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Abstract

This paper is concerned with the development of adaptive numerical meth-
ods for elliptic operator equations. We are especially interested in discretization
schemes based on frames. The central objective is to derive an adaptive frame
algorithm which is guaranteed to converge for a wide range of cases. As a core
ingredient we use the concept of Gelfand frames which induces equivalences
between smoothness norms and weighted sequence norms of frame coefficients.
It turns out that this Gelfand characteristic of frames is closely related to their
localization properties. We also give constructive examples of Gelfand wavelet
frames on bounded domains. Finally, an application to the efficient adaptive
computation of canonical dual frames is presented.

AMS subject classification: 41A25, 41A46, 42C15, 42C40, 46E35, 65F10, 65F20,
65F50, 65N12, 65N55, 65T60.
Key Words: Operator equations, multiscale methods, adaptive algorithms, domain
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1 Introduction

The analysis of adaptive numerical schemes for operator equations is a field of enor-
mous current interest. Recent developments, for instance in the finite element context,
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indeed indicate their promising potential [1, 2, 4, 6, 33, 53]. Moreover, it has also
turned out that adaptive schemes based on wavelets have several important advan-
tages. The wavelet methodology differs from other conventional schemes in so far as
direct use of bases is made which span appropriate complements between successive
approximation spaces. The basic idea of adaptive wavelet schemes can be described
as follows. By using the fact that weighted sequence norms of wavelet expansions
are equivalent to Sobolev norms, efficient and reliable error estimators based on the
wavelet expansion of the residual can be derived. By catching the bulk of the residual
coefficients, these error estimators lead to adaptive refinement strategies which are
guaranteed to converge for a wide range of problems. Indeed, by combining these
ideas with the compression properties of wavelets, in [18] a first implementable con-
vergent adaptive scheme for symmetric elliptic problems has been derived. Moreover,
it has turned out that a judicious variant of this approach produces an asymptotically
optimal algorithm [14]. Generalizations to nonsymmetric and nonlinear problems also
exist [16, 15]. Moreover, by using adaptive variants of the classical Uzawa algorithm,
saddle point problems can be handled [19, 20], and the applicability of the resulting
algorithms to practical problems has been demonstrated in [3]. Nevertheless, the ef-
ficiency of all these approaches is still limited by a serious bottleneck. Usually, the
operator under consideration is defined on a bounded domain Ω ⊂ Rd or on a closed
manifold, and therefore the construction of a wavelet basis with specific properties
on this domain or on the manifold is needed. Although there exist by now several
construction methods such as, e.g., [27, 28], none of them seems to be fully satisfy-
ing in the sense that some serious drawbacks such as stability problems cannot be
avoided. One way out could be to use a fictitious domain method [51], however, then
the compressibility of the problem might be reduced.

Motivated by these difficulties, we therefore suggest to use a slightly weaker con-
cept, namely frames. In general, a sequence F = {fn}n∈N in H is a frame for the
Hilbert space H if

AF‖f‖2
H ≤

∑

n∈N

∣

∣〈f, fn〉H
∣

∣

2 ≤ BF‖f‖2
H, for all f ∈ H,

for suitable constants 0 < AF ≤ BF < ∞, see Section 3 and [11, 30] for further
details. Every element of H has an expansion with respect to the frame elements,
but in contrast to stable multiscale bases, its representation is not necessarily unique.
Therefore frame expansions may contain some redundancy.

On the one hand, because of the redundancy of a frame, orthonormal and biorthog-
onal representations of functions by means of Riesz bases have been preferred and
considered to be a maybe more useful concept since the overcompleteness of a frame
has been interpreted as “low compression rate”, “larger amount of data” and “unde-
termined representation”.

On the other hand, the redundancy of a frame proved to play an important role
in practical problems where stability and error tolerance are fundamental as, for ex-
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ample, denoising, pattern matching, or irregular sampling problems [36] with recent
applications in Σ∆ quantization [32]. Moreover, since one is working with a weaker
concept, the concrete construction of a frame is usually much simpler when compared
to stable multiscale bases. Consequently, there is some hope that the frame approach
might simplify the geometrical construction on bounded domains and manifolds sig-
nificantly, and that this important advantage compensates some drawbacks such as
singularity problems in discretizing operators. Moreover, the redundancy of a frame
can give the freedom to implement further properties, which would be mutually exclu-
sive in the Riesz basis case, e.g., both high smoothness and small support. Potentially
this would allow faster and more accurate computation of the stiffness matrix entries
associated, for example, to differential operators with smooth coefficients by Gauss
quadrature methods, and sparser matrix representations of operators.

The potential of frames in numerical analysis is an almost unexplored field. One
of the first interesting attempts to use frames for numerical simulation is [52], being
a pioneering approach to the application of wavelet frames to the adaptive solution
of operator equations. The results presented in this paper are very much inspired by
these developments. However, for several reasons, we work with a different setting.
Instead of using a frame for the solution space Hs, we start with a frame for L2

which, similar to the classical wavelet setting, gives rise to norm equivalences for Hs

as well as for its dual with respect to corresponding ℓ2,2s sequence spaces. Therefore
we introduce the new concept of Gelfand frames, inducing norm equivalences for
Gelfand triples (B,H,B′) of Banach spaces with respect to corresponding sequence
spaces (Bd, ℓ2,B′

d). Gelfand frames appear to us to be a more natural generalization
of the well–established concept of unconditional bases in smoothness spaces. We
show that, by employing recent results on Banach frames [17, 35, 36, 42, 44, 47],
the analysis of [52] and [14] carries over to the Gelfand frame case, i.e., we derive
an adaptive frame algorithm which is guaranteed to converge for a wide range of
problems. This is the main result of this paper.

To read the content in the correct light, let us add the following general remarks.
We want to emphasize that we neither claim to rediscover the whole word of adaptive
numerical schemes nor to give the frame analysis a shake–up. It is clear that many of
the building blocks used in this paper have already been established before. Neverthe-
less, having in mind the fact that adaptive numerical analysis and frame theory have
developed almost independently in the last years, we think that it is fruitful to bring
these two different fields together and to show that many approaches investigated so
far fit together quite nicely. Especially, we show that many concepts of modern frame
theory such as localization of frames can in fact be very well exploited for numerical
purposes.

We also want to deliberately point at the following fact here. The research pre-
sented in this paper was mainly motivated by the numerical treatment of elliptic op-
erator equations. In this context, wavelet frames would be the most natural choice.
However, for the following reason, our approach can also be applied to different set-
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tings involving other kinds of frames. The applicability of adaptive numerical schemes
with guaranteed convergence essentially relies on compressibility properties. But it
turns out that for a large class of operator equations, it is indeed possible to de-
sign (Gelfand) frames fitting the particular problems at hand in the sense that the
system matrices arising by the discretization indeed exhibit the nice compressibility
properties. One example would be the discretization of pseudodifferential operators
by brushlet systems, see Section 4.3. In the course of this paper, more details and
examples will be given to illustrate and support this general leitmotif.

This paper is organized as follows. In Section 2, we introduce the scope of problems
we shall be concerned with. The whole analysis is based on the concept of Banach
frames. Therefore, in Section 3, we briefly recall the definition and the basic properties
of Banach and Gelfand frames as far as they are needed for our purposes. Section 4
contains the main result of this paper. We show that, based on a Richardson iteration,
a convergent and implementable adaptive frame algorithm can be derived. The whole
analysis relies on certain norm equivalences the Gelfand frame has to satisfy, and on
the scheme proposed by Stevenson [52] for the adaptive pseudo–inversion of infinite
matrices. The norm equivalences are closely related to the localization properties
of the underlying frame. These relationships are discussed in detail in Section 5.
Then, in Section 6, we give an outline how Gelfand wavelet frames on domains can be
constructed. It turns out that a relatively simple approach by using an overlapping
partition of the domain already works. Our result relies on a general concept of
exponential localization with respect to an additional biorthogonal wavelet basis. The
underlying metric to measure such localization is a modified version of the well–known
Lemarié metric as, e.g., described in [43]. Section 7 illustrates another application
of our theory. When working with frames, the computation of the canonical dual,
based on the inversion of the frame operator, is always a nontrivial problem and
usually the known numerical algorithms converge quite slowly. However, it turns
out that this problem exactly fits into our setting so that we are able to derive an
adaptive numerical scheme with optimal order of convergence to compute a dual
frame. Finally, some technical lemmata, especially concerning the properties of the
generalized Lemarié metric, are collected and proved in the appendix.

2 The Scope of Problems

We shall be concerned with linear operator equations

Lu = f, (1)

where we will assume L to be a boundedly invertible operator from some Hilbert
space H into its normed dual H ′, i.e.,

‖Lu‖H′ ∼ ‖u‖H, u ∈ H. (2)
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Here ‘a ∼ b’ means that both quantities can be uniformly bounded by some constant
multiple of each other. Likewise, ‘.’ indicates inequalities up to constant factors.
We write out such constants explicitly only when their value matters. When L is
assumed to be boundedly invertible, then (1) has a unique solution u for any f ∈ H ′.
In the sequel, we shall mainly focus on the important special case where

a(v, w) := 〈Lv, w〉 (3)

defines a symmetric bilinear form on H , 〈·, ·〉 corresponding to the dual pairing of H
and H ′. We will always assume that a(·, ·) is elliptic in the sense that

a(v, v) ∼ ‖v‖2
H , (4)

which is easily seen to imply (2).
Typical examples are second order elliptic boundary value problems on a Lipschitz

domain Ω ⊂ Rd such as the Poisson equation

−△u = f in Ω, (5)

u = 0 on ∂Ω.

In this case, H = H1
0(Ω), H ′ = H−1(Ω), and the corresponding bilinear form is given

by

a(v, w) =

∫

Ω

∇v · ∇wdx. (6)

Thus H typically is a Sobolev space. Therefore we will from now on always assume
that H and H ′, together with L2(Ω), form a Gelfand triple, i.e.,

H ⊂ L2(Ω) ⊂ H ′ (7)

with continuous and dense embeddings.
More general, one also may assume that L is an operator with global Schwartz

kernel

(Lv)(x) =

∫

Ω

K(x, y)v(y) dy,

where for d+ t+ |α| + |β| > 0

∣

∣∂αx∂
β
yK(x, y)

∣

∣ . ‖x− y‖−(d+t+|α|+|β|)

Rd . (8)

Here Ω denotes a domain contained in Rd or a closed d–dimensional manifold and t a
suitable parameter, ‖·‖Rd denotes the Euclidean norm. Assumption (8) covers a wide
range of cases, including pseudodifferential operators as well as Calderón–Zygmund
operators, cf. [25]. Nevertheless the adaptive numerical scheme we discuss later
works on more general (pseudodifferential) operators, provided that compressibility
properties of the corresponding discretization matrices hold.
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We are interested in solving (1) approximately with the aid of a suitable numerical
scheme. One candidate would clearly be the Galerkin method. There one picks some
finite dimensional space S ⊂ H and searches for uS ∈ S such that

〈LuS, v〉 = 〈f, v〉, u ∈ S, (9)

where 〈·, ·〉 denotes the standard L2–inner product. A resonable choice for S would,
e.g., be a finite element space. However, in this paper we are mainly interested in
(wavelet) frames. Then, one possible strategy would be the following. Choose a suit-
able subset of frame elements, project the problem in the sense of (9) onto their span
and compute the Galerkin approximation, try to estimate the current error in order
to choose suitable additional frame elements and so on. But such a standard and
classical approach can produce serious problems, e.g., numerical instability and diffi-
culties to prove convergence. Indeed, since we allow redundancies within the frame,
the corresponding stiffness matrices might be singular. Consequently, to handle this
problem, we shall use a different strategy as outlined in detail in Section 4. Instead
of using a classical Galerkin scheme, we work with an ℓ2–problem equivalent to (1),
which is treated by an approximated Richardson iteration.

3 Banach Frames

In the course of this paper, we have to consider weighted function spaces. To this
end, we introduce a special class of weight functions. A weight w on Rd is a non–
negative real–valued function, which we assume to be continuous without loss of
generality. A weight w on Rd is m–moderate if w(x + y) ≤ m(x)w(y), where m is a
submultiplicative weight on Rd, i.e., m(x+y) ≤ m(x)m(y), and radial symmetric, i.e.,
m(x) = m(‖x‖Rd). A classical example of a submultiplicative and radial symmetric
function is ms(x) =

(

1 + ‖x‖Rd

)s
.

The weighted ℓp–space ℓp,w(N ) on the countable index set N ⊂ Rd with respect
to the weight w is induced by the norm

‖c‖ℓp,w :=

(

∑

n∈N

|cn|pw(n)p

)1/p

, (10)

with the usual modification for p = ∞. Throughout this paper, we will require the
existence of a map | · | : N → Z, and we use the shorthand notation ℓp,2s(N ) :=
ℓp,2s|·|(N ).

In the following, we assume that H is a separable Hilbert space with inner product
〈·, ·〉H and norm ‖ · ‖H. A sequence F = {fn}n∈N in H is a frame for H if

‖f‖2
H ∼

∑

n∈N

∣

∣〈f, fn〉H
∣

∣

2
, for all f ∈ H. (11)
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As a consequence of (11), the corresponding operators of analysis and synthesis given
by

F : H → ℓ2(N ), f 7→
(

〈f, fn〉H
)

n∈N
, (12)

F ∗ : ℓ2(N ) → H, c 7→
∑

n∈N

cnfn, (13)

are bounded. The composition S := F ∗F is a boundedly invertible (positive and
self–adjoint) operator called the frame operator and F̃ := S−1F is again a frame for
H, the canonical dual frame, with corresponding analysis and synthesis operators

F̃ = F (F ∗F )−1, F̃ ∗ = (F ∗F )−1F ∗. (14)

In particular, one has the following orthogonal decomposition of ℓ2(N )

ℓ2(N ) = ran(F ) ⊕ ker(F ∗), (15)

and
Q := F (F ∗F )−1F ∗ : ℓ2(N ) → ran(F ), (16)

is the orthogonal projection onto ran(F ). The frame F is a Riesz basis for H if and
only if ker(F ∗) = {0}. The importance of the canonical dual frame is its use in the
reproduction of any element f ∈ H. In fact, one has the following formulas:

f = SS−1f =
∑

n∈N

〈f, S−1fn〉Hfn = S−1Sf =
∑

n∈N

〈f, fn〉HS−1fn. (17)

Since a frame is typically overcomplete in the sense that the coefficient functionals
{cn}n∈N in the representation

f =
∑

n∈N

cn(f)fn (18)

are in general not unique (ker(F ∗) 6= {0}), there exist many possible non–canonical
duals {f̃n}n∈N in H for which

f =
∑

n∈N

〈f, f̃n〉Hfn. (19)

A more general definition of frames is required for Banach spaces, cf. [44, 47], see
also [35]. A Banach frame for a separable and reflexive Banach space B is a sequence
F = {fn}n∈N in B′ with an associated sequence space Bd such that the following
properties hold:

(B1) the coefficient operator F defined by Ff =
(

〈f, fn〉B×B′

)

n∈N
is bounded from B

into Bd;
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(B2) norm equivalence:

‖f‖B ∼
∥

∥

∥

(

〈f, fn〉B×B′

)

n∈N

∥

∥

∥

Bd

; (20)

(B3) there exists a bounded operator R from Bd onto B, a so–called synthesis or
reconstruction operator, such that

R
(

(

〈f, fn〉B×B′

)

n∈N

)

= f. (21)

Assuming that B is continuously and densely embedded in H, one has

B ⊂ H ≃ H′ ⊂ B′. (22)

If the right inclusion is also dense, then (B,H,B′) is called a Gelfand triple. In
particular, this holds if B is also Hilbert space. A frame F (here F̃ is the canonical
dual frame) for H is a Gelfand frame for the Gelfand triple (B,H,B′), if F ⊂ B,
F̃ ⊂ B′ and there exists a Gelfand triple

(

Bd, ℓ2(N ),B′
d

)

of sequence spaces such that

F ∗ : Bd → B, F ∗c =
∑

n∈N

cnfn and F̃ : B → Bd, F̃ f =
(

〈f, f̃n〉B×B′

)

n∈N
(23)

are bounded operators.

REMARK: If F (again F̃ is the canonical dual frame) is a Gelfand frame for the
Gelfand triple (B,H,B′) with respect to the Gelfand triple of sequences

(

Bd, ℓ2(N ),B′
d

)

,
then by duality also the operators

F̃ ∗ : B′
d → B′, F̃ ∗c =

∑

n∈N

cnf̃n and F : B′ → B′
d, Ff =

(

〈f, fn〉B′×B

)

n∈N
(24)

are bounded, see, e.g., [49] for details.

The next result clarifies the relations between Gelfand and Banach frames.

Proposition 3.1. If F is a Gelfand frame for (B,H,B′), then F̃ and F are Banach
frames for B and B′, respectively.

Proof. We only show that F̃ is a Banach frame for B, since the second claim follows
by an analogous argument. It suffices to prove (B2). F̃ being the canonical dual of
F , we have by (17) f =

∑

n∈N 〈f, f̃n〉Hfn for each f ∈ H, with convergence in H. But

for f ∈ B, we have 〈f, f̃n〉H = 〈f, f̃n〉B×B′ and F ∗F̃ f ∈ B by the boundedness of F ∗

and F̃ , so that
∑

n∈N 〈f, f̃n〉B×B′fn = F ∗F̃ f = f also converges in B. Hence

‖f‖B =

∥

∥

∥

∥

∥

∑

n∈N

〈f, f̃n〉B×B′fn

∥

∥

∥

∥

∥

B

= ‖F ∗F̃ f‖B . ‖F̃ f‖Bd
. ‖f‖B.
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4 Adaptive Numerical Frame Schemes for Opera-

tor Equations

In this section, we want to show how the Gelfand frame setting can be used for the
adaptive numerical treatment of elliptic operator equations of the form (1). Unless
otherwise stated, we shall always assume that (3) and (4) hold, so that L is symmetric.

We want to discretize (1) by means of a suitable Gelfand frame for (B,H,B′),
where we choose B = H , H = L2 and B′ = H ′. Following, e.g., [14], a natural
way would be to expand the operator equation with respect to the frame and to
convert the problem into an operator equation in ℓ2. However, then the redundancy
of the frame might cause problems in the sense that we might end up with a singular
system matrix. Nevertheless, in Theorem 4.2 below we show that this can in fact be
handled in practice and that the solution of our operator equation can in principle be
computed by a version of the Richardson iteration. It is clear that the resulting scheme
is not directly implementable since one has to deal with infinite matrices and vectors.
Therefore, following [14, 16, 52], we also show how the scheme can be transformed
into an implementable one by using approximated versions of the necessary building
blocks. The result is a numerical frame algorithm which is guaranteed to converge.

As already outlined, the analysis presented in this section was inspired by the
pioneering work of Stevenson [52]. Nevertheless, there is one essential difference. In
[52], the frame is directly constructed for the solution Hilbert space H by identifying
H with its dual via the Riesz map. This is clearly a reasonable way, however, in the
Gelfand triple setting, it is then not possible to identify also H = L2 with its dual at
the same time, see, e.g., [49] for details.

In this paper, we try to introduce the use of Gelfand frames as a more natural
setting, i.e., our frames are constructed in H but nevertheless give rise to norm
equivalences for B as well as for B′. From the notational viewpoint, we deliberately
denote the Hilbert space we are constructing Gelfand frames for with B, because
Gelfand frames are much more closely related to Banach than to Hilbert frames, see,
e.g., Proposition 3.1.

4.1 A Series Representation of the Solution

In the following, we fix a Gelfand frame F = {fn}n∈N for (B,H,B′) with a cor-
responding Gelfand triple of sequence spaces

(

Bd, ℓ2(N ),B′
d

)

, where we will always
identify H and ℓ2(N ) with their duals H′ and ℓ2(N )′, respectively.

Moreover, we shall always assume that there exists an isomorphism DB : Bd →
ℓ2(N ), so that its ℓ2(N )–adjoint D∗

B : ℓ2(N ) → B′
d is also an isomorphism.

Lemma 4.1. Under the assumptions (3), (4) on L, the operator

G := (D∗
B)−1FLF ∗D−1

B (25)

9



is a bounded operator from ℓ2(N ) to ℓ2(N ). Moreover G = G∗ and it is boundedly
invertible on its range ran(G) = ran((D∗

B)−1F ).

Proof. Since G is a composition of bounded operators D−1
B : ℓ2(N ) → Bd, F ∗ : Bd →

B, L : B → B′, F : B′ → B′
d and (D∗

B)−1 : B′
d → ℓ2(N ), G is a bounded operator from

ℓ2(N ) to ℓ2(N ). Moreover, from the decomposition (25) it is clear that

ker(G) = ker(F ∗D−1
B ), ran(G) = ran((D∗

B)−1F ). (26)

Since L is symmetric, we have G = G∗ and the orthogonal decomposition

ℓ2(N ) = ker(F ∗D−1
B ) ⊕ ran((D∗

B)−1F ). (27)

Therefore
G| ran(G) : ran(G) → ran(G) (28)

is boundedly invertible.

Theorem 4.2. Let L satisfy (3) and (4). Denote

f := (D∗
B)−1Ff (29)

and G as in (25). Then the solution u of (1) can be computed by

u = F ∗D−1
B Pu (30)

where u solves

Pu =

(

α

∞
∑

n=0

(id−αG)n

)

f , (31)

with 0 < α < 2/λmax and λmax = ‖G‖. Here P : ℓ2(N ) → ran(G) is the orthogonal
projection onto ran(G).

Proof. Like in Theorem 3.1, we have u =
∑

n∈N 〈u, f̃n〉Hfn in H. Since F is a Gelfand

frame, F ∗F̃ : B → B is bounded and implies u = F ∗F̃ u =
∑

n∈N 〈u, f̃n〉B×B′fn in B.
By Proposition 3.1 and using (B3) for F , (1) is equivalent to the following system of
equations

∑

n∈N

〈u, f̃n〉B×B′〈Lfn, fm〉B′×B = 〈f, fm〉B′×B, m ∈ N . (32)

Denote u := DBF̃ u and f , G as in (29) and (25). Then (32) can be rewritten as

Gu = f . (33)

For all v ∈ ℓ2(N )

〈Gv,v〉ℓ2(N ) = 〈(D∗
B)−1FLF ∗D−1

B v,v〉ℓ2(N ) = 〈LF ∗D−1
B v, F ∗D−1

B v〉B′×B.
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Since L is positive, G is positive semi–definite. Let us denote λmax := ‖G‖ and
λ+

min := ‖(G| ran(G))
−1‖−1. For 0 < α < 2/λmax, one can consider the operator

B := α
∞
∑

n=0

(id−αG)n. (34)

Since ρ := ‖ id−αG| ran(G)‖ = max{αλmax − 1, 1 − αλ+
min} < 1, with minimum at

α∗ = 2/(λmax + λ+
min), one has that B is a well–defined bounded operator on ran(G).

Moreover, it is also clear that

B ◦ G| ran(G) = G ◦ B| ran(G) = idran(G) . (35)

Since G(id−P) = 0,
Gu = GPu = f . (36)

Therefore Pu ∈ ran(G) is the unique solution of (33) in ran(G) and by (35)

Pu = Bf . (37)

By construction

〈f, fm〉B′×B = 〈F̃ ∗Ff, fm〉B′×B

= 〈F̃ ∗D∗
Bf , fm〉B′×B

= 〈F̃ ∗D∗
BGPu, fm〉B′×B

= 〈LF ∗D−1
B Pu, fm〉B′×B, m ∈ N ,

so that u = F ∗D−1
B Pu solves (1).

4.2 Numerical Realization

Now we turn to the numerical treatment of (33). The computation of (31) is nothing
but a damped Richardson iteration

u(i+1) = u(i) − α(Gu(i) − f), (38)

starting with u(0) = 0. Of course this iteration cannot be practically realized from
infinite vectors.

In the following, we show that the approaches by fully adaptive schemes presented
in [16, 52] to compute approximations of solutions of (33) can also be extended to the
case where the matrix G is computed by a Gelfand frame discretization. Therefore,
for the rest of this section, we refer to [16, 52] for details.

Assume that we have the following procedures at our disposal:

• RHS[ε, g] → gε: determines for g ∈ ℓ2(N ) a finitely supported gε ∈ ℓ2(N )
such that

‖g − gε‖ℓ2(N ) ≤ ε; (39)
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• APPLY[ε,N,v] → wε: determines for N ∈ L(ℓ2(N )) and for a finitely sup-
ported v ∈ ℓ2(N ) a finitely supported wε such that

‖Nv −wε‖ℓ2(N ) ≤ ε; (40)

• COARSE[ε,v] → vε: determines for a finitely supported v ∈ ℓ2(N ) a finitely
supported vε ∈ ℓ2(N ) with at most N significant coefficients, such that

‖v − vε‖ℓ2(N ) ≤ ε. (41)

Moreover, N . Nmin holds, Nmin being the minimal number of entries for which
(41) is valid.

We will discuss the availability of the routines RHS, APPLY and COARSE
later, after the proof of Theorem 4.3. Then we can define the following inexact version
of the damped Richardson iteration (38):

Algorithm 1. SOLVE[ε,G, f ] → uε:

Let θ < 1/3 and K ∈ N be fixed such that 3ρK < θ.
i := 0, v(0) := 0, ε0 := ‖G−1

| ran(G)‖‖f‖ℓ2(N )

While εi > ε do
i := i+ 1
εi := 3ρKεi−1/θ
f (i) := RHS[ θεi

6αK
, f ]

v(i,0) := v(i−1)

For j = 1, ..., K do
v(i,j) := v(i,j−1) − α(APPLY[ θεi

6αK
,G,v(i,j−1)] − f (i))

od
v(i) := COARSE[(1 − θ)εi,v

(i,K)]
od
uε := v(i).

Note that here, deviating somewhat from the notation in (38), we denote by v(i)

the result after applying K approximate Richardson iterations at a time to v(i−1).

Theorem 4.3. In the situation of Theorem 4.2, let u ∈ ℓ2(N ) be a solution of (33).
Then SOLVE[ε,G, f ] produces finitely supported vectors v(i,K),v(i) such that

∥

∥P(u− v(i))
∥

∥

ℓ2(N )
≤ εi, i ≥ 0. (42)

In particular, one has

‖u− F ∗D−1
B uε‖B ≤ ‖F ∗‖‖D−1

B ‖ε. (43)

Moreover, it holds that

∥

∥Pu− (id−P)v(i−1) − v(i,K)
∥

∥

ℓ2(N )
≤ 2θεi

3
, i ≥ 1. (44)
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Proof. The proof is completely analogous to [52], replacing Q by P. For i = 0, (31)
and (37) yield

∥

∥P(u− v(0))
∥

∥

ℓ2(N )
= ‖Pu‖ℓ2(N ) = ‖Bf‖ℓ2(N ) ≤ ε0.

Now take i ≥ 1 and let
∥

∥P(u − v(i−1))
∥

∥

ℓ2(N )
≤ εi−1 hold. We show (44) first. When

exactly performing one damped Richardson iteration (38), from, say, some vector w(i)

to w(i+1), equations (33) and (36) yield

Pu−w(i+1) = Pu− w(i) + α(Gw(i) − f) = (id−αG)(Pu− w(i)). (45)

So, by induction, the exact application of K damped Richardson iterations at a time
would result in

Pu− w(i+K) = (id−αG)K(Pu−w(i)). (46)

But the loop of Algorithm 1 performsK perturbed Richardson iterations v(i,j), starting
from v(i,0) = v(i−1). By construction, the stepwise error does not exceed

∥

∥v(i,j) − v(i,j−1) + α(Gv(i,j−1) − f)
∥

∥

ℓ2(N )
≤ α

(

θεi
6αK

+
θεi

6αK

)

=
θεi
3K

,

so that after K steps we end up in

∥

∥Pu− v(i,K) − (id−αG)K(Pu− v(i−1))
∥

∥

ℓ2(N )
≤ K

θεi
3K

=
θεi
3
. (47)

It is straightforward to compute the identity

(id−αG)K(Pu− v(i−1)) = (id−αG)KP(u− v(i−1)) − (id−P)v(i−1). (48)

But due to the specific choice of the relaxation parameter α in Theorem (4.2), we get

∥

∥(id−αG)KP(u− v(i−1))
∥

∥

ℓ2(N )
≤ ρK

∥

∥P(u− v(i−1))
∥

∥

ℓ2(N )
≤ ρKεi−1 =

θεi
3
, (49)

which, together with (48), yields (44). Now, by using (44) and the definition of
COARSE one has

‖Pu + (id−P)v(i−1) − v(i)‖ℓ2(N ) ≤ ‖Pu + (id−P)v(i−1) − v(i,K)
∥

∥

ℓ2(N )

+‖v(i,K) − v(i)‖ℓ2(N ) ≤
2θ

3
εi + (1 − θ)εi ≤ εi.

Then (42) follows by

‖P(u− v(i))‖2
ℓ2(N ) ≤ ‖P(u− v(i))‖2

ℓ2(N ) + ‖(id−P)(v(i−1) − v(i))‖2
ℓ2(N )

= ‖P(u− v(i)) + (id−P)(v(i−1) − v(i))‖2
ℓ2(N )

= ‖Pu + (id−P)v(i−1) − v(i)‖2
ℓ2(N ).

13



Since ker(F ∗D−1
B ) = ker(G) = ker(P), we finally verify

‖u− F ∗D−1
B uε‖B =

∥

∥F ∗(F̃ u−D−1
B uε)‖B

=
∥

∥F ∗D−1
B (u− uε)

∥

∥

B

=
∥

∥F ∗D−1
B P(u− uε)

∥

∥

B

≤ ‖F ∗‖‖D−1
B ‖
∥

∥P(u− uε)
∥

∥

ℓ2(N )

≤ ‖F ∗‖‖D−1
B ‖ε.

REMARK: Note that the single iterands v(i) might not be elements of ran(G), which
is due to the APPLY routine. But this has no effect on the convergence of Algorithm
1, up to the prescribed tolerance.

Of course, in concrete numerical realizations, the damped Richardson iteration
might exhibit a low convergence rate when the relaxation parameter α is small. This
constitutes one of key points for the efficiency of such scheme. Generalizations of
Algorithm 1 towards, e.g., conjugate gradient iterations can be realized [16], even if,
in some applications [19, 29], such generalizations did not give much better results.

Now clearly the question arises how the basic routines RHS[ε, g], APPLY[ε,N,v]
and COARSE[ε,v] can be realized numerically. We refer, e.g., to [14, 16, 52] for
a detailed description. However, for the reader’s convenience, at least some re-
marks concerning APPLY[ε,N,v] are advisable. To derive a suitable version of
APPLY[ε,N,v], we have to restrict ourselves to compressible matrices. As usual,
for s∗ > 0, a bounded N : ℓ2(N ) → ℓ2(N ) is called s∗–compressible, if for each j ∈ N

there exist constants αj and Cj and a matrix Nj having at most αj2
j non–zero entries

per column, such that
‖N − Nj‖ ≤ Cj , (50)

where (αj)j∈N is summable, and for any s < s∗, (Cj2
sj)j∈N is summable. For s∗–

compressible N, we make use of the following routine APPLY:

APPLY[ε,N,v] → wε

• q := ⌈log((# supp v)1/2‖v‖ℓ2(N )‖N‖2/ε)⌉.

• Divide the elements of v into sets V0, . . . , Vq, where for 0 ≤ i ≤ q−1, Vi contains
the elements with modulus in (2−i−1‖v‖ℓ2(N ), 2

−i‖v‖ℓ2(N )) and possible remain-
ing elements are put into Vq.

• For k = 0, 1, . . . , generate vectors v[k] by subsequently extracting 2k − ⌊2k−1⌋
elements from ∪iVi, starting from V0 and when it is empty continuing with Vi

14



and so forth, until for some k = l either ∪iVi becomes empty or

‖N‖
∥

∥

∥

∥

∥

v −
l
∑

k=0

v[k]

∥

∥

∥

∥

∥

ℓ2(N )

≤ ε/2. (51)

In both cases, v[l] may contain less than 2l − ⌊2l−1⌋ elements.

• Compute the smallest j ≥ l such that

l
∑

k=0

Cj−k‖v[k]‖ℓ2(N ) ≤ ε/2. (52)

• For 0 ≤ k ≤ l, compute the non–zero entries in the matrices Nj−k which have
a column index in common with one of the entries of v[k] and compute

wε :=

l
∑

k=0

Nj−kv[k]. (53)

For an estimation of the computational complexity and the storage requirements of
Algorithm 1, we have to introduce the weak ℓτ spaces ℓwτ (N ). Given some 0 < τ < 2,
ℓwτ (N ) is defined as

ℓwτ (N ) := {c ∈ ℓ2(N ) : |c|ℓwτ (N ) := sup
n∈N

n1/τ |γn(c)| <∞}, (54)

where γn(c) is the nth largest coefficient in modulus of c. We refer to [14, 31] for
further details on the quasi–Banach spaces ℓwτ (N ).

Theorem 4.4. Assume that for some s∗ > 0, G is s∗–compressible and that for some
s ∈ (0, s∗) and τ = (1/2+s)−1, Gu = f has a solution u in ℓwτ (N ). Moreover, assume
that f is s∗–optimal in the sense that for a suitable routine RHS for each s ∈ (0, s∗)
and all ε > 0 with fε := RHS[ε, f ] the following is valid:

(I) # supp fε . ε−1/s|f |1/sℓwτ (N ),

(II) the number of arithmetic operations used to compute it is at most a multiple of

ε−1/s|f |1/sℓwτ (N ).

In addition, assume that there exists an s̃ ∈ (s, s∗) such that with τ̃ = (1/2 + s̃)−1, P
is bounded on ℓwτ̃ (N ). Then, if the parameter K in SOLVE is sufficiently large, for
all ε > 0, uǫ := SOLVE[ε,G, f ] satisfies

(I) # suppuε . ε−1/s|u|1/sℓwτ (N )
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(II) the number of arithmetic operations used to compute uǫ is at most a multiple of

ε−1/s|u|1/sℓwτ (N ).

REMARK: In practical applications, one has to check the s∗–compressibility of G
and especially of P in detail, which might be a problem, cf. [52, Section 4.3]. In
Section 7, we present an application of Algorithm 1 where G and P = Q are in fact
s∗–compressible.

4.3 Compressible Matrices

In the previous section, it has turned out that the applicability of the fundamen-
tal Algorithm 1 essentially relies on the compressibility properties of the resulting
stiffness matrices. Therefore, in this section, we want to introduce two classes of off–
diagonal decaying matrices which are in fact s∗–compressible and usually appearing
in applications, for instance, in signal and image processing, numerical analysis and
simulation.

• The Jaffard class is defined as the class of matrices N = (nk,l)k,l∈N , such that

|nk,l| .
(

1 + ‖k − l‖Rd

)−r
for all k, l ∈ N , and r > d,

where N ⊂ Rd is assumed to be separated, i.e.,

inf
k 6=l,
k,l∈N

‖k − l‖Rd > δ > 0.

As we will discuss in Section 7, the Jaffard class turns out to be very useful for ap-
plications of Algorithm 1 to the efficient computation of canonical dual frames and
in the solution of more general operator equations. For example, suitable brushlet
systems have been constructed by Borup and Nielsen [8] as unconditional bases for
α–modulation spaces [40]. Borup showed in [7] that such systems discretize pseudo-
differential operators in Hörmander classes into Jaffard class matrices G with nice
polynomial off–diagonal decay, see [7, Proposition 3.2]. Alternatively, one can use
α–Gabor–wavelet frames as introduced in [34, 40] for the discretization of such oper-
ators. Recently, connections between pseudodifferential operators and time–frequency
analysis [45] have been recognized, with relevant applications in signal processing and
transmission, radar technology, and wireless communication [37, 38].

Proposition 4.5. Let N be a matrix in the Jaffard class and

|nk,l| .
(

1 + ‖k − l‖Rd

)−η
for all k, l ∈ N ,

where η/2 > r > d. Then the matrix Nj = (n
(j)
k,l)k,l∈N given by

n
(j)
k,l :=

{

0 , ‖k − l‖Rd > αj2
j

nk,l , otherwise
,
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where (αj)j∈N is a positive summable sequence, is such that

‖N −Nj‖ . αd−rj 2(d−r)j for all j ∈ N. (55)

In particular, N is s∗–compressible for s∗ = r − d.

Proof. We want to use Schur’s lemma 8.1. Let us choose as weight wl =
(

1+‖l‖Rd

)−r
,

and denote A1 = {l ∈ N : ‖l − k‖Rd ≤ ‖k‖
Rd

2
} and A2 = N\A1. If l ∈ A1, then

‖l‖Rd ≥ ‖k‖
Rd

2
and

∑

l∈A1

|nk,l − n
(j)
k,l |wl .

∑

l∈A1,
‖l−k‖

Rd>αj2j

(

1 + ‖l − k‖Rd

)−η(
1 + ‖l‖Rd

)−r

≤
(

1 +
‖k‖Rd

2

)−r
∑

‖l−k‖
Rd>αj2j

(

1 + ‖l − k‖Rd

)−η

.
(

1 + ‖k‖Rd

)−r
∫

‖ξ‖
Rd>αj2j

(

1 + ‖ξ‖Rd

)−η
dξ

. wkα
d−η
j 2(d−η)j .

If l ∈ A2 then ‖l − k‖Rd >
‖k‖

Rd

2
and

∑

l∈A2

|nk,l − n
(j)
k,l |wl .

∑

l∈A2,
‖l−k‖

Rd>αj2j

(

1 + ‖l − k‖Rd

)−η(
1 + ‖l‖Rd

)−r

≤
(

1 +
‖k‖Rd

2

)−η
∑

‖l−k‖
Rd>αj2j

(

1 + ‖l‖Rd

)−r
.

The assumption η > 2r implies
∑

l∈A1

|nk,l − n
(j)
k,l |wl .

(

1 + ‖k‖Rd

)r−η
∑

‖l−k‖
Rd>αj2j

(

1 + ‖l − k‖Rd

)−r

.
(

1 + ‖k‖Rd

)−r
∫

‖ξ‖
Rd>αj2j

(

1 + ‖ξ‖Rd

)−r
dξ

. wkα
d−r
j 2(d−r)j .

Since η > r, we have αd−ηj 2(d−η)j ≤ αd−rj 2(d−r)j and

∑

l

|nk,l − n
(j)
k,l |wl . wkα

d−r
j 2(d−r)j , for all k ∈ N , j ∈ N.

In the same way one can show that
∑

k

|nk,l − n
(j)
k,l |wk . wlα

d−r
j 2(d−r)j , for all l ∈ N , j ∈ N.
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By Schur’s lemma 8.1, one has ‖N−Nj‖ . αd−rj 2(d−r)j . The s∗–compressibility of N
is obvious.

Another important class of off–diagonal decaying matrices is the Lemarié class.
This kind of matrices typically arises in the discretization of non–local operators with
Schwartz kernels satisfying (8) by using wavelet frames.

• The Lemarié class is defined as the class of matrices N = (nλ,λ′)λ,λ′∈J , such
that

|nλ,λ′| . 2−s||λ|−|λ′||
(

1 + δ(λ, λ′)
)−r

for all λ, λ′ ∈ J . (56)

Here we require r > d and s > d/2, d is the spatial dimension and the index
λ ∈ J typically encodes several types of information simultaneously, namely
the scale often denoted by |λ| ∈ Z and the spatial localization, see [14] for more
details on the notation. Furthermore, we assume that δ : N ×N → R+ fulfills
the following properties:

(a)
∑

|λ′|=j′ (1 + δ(λ, λ′))−r . 2dmax{0,j′−|λ|}, for all λ ∈ J ,

(b)
∑

{λ′:δ(λ,λ′)>R} (1 + δ(λ, λ′))−r . R−r+d2dmax{0,|λ′|−|λ|}, for all λ ∈ J and
R > 0,

(c) #{λ′ ∈ J : δ(λ, λ′) ≤ R} . Rd2d||λ|−|λ′||, for all λ ∈ J and any R > 0.

A typical example of a function δ fulfilling (a)–(c) is given by

δ(λ, λ′) = 2min{|λ|,|λ′|} dist(suppψλ, suppψλ′),

where {ψλ}λ∈J is a wavelet system.
In Section 6, we construct suitable Gelfand wavelet frames on domains which

ensure that the stiffness matrices corresponding to elliptic differential operators are
contained in the Lemarié class. We also refer to [14, 16, 50] for the relevant and
related literature. The s∗–compressibility of Lemarié class matrices, depending on
the parameters s, r, is discussed in [14, Section 2.4, Proposition 3.4, Corollary 3.7].
In particular, one has the following:

Proposition 4.6. Suppose that s > d/2, r > d and N = (nλ,λ′)λ,λ′∈J satisfies (56).
Then N is s∗–compressible, where

s∗ := min

{

s

d
− 1

2
,
r

d
− 1

}

. (57)

5 Localization of Frames and Gelfand Frames

As we have discussed in the previous sections, given an operator L : B → B′ which
satisfies our basic ellipticity assumptions, one should choose a suitable Gelfand frame
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for (B,H,B′) such that the corresponding matrix G can exhibit compressibility prop-
erties, maybe belonging to one of the off–diagonal decay classes illustrated in Section
4. This ensures that Algorithm 1 can work properly and maybe converges with opti-
mal complexity.

The point is that already the extension of a Hilbert frame for H to a Gelfand
frame for (B,H,B′) is not a trivial problem, especially when one is dealing with highly
unstructured situations or complex geometries. For this it is important to have a quite
flexible and general machinery to ensure the Gelfand property also for these cases.
For example, we will discuss in Section 6 the construction of Gelfand wavelet type
frames for domains. In order to preserve all the freedom that frames can ensure, we
will not exploit any additional structure, e.g., an underlying multiresolution analysis.

In this section, we illustrate a very general method for ensuring that suitable
frames for the Hilbert space H indeed extend to Gelfand frames for the class of
associated Banach spaces B = Hw

p (F , F̃) of the functionals that admit Banach frame
expansions with canonical dual coefficients in ℓp,w(N ). Such abstract machinery can
be concretely applied on a very large class of relevant frames appearing, for instance,
in several problems of signal processing, for example, Gabor frames [37, 38, 45] and
more general α–Gabor–wavelet frames [34, 39, 40]. In the next section, we will modify
the approach to treat also the more complicated case of wavelets on domains and
manifolds. Especially, our goal is to prove the following theorem:

Theorem 5.1. Let F be an A–self–localized frame for H, i.e., a frame for which
the corresponding Gramian matrix belongs to a suitable Banach algebra of matrices
A. Assume that w is an m–moderate weight (for a suitable choice of m as we will
discuss in the following), and that

(

ℓp,w(N ), ℓ2(N ), ℓp′,1/w(N )
)

, 1/p + 1/p′ = 1 for
some 1 ≤ p ≤ ∞, is a Gelfand triple. Then F is a Gelfand frame for the Gelfand
triple (Hw

p (F , F̃),H,Hw
p (F , F̃)′).

Some preparations are necessary. In Subsection 5.1, we discuss the localization
properties of frames. Especially, the concept of A–self–localized frames is introduced.
Then, in Subsection 5.2, we show that A–self–localized frames give rise to character-
izations of associated Banach spaces in a very natural way. In particular, the spaces
Hw
p (F , F̃) and Hw

p (F , F̃)′ are introduced and discussed.

5.1 Localization Properties

In the following N and X denote index sets taken in Rd. We assume that all index
sets are relatively separated, this means that, for all k ∈ Zd,

sup
k∈Zd

card
(

N ∩ (k + [0, 1]d)
)

:= ν <∞ .

We want to recall here a concept of mutual localization of two frames measured by
their (cross–)Gramian matrix belonging to a Banach ∗–algebra A of matrices which
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is inverse–closed in L
(

ℓ2(N )
)

. The theory of localized frames with respect to an
algebra has been introduced in [48] and further developed in [42]. We also refer to
[17, 44, 46, 47] for relevant and related papers on localization of frames. In particular,
in [42], it has been shown that a localized frame can extend to a Banach frame in
a natural way for a large family of Banach spaces together with its canonical dual.
As we shall see, this will be useful as a tool for constructing Gelfand frames. In
the literature there have already been developed other tools to extend Riesz bases to
unconditional bases of Banach spaces. These techniques were based, for example, on
multilevel nested sequences of spaces satisfying Jackson and Bernstein inequalities,
see, e.g., [22, 23]. The localization of frames theory proves to be another very useful
and flexible tool to extend frames to Gelfand frames.

In the following, A is a Banach ∗–algebra of infinite matrices indexed by N ×N
with the following properties:

(A0) A ⊆ L
(

ℓ2(N )
)

, i.e., each A ∈ A defines a bounded operator on ℓ2(N );

(A1) if A ∈ A is invertible on ℓ2(N ), then A−1 ∈ A as well. In the language of
Banach algebras, A is called inverse–closed in L(ℓ2(N ));

(A2) A is solid : i.e., if A ∈ A and |bkl| ≤ |akl| for all k, l ∈ N , then B ∈ A as well,
and ‖B‖ ≤ ‖A‖.

In the sequel we will call a Banach ∗–algebra A satisfying properties (A0)–(A2) a
solid spectral matrix algebra, or, for brevity, simply a spectral algebra.

There are many examples of spectral algebras such as the Jaffard class introduced
in Section 4.3. We refer to [48] for further information where a characterization of a
large class of spectral algebras is presented. The results have been proved there for
infinite matrices indexed by Zd ×Zd, but they can be generalized to separated set of
indices. A submultiplicative and radial symmetric weight m is called A–admissible if

(W) any matrix A ∈ A extends to a bounded operator A : ℓp,w(N ) → ℓp,w(N ) for
all 1 ≤ p ≤ ∞ and for all m–moderate weights w.

We assume in the following that m is an A–admissible weight and A is a solid spectral
matrix algebra.

By means of the algebra A, we can now introduce a general localization principle,
i.e., we can consider A–localized frames. Given two frames F = {fx}x∈N and G =
{gy}y∈N for the Hilbert space H, the (cross–) Gramian matrix G = G(G,F) of G with
respect to F is the N ×N -matrix with entries

gx,y = 〈gx, fy〉H.
A frame G for H is called A–localized with respect to another frame F if G(G,F) ∈ A.
In this case we write G ∼A F . If G ∼A G, then G is called A–self–localized or
intrinsically A–localized. In particular, the following theorem has been proved in
[42]:

Theorem 5.2. Each A–self–localized frame G has an A–self–localized canonical dual.
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5.2 Associated Banach Spaces

In this subsection, we want to show that A–self–localized frames can characterize
suitable families of Banach spaces in a natural way. Let F , F̃ be two mutually dual
A–self–localized frames for H and assume that ℓp,w(N ) ⊂ ℓ2(N ). Then the Banach
space Hw

p is defined to be

Hw
p (F , F̃) :=

{

f ∈ H : f =
∑

n∈N

〈f, f̃n〉Hfn,
(

〈f, f̃n〉H
)

n∈N
∈ ℓp,w(N )

}

(58)

with the norm ‖f‖Hw
p

=
∥

∥

∥

(

〈f, f̃n〉H
)

n∈N

∥

∥

∥

ℓp,w(N )
and 1 ≤ p ≤ ∞. Since ℓp,w(N ) ⊂

ℓ2(N ), Hw
p is a dense subspace of H. If ℓp,w(N ) is not included in ℓ2(N ) and 1 ≤

p < ∞, then we define Hw
p to be the completion of the subspace H0 of all finite

linear combinations in F with respect to the norm ‖f‖Hw
p

=
∥

∥

∥

(

〈f, f̃n〉H
)

n∈N

∥

∥

∥

ℓp,w(N )
.

If p = ∞, then we take the weak∗–completion of H0 to define Hw
∞. The definition of

Hw
p (F , F̃) does not depend on the particular A–self localized dual chosen, and any

other A–self–localized frame G which is A-localized to F generates in fact the same
spaces, cf. [42].

The next step is to show that A–self–localized frames F extend to Banach frames.
To do that, according to the definition of a Banach frame, we have to embed F and
its canonical dual F̃ into a suitable space of continuous functionals. Since Hm

1 is con-
tinuously and densely embedded into H, one has the following continuous inclusions

Hm
1 ⊂ H ≃ H′ ⊂ (Hm

1 )′. (59)

The following characterization of the spaces Hw
p (F , F̃) has been proved in [42]:

Theorem 5.3. Let F be an A–self–localized frame for H. Then the abstract Banach
space Hw

p from (58) can be described as

Hw
p (F , F̃) ≃

{

f ∈ (Hm
1 )′ : f =

∑

n∈N

〈f, f̃n〉(Hm
1 )′×Hm

1
fn,

(

〈f, f̃n〉(Hm
1 )′×Hm

1

)

n∈N
∈ ℓp,w(N )

}

(60)

with the norm ‖f‖Hw
p

=
∥

∥

∥

(

〈f, f̃n〉(Hm
1 )′×Hm

1

)

n∈N

∥

∥

∥

ℓp,w

. The convergence of the series in

(60) is unconditional for 1 ≤ p <∞ and the series are convergent in the sense of the
norm of (Hw

1 )′ for p = ∞. In particular, the linear operators

F ∗ : ℓp,w(N ) → Hw
p (F , F̃), F ∗c =

∑

n∈N

cnfn,

F̃ : Hw
p (F , F̃) → ℓp,w(N ), F̃ f =

(

〈f, f̃n〉(Hm
1 )′×Hm

1

)

n∈N

(61)
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and

F̃ ∗ : ℓp,w(N ) → Hw
p (F , F̃), F̃ ∗c =

∑

n∈N

cnf̃n,

F : Hw
p (F , F̃) → ℓp,w(N ), Ff =

(

〈f, fn〉(Hm
1 )′×Hm

1

)

n∈N

(62)

are bounded. F and F̃ are Banach frames for Hw
p (F , F̃).

5.3 Proof of Theorem 5.1

We start showing that if
(

ℓp,w(N ), ℓ2(N ), ℓp′,1/w(N )
)

, 1/p + 1/p′ = 1, is a Gelfand

triple, then
(

Hw
p (F , F̃),H,Hw

p (F , F̃)′
)

is also a Gelfand triple. To this end, we have

in particular to prove that Hw
p (F , F̃)′ = H1/w

p′ (F , F̃).

Let us show first (Hw
p )′ ⊂ H1/w

p′ . Since Hm
1 ⊂ Hw

p densely, then (Hw
p )′ ⊂ (Hm

1 )′

and θ(ϕ) = 〈θ, ϕ〉(Hw
p )′×Hw

p
for all θ ∈ (Hw

p )′ and ϕ ∈ Hm
1 . By (62) f =

∑

n∈N cnf̃n,

c ∈ ℓp,w(N ) implies f ∈ Hw
p (F , F̃) and

∞ >
∣

∣θ(f)
∣

∣ =

∣

∣

∣

∣

∣

∑

n∈N

cn〈θ, f̃n〉(Hw
p )′×Hw

p

∣

∣

∣

∣

∣

.

The dual of ℓp,w(N ) coincides with its Köthe dual
(

ℓp,w(N )
)α

:= {a ∈ (ℓ1(N ))loc : ac ∈ ℓ1(N ), for all c ∈ ℓp,w(N )}

for all 1 < p < ∞, and
(

ℓp,w(N )
)α

= ℓp′,w(N ) for p = 1 or p = ∞, see, e.g., [54].

Therefore one has
(

〈θ, f̃n〉(Hw
p )′×Hw

p

)

n∈N
∈ ℓp′,1/w(N ), where

‖θ‖(Hw
p )′ ∼

∥

∥

∥

(

〈θ, f̃n〉(Hw
p )′×Hw

p

)

n∈N

∥

∥

∥

ℓp′,1/w(N )
,

and, since H0 is dense in (Hw
p )′, one has θ =

∑

n∈N 〈θ, f̃n〉(Hw
p )′×Hw

p
fn. This implies

that (Hw
p )′ ⊂ H1/w

p′ . Conversely, if θ ∈ H1/w
p′ , one defines the action of θ on Hm

1 ⊂ Hw
p

by θ(ϕ) =
∑

n〈θ, f̃n〉(Hm
1 )′×Hm

1
〈fn, ϕ〉H, ϕ ∈ Hm

1 and, observing that θ in fact extends

to a unique element in (Hw
p )′ by density, one has H1/w

p′ ⊆ (Hw
p )′.

By Theorem 5.3 one immediately has that F and F̃ are Gelfand frames for
(

Hw
p (F , F̃),H,Hw

p (F , F̃)′
)

. This concludes the proof. �

Example 1. For any function f on Rd write

Txf(t) = f(t− x) and Mωf(t) = e2πiωtf(t), (63)

the translation and modulation operators. Their combination

π(ξ) = MωTx for ξ = (x, ω) ∈ R2d (64)
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is called a time–frequency shift. Let X be a relatively separated set in the time–
frequency plane R2d and let g ∈ L2(R

d) be a fixed analyzing function. If the sequence
F = G(g,X ) = {π(ξ)g}ξ∈X is a frame for L2(R

d), then it is called a Gabor frame if
X is a regular lattice, a non–uniform or irregular Gabor frame otherwise.

Consider in the following A = Ar, r > d, the Jaffard inverse–closed Banach ∗–
algebra and an r–moderate weight w. In this situation, an Ar–localized frame F is
called r–localized. Let us fix wt(ω) =

(

1 + ‖ω‖Rd

)t
for any |t| ≤ r. If 0 6= g ∈ S(Rd)

generates a Gabor frame F = G(g,X ), then, for any r > d, F is intrinsically r-
localized and has an intrinsically r-localized canonical dual F̃ = {ẽξ}ξ∈X . Moreover,
it has been shown in [42] that F and F̃ are Banach frames for suitable classes of
modulation spaces and in particular for any L2-Sobolev space H t(Rd), t ∈ R. This
means that

• the frame expansions

f =
∑

ξ∈X

〈f, ẽξ〉π(ξ)g =
∑

ξ∈X

〈f, π(ξ)g〉ẽξ, (65)

converge unconditionally in H t(Rd);

• H t(Rd) can be characterized by the frame coefficients as follows:

‖f‖Ht ∼
∥

∥

∥

(

〈f, ẽξ〉
)

ξ∈X

∥

∥

∥

ℓ2,wt (X )
∼
∥

∥

∥

(

〈f, π(ξ)g〉
)

ξ∈X

∥

∥

∥

ℓ2,wt (X )
. (66)

Therefore the spaces Hwt
2 (F , F̃) and H t(Rd) in fact coincide with equivalent norms.

This implies also that F and F̃ are Gelfand frames for (H t, L2, H
−t), t ≥ 0.

6 Wavelet Gelfand Frames on Domains

In this section, we want to come back to the original motivation of this paper, namely
the adaptive treatment of elliptic operator equations by means of frame algorithms.
To this end, it is clearly necessary to construct Gelfand frames of wavelet type on a
bounded domain Ω ⊂ Rd. It turns out that for the construction of such frames, we
have to generalize the Lemarié localization concept from Section 4, and to modify
the strategy illustrated in Section 5, mainly because the corresponding matrix class
with exponential off–diagonal decay is not inverse–closed and thus not a spectral
algebra. We introduce and analyze the new localization concept in Subsection 6.1. In
Subsection 6.2, we present an explicit construction of wavelet Gelfand frames on Ω
which fit into the new localization setting. The major tool is the specific localization
to a smooth L2(Ω) auxiliary reference Riesz basis.
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6.1 ̺–exponential Localization of Frames

The construction of Gelfand frames of wavelet type for L2–Sobolev (and Besov) spaces
requires localization properties of wavelet frames of exponential type, see, e.g., [17].
However, in the case of bounded domains, the setting of the previous sections has
to be slightly generalized. It is mainly the definition of exponential localization that
has to be modified, because the index sets of different frames over Ω will no longer
be mutually isomorphic in general, cf. [24, 26, 27]. To cope with this difficulty,
let us consider in the following three countable sets of indices N1, N2, N3, a triple
̺ = (̺1, ̺2, ̺3) of functions ̺i : Nj ×Nk → R and projections

πi : N1 ×N2 ×N3 → Nj ×Nk, πi(x) = (xj , xk), (67)

where i ∈ {1, 2, 3}, j, k ∈ {1, 2, 3} \ {i} and j < k. We assume that the following
three generalized triangle inequalities hold for some fixed w0 > 0:

̺i
(

πi(x)
)

≤ ̺j
(

πj(x)
)

+ w0̺k
(

πk(x)
)

for all x ∈ N1 ×N2 ×N3. (68)

Given two frames F = {fx}x∈M and G = {gy}y∈N for the Hilbert space H, we say
that F is ̺–exponentially localized with respect to G (or simply exponentially localized
once ̺ is fixed) if there exists a choice N1,N2,N3 ∈ {M,N} and a function triple
̺ = (̺1, ̺2, ̺3) satisfying (68) as above, such that for some s > 0 and some i ∈ {1, 2, 3}

∣

∣〈fx, gy〉H
∣

∣ . e−s̺i(x,y) for all x ∈ Nj, y ∈ Nk. (69)

In such a case we write F ∼exp G. A frame F such that F ∼exp F , is called intrin-
sically ̺–exponentially localized. Let us denote here Aexp the class of matrices which
have ̺–exponential off–diagonal decay, i.e, A ∈ Aexp whenever |ax,y| . e−s̺i(x,y) for
some s > 0, and Bexp ⊂ Aexp is the class of matrices in Aexp such that there exists
some s′ ∈ (0, s/w0) so that, for s′′ := s− w0s

′,

sup
y∈Nk

∑

x∈Nj

e−s
′′̺i(x,y) <∞, (70)

where s > 0 is as in formula (69). Note that Aexp is neither closed under multiplication
nor inversion and thus not a spectral algebra. Therefore the theory developed in the
previous section cannot be applied. However, by Lemma 8.4 in the appendix, one has
that BexpAexp ⊂ Aexp and Theorem 8.5 shows that for invertible matrices M ∈ Bexp,
we still have M−1 ∈ Aexp.

The following result concerning exponential localization is a slight generalization
of those presented in [17, 47] and it will turn out to be a helpful alternative technical
tool to show localization properties of canonical dual wavelet frames on domains.

Theorem 6.1. Let F = {fx}x∈M be a frame for H and G = {gy}y∈N a Riesz basis
for H with dual basis G̃ = {g̃y}y∈N such that F ∼exp G̃. Moreover, we assume
that G(F , G̃) ∈ Bexp and G(G̃,F)G(F , G̃) ∈ Bexp. Then F̃ ∼exp G, where F̃ is the
canonical dual frame of F .
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Proof. Consider the map

Γ : H → ℓ2(N ), Γf :=
(

〈f, g̃y〉H
)

y∈N
,

its adjoint

Γ∗ : ℓ2(N ) → H, Γ∗c :=
∑

y∈N

cy g̃y

and the operator T := ΓSΓ∗ : ℓ2(N ) → ℓ2(N ), where

S : H → H, Sf =
∑

x∈M

〈f, fx〉Hfx

is the frame operator associated to F . T is an automorphism of ℓ2(N ) with

Tx,y = 〈ex,Tey〉ℓ2(N ) =
∑

z∈M

〈g̃y, fz〉H〈fz, g̃x〉H,

and therefore T ∈ Bexp. A straightforward computation yields

〈fx, g̃y〉H = 〈SS−1fx, g̃y〉H

=

〈

∑

z∈M

〈S−1fx, fz〉Hfz, g̃y
〉

H

=
∑

z∈M

〈S−1fx, fz〉H〈fz, g̃y〉H

=
∑

z∈M

〈f̃x, fz〉H〈fz, g̃y〉H

=
∑

z∈M

(

∑

ξ∈N

〈f̃x, gξ〉H〈g̃ξ, fz〉H
)

〈fz, g̃y〉H

= (AT)x,y,

where
A :=

(

〈f̃x, gξ〉H
)

x∈M,ξ∈N
.

By Theorem 8.5, we have T−1 ∈ Aexp, and the claim immediately follows by Ax,y =
∑

ξ∈N 〈fx, g̃ξ〉H(T−1)ξ,y, and by BexpAexp ⊂ Aexp.

6.2 Aggregated Wavelet Frames

In this subsection, we want to establish a straightforward construction of Gelfand
wavelet frames on a bounded open domain Ω ⊂ Rd. The very natural key idea is
to lift an appropriate template (Gelfand) wavelet frame Ψ� = {ψ�

x }x∈N� on the d–
dimensional unit cube � := (0, 1)d to Ω, using only a sufficiently smooth parametriza-
tion of Ω by local charts, and then just to merge all local basis functions into a global
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system Ψ, cf. [41, 52]. Under some conditions on Ψ� and the other ingredients
of the construction, Ψ is again a (Gelfand) frame. According to the nature of its
construction, let us call such a system Ψ an aggregated wavelet frame.

In the following, we fix B := H t
0(Ω), the L2–Sobolev space of Sobolev smoothness

t ≥ 0 on Ω of functions vanishing on the boundary ∂Ω. The continuous and dense
inclusions

H t
0 ⊂ L2 ≃ (L2)

′ ⊂ H−t

ensure that (H t
0, L2, H

−t) is a Gelfand triple. Assume then that C := {Ωi}ni=1 is an
overlapping, relatively compact covering of Ω, such that

(C1) there exist Cm–diffeomorphisms κi : � → Ωi of Ωi, m ≥ t, for all i = 1, . . . , n;

(C2) there exists a Cm–partition of unity Σ := {σi}i=1,...,n subordinate to C.

Clearly, the set of admissible domains Ω is restricted by raising the conditions (C1)
and (C2), e.g., the boundary of Ω has to be piecewise smooth enough. But since the
particularly attractive case of polyhedral domains is still covered, these assumptions
on the parametrizations κi are no principal limitations. The partition of unity Σ
affects the construction of Ψ only in so far as we will use it as a tool for proving
the Gelfand frame properties. In particular, we will exploit that the operators P :
H t

0(Ω) → H t
0(Ωi), Pi(f) = f · σi are bounded and constitute a Bessel resolution of

the identity for H t
0(Ω), i.e.,

(P1)
∑n

i=1 Pi = id, in the strong operator topology;

(P2)
∑n

i=1 ‖Pif‖2
Ht(Ω) ∼ ‖f‖2

Ht(Ω), for all f ∈ H t
0(Ω).

As already mentioned, let us consider a template wavelet frame Ψ� = {ψ�
x }x∈N� in

L2(�), with canonical dual Ψ̃� = {ψ̃�
x }x∈N� . We assume that Ψ� ⊂ Hγ

0 (�) for some
γ > 0. In practice, since we will have to raise some vanishing moment conditions on
Ψ� to ensure the Gelfand frame properties of Ψ, we will choose Ψ� to be a Riesz basis,
constructed as a tensor product of biorthogonal wavelet bases on the unit interval with
complementary boundary conditions [24, 26]. Those bases are particularly attractive
since they can be designed to exhibit any given Sobolev smoothness and any given
number of vanishing moments of the primal wavelets. Moreover, one has that Ψ� is
a Gelfand wavelet frame in H t

0(�) for some t > 0. Another possibility would be to
consider genuine wavelet frames on the interval from the very start of the construction
[13], but in the following, we confine the discussion to the Riesz basis case.

Concerning the frame indices N�, we will use the same notation as in [24, 26, 27].
Let j0 ∈ Z be a fixed coarsest level. Each wavelet frame on � consists of a set
of scaling functions (or generators) on the level j0 and of the wavelets for all levels
j ≥ j0. Let ∆�

j0
, ∇�

j ⊂ Zd be fixed index sets for j ≥ j0. To simplify the notation,

basis elements of the form ψ�
j0−1,k, for k ∈ ∆�

j0, correspond to the scaling functions
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on the level j0 (with an index shift by 1 in j), whereas ψ�
j,k, for j ≥ j0 and k ∈ ∇�

j ,
are wavelets on the level j. We will use the index sets

N (i) :=
{

(j0 − 1,k) : k ∈ ∆�

j0

}

∪
{

(j,k) : j ≥ j0,k ∈ ∇�

j

}

, for 1 ≤ i ≤ n, (71)

and

N :=
n
⋃

i=1

{i} × N (i), (72)

where we define the mapping | · | : N (i) → Z by
∣

∣(j,k)
∣

∣ := j, for all (j,k) ∈ N (i). (73)

We will have to assume that the geometrical and the dyadic physical grid are com-
patible in the sense that for (i, j,k) ∈ N , we always have k ∈ {0, . . . , 2j}d, so that
2−jk ∈ �. But this condition indeed holds when using an appropriate biorthogonal
Riesz basis on � [24, 26].

Our aim is now to show that the system

Ψ := (ψi,j,k)(i,j,k)∈N , (74)

where

ψi,j,k(x) :=
ψ�
j,k

(

κ−1
i (x)

)

∣

∣detDκi
(

κ−1
i (x)

)∣

∣

1/2
, for all (i, j,k) ∈ N , x ∈ Ωi, (75)

and ψi,j,k(x) = 0 for x ∈ Ω \ Ωi, is a Gelfand frame for (H t
0(Ω), L2(Ω), H−t(Ω)) with

(global) canonical dual

Ψ̃ := (ψ̃i,j,k)(i,j,k)∈N . (76)

By (75), the (local) duals of ψi,j,k|Ωi
∈ H t

0(Ωi) can be written as

ψ̃i,j,k =
ψ̃�
j,k

| detDκi|1/2
◦ κ−1

i .

In the following, let ̺1 : N ×N → R be given by

̺Ψ,Ψ

(

(i, j,k), (i′, j′,k′)
)

:= ̺1

(

(i, j,k), (i′, j′,k′)
)

:=
r

s
log
(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

)

+ |j − j′| log 2 +
9r

2s
log 2,

(77)

for (i, j,k), (i′, j′,k′) ∈ N and r, s > 0, i.e.,

e−s̺1((i,j,k),(i′,j′,k′)) = 2−9r/2
(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

)−r

2−s|j−j
′|. (78)

By Lemma 8.6, ̺1 fulfills the triangle inequality (68) for N1 = N2 = N3 = N ,
̺2 = ̺3 = ̺1 and w0 = 1.

The frame and Gelfand frame properties of Ψ can be ensured by raising some
conditions on Ψi := (ψi,j,k)(j,k)∈N (i) ⊂ H t

0(Ωi):
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Theorem 6.2. For each 1 ≤ i ≤ n, Ψi is a frame for L2(Ωi) and Ψ is a frame for
L2(Ω) with canonical dual Ψ̃. Moreover, if

∣

∣〈ψi,j,k, ψ̃i′,j′,k′〉
∣

∣ . e−s̺1((i,j,k),(i′,j′,k′)), (79)

for some r > d and s > d, where ̺1 is defined by (77), and, for each 1 ≤ i ≤ n, Ψi

is a Gelfand frame for
(

H t
0(Ωi), L2(Ωi), H

−t(Ωi)
)

with respect to the Gelfand triple

of sequence spaces
(

ℓ2,2t(N (i)), ℓ2(N (i)), ℓ2,2−t(N (i))
)

for some t ∈ (0, s − d), then Ψ
is a Gelfand aggregated wavelet frame for

(

H t
0(Ω), L2(Ω), H−t(Ω)

)

with respect to the
Gelfand triple of sequence spaces

(

ℓn2,2t , ℓn2 , ℓ
n
2,2−t

)

, where

ℓn2,2t := {c = (c1, ..., cn) : ci ∈ ℓ2,2t(N (i))}, ‖c‖ℓn
2,2t

:=

(

n
∑

i=1

‖ci‖2
ℓ2,2t (N (i))

)1/2

.

Proof. Since Ψi is a (Hilbert) frame for L2(Ωi), [52, Theorem 4.1] implies that Ψ is a
frame for L2(Ω). We have to show that the operators

F ∗ : ℓn2,2t → H t
0(Ω), F ∗c :=

∑

(i,j,k)∈N

ci,j,kψi,j,k (80)

and
F̃ : H t

0(Ω) → ℓn2,2t , F̃ f :=
(

〈f, ψ̃i,j,k〉
)

(i,j,k)∈N
(81)

are bounded. For c ∈ ℓn2,2t , we have ci ∈ ℓ2,2t(N (i)). The corresponding operators

F ∗
i : ℓ2,2t(N (i)) → H t

0(Ωi), F
∗
i d =

∑

(j,k)∈N (i) dj,kψi,j,k for the Gelfand frames Ψi are

bounded, so that F ∗
i ci ∈ H t

0(Ωi) for 1 ≤ i ≤ n. Hence F ∗c =
∑n

i=1 F
∗
i ci ∈ H t

0(Ω)
using the trivial embedding H t

0(Ωi) ⊂ H t
0(Ω), and thus

‖F ∗c‖Ht(Ω) ≤
n
∑

i=1

‖F ∗
i ci‖Ht(Ωi) .

n
∑

i=1





∑

(j,k)∈N (i)

22tj |ci,j,k|2




1/2

. ‖c‖ℓn
2,2t
.

To show that (81) is bounded, take an arbitrary f ∈ H t
0(Ω). Then f =

∑n
i=1 σif ,

where σif ∈ H t
0(Ωi). Since F̃i : H t

0(Ωi) → ℓ2,2t(N (i)), F̃ig =
(

〈g, ψ̃i,j,k〉
)

(j,k)∈N (i) are

bounded operators, we get

‖f‖2
Ht(Ω) ∼

n
∑

i=1

‖σif‖2
Ht(Ωi)

∼
n
∑

i=1

∑

(j,k)∈N (i)

22tj
∣

∣〈σif, ψ̃i,j,k〉L2(Ωi)

∣

∣

2
.
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By (P1) one concludes

〈f, ψ̃i,j,k〉L2(Ω) =

n
∑

i′=1

〈σi′f, ψ̃i,j,k〉L2(Ω)

=

n
∑

i′=1

〈σi′f, ψ̃i,j,k〉L2(Ωi′ )

=
n
∑

i′=1

∑

(j′,k′)∈N (i′)

〈f, σi′ψ̃i′,j′,k′〉L2(Ωi′ )
〈ψi′,j′,k′, ψ̃i,j,k〉L2(Ωi′ )

=
n
∑

i′=1

∑

(j′,k′)∈N (i′)

〈f, σi′ψ̃i′,j′,k′〉L2(Ω)〈ψi′,j′,k′, ψ̃i,j,k〉L2(Ω).

Since
(

〈f, σi′ψ̃i′,j′,k′〉L2(Ω)

)

(i′,j′,k′)∈N
∈ ℓn2,2t and (79), then, by Proposition 8.3 it follows

that also
(

〈f, ψ̃i,j,k〉L2(Ω)

)

(i,j,k)∈N
∈ ℓn2,2t and

n
∑

i=1

∑

(j,k)∈N (i)

22tj
∣

∣〈f, ψ̃i,j,k〉L2(Ω)

∣

∣

2
.

n
∑

i′=1

∑

(j′,k′)∈N (i′)

22tj′
∣

∣〈f, σi′ψ̃i′,j′,k′〉L2(Ωi′ )

∣

∣

2
. ‖f‖2

Ht(Ω).

This ensures that F̃ in (81) is bounded.

To ensure (79), we utilize another template Riesz basis Ψ�,◦ := {ψ�,◦
j,k }(j,k)∈N�,◦

in L2(�) with Ψ�,◦ ⊂ Hγ
0 (�). We may choose Ψ�,◦ = Ψ�, but since we want to

leave open the possibility to choose a genuine wavelet frame Ψ�, let us distinguish
between the two template bases in the following. Given the covering C = {Ωi}ni=1, it
is possible to construct a non–overlapping, Cm auxiliary covering C◦ = {Ω◦

i }n
′

i=1 with
diffeomorphisms κ◦i : � → Ω◦

i . Then we can define an associated aggregated system
Ψ◦ := {ψ◦

i,j,k}(i,j,k)∈N ◦, where N ◦ is constructed in the same way as N and

ψ◦
i,j,k(x) :=

ψ�,◦
j,k

(

(κ◦i )
−1
(

x)
)

∣

∣detDκ◦i
(

(κ◦i )
−1(x)

)∣

∣

1/2
, for all (i, j,k) ∈ N ◦. (82)

By construction, Ψ◦ is a Riesz basis in L2(Ω) with the same Sobolev regularity as Ψ�,◦.
It turns out that the localization property (79) is in fact fulfilled by the canonical dual
of Ψ for any aggregated wavelet frame constructed in this way, as long as s, r > 0 are
appropriately chosen and Ψ as well as the system {ψi,j,k}(i,j,k)∈N are localized with
respect to Ψ◦:

Proposition 6.3. Let Ψ and Ψ◦ be constructed as above. If

∣

∣〈ψi,j,k, ψ◦
i′,j′,k′〉

∣

∣ . e−s̺2((i,j,k),(i′,j′,k′)), (83)
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where ̺2 : N ×N ◦ → R is defined by

̺2

(

(i, j,k), (i′, j′,k′)
)

:= ̺Ψ,Ψ◦

(

(i, j,k), (i′, j′,k′)
)

:=
r

s
log
(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κ◦i′(2

−j′k′)
∥

∥

Rd

)

+ |j − j′| log 2 +
9r

2s
log 2,

(84)

completely analogous to (77), and r, s > 2d, then there exist s′ ∈ (0, s) and r′ ∈ (0, r)
such that

∣

∣〈ψi′,j′,k′, ψ̃i,j,k〉
∣

∣ . e−s
′̺1((i′,j′,k′),(i,j,k)), (85)

where (77) is valid for r′.

Proof. By Lemma 8.7, ̺2 fulfills all the necessary triangle inequalities (68). Since Ψ◦

is a Riesz basis for L2(Ω), we have

〈ψi′,j′,k′, ψ̃i,j,k〉 =
∑

(i′′,j′′,k′′)∈N ◦

〈ψi′,j′,k′, ψ◦
i′′,j′′,k′′〉〈ψ̃◦

i′′,j′′,k′′, ψ̃i,j,k〉. (86)

By hypothesis and the proof of Proposition 8.3, one has G(Ψ,Ψ◦) ∈ Bexp, and by
Lemma 8.4, it is not difficult to show that G(Ψ◦,Ψ)G(Ψ,Ψ◦) ∈ Bexp. Theorem 6.1
yields Ψ̃ ∼exp Ψ̃◦, so that (85) follows by (86) and by BexpAexp ⊂ Aexp.

The main results of this section can be summarized in the following Theorem:

Theorem 6.4. Assume that Ψ is an aggregated wavelet frame for L2(Ω) generated by
local Gelfand frames Ψi for

(

H t
0(Ωi), L2(Ωi), H

−t(Ωi)
)

, where t ∈ (0, s−d) and s > 2d.
If Ψ has the localization property (83), and r′, s′ in (85) are such that r′, s′ > d, then
Ψ is a Gelfand aggregated wavelet frame for (H t

0(Ω), L2(Ω), H−t(Ω)).

It remains to show how (83) can be realized in practice. To this end, we will
exploit the fact that the supports of ψ�

j,k and ψ�,◦
j′,k′ are essentially localized at 2−jk

and 2−j
′
k′, respectively:

sup
x∈supp(ψ�

j,k)

‖x− 2−jk‖Rd . 2−j, for all (j,k) ∈ N�, (87)

sup
x∈supp(ψ�,◦

j′,k′
)

‖x− 2−j
′

k′‖Rd . 2−j
′

, for all (j′,k′) ∈ N�,◦. (88)

(87) and (88) indeed hold for the constructions from [24, 26]. Since the local parametriza-
tions κi and κ◦i′ are sufficiently smooth, it immediately follows that also

sup
x∈suppψi,j,k

∥

∥x− κi(2
−jk)

∥

∥

Rd . 2−j (89)
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and
sup

x∈suppψ◦
i′,j′,k′

∥

∥x− κ◦i′(2
−j′k′)

∥

∥

Rd . 2−j
′

, (90)

for (i, j,k) ∈ N and (i′, j′,k′) ∈ N ◦, respectively. Then, raising some vanishing
moment conditions on Ψ� and Ψ�,◦ is sufficient to guarantee (83):

Theorem 6.5. Assume that, for N ∈ N with N ≥ max{γ, t}, Ψ� and Ψ�,◦ fulfill the
following moment conditions:

∫

�

xβψ�

j,k(x) dx = 0, for all |β| ≤ N, j ≥ j0, k ∈ ∇�

j , (91)
∫

�

xβψ�,◦
j′,k′(x) dx = 0, for all |β| ≤ N, j′ ≥ j◦0 , k′ ∈ ∇�,◦

j′ . (92)

Then, lifting Ψ� and Ψ�,◦ as in (75) and (82), Ψ is exponentially ̺–localized to Ψ◦,
i.e., there exists a constant C > 0, only depending on global parameters, such that

∣

∣〈ψi,j,k, ψ◦
i′,j′,k′〉L2(Ω)

∣

∣ ≤ Ce−γ̺2((i,j,k),(i′,j′,k′)), (93)

where ̺2 is given by (84).

Proof. First of all, assume that j′ ≥ j. Using (92) and the Cauchy–Schwarz inequality,
we get

∣

∣〈ψi,j,k, ψ◦
i′,j′,k′〉L2(Ω)

∣

∣ =
∣

∣〈ψi,j,k, ψ◦
i′,j′,k′〉L2(suppψ◦

i′,j′,k′
)

∣

∣

=

∣

∣

∣

∣

∣

∫

suppψ�,◦

j′,k′

ψi,j,k(κ
◦
i′(x))ψ

�,◦
j′,k′(x)| detDκ◦i′(x)|1/2 dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

suppψ�,◦

j′,k′

(

ψi,j,k(κ
◦
i′(x))| detDκ◦i′(x)|1/2 − P (x)

)

ψ�,◦
j′,k′(x) dx

∣

∣

∣

∣

∣

.
∥

∥(ψi,j,k ◦ κ◦i′)| detDκ◦i′|1/2 − P
∥

∥

L2(suppψ�,◦

j′,k′
)

where P is an arbitrary polynomial of degree at most N . Then a Whitney–type
estimate yields

∣

∣〈ψi,j,k, ψ◦
i′,j′,k′〉L2(Ω)

∣

∣ . 2−γj
′ ∣
∣(ψi,j,k ◦ κ◦i′)| detDκ◦i′|1/2

∣

∣

Hγ(suppψ�,◦

j′,k′
)

. 2−γj
′‖ψi,j,k ◦ κ◦i′‖Hγ(suppψ�,◦

j′,k′
)

. 2−γj
′‖ψi,j,k‖Hγ(Ωi)

. 2−γ(j
′−j).
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In the case j′ ≤ j, one can show in a completely analogous way
∣

∣〈ψi,j,k, ψ◦
i′,j′,k′〉L2(Ω)

∣

∣ =
∣

∣〈ψ◦
i′,j′,k′, ψi,j,k〉L2(suppψi,j,k)

∣

∣

=

∣

∣

∣

∣

∣

∫

suppψ�
j,k

ψ◦
i′,j′,k′(κi(x))ψ

�

j,k(x)| detDκi(x)|1/2 dx
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

suppψ�
j,k

(

ψ◦
i′,j′,k′(κi(x))| detDκi(x)|1/2 − P (x)

)

ψ�

j,k(x) dx

∣

∣

∣

∣

∣

.
∥

∥(ψ◦
i′,j′,k′ ◦ κi)| detDκi|1/2 − P

∥

∥

L2(suppψ�
j,k)

. 2−γj‖ψ◦
i′,j′,k′‖Hγ(Ω◦

i′
)

. 2−γ(j−j
′),

so that
∣

∣〈ψi,j,k, ψ◦
i′,j′,k′〉L2(Ω)

∣

∣ . 2−γ|j−j
′|.

Now let us analyze the situations where the integrals 〈ψi,j,k, ψ◦
i′,j′,k′〉 can be nontrivial

at all. By (89) and (90), a necessary condition for suppψi,j,k ∩ suppψ◦
i′,j′,k′ having

nontrivial measure is
∥

∥κi(2
−jk) − κ◦i′(2

−j′k′)
∥

∥

Rd . 2−min(j,j′),

i.e.,
(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κ◦i′(2

−j′k′)
∥

∥

Rd

)−r

& 2−r (94)

for any r > 0. Hence, if (94) is fulfilled, we obtain the estimate

∣

∣〈ψi,j,k, ψ◦
i′,j′,k′〉L2(Ω)

∣

∣ .
(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κ◦i′(2

−j′k′)
∥

∥

Rd

)−r

2−γ|j−j
′|

∼ e−γ̺2((i,j,k),(i′,j′,k′)).

REMARKS:

1. The theoretical estimation of the localization properties and exponents (85) via
(115) is sub–optimal, and we conjecture that in practice it can be improved. In
principle, the strict requirements of Theorems 6.2 and 6.4 can be met just by
choosing appropriate template bases Ψ�, Ψ�,◦.

2. Note that in Theorem 6.5, we did not use any information about the dual bases
Ψ̃�, Ψ̃�,◦. In fact, there are principal limitations on (wavelet) Riesz bases in
Hs

0(�) as to the number of vanishing moments of the dual wavelets. One can
easily show that for a given Riesz basis F = {fn}n∈N in Hs

0(�), an infinite
subset of the dual Riesz basis does not have a vanishing first moment. This can
be seen as a consequence of the necessary boundary modifications, cf. [24, 26].
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3. The reader might wonder why the additional wavelet basis Ψ◦ is of any use at
all since, e.g., it does usually not give rise to norm equivalences for the solution
space H t

0. However, in our applications, only a localization property is needed,
i.e., a specific cross–Gramian matrix has to exhibit a certain off–diagonal decay.
To establish these decay properties, in the wavelet setting only two features are
needed: smoothness and cancellation properties, and both of them hold for our
additional wavelet basis.

4. Let us conclude this section by the observation that under smoothness, local-
ity, and cancellation conditions as illustrated in Theorem 6.5, one can ensure
compressibility properties of the system matrices arising by the discretization
of suitable differential and integral operators using aggregate wavelet frames.
Following the lines of Lemma 5.1 in [25], for any (non–local) operator L sat-
isfying (8), and for any (local) operator L such that 〈Lu, v〉 = 0 whenever
supp v ∩ supp u = ∅, the corresponding stiffness matrix

G =
(

2−(j+j′)〈Lψi,j,k, ψi′,j′,k′〉
)

(i,j,k),(i′,j′,k′)∈N
(95)

is s∗–compressible for a suitable s∗ > 0. We refer the reader to [25, 52] for
major details.

7 Adaptive Computation of Localized Canonical

Duals

As we have discussed in Sections 5 and 6, localization properties of the canonical
dual are in fact relevant for the characterization of Banach spaces. Unfortunately,
the canonical dual frame F̃ of the frame F is only implicitly defined by the equation

SF̃ = F , (96)

where S is the associated frame operator, see Section 3. Usually no explicit formulas
are available to describe F̃ . Therefore, any property of the canonical dual is very
difficult to be checked. For this reason, efficient numerical methods to approximate
it will be a very helpful tool of investigation. In this section, we want to present an
application of Algorithm 1 for the computation of canonical dual frames. Methods for
computing canonical duals for general frames are still a matter of investigation and
no implemented solutions are presently available for infinite frames. Some techniques
have been suggested for infinite Gabor and wavelet frames in [9, 10], but it seems that
they do not have computationally efficient realizations. In [12] the use of the finite
section method combined with localization properties of the frame is shown to be a
very useful tool for an accurate approximation of inverse frame operators. Unfortu-
nately, the finite section method appears again to be computationally expensive, since
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it works by means of the inversion of matrices with potentially high dimension. More-
over, the method assumes that the frame should be localized with respect to a given
orthonormal basis and the approximation of the canonical dual is in fact given as a
linear combination of elements of the orthonormal basis. It is known that orthonormal
bases usually cannot have good time–frequency localization and, by consequence, nor
does the approximation of the dual either in general. In this section, we want to
show how, under intrinsic localization properties (no auxiliary (bi)orthogonal basis
is required), it is possible to compute the canonical dual efficiently and with optimal
computational complexity by means of the adaptive Algorithm 1. The approximation
will be given as a linear combination of the original frame elements, therefore inher-
iting their nice properties, for example, regularity, compact support and vanishing
moment properties, in the case of wavelet frames.

We assume that B = H ≃ H′ = B′, F = {fn}n∈N is a frame for H, and DB = id :
ℓ2(N ) → ℓ2(N ). Because of (11), the frame operator S is in fact elliptic on H in the
sense of (2). Clearly the solution of the equation

Su = fn, (97)

is the canonical dual element u = f̃n = S−1fn. Since u =
∑

l∈N 〈u, f̃l〉Hfl, (97) is
equivalent to the discrete equations

∑

l∈N

〈u, f̃l〉H〈Sfl, fm〉H = 〈fn, fm〉H, for all m ∈ N . (98)

Denote u := F̃ u =
(

〈u, f̃m〉H
)

m∈N
, fn := Ffn =

(

〈fn, fm〉H
)

m∈N
and, finally, G :=

(

〈Sfn, fm〉H
)

n,m∈N
. Then equations (98) can be rewritten as

Gu = fn. (99)

It is not difficult to show that G = FSF ∗. Moreover,

〈Sfn, fm〉H =
∑

l∈N

〈fn, fl〉H〈fl, fm〉H. (100)

In the situation at hand, we have ranG = ranF , and thus the orthogonal projection
Q = F (F ∗F )−1F ∗ from (16) coincides with the orthogonal projection P : ℓ2(N ) →
ranG. Then one can apply Algorithm 1 for the adaptive computation of the canonical
dual F̃ :

Theorem 7.1. If F is a frame, then F̃ can be computed by

f̃n = F ∗Pf̃n =
∑

m∈N

(̃fn)mfm, Pf̃n =

(

α
∞
∑

n=0

(id−αG)n

)

fn, (101)
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for 0 < α < 2/BF . Moreover, if F is intrinsically Aη–localized for η > 2r, r > d,

then for any ε > 0 there exists a finite vector f̃εn such that
∥

∥P(̃fn− f̃εn)
∥

∥

ℓ2(N )
≤ ε. This

vector is the result of the application of Algorithm 1,

SOLVE[ε,G, fn] → f̃εn, (102)

and f̃εn has the following properties:

(I) # supp f̃εn . ε−1/s |̃fn|1/sℓwτ (N );

(II) the number of arithmetic operations used to compute it is at most a multiple of

ε−1/s |̃fn|1/sℓwτ (N ).

Here τ = (1/2 + s)−1 and s ∈ (0, r − d). Therefore, by (43), one has the following
approximation of the canonical dual:

∥

∥

∥

∥

∥

f̃n −
∑

m∈N

(̃fεn)mfm

∥

∥

∥

∥

∥

H

≤ B
1/2
F ε. (103)

Proof. Let us denote s∗ = r − d and τ = (1/2 + s)−1, for any s ∈ (0, s∗). The frame
F is intrinsically Aη–localized, i.e., it is localized in the sense of the Jaffard’s algebra.
This implies that

(i) by formula (100) and [47, Lemma 2.2]

∣

∣〈Sfn, fm〉H
∣

∣ .
(

1 + ‖n−m‖Rd

)−η
,

and by Proposition 4.5, one has that G is s∗–compressible;

(ii) by Theorem 5.2, the canonical dual is also intrinsically Aη–localized, and F̃ is
Aη–localized with respect to F . In fact, one has

〈fn, f̃m〉H =
∑

l∈N

〈fn, fl〉H〈f̃l, f̃m〉H, n,m ∈ N (104)

and, therefore P = G(F , F̃) ∈ Aη;

(iii) by Proposition 4.5 and (ii), the orthogonal projection P =
(

〈fn, f̃m〉H
)

n,m∈N
is

s∗–compressible, and by [14, Proposition 3.8], P is a bounded operator from
ℓwτ (N ) to ℓwτ (N );

(iv) by Proposition 4.5 and [14, Proposition 3.8], f̃n = F̃ f̃n and fn = Ffn ∈ ℓwτ (N )
and therefore fn is s∗–optimal and Gu = fn has a solution u = f̃n ∈ ℓwτ (N ).

Combining (i)-(iv) and Theorem 4.4, one concludes the proof.
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Examples 1. (a) Gabor frames. If 0 6= g ∈ S(Rd) (or g time–frequency localized
enough) generates an irregular Gabor frame F = G(g,X ), then, for any η >
d, the frame F is intrinsically η–localized and has an intrinsically η–localized
canonical dual F̃ = {ẽξ}ξ∈X . Therefore, an approximation of the canonical dual
frame can be computed by using Theorem 7.1.

(b) Wavelet frames. The Lemarié class of matrices is not a spectral algebra and
therefore the previous theorem cannot be modified to work with (wavelet) ρ–
exponentially localized frames. Nevertheless, for simple cases, for instance
wavelet frames on the Euclidean spaces, it is possible to estimate the localization
in time and scale separately as follows. If Ψ = {ψj,k := 2d/2ψ(2j · −k)}j∈Z,k∈Zd

is a wavelet frame for L2(R
d) with enough regularity and vanishing moments,

then

∣

∣〈ψj,k, ψj′,k′〉
∣

∣ .
(

1 + ‖k − k′‖Rd

)−η
2−s(|j−j

′|), for η > 2r, r > d, s > 0. (105)

Then Ψ is also intrinsically Aη–localized:

∣

∣〈ψj,k, ψj′,k′〉
∣

∣ .
(

1 + ‖k − k′‖Rd + |j − j′|
)−η

, for η > 2r, r > d, (106)

Therefore, an approximation of the canonical dual frame can be computed by
using Theorem 7.1.

REMARK: Formula (101) is nothing but a discrete version of the well–known frame
algorithm to compute canonical dual frames, see for example [17] for a recent dis-
cussion of its convergence in Banach spaces. Neumann series inversion of synthesis
operators and Richardson iterations were also the key idea for relevant iterative meth-
ods in irregular sampling problems, see for example [36] and the related literature.

8 Appendix

We collect in this Appendix some relevant auxiliary lemmata.

Lemma 8.1 (Schur). If for an infinite matrix N = (nk,l)k,l∈N there exists weights
wl > 0, l ∈ N such that

∑

l∈N

|nk,l|wl ≤ Cwk, for all k ∈ N ,

and
∑

k∈N

|nk,l|wk ≤ Cwl, for all l ∈ N ,

then N is a bounded operator from ℓ2(N ) to ℓ2(N ) and ‖N‖ ≤ C.
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Proposition 8.2. Let α > 0. If gx,y := 2−α‖x−y‖Rd for x, y ∈ N , then G := (gx,y)x,y∈N
is a bounded operator from ℓp,w(N ) to ℓp,w(N ) for all p ∈ [1,∞] and for any β–
exponential moderate weight w, i.e., w(x+ y) ≤ 2β‖x‖Rdw(y), for all β ∈ (0, α).

Proof. Boundedness on ℓ1,w(N ):

‖Gc‖ℓ1,w(N ) ≤
∑

x∈N

∑

y∈N

2−α‖x−y‖Rd |cy|w(x)

≤ sup
y∈N

(

∑

x∈N

2−(α−β)‖x−y‖
Rd

)(

∑

y∈N

|cy|w(y)

)

= C‖c‖ℓ1,w(N ),

since w(x− y + y) ≤ 2β‖x−y‖Rdw(y).
Boundedness on ℓ∞,w(N ): it can be shown with a similar argument. One concludes
by interpolation of weighted ℓp(N ) spaces, see, e.g., [5] and [21], Appendix B, for
details.

An analogous mapping property holds for matrices with more general ̺–exponential
off–diagonal decay:

Proposition 8.3. Let r, s > d and ̺1 : N × N → R be given by (77). Then
G := (e−s̺1((i,j,k),(i′,j′,k′)))(i,j,k),(i′,j′,k′)∈N×N is a bounded operator from ℓnp,2t to ℓnp,2t for
all p ∈ [1,∞] and for any t ∈ (0, s− d).

Proof. The boundedness of G on ℓn1,2t can be shown as follows:

‖Gc‖ℓn
1,2t

.
∑

(i,j,k)∈N

∑

(i′,j′,k′)∈N

e−s̺1((i,j,k),(i′,j′,k′))|ci′,j′,k′|2tj

.
∑

(i,j,k)∈N

∑

(i′,j′,k′)∈N

2−s|j−j
′|2tj

(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

)−r

|ci′,j′,k′|

=
n
∑

i=1

∑

j≥j0−1

n
∑

i′=1

∑

j′≥j0−1

2−s|j−j
′|2tj

·







∑

k′∈∇�

j′

∑

k∈∇�
j

(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

)−r

|ci′,j′,k′|






.
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By the properties of the diffeomorphisms κi, one can further estimate

‖Gc‖ℓn
1,2t

.

n
∑

i=1

∑

j≥j0−1

n
∑

i′=1

∑

j′≥j0−1

2−s|j−j
′|2tj

·







∑

k′∈∇�

j′

(
∫

Rd

(

1 + 2min(j,j′)
∥

∥2−jx
∥

∥

Rd

)−r

dx

)

|ci′,j′,k′|






.

These computations imply

‖Gc‖ℓn
1,2t

.

n
∑

i′=1

∑

j,j′≥j0−1

2−s|j−j
′|2max{0,d(j−j′)}2tj







∑

k′∈∇�

j′

|ci′,j′,k′|







.

n
∑

i′=1

∑

j,j′≥j0−1

2−(s−d)|j−j′|2tj







∑

k′∈∇�

j′

|ci′,j′,k′|






.

Let us denote di
′

j′ :=
(

∑

k′∈∇�

j′
|ci′,j′,k′ |

)

. By an application of Proposition 8.2 for

N = Z≥j0, one has

‖Gc‖ℓn
1,2t

.

n
∑

i′=1

∑

j≥j0−1

di
′

j 2
tj = ‖c‖ℓn

1,2t
.

Let us now show the boundedness of G on ℓn∞,2t and conclude by interpolation of
weighted ℓp–spaces.

‖Gc‖ℓn
∞,2t

. sup
(i,j,k)∈N

∑

(i′,j′,k′)∈N

e−s̺1((i,j,k),(i′,j′,k′))|ci′,j′,k′|2tj

= sup
(i,j,k)∈N

∑

(i′,j′,k′)∈N

2−s|j−j
′|2tj

(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

)−r

|ci′,j′,k′|

= sup
1≤i≤n
j≥j0−1

n
∑

i′=1

∑

j′≥j0−1

2−s|j−j
′|2tj

·






sup
k∈∇�

j

∑

k′∈∇�

j′

(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

)−r

|ci′,j′,k′|






.

Since, as computed above, one has
∑

k′∈∇�

j′

(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

)−r

. 2max{0,d(j′−j)},
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then

‖Gc‖ℓn
∞,2t

. sup
j≥j0−1

n
∑

i′=1

∑

j′≥j0−1

2−(s−d)|j−j′|2tj



 sup
k′∈∇�

j′

|ci′,j′,k′|



 .

Again by an application of Proposition 8.2 one finally has

‖Gc‖ℓn
∞,2t

. ‖c‖ℓn
∞,2t

.

This concludes the proof.

The following lemma is a slight generalization of a lemma from [50, section 5]:

Lemma 8.4. Let D,w0 > 0, E ∈ (0, D/w0) and i ∈ {1, 2, 3}, j, k ∈ {1, 2, 3} \ {i}
with j < k be given. Furthermore, assume that (68) holds and

SF := sup
y∈Nj

∑

x∈Ni

e−F̺k(x,y) <∞ (107)

for F := D − Ew0. Then the matrix product A1 := A2A3 =: (az,y)y∈Nj ,z∈Nk
of

A2 := (e−E̺j(x,z))z∈Nk,x∈Ni
and A3 := (e−D̺k(x,y))x∈Ni,y∈Nj

fulfills

|az,y| ≤ SFe
−E̺i(y,z) for all y ∈ Nj, z ∈ Nk. (108)

If, moreover,

S ′
F := sup

z∈Nk

∑

x∈Ni

e−F̺j(x,z) <∞ (109)

then an analogous estimate holds for reversed roles of E and D. If N1 = N2 = N3

and ̺1 = ̺2 = ̺3 is symmetric, powers An
3 =: (a

(n)
y,z ) have the decay

|a(n)
z,y | ≤ Sn−1

F e−E̺i(y,z). (110)

Proof. In [50, Section 5], only the special case N1 = N2 = N3 and ̺1 = ̺2 = ̺3 was
considered, but the proof also works in the general setting. Using (68) and (107), a
direct calculation yields (108):

|az,y| =
∑

x∈Ni

e−E̺j(x,z)e−D̺k(x,y)

≤
∑

x∈Ni

e−E(̺i(y,z)−w0̺k(x,y))e−D̺k(x,y)

= e−E̺i(y,z)
∑

x∈Ni

e−(D−Ew0)̺k(x,y)

≤ SFe
−E̺i(y,z).
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For interchanged roles of D and E, one calculates analogously

|az,y| =
∑

x∈Ni

e−D̺j(x,z)e−E̺k(x,y)

≤
∑

x∈Ni

e−D̺j(x,z)e−E(̺i(y,z)−w0̺j(x,z))

= e−E̺i(y,z)
∑

x∈Ni

e−(D−Ew0)̺j(x,z)

≤ S ′
Fe

−E̺i(y,z).

(110) follows by induction.

We will also use the following generalization of [50, Théorème 5]:

Theorem 8.5. Assume that N := N1 = N2 = N3, ̺1 = ̺2 = ̺3 is symmetric, (68)
and (107) hold for F > 0 and

̺1(x, x) = ̺0 for all x ∈ N (111)

where ̺0 ≥ 0 is some constant. Let M = (mx,y)x,y∈N be an automorphism of ℓ2(N )
with

A‖c‖ℓ2(N ) ≤ ‖Mc‖ℓ2(N ) ≤ B‖c‖ℓ2(N ) (112)

and the off–diagonal decay estimate

|mx,y| ≤ Ce−D̺1(x,y) (113)

for some constants A,B,C,D > 0. Then the inverse M−1 =: (px,y)x,y∈N has expo-
nential off–diagonal decay as well:

|px,y| ≤ C1e
−D1̺1(x,y) (114)

for some C1 > 0 and

D1 = min

{

E

2
,−
⌊

E

2 log
((

eD̺0 + C
B

)

SF
)

⌋

log

(

1 − A

B

)

}

. (115)

Proof. In [50, Théorème 5], only the case ̺0 = 0 was considered, but the proof
for ̺0 > 0 is completely analogous. Without loss of generality, assume that M is
positive self–adjoint, otherwise use M−1 = M∗(MM∗)−1 and Lemma 8.4. By (112),
the spectrum σ(M) is contained in [A,B], i.e., σ(S) ⊂ [0, 1 − A

B
] for S := id− 1

B
M.

Moreover, ‖S‖ ≤ 1 − A
B

=: q < 1, so that the Neumann series M−1 = 1
B

∑∞
n=0 Sn

can be used to estimate |px,y| by the entries of Sn =: (s
(n)
x,y)x,y∈N . For large n, we use
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|s(n)
x,y| ≤ ‖Sn‖ ≤ qn. For small n, we choose a number E ∈ (0, D/w0). By (113), we

have

|s(1)
x,y| ≤ δx,y +

C

B
e−D̺1(x,y) ≤

(

eD̺0 +
C

B

)

e−D̺1(x,y),

so that by Lemma 8.4, for F := D − Ew0,

|s(n)
x,y| ≤

(

eD̺0 +
C

B

)n
(

(e−D̺1(ζ,ξ))ζ,ξ∈N
)n

x,y
≤
(

eD̺0 +
C

B

)n

Sn−1
F e−E̺1(x,y).

Hence for any n0 ∈ N it follows that

|px,y| ≤ 1

B

(

δx,y +

(

n0
∑

n=1

(

eD̺0 +
C

B

)n

Sn−1
F

)

e−E̺1(x,y)

)

+
1

B

∞
∑

n=n0+1

qn

≤ 1

B

(

eE̺0 +

n0
∑

n=1

(

eD̺0 +
C

B

)n

Sn−1
F

)

e−E̺1(x,y) +
qn0+1

B(1 − q)

≤ eE̺0

B

(

1 +

n0
∑

n=1

(

eD̺0 +
C

B

)n

Sn−1
F

)

e−E̺1(x,y) +

(

1

A
− 1

B

)(

1 − A

B

)n0

.

Since
1 = eD̺0e−D̺0 ≤ eD̺0e−F̺0 ≤ eD̺0SF ,

we can estimate

|px,y| ≤ e(D+E)̺0

B

(

n0
∑

n=0

(

eD̺0 +
C

B

)n

SnF

)

e−E̺1(x,y) +

(

1

A
− 1

B

)(

1 − A

B

)n0

=
e(D+E)̺0

(

(

eD̺0 + C
B

)n0+1
Sn0+1
F − 1

)

B
((

eD̺0 + C
B

)

SF − 1
) e−E̺1(x,y) +

(

1

A
− 1

B

)(

1 − A

B

)n0

≤ C1

((

eD̺0 +
C

B

)n0

Sn0
F e

−E̺1(x,y) +

(

1 − A

B

)n0
)

,

where

C1 := max

{

e(D+E)̺0
(

eD̺0 + C
B

)

SF

B
((

eD̺0 + C
B

)

SF − 1
) ,

1

A
− 1

B

}

.

Now we choose

n0 :=

⌊

E

2 log
((

eD̺0 + C
B

)

SF
)ρ1(x, y)

⌋

≥ 0,

so that (115) follows by
(

eD̺0 +
C

B

)n0

Sn0
F e

−E̺1(x,y) +

(

1 − A

B

)n0

= en0 log((eD̺0+ C
B )SF )−E̺1(x,y) + en0 log(1−A

B )

≤ e−D1̺1(x,y).
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A crucial ingredient of the localization arguments is the validity of various triangle
inequalities:

Lemma 8.6. The function ̺1 from (77) fulfills (68) for N1 = N2 = N3 = N ,
̺2 = ̺3 = ̺1 and w0 = 1.

Proof. As in [43], consider an analogy ̺P to the Poincaré metric on the upper half
plane Rd × R+

̺P
(

(x, t), (x′, t′)
)

:= Artanhϑ = log

(

1 + ϑ

1 − ϑ

)1/2

, (116)

where

ϑ := ϑ
(

(x, t), (x′, t′)
)

:=

(‖x′ − x‖2
Rd + |t′ − t|2

‖x′ − x‖2
Rd + |t′ + t|2

)1/2

∈ [0, 1). (117)

̺P is indeed a metric. Like in [43], one observes that

(

1 + ϑ

1 − ϑ

)1/2

=
1 + ϑ

2

( |t′ + t|2
t′t

)1/2(

1 +
‖x′ − x‖2

Rd

|t′ + t|2
)1/2

. (118)

We have the equivalence

1

2

(

1 + ϑ

1 − ϑ

)1/2

≤ max

(

√

t′

t
,

√

t

t′

)

(

1 +
‖x′ − x‖Rd

max{t, t′}

)

≤
√

32

(

1 + ϑ

1 − ϑ

)1/2

, (119)

since by (117) and (118)

1 + ϑ

1 − ϑ
=

(1 + ϑ)2

4

( |t′ + t|2
t′t

)(

1 +
‖x′ − x‖2

Rd

|t′ + t|2
)

≤
(

t′

t
+ 2 +

t

t′

)(

1 +
‖x′ − x‖Rd

|t′ + t|

)2

≤ 4 max

{

t′

t
,
t

t′

}(

1 +
‖x′ − x‖Rd

max{t, t′}

)2

= 4

(

max

{

√

t′

t
,

√

t

t′

})2
(

1 +
‖x′ − x‖Rd

max{t, t′}

)2

≤ 16(1 + ϑ)2

(

√

t′

t
+

√

t

t′

)2
(

1 +
‖x′ − x‖Rd

|t′ + t|

)2

≤ 32(1 + ϑ)2

(

t′

t
+ 2 +

t

t′

)(

1 +
‖x′ − x‖2

Rd

|t′ + t|2
)

= 128
1 + ϑ

1 − ϑ
.
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In the following, we use (119) at points of the form (x, t) =
(

κi(2
−jk), 2−j

)

. Since
(77) transforms into

̺1

(

(i, j,k), (i′, j′,k′)
)

=
r

s
log
(

1 + 2min(j,j′)
∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

)

+ |j − j′| log 2 +
9r

2s
log 2

=
r

s
log

(

2|j−j
′|(s/r−1/2)2|j−j

′|/2

(

1 +

∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

max{2−j, 2−j′}

))

+
9r

2s
log 2,

(119) and the metric properties of ̺P yield for r < 2s

̺1

(

(i, j,k), (i′′, j′′,k′′)
)

=
r

s
log

(

2|j−j
′′|(s/r−1/2)2|j−j

′′|/2

(

1 +

∥

∥κi(2
−jk) − κi′′(2

−j′′k′′)
∥

∥

Rd

max{2−j, 2−j′′}

))

+
9r

2s
log 2

≤ r

s
log





√
32

(

1 + ϑ
(

(x, t), (x′′, t′′)
)

1 − ϑ
(

(x, t), (x′′, t′′)
)

)1/2


 + |j − j′′|
(

1 − r

2s

)

log 2 +
9r

2s
log 2

≤ r

s
̺P
(

(κi(2
−jk), 2−j), (κi′(2

−j′k′), 2−j
′

)
)

+ |j − j′|
(

1 − r

2s

)

log 2

+
r

s
̺P
(

(κi′(2
−j′k′), 2−j

′

), (κi′′(2
−j′′k′′), 2−j

′′

)
)

+ |j′ − j′′|
(

1 − r

2s

)

log 2 +
7r

s
log 2

≤ r

s
log

(

2|j−j
′|/2

(

1 +

∥

∥κi(2
−jk) − κi′(2

−j′k′)
∥

∥

Rd

max{2−j, 2−j′}

))

+ |j − j′|
(

1 − r

2s

)

log 2

+
r

s
log

(

2|j
′−j′′|/2

(

1 +

∥

∥κi′(2
−j′k′) − κi′′(2

−j′′k′′)
∥

∥

Rd

max{2−j′, 2−j′′}

))

+ |j′ − j′′|
(

1 − r

2s

)

log 2

+
9r

s
log 2

= ̺1

(

(i, j,k), (i′, j′,k′)
)

+ ̺1

(

(i′, j′,k′), (i′′, j′′,k′′)
)

.

Since the proof of Lemma 8.6 completely relies on the metric properties of ̺P
and since the structure of the index sets N and N ◦ from (72) is identical, one can
immediately prove the following:

Lemma 8.7. For any choice of Ψ1,Ψ2,Ψ3 ∈ {Ψ,Ψ◦} and appropriate definitions of
̺i = ̺Ψj ,Ψk

, where i ∈ {1, 2, 3}, j, k ∈ {1, 2, 3} and j < k, (68) is fulfilled.
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