :Hen
e, ~V V is the identity in H 01;w and we have the re
onstru
tion formulaf = ~V V f = ZG=P hf; U(�(h)�1) iU(�(h)�1) d�(h) :We �nish this se
tion by establishing the relationshipM1;w = H 01;w:9



This 
an be seen as follows: For f 2 H 01;w we have by (3.8) that kV fkL1; 1w (G=P) �C jjf jjH01;w . Conversely, we have for f 2M1;wkfkH01;w = supkgkH1;w=1 jhf; giH01;w�H1;w j = supkgkH1;w=1 jh ~V V f; giH01;w�H1;w j= supkgkH1;w=1 jhV f; V gij � kV fkL1; 1w :4 Atomi
 De
ompositions and Bana
h Frames forWeighted Coorbit Spa
esOn
e our generalized 
oorbit spa
es are established, the next step is to derive someatomi
 de
ompositions for these spa
es and to 
onstru
t suitable Bana
h frames. Thisprogram is performed in several steps. In the next subse
tion, we present some prepara-tions and state our main results. The remaining two subse
tions are devoted to the build-ing blo
ks whi
h are ne
essary to prove these results. The major step is the 
onstru
tionof suitable approximation operators whi
h are de�ned and analyzed in Subse
tion 4.2.The results in this se
tion are again inspired by the pioneering work of Fei
htingerand Gr�o
henig, [9, 10, 11, 12℄. Furthermore, they are a generalization of [3℄.4.1 Setting and Main ResultsBefore we 
an state and prove our main results, some preparations are ne
essary. Givensome neighborhood U of the identity in G, a family X = (xi)i2I in G is 
alled U{denseif Si2I Uxi = G. A family X = (xi)i2I in G is 
alled relatively separated, if for any
ompa
t set Q � G there exists a �nite partition of the index set I, i.e., I = Sr0r=1 Ir,su
h that Qxi\Qxj = ; for all i; j 2 Ir with i 6= j. Note that these te
hni
al 
onditions
an be easily ful�lled by some families X in all the settings we are interested in.Let U be an arbitrary 
ompa
t neighborhood of the identity in G. By [7℄, there existsa bounded uniform partition of unity (of size U), i.e., a family of 
ontinuous fun
tions('i)i2I on G su
h that� 0 � 'i(g) � 1 for all g 2 G;� there is a U{dense, relatively separated family (xi)i2I in G su
h thatsupp 'i � Uxi;� Pi2I 'i(g) � 1 for all g 2 G.Furthermore, we de�ne the (left and right) U{os
illation with respe
t to the analyzingwavelet  asos
lU(l; h) := supu2U jh ; U(�(l)�(h)�1) � U(u�1�(l)�(h)�1) ij;os
rU(l; h) := supu2U jh ; U(�(l)�(h)�1) � U(�(l)�(h)�1u) ij:10



In analogy to (3.2) we need for applying the weighted Young inequality the w{modi�edU{os
illations os
lU ;w(l; h) := os
lU(l; h) w(�(l))w(�(h)) ;os
rU ;w(l; h) := os
rU(l; h) w(�(l))w(�(h)) :In the sequel, we shall always assume that (xi)i2I 
an be 
hosen su
h that �(G=P)\Uxi 6=; implies xi 2 �(G=P). LetI� := fi 2 I : �(G=P) \ Uxi 6= ;g :Then there exist hi 2 G=P su
h that xi = �(hi), where i 2 I�. Note thatXi2I� 'i(�(h)) = 1 ;where h 2 G=P.In this setting, we 
an formulate our main theorems whi
h we shall prove in thefollowing subse
tions. The �rst one is a de
omposition theorem whi
h says that dis-
retizing the representation U(�(�)�1) by means of a U{dense set indeed produ
es anatomi
 de
omposition of Mp;w.Theorem 4.1 Let G be a separable Lie group with 
losed subgroup P, w a weight fun
-tion and let � be an invariant measure on G=P. Further, let U be a stri
tly squareintegrable representation of G mod (P; �) in L2(N ) with stri
tly admissible fun
tion  .Let a 
ompa
t neighborhood U of the identity in G be 
hosen su
h thatZG=P os
lU ;w(l; h)d�(l) � 
 and ZG=P os
lU ;w(l; h)d�(h) � 
 ; (4.1)where 
 < 1. Let X = (xi)i2I be a U{dense and relatively separated family. Furthermore,suppose that for any 
ompa
t neighborhood Q of the identity in G�fh 2 G=P : �(h) 2 Q�(hi)g � CQ > 0 (4.2)holds for all i 2 I�. Finally, let us assume that for any 
ompa
t neighborhood Q of theidentity in G our analyzing fun
tion  ful�lls the following inequalityZG=P supq2Q jhU(�(h)�1) ; U(�(l)�1q) ijw(q�1�(l))w(�(h)) d�(l) � ~CQ (4.3)with a 
onstant ~CQ < 1 independent of h 2 G=P. Then Mp;w, 1 � p � 1, has thefollowing atomi
 de
omposition: if f 2Mp;w, 1 � p � 1, then f 
an be represented asf =Xi2I� 
iU(�(hi)�1) ;11



where the sequen
e of 
oeÆ
ients (
i)i2I� = (
i(f))i2I� 2 `p; 1w depends linearly on f andsatis�es jj(
i)i2I� jj`p; 1w � Ajjf jjMp;w: (4.4)If (
i)i2I� 2 `p; 1w , then f =Pi2I� 
iU(�(hi)�1) is 
ontained in Mp;w andjjf jjMp;w � Bjj(
i)i2I� jj`p; 1w : (4.5)Here we use w = (w(xi))i2I� as dis
retized weight sequen
e and`p;w := f
 = (
i)i2I� : k
k`p;w := k
 wk`p <1gfor 1 � p � 1.Given su
h an atomi
 de
omposition, the problem arises under whi
h 
onditions afun
tion f is 
ompletely determined by the moments or 
oeÆ
ients hf; U(�(hi)�1) iH01;w�H1;wand how f 
an be re
onstru
ted from these 
oeÆ
ients. This question is answered bythe following theorem whi
h shows that our generalized 
oherent states indeed give riseto Bana
h frames.Theorem 4.2 Impose the same assumptions as in Theorem 4.1 withZG=P os
rU ;w(l; h)d�(l) � ~
C and ZG=P os
rU ;w(l; h)d�(h) � ~
C ; (4.6)where ~
 < 1, instead of (4.1) and withZG=P supq2Q jhU(�(h)�1) ; U(�(l)�1q) ij w(�(h))w(q�1�(l)) d�(l) � ~CQ (4.7)where ~CQ <1 is a 
onstant independent of h 2 G=P, instead of (4.3). Then the setf i := U(�(hi)�1) : i 2 I�gis a Bana
h frame for Mp;w. This means that(i) f 2Mp;w if and only if (hf;  iiH01;w�H1;w)i2I� 2 `p; 1w ;(ii) there exist two 
onstants 0 < A0 � B0 <1 su
h thatA0 kfkMp;w � k(hf;  iiH01;w�H1;w)i2I�k`p; 1w � B0 kfkMp;w ; (4.8)(iii) there exists a bounded, linear re
onstru
tion operator S from `p; 1w to Mp;w su
hthat S �(hf;  iiH01;w�H1;w)i2I�� = f:For further information 
on
erning Bana
h frames see [14℄.12



4.2 Approximation OperatorsIn this se
tion, we examine two di�erent approximation operators onMp;w. We use theresults to 
onstru
t expansions for the spa
es Mp;w, whi
h then, by the 
orresponden
eprin
iple in Theorem 3.1, lead to expansions for the 
oorbit spa
es Mp;w.We 
onsider the following approximation operators on Mp;w:T'F (h) := Xi2I�hF; 'i Æ �iR(hi; h)= Xi2I� ZG=P F (l)'i(�(l)) d�(l)R(hi; h);S'F (h) := Xi2I� F (hi)h'i Æ �;R(h; �)i= Xi2I� ZG=P F (hi)'i(�(l))R(l; h) d�(l):So far, it is not 
lear a prior whether these formal expressions make sense at alland on whi
h spa
es they are bounded operators. This will be 
lari�ed in Theorem 4.3below. Another remark is required on the meaning of the sum over I�. We order the�nite subsets of I� by in
lusion, then Pi2I� ::: will be understood as the limit of thepartial sums over �nite subsets of I�.The �rst step is to establish the invertibility of the operators T' and S'.Theorem 4.3 i) If the 
onditions (4.1) are ful�lled, then the operator T' : Mp;w !Mp;w is bounded with bounded inverse.ii) If the 
onditions (4.6) are ful�lled, then the operator S' : Mp;w !Mp;w is boundedwith bounded inverse.Proof: By de�nition of Mp;w, we have for F 2 Mp;w thatF (h) = hF;R(h; �)i = ZG=P F (l)R(h; l) d�(l)= Xi2I� ZG=P F (l)'i(�(l))R(l; h) d�(l)and 
onsequentlyF (h)� T'F (h) = Xi2I� ZG=P F (l)'i(�(l)) [R(l; h)� R(hi; h)℄ d�(l);F (h)� S'F (h) = Xi2I� ZG=P [F (l)� F (hi)℄'i(�(l))R(l; h) d�(l): (4.9)13



Let us �rst 
onsider F � T'F . By the de�nition of R we obtainjF (h)� T'F (h)j � Xi2I� ZG=P jF (l)j'i(�(l))jR(l; h)� R(hi; h)j d�(l)= Xi2I� ZG=P jF (l)j'i(�(l))�jh ; U(�(l)�(h)�1) � U(�(hi)�(h)�1) ij d�(l):Now �(l) 2 Uxi implies that there exists u 2 U su
h that �(l) = u xi = u �(hi). Thus�(hi) = u�1�(l) and we getjF (h)� T'F (h)j �Xi2I� ZG=P jF (l)j'i(�(l)) os
lU(l; h) d�(l) = ZG=P jF (l)j os
lU(l; h) d�(l):By re
alling the assumptions (4.1) and applying the weighted Young inequality (seeappendix), we obtainkF � T'FkLp; 1w (G=P) = k(I � T')FkLp; 1w (G=P) � 
 kFkLp; 1w (G=P):Consequently jjjI � T'jjj < 1, i.e., I � T' is a 
ontra
tion on Mp;w. Thus, regardingthat jjjT'jjj � jjjT' � Ijjj + jjjIjjj, we see that T' is a bounded operator with boundedinverse.Next we 
onsider F � S'F . Sin
e F 2 Mp;w and by the de�nition of R we obtainjF (l)� F (hi)j � ZG=P jF (g)jjR(g; l)�R(g; hi)j d�(g)= ZG=P jF (g)jjh ; U(�(g)�(l)�1) � U(�(g)�(hi)�1) ij d�(g):By (4.9) we are only interested in l 2 G=P with �(l) 2 Uxi, i.e., �(l) = u �(hi) for someu 2 U and �(hi)�1 = �(l)�1u. ThusjF (l)� F (hi)j � ZG=P jF (g)j os
rU(g; l) d�(g)and sin
e ('i) is a partition of unityXi2I� jF (l)� F (hi)j'i(�(l)) � ZG=P jF (g)j os
rU(g; l) d�(g):14



By the weighted Young inequality and (4.6) this impliesjjXi2I� jF (l)� F (hi)j'i(�(l))jjLp; 1w (G=P) � ~
C jjF jjLp; 1w (G=P):It is easy to 
he
k that the order of summation and integration in (4.9) 
an be 
hanged.Then we obtain by (4.9), (3.3) { (3.4) and the weighted Young inequalitykF � S'FkLp; 1w (G=P) � C jjXi2I� jF (l)� F (hi)j'i(�(l))jjLp; 1w (G=P) � ~
jjF jjLp; 1w (G=P):Consequently, I � S' is a 
ontra
tion on Mp;w and S' is a bounded operator withbounded inverse on Mp;w. �Using the 
orresponden
e prin
iple we 
an derive the following representation offun
tions from our 
oorbit spa
es.Corollary 4.1 Any fun
tion f 2Mp;w 
an be de
omposed asf =Xi2I� 
i U(�(hi)�1) ; (4.10)where 
i = 
i(f) := hT�1' F; 'i Æ �iand F := V f .Proof: By Theorem 3.1 i) and Theorem 4.3 i) we have thatV f(h) = F (h) = T'T�1' F (h) =Xi2I�hT�1' F; 'i Æ �iR(hi; h):Sin
e ~V V is the identity on H 01;w and ~V is bounded on L1; 1w , we obtainf = ~V V f =Xi2I�hT�1' F; 'i Æ �i ~V (R(hi; �)): (4.11)Now, for any g 2 H1;w,h ~V (R(hi; �)); g(�)iH01;w�H1;w = hR(hi; �); V g(�)i = V g(hi)= hU(�(hi)�1) ; giH01;w�H1;wso that ~V (R(hi; �)) = U(�(hi)�1) . Together with (4.11) this yields the assertion. �Moreover, the operator S' indu
es the re
onstru
tion operator as stated in Theorem4.2 iii). 15



Corollary 4.2 Any fun
tion f 2Mp;w 
an be re
onstru
ted asf =Xi2I�hf; U(�(hi)�1 iH01;w�H1;wei;where ei = ~V (Ei); Ei := S�1' (h'i Æ �;R(h; �)i):Proof: Sin
e S' has a 
ontinuous inverse, we obtain for F := V f 2 Mp;w thatF (h) = S�1' S' F (h)= Xi2I� F (hi)S�1' h'i Æ �;R(h; �)i = Xi2I� F (hi)Ei:Now the 
orresponden
e prin
iple and the 
ontinuity of ~V on L1; 1w impliesf = ~V V f = ~V  Xi2I� V (f)(hi)Ei!= Xi2I�hf; U(�(hi)�1 iH01;w�H1;w ~V (Ei) = Xi2I�hf; U(�(hi)�1 iH01;w�H1;wei: �4.3 Frame BoundsIn this se
tion, we want to prove the norm equivalen
es in Theorem 4.1 and 4.2. Forthe veri�
ation that the in�nite sums appearing in the following lemmatas 
onverge(un
onditionally) in Mp;w, respe
tively Mp;w, it suÆ
es to obtain for p < 1 the esti-mates for �nite sequen
es. Then all the estimates 
an be extended in the usual way, seeagain [9, 10, 11℄ for details. Only the 
ase p = 1 requires some additional e�ort. Thene
essary modi�
ations are left to the reader.In the following, `C' always denotes a generi
 
onstant whi
h is independent of allthe other parameters under 
onsideration, but whose 
on
rete value may be di�erent inea
h parti
ular estimate.We start with Theorem 4.1, relation (4.4).Lemma 4.1 Suppose that the 
onditions in Theorem 4.1 are satis�ed. For any f 2Mp;wlet (
i)i2I� := (hT�1' V f; 'i Æ �i)i2I� :Then there exists a 
onstant A <1 su
h that the following inequality holds:k(
i)i2I�k`p; 1w � AkfkMp;w :In parti
ular, we have that (
i)i2I� 2 `p; 1w . 16



Proof: 1. First we show that for any sequen
e (�i)i2I� the inequalityk(�i)i2I�k`p; 1w � C kXi2I� j�ij1Uxi Æ �kLp; 1w (G=P) (4.12)holds, where again xi = �(hi) and where 1Uxi denotes the 
hara
teristi
 fun
tion of Uxi.Sin
e (xi)i2I is a relatively separated family, there exists a splitting I = Sr0r=1 Ir su
hthat Uxi\Uxj = ; for i; j 2 Ir and i 6= j. This results in a de
omposition I� = Sr0r=1 I�r,where I�r = fi 2 Ir : Uxi \ �(G=P) 6= ;g :Then we obtainkXi2I� j�ij1Uxi Æ �kpLp; 1w (G=P) = ZG=P  r0Xr=1 Xi2I�r j�ij1Uxi(�(h)) 1w(�(h))!p d�(h)� r0Xr=1 ZG=P  Xi2I�r j�ij1Uxi(�(h)) 1w(�(h))!p d�(h)= r0Xr=1 ZG=P Xi2I�r j�ijp1Uxi(�(h)) 1wp(�(h))d�(h):Moreover, sin
e w(�(h)) � w(u)w(xi) for �(h) 2 Uxi, we 
an 
onlude from (4.2) thatkXi2I� j�ij1Uxi Æ �kpLp; 1w (G=P) � (maxu2U w(u))�1CUXi2I� j�ijpwp(xi)whi
h implies (4.12) by 
ontinuity of w and sin
e U is 
ompa
t.2. Let F 2 Lp; 1w (G=P). Then the appli
ation of (4.12) yieldsk(hF; 'i Æ �i)i2I�k`p; 1w � k(hjF j; 'i Æ �i)i2I�k`p; 1w� C kXi2I�hjF j; 'i Æ �i1Uxi Æ �kLp; 1w (G=P) :Further, we see for an arbitrary �xed h 2 G=P thatXi2I�hjF j; 'i Æ �i1Uxi(�(h)) =Xi2IhhjF j; 'i Æ �i ;where Ih := fi 2 I� : xi 2 U�1�(h)g, andXi2IhhjF j; 'i Æ �i = Xi2IhhjF j; 'i(�(�))i � hjF j; 1UU�1(�(�)�(h)�1)i :
17



Now �(l)�(h)�1 2 UU�1 means that there exist some u1; u2 2 U depending on h; l su
hthat �(l)�(h)�1 = u1u�12 . Then the submultipli
ativity of our weight fun
tion impliesthat w(�(l)) = w(u1u�12 �(h)) � w(u1u�12 )w(�(h));and sin
e UU�1 is 
ompa
t and w 
ontinuousw(�(l))w(�(h)) � Cwith a 
onstant independent of h and l. Consequently, sin
eZG=P 1UU�1(�(l)�(h)�1) w(�(l))w(�(h)) d�(l) � C ZG=P 1UU�1(�(l)�(h)�1) d�(l) � C; (4.13)for all h 2 G=P and similarly for the integration with respe
t to d�(h) for all l 2 G=P,we obtain by the weighted Young inequality, 
ompare again with the appendix, Theorem5.1, where K(l; h) := 1UU�1(�(l)�(h)�1), thatk(hF; 'i Æ �i)i2I�k`p; 1w � CkhjF j; 1UU�1(�(�)�(h)�1)ikLp; 1w (G=P)� CkFkLp; 1w (G=P) :3. Finally, we 
on
lude by the 
orresponden
e prin
iple and by using F = T�1' V f 2Mp;w in the above inequality thatk(hT�1' V f; 'i Æ �i)i2I�k`p; 1w � C kT�1' V fkLp; 1w (G=P)� C jjjT�1' jjj kV fkLp; 1w (G=P)� C jjjT�1' jjj kfkMp;w : �The next step is to establish (4.5).Lemma 4.2 Suppose that the 
onditions in Theorem 4.1 are satis�ed. Then there existsa 
onstant B <1 su
h that for any sequen
e (
i)i2I� 2 `p; 1w , 1 � p � 1, the followinginequality holds: kXi2I� 
iU(�(hi)�1) kMp;w � B k(
i)i2I�k`p; 1w :Proof: 1. First we prove thatkXi2I� 
iR(hi; h)kLp; 1w (G=P) � Bk(
i)i2I�k`p; 1w :18



To this end, we want to use the Riesz{Thorin Interpolation Theorem as outlined in theappendix. That is, we show thatT : (
i)i2I� �!Xi2I� 
iR(hi; �)is a bounded operator from `1; 1w to L1; 1w and from `1; 1w to L1; 1w . Then the weightedRiesz{Thorin Theorem implies that T is also a bounded operator from `p; 1w to Lp; 1w forall 1 � p � 1:For p = 1, we obtain by (3.4) thatkXi2I� 
iR(hi; �)kL1; 1w (G=P) � ZG=P Xi2I� j
ij jR(hi; h)j 1w(�(h)) d�(h)� Xi2I� j
ij 1w(�(hi)) supi2I� ZG=P jR(hi; h)jw(�(hi))w(�(h)) d�(h)� C k(
i)i2I�k`1; 1w :For p =1 it follows thatkXi2I� 
iR(hi; h)kL1; 1w (G=P) = suph2G=P jXi2I� 
iR(hi; h) 1w(�(h)) j� supi2I� j
ijw(�(hi)) suph2G=PXi2I� jR(hi; h)jw(�(hi))w(�(h))= k(
i)i2I�k`1; 1w suph2G=PXi2I� j ~R(hi; h)j: (4.14)Sin
e (xi)i2I is a relatively separated family, we have for any 
ompa
t neighborhood Qof the identity in G that I� = Sr0r=1 I�r and Qxi \ Qxj = ; for i; j 2 I�r and i 6= j.Hen
e we obtain Xi2I� j ~R(hi; h)j = r0Xr=1 Xi2I�r j ~R(hi; h)j :For all l 2 G=P with the property that �(l) 2 Q�(hi), we have that �(hi)�1 2 �(l)�1Qand hen
e supq2Q jhU(�(h)�1) ; U(�(l)�1q) ij w(q�1�(l))w(�(h)) �� jhU(�(h)�1) ; U(�(hi)�1) ijw(�(hi))w(�(h))= jR(hi; h)jw(�(hi))w(�(h)) = j ~R(hi; h)j :19



Let Bi := fl 2 G=P : �(l) 2 Q�(hi)g. Then the above inequality impliesZBi supq2Q jhU(�(h)�1) ; U(�(l)�1q) ij w(q�1�(l))w(�(h)) d�(l) � j ~R(hi; h)j�(Bi) :Now we have that for i; j 2 I�r and i 6= j the sets Bi and Bj are disjoint. Consequently,we obtain by (4.2)ZG=P supq2Q jhU(�(h)�1) ; U(�(l)�1q) ijw(q�1�(l))w(�(h)) d�(l) �� Xi2I�r ZBi supq2Q jhU(�(h)�1) ; U(�(l)�1q) ijw(q�1�(l))w(�(h)) d�(l)� Xi2I�r j ~R(hi; h)j�(Bi)� CQ Xi2I�r j ~R(hi; h)jand further by (4.3) for all h 2 G=PXi2I�r j ~R(hi; h)j � ~CQCQ ; Xi2I� j ~R(hi; h)j � r0 ~CQCQ : (4.15)Together with (4.14) this yieldskXi2I� 
iR(hi; h)kL1; 1w (G=P) � k(
i)i2I�k`1; 1w r0 ~CQCQ :2. Now it is easy to 
he
k that Pi2I� 
iR(hi; h) 2 Mp; 1w . Sin
e V ~V is the identity onL1; 1w and ~V V on H 01;w, we obtainXi2I� 
iR(hi; h) = V ~V  Xi2I� 
iV (U(�(hi)�1) )!= V  Xi2I� 
iU(�(hi)�1) ! :Thus, kXi2I� 
iU(�(hi)�1) kMp;w = kXi2I� 
iR(hi; h)kLp; 1wand we are done. �Next let us turn to the estimates (4.8) in Theorem 4.2.20



Lemma 4.3 Suppose that the 
onditions in Theorem 4.2 are satis�ed. For i 2 I�, let i := U(�(hi)�1) . Then, for f 2Mp;w, there exists a 
onstant B0 <1 su
h thatjj�hf;  iiH01;w�H1;w�i2I� jj`p; 1w � B0jjf jjMp;w:Proof: Let F := V f . By the 
orresponden
e prin
iple the assertion is equivalent tojj (F (hi))i2I� jj`p; 1w � B0jjF jjLp; 1w (G=P): (4.16)We prove (4.16) for p = 1 and p = 1 and apply again the weighted Riesz{ThorinInterpolation Theorem to obtain the inequality for all 1 � p � 1.For p = 1, we 
on
lude as followsXi2I� jF (hi)j 1w(�(hi)) = Xi2I� jhF;R(hi; �)ij 1w(�(hi))� Xi2I� ZG=P jF (l)jjR(hi; l)j 1w(�(hi)) d�(l)= ZG=P jF (l)j 1w(�(l))Xi2I� jR(hi; l)j w(�(l))w(�(hi)) d�(l)� jjF jjL1; 1w supl2G=PXi2I� j ~R(l; hi)j:Using (4.7) we obtain as in (4.15) that Pi2I� j ~R(l; hi)j � r0 ~CQ=CQ and 
onsequentlyXi2I� jF (hi)j 1w(�(hi)) � r0 ~CQCQ jjF jjL1(G=P):For p =1, we getsupi2I� jF (hi)j 1w(�(hi)) = supi2I� jhF;R(hi; �)ij 1w(�(hi))� supi2I� ZG=P jF (l)jjR(hi; l)j 1w(�(hi)) d�(l)� supl2G=P jF (l)j 1w(�(l)) supi2I� ZG=P jR(hi; l)j w(�(l))w(�(hi)) d�(l)= supl2G=P jF (l)j 1w(�(l)) supi2I� ZG=P j ~R(l; hi)j d�(l)� C jjF jjL1; 1w (G=P);21



where we have used (3.3) for the last estimate. This �nishes the proof. �Lemma 4.4 Suppose that the 
onditions in Theorem 4.2 are satis�ed. For i 2 I�, let i := U(�(hi)�1) . Then, for �hf;  iiH01;w�H1;w�i2I� 2 `p; 1w , there exists a 
onstantA0 > 0 su
h that jjf jjMp;w � 1A0 jj�hf;  iiH01;w�H1;w�i2I� jj`p; 1w :Proof: 1. First we show that~T : (
i)i2I� 7! hXi2I� 
i'i Æ �;R(h; �)iis a bounded operator from `p; 1w toMp;w Again by the Riesz{Thorin Theorem, if suÆ
esto show the boundedness for p = 1 and p =1.For p = 1, we get by (3.3), (3.4) and the weighted Young inequalityjjhXi2I� 
i 'i Æ �;R(h; �)ikL1; 1w � C jjXi2I� 
i 'i Æ �jjL1; 1w (G=P)� C ZG=P Xi2I� j
ijw(�(hi)) j'i Æ �j w(�(hi))w(�(h)) d�(h)� C jj(
i)i2I� jj`1; 1w supi2I� ZG=P j'i(�(h))j w(�(hi))w(�(h)) d�(h): (4.17)By supp'i � U�(hi) we 
onsider h 2 G=P with �(h) = u�(hi). Then, by using similararguments as in the proof of Lemma 4.1, we obtainw(�(hi))w(�(h)) � C (4.18)with a 
onstant C independent of hi and h. Hen
e we 
an estimate (4.17) byjjhXi2I� 
i 'i Æ �;R(h; �)ikL1; 1w � C C jj(
i)i2I� jj`1; 1w :For p =1, we obtain in a similar way by using the weighted Young inequalityjjhXi2I� 
i 'i Æ �;R(h; �)ikL1; 1w � C suph2G=P jXi2I� 
i 'i(�(h))j 1w(�(h))� C supi2I� j
ijw(�(hi)) suph2G=PXi2I� 'i(�(h)) w(�(hi))w(�(h)) ;22



and further by (4.18) and sin
e f'ig is a partition of unity thatjjhXi2I� 
i; 'i Æ �;R(h; �)ikL1; 1w � C C jj(
i)i2I� jj`1; 1w :2. Next it is easy to 
he
k thathXi2I� 
i'i Æ �;R(h; �)i =Xi2I� 
ih'i Æ �;R(h; �)i:Sin
e S�1' is a bounded operator on Mp; 1w , we 
on
lude that(
i)i2I� 7! S�1'  Xi2I� 
ih'i Æ �;R(h; �)i! =Xi2I� 
iS�1' (h'i Æ �;R(h; �)i)is also bounded from `p; 1w to Mp;w.3. Finally, we apply part 1 and 2 of the proof to the spe
ial sequen
e �hf;  iiH01;w�H1;w�i2I� =(F (hi))i2I� , where F := V f , and obtainjjXi2I�hf;  iiH01;w�H1;wS�1' (h'i Æ �;R(h; �)i) jjLp; 1w (G=P) � C jj�hf;  iiH01;w�H1;w�i2I� jj`p; 1wand together with Corollary 4.2 and the 
orresponden
e prin
iplejjf jjMp;w � C jj�hf;  iiH01;w�H1;w�i2I� jj`p; 1w : �
5 AppendixIn this se
tion, we want to 
olle
t some basi
 fa
ts that were needed before. Let us startwith extending the 
lassi
al Young inequality, see, e.g., [13℄, p. 185, Theorem 6.18, toweighted Lp{spa
es.Theorem 5.1 (Weighted Young Inequality) Let (X;A; �) and (Y;B; �) be �{�nitemeasure spa
es, let K be an A
B{measurable fun
tion on X�Y , and let w be a positiveweight fun
tion. Suppose that K satis�es the following 
onditionsZX jK(x; y)jw(y)w(x) d�(x) � CKfor a.e. y 2 Y and ZY jK(x; y)jw(y)w(x) d�(y) � CK23



for a.e. x 2 X. If f 2 Lp; 1w ; 1 � p � 1, then the integralTf(x) = ZY K(x; y)f(y) d�(y)
onverges absolutely for a.e. x 2 X, the fun
tion Tf thus de�ned is in Lp; 1w andkTfkLp; 1w � CKkfkLp; 1w :Proof: To show that the operator T is bounded we apply the assumptions of Theo-rem 5.1 and the H�older inequality with 1=p+ 1=q = 1 as follows:kTfkpLp; 1w = Z j Z K(x; y)f(y)d�(y)jp 1wp(x) d�(x)� Z �Z (jK(x; y)jw(y))1=p+1=q jf(y)jw(y) d�(y)�p 1wp(x) d�(x)� Z �Z jK(x; y)jw(y) jf(y)jpwp(y) d�(y)�p=p�Z jK(x; y)jw(y)d�(y)�p=q� 1wp(x) d�(x)� Cp=qK Z Z jK(x; y)jw(y) jf(y)jpwp(y) d�(y)w(x)p=q�p d�(x)= Cp=qK Z w(y) jf(y)jpwp(y) Z jK(x; y)jw(x) d�(x) d�(y)� CpKkfkpLp; 1w : �In order to establish the frame bounds, we need a variant of the Riesz{Thorin inter-polation theorem for the 
ase of weighted Lp{spa
es. For p0; p1 <1, the desired resultis essentially a spe
ial 
ase of the Stein{Weiss interpolation theorem, see, e.g., [2℄, Corol-lary 5.5.4, for details. However, for our approa
h we de�nitely need the 
orrespondingresult for p0 = 1; p1 = 1: The resulting theorem is stated and proved below. It mightbe already known to the spe
ialists, however, in this spe
ial form, it was not found inthe literature.The proof is based on 
omplex interpolation. Therefore we start by brie
y re
allingthe basi
 setting. For further information 
on
erning real and 
omplex interpolation,the reader is, e.g., refered to [2℄ and [15℄. Let A0 and A1 be two 
omplex Bana
h spa
es.Then (A0; A1) is 
alled an interpolation 
ouple if there exists a linear 
omplex Hausdor�spa
e su
h that both A0 and A1 are linearly and 
ontinuously embedded in this spa
e.Then A0 \ A1 with norm kakA0\A1 = maxfkakA0; kakA1g and A := A0 + A1 with normkakA0+A1 = infa=a0+a1fkakA0; kakA1g are also 
omplex Bana
h spa
es. LetS := fz 2 C : 0 < <z < 1gbe a strip in the 
omplex plane. The 
olle
tion F of all fun
tions f(z) de�ned on S withvalues in A with the two properties 24



i) f(z) is 
ontinuous in S and analyti
 in S withsupz2S kf(z)kA <1;ii) f(it) 2 A0 and f(1+ it) 2 A1, with t 2 R, are 
ontinuous in the respe
tive Bana
hspa
es and kfkF := maxfsupt kf(it)kA0 ; supt kf(1 + it)kA1g <1is again a Bana
h spa
e.For a given interpolation 
ouple (A0; A1) and � 2 (0; 1), the spa
e (A0; A1)[�℄ is de�nedas (A0; A1)[�℄ := fa 2 A : there exists f(z) 2 F with f(�) = ag:Equipped with the norm kak[�℄ := inffkfkF : f(�) = ag;(A0; A1)[�℄ be
omes a Bana
h spa
e whi
h has the following interpolation property:Theorem 5.2 Let (A0; A1) and (B0; B1) be two interpolation 
ouples and let T be alinear operator from A0 + A1 into B0 + B1 su
h that its restri
tion to Aj is a boundedlinear operator from Aj into Bj, with norm �Mj; j = 0; 1: Then for any � 2 (0; 1), therestri
tion of T to (A0; A1) is a bounded linear operator from (A0; A1)[�℄ into (B0; B1)[�℄with norm � M1��0 M �1 :Theorem 5.2 is the main ingredient for the proof of Theorem 5.3. For te
hni
al reasons,we shall also need the so{
alled three line theorem, see [2℄, page 4 for details.Lemma 5.1 (The three line theorem) Assume that F (z) is analyti
 on S and boundedand 
ontinuous on S. IfjF (it)j � N0; jF (1 + it)j � N1; �1 < t <1;then we have for � 2 [0; 1℄ thatjF (� + it)j � N1��0 N �1 ; �1 < t <1:Now we are ready to establish the desired interpolation result with respe
t to L1;wand L1;w.Theorem 5.3 Let T be a bounded linear operator from L1;w into `1;w with norm M1and from L1;w into `1;w with norm M1. Then, for any 1 < p < 1, the operator T isalso a bounded from Lp;w into `p;w with norm M1=p1 M (p�1)=p1 .25



Proof: A

ording to Theorem 5.2, it remains to show that(L1;w; L1;w)[�℄ = Lp;w and (`1;w; `1;w)[�℄ = `p;w ; (5.1)where 1p = 1� �:We only prove the �rst statement in (5.1), the se
ond one follows analogously. We haveto show that kak[�℄ = kak(L1;w ;L1;w)[�℄ = kakLp;w :We start with the proof of kak[�℄ � kakLp;w . Without loss of generality we mayassume that kakLp;w = 1. For our purposes, it is 
onvenient to de�ne f as followsf(z) := w(x)p(1�z)�1 exp("(z2 � �2))ja(x)jp(1�z) a(x)ja(x)j :We observe that f is an analyti
 fun
tion on the strip S with f(�) = a. In order to
ompute kak[�℄ we note thatkfkF = maxfsupt kf(it)kL1;w ; supt kf(1 + it)kL1;wg : (5.2)For kf(it)kL1;w , we obtainkf(it)kL1;w = Z w(x)jw(x)p(1�it)�1 exp("(�t2 � �2))ja(x)jp(1�it) a(x)ja(x)j jdx= exp("(�t2 � �2)) Z ja(x)jpw(x)p dx= exp("(�t2 � �2)kakpLp;w = exp("(�t2 � �2):Consequently, for some suitable ",supt kf(it)kL1;w = exp(�"�2) � 1 : (5.3)The L1;w{norm of f(1 + it) 
an be estimated askf(1 + it)kL1;w = supx w(x)jw(x)p(1�(1+it))�1 exp("((1 + it)2 � �2))ja(x)jp(1�(1+it)) a(x)ja(x)j j= exp("(1� t2 � �2)) � exp(") : (5.4)Combining (5.3) and (5.4) we obtain by (5.2)kfkF � exp(")! 1 for "! 0 ;and taking the in�mum yieldskak[�℄ � kakLp;w ; i:e:; Lp;w � (L1;w; L1;w)[�℄ :26



The next step is to show kakLp;w � kak[�℄. Without loss of generality we may againassume that kak[�℄ = 1. Then we havekakLp;w = supfjha; biwj : kbkL0p;w = 1g;where, for 1 � p <1, the dual pairing 
an be written asha; biw := Z a(x)b(x)w(x)p dx :We de�ne F (z) := hf(z); g(z)iwfor some f 2 F satisfying f(�) = a and g given byg(z) := w(x)1�p(1�z) exp("(z2 � �2))jb(x)jpz=(p�1) b(x)jb(x)jfor some b 2 L0p;w with kbkL0p;w = 1. We want to estimate F (z) by means of Lemma 5.1.Sin
e kak[�℄ = 1 we 
an �nd f 2 F with f(�)) = a su
h that kf(it)kL1;w � 1 + " andkf(1 + it)kL1;w � 1 + " for all " > 0. Any su
h fun
tion f provides us with suitablebounds for jF (it)j and jF (1 + it)j. Indeed,jF (it)j = j Z f(it)g(it)w(x)p dxj� Z jf(it)jjw(x)1�p(1�it)jw(x)p dx exp("(�t2 � �2))� Z jf(it)jw(x) dx exp("(�t2 � �2))� kf(it)kL1;w exp("(�t2 � �2))� (1 + ") exp(�"�2) � exp(") =: N0andjF (1 + it)j = j Z g(1 + it)f(1 + it)w(x)p dxj� kf(1 + it)kL1;w Z jb(x)jp(1+it)=(p�1)w(x)p(1+it) dx exp("(1� t2 � �2))� (1 + ") Z jb(x)jp=(p�1)w(x)p dx exp(") exp("(�t2 � �2))� exp(2") =: N1 :Hen
e, by using Lemma 5.1,jF (� + it)j � exp(2") for all 0 � � � 1 :Consequently, jha; biwj � jF (�)j � exp(2") ;that is, kakLp;w � 1 and therefore (L1;w; L1;w)[�℄ � Lp;w. �27
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