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Abstract

We study the efficient adaptive solution of infinite matrix equations Au = f for a
matrix A in the Jaffard algebra. By a modification of the adaptive numerical algorithms
of Cohen, Dahmen, and DeVore we obtain an efficient and implementable iterative
algorithms that converges with optimal order and possesses optimal complexity. In
addition to `2-convergence, the algorithm converges automatically in some stronger
norms of weighted `p-spaces. As an application we approximate the canonical dual
frame of a localized frame and show that it is again a frame, and even a Banach frame
for many associated Banach spaces. The main tools are taken from adaptive algorithms,
from the theory of localized frames, and the special Banach algebra properties of the
Jaffard algebra.

AMS subject classification: 41A25, 42C15, 46E35, 65F10, 65F20, 65F50, 65N12
Key Words: Adaptive scheme, Jaffard algebra, (Banach) frame theory, best approxima-
tion, localization of frames, sparse matrix.

1 Introduction

Fast matrix computations use either structure or sparsity. Structure, as used for the FFT
or Toeplitz solvers, is more rigid and works only in very specific applications. Sparsity is
more flexible and arises often in the discretization of operator equations with respect to a
suitable basis. Roughly speaking, a matrix is sparse, if each row and each column contain
only few non-zero entries (or few large entries). Likewise, a vector is sparse, if it has only
few non-zero (or large) coefficients. The resulting matrix-vector multiplication is cheap
because the operation count is determined by the number of large entries of the matrix and
the vector. This observation is the key to the recent development of adaptive algorithms
by Cohen, Dahmen, and DeVore [12, 13].
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Such adaptive numerical methods have been applied successfully for the solution of
operator equations, in particular to PDE and integral equations [2, 4, 5, 6, 17, 28, 12, 13].
The existing stable and efficient implementations are mostly based on finite elements or,
more recently, on the discretization with wavelet bases. The innovation brought by the
use of wavelet bases was the rigorous analysis of the stability and smoothness properties
of the algorithms. One of the main results guarantees that the adaptive algorithm of [12]
converges with the optimal order and optimal numerical complexity. However, for PDE
on bounded domains or on a closed manifold the adaptive wavelet method faces a serious
limitation: the construction of suitable wavelet basis on domains is rather intricate, and the
known constructions either have stability problems or lack sufficient smoothness.

These difficulties have motivated the use of (wavelet) frames instead of bases in adaptive
schemes [15, 27]. Frames provide stable and redundant (non-orthogonal) expansions in a
Hilbert space. In general, a wavelet frame on a domain is much easier to construct than a
wavelet Riesz basis. However, by using frames, a new problem arises: the resulting stiffness
matrix may be singular, and at first glance one has to solve a singular equation. This
problem was settled in [15, 27], where it was shown that the adaptive strategies developed
in [12, 13] can be generalized to the frame case and maintain their advantages.

In this paper we pursue the investigation of adaptive numerical strategies with frames.
We deal with a form of sparse operator equations that arise from the discretization with
respect to a frame. The first innovation is the chosen measure of sparsity. Whereas the
adaptive wavelet schemes work with matrices in the Lemarié algebra, we use the Jaffard
algebra. The sparsity of a matrix in the Jaffard algebra is given by the rate of its (polyno-
mial) off-diagonal decay. This setting arises quite natural in many applications, notably in
Gabor analysis, sampling theory, and in the discretization of pseudo-differential operators
in the weighted Sjöstrand class [24]. We show that the principal subroutines of adaptive
algorithms also work for the Jaffard algebra. We derive suitable schemes to approximate an
infinite vector by a finite one, and we provide an implementable algorithm for the approx-
imation of an infinite matrix-vector product. The resulting adaptive numerical scheme for
the solution of infinite matrix equations is then guaranteed to converge with optimal order
and operation count.

Our second innovation is the application of the theory of localized frames as developed
in [19, 23]. This theory provides a powerful tool for the analysis of the dual frame, for series
expansions in associated Banach spaces, and for the extension of frames to Banach spaces.
A frame is localized (more precisely, self-localized), if its Gramian matrix is in the Jaffard
algebra. To our knowledge, the combination of localized frames and adaptive algorithms
is new. We believe that our techniques carry considerable potential for applications and
further refinements.

Our analysis of adaptive algorithms with localized frames differs in several aspects from
the wavelet case. The special structure of the Jaffard algebra allows us even to prove some
stronger results.

• The adaptive algorithm simplifies significantly. The approximation of infinite vectors
can be performed by a nearest neighborhood approximation. As a consequence, no
sorting routines or binary binning strategies are needed. Moreover, a thresholding
step that is needed in the wavelet case can be avoided.
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• The approximation of a stiffness matrix in the Jaffard algebra is by a banded matrix
and thus much simpler than the approximation by a compressible matrix.

• The proof of the optimality of the adaptive scheme requires that a certain orthogonal
projection is also bounded on weighted `p-spaces or on weak `p-spaces. This property
is automatically satisfied when working with localized frames and the Jaffard algebra,
but it has to be postulated as an additional assumption in the case of wavelet frames
and the Lemarié algebra, see [27, Thm. 3.12]. Or to put it more poignantly, we prove
that, in the case of localized frames, the adaptive algorithm is optimal with respect to
computational complexity, whereas the same question is still open for wavelet frames.

• The adaptive algorithm converges not only in the underlying Hilbert space, but also
in a scale of stronger Banach space norms. In concrete examples these stronger norms
imply the convergence of derivatives and convergence in weighted Lp-spaces. The
automatic convergence of the adaptive algorithm in finer norms (Theorem 3.8) is
surprising, and to our knowledge, is the first result of this type. It is unclear whether
this stronger form of convergence also holds in the case of wavelet frames and the
Lemarié algebra.

Let us emphasize that at the heart of our results is a special Banach algebra property of
the Jaffard algebra. The key is that the Jaffard algebra is closed under taking inverses [26],
whereas the Lemarié algebra lacks this property. It is likely that our main results can be
extended to the larger class of Banach algebras and localized frames that was considered in
[19].

As an important application of the new adaptive strategies, we investigate the computa-
tion of the canonical dual frame. The canonical dual is necessary to compute the coefficients
of a frame expansion. Each vector of the canonical dual is defined implicitly by an opera-
tor equation involving the frame operator. Therefore the properties of the dual frame are
often hard to check and usually no explicit formulas are available. Computational issues
about the dual frame are investigated in [7, 8] and in [11] (by means of the finite section
method and localization properties of the frame), but it seems that for infinite frames no
implementable solutions are presently available.

We apply the adaptive algorithm to the discretization of the frame operator, where the
discretization may be with respect to a different frame. For a suitably localized frame, the
corresponding stiffness matrix is in the Jaffard algebra, and thus the adaptive algorithm
yields an efficient approximation of each element of the dual frame. Our main result (The-
orem 5.2) asserts that the approximation of the dual frame is again a frame and that this
approximation works in much finer norms (involving decay and smoothness conditions).
These results are far from obvious and require the entire machinery of adaptive methods
and localized frame theory.

This paper is organized as follows. In Section 2, we discuss the frame setting as far as
it is needed for our purposes. Special emphasis is layed on Banach frames and localization
properties. Section 3 is concerned with matrix computations in the Jaffard algebra. First
we derive a subroutine to approximate infinite vectors by finite ones. Then we describe an
algorithm to compute finite vectors that approximate infinite matrix-vector products up to a
given precision. The combination of these subroutines yields an adaptive algorithm SOLVE
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for the numerical solution of infinite matrix equations in the Jaffard algebra. We carry out a
detailed analysis of the convergence and complexity of this algorithm in Thms. 3.6 and 3.8.
In Section 4, we deal with the efficient computation of the canonical dual frame by means
of SOLVE. Finally, in Section 5, we present the error estimates that guarantee that the
approximated elements of the canonical dual again form a frame.

Throughout this paper ‘a . b’ means that there exists a positive constant C such that
a ≤ Cb. If a . b and b . a then we will write a � b. We determine the constants explicitly
only if their value is crucial for further analysis. The expression C(A) stands for the number
of algebraic operations needed to compute the quantity A. By L(B) we denote the space of
bounded linear operators on a Banach space B.

2 Intrinsically Localized Frames in Banach Spaces

2.1 Frames in Hilbert and Banach Spaces

In this section we recall the concept of frames. Frames provide stable and redundant
nonorthogonal expansions in Hilbert spaces, and they can be used to define certain asso-
ciated Banach spaces and to obtain stable decompositions in these Banach spaces. The
canonical dual frame is used to compute the coefficients of such expansions and plays a
pivotal role in the theory of Banach spaces associated to frames and in many concrete
applications.

In the following we assume that the index set is N = Zd. This is no loss of generality,
because we can map any relatively separated set of Rd into Zd by a trick in [3]. A subset
G = {gn : n ∈ N} of a separable Hilbert space H is called a frame for H, if

AG‖f‖2 ≤
∑
n∈N

|〈f, gn〉|2 ≤ BG‖f‖2, for all f ∈ H, (1)

for some constants 0 < AG ≤ BG < ∞. Associated to the frame are the following bounded
operators

F : H → `2(N ), f 7→
(
〈f, gn〉

)
n
, (2)

F ∗ : `2(N ) → H, c 7→
∑
n∈N

cngn. (3)

The composition S := F ∗F is a boundedly invertible, positive operator on H called the
frame operator. The set {g̃n := S−1gn : n ∈ N} is again a frame for H, the canonical dual
frame, with corresponding analysis and synthesis operators

F̃ = F (F ∗F )−1, F̃ ∗ = (F ∗F )−1F ∗. (4)

In particular, one has the following orthogonal decomposition of `2(N )

`2(N ) = ran(F )
⊕

ker(F ∗), (5)

and
P := F (F ∗F )−1F ∗ : `2(N ) → ran(F ), (6)

4



is the orthogonal projection onto ran(F ). In general ran(F ) 6= `2(N ), and ran(F ) = `2(N )
if and only if G is a Riesz basis. From the invertibility of S one has also the following
reproducing formulas

f =
∑
n∈N

〈f, g̃n〉gn =
∑
n∈N

〈f, gn〉g̃n, for all f ∈ H. (7)

More information on frames can be found in the book [9].
The concept of frame can be extended to Banach spaces as follows.

Definition 1 ([21]). A Banach frame for a separable Banach space B is a sequence G =
{gn : n ∈ N} in B′ with an associated sequence space Bd such that the following properties
hold.

(a) Norm equivalence:
‖f‖B � ‖〈f, gn〉n∈N ‖Bd

, for all f ∈ B.

(b) There exists a bounded operator R from Bd onto B, a so-called synthesis or recon-
struction operator, such that

R (〈f, gn〉n∈N ) = f, for all f ∈ B.

A dual concept and a different extension of Hilbert frames to Banach spaces is given by
the notion of atomic decomposition.

Definition 2. An atomic decomposition for a separable Banach space B consists of a pair
of sets G = {gn : n ∈ N} in B and and G̃ = {g̃n : n ∈ N} in B′ and an associated sequence
space Bd such that the following properties hold.

(a) Norm equivalence:
‖f‖B � ‖〈f, g̃n〉n∈N ‖Bd

, for all f ∈ B.

(b) The series expansion for the reconstruction of f ,

f =
∑
n∈N

〈f, g̃n〉gn ,

converges unconditionally for all f ∈ B.

2.2 Discretization of Operator Equations by Frames

In this subsection, we explain how frames can be used for the numerical treatment of
operator equations

Lu = f, (8)

where L denotes a boundedly invertible linear operator on H. We want to solve (8) approx-
imately with the aid of a suitable numerical scheme based on frames. A natural idea is the
use of a Galerkin scheme. There one chooses a finite subset of frame elements, considers
their span V ⊂ H, and searches for uV ∈ V such that

〈LuV , v〉 = 〈f, v〉, for all v ∈ V. (9)
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However, this standard approach may face serious problems, because the stiffness matrix
corresponding to (8) may be singular in the frame case. Nevertheless, it is possible to
transform (8) into an equivalent bi-infinite matrix equation on `2(N ) and to derive a series
representation for the solution as we shall explain now. The following lemma has been
proved in [15], see also [16, 27].

Lemma 2.1. If L is a self-adjoint invertible operator on H, then the operator

A := FLF ∗ (10)

is a bounded operator from `2(N ) to `2(N ). Moreover A = A∗ and it is boundedly invertible
on its range ran(A) = ran(F ).

In principle, under suitable assumptions, a linear system Au = f can be solved by a
simple Richardson-Landweber iteration, as we show in the following.

Theorem 2.2. Let L be a boundedly invertible, positive operator on H and let A be as in
(10). Denote

f := Ff (11)

and A as in (10). Then the solution u of (8) can be computed by

u = F ∗u (12)

where u is given by

u =

(
α

∞∑
n=0

(id−αA)n

)
f , (13)

with 0 < α < 2/λmax and λmax = ‖A‖.

Observe that (13) is simply a damped Richardson iteration

u(n+1) = u(n) − α(Au(n) − f), n ≥ 1, (14)
u(0) = 0,

u = lim
n→+∞

u(n).

Clearly (14) cannot be implemented directly since it involves infinite vectors and bi-infinite
matrices. Nevertheless, an implementable numerical scheme can be derived by approximat-
ing the bi-infinite matrices and vectors in (13) by finite ones. This issue will be discussed
in Section 3.
REMARK: According to Theorem 2.2 we have to compute (13) on the range of A. However,
if we perturb (13) by approximating the bi-infinite matrices and the infinite vectors, then the
resulting vectors will have components in the kernel of A. However, since ker(A) = ker(F ∗)
by (10), the iteration will still converge if the projected error onto ran(A) tends to zero.

6



2.3 Intrinsic Localized Frames and Associated Banach Spaces

The concept of localized frames has been recently introduced and investigated in [3, 14, 18,
19, 20, 23, 25] as a tool for extending a frame for a Hilbert space to a Banach frame (or
an atomic decomposition) for a family of associated Banach spaces. The localization is a
measure of the sparseness of a frame and is defined by the off-diagonal decay of the Gramian
matrix of the frame. We first recall the concept of mutual localization of two frames and
then the necessary results from Banach algebra theory.

In this paper we work with the Jaffard algebra [26] which is defined as the class of
matrices A = (akl), k, l ∈ N , such that

|akl| . (1 + |k − l|)−γ for all k, l ∈ N , γ > d.

We denote the Jaffard algebra by A := Aγ and endow it with the norm

‖A‖Aγ := sup
k,l∈N

|akl|(1 + |k − l|)γ .

One can show [23, 26] the following properties:

(A0) If γ > d, then A ⊆ L(`2(N )), i.e., each A ∈ A defines a bounded operator on `2(N ).

(A1) If A ∈ A is invertible on `2(N ), then A−1 ∈ A as well. In the language of Banach
algebras, A is inverse-closed in L(`2(N )).

(A2) A is solid: i.e., if A ∈ A and |bkl| ≤ |akl| for all k, l ∈ N , then B ∈ A as well.

We refer to [25] where several examples of algebras with properties (A0-2) are presented.
Let us denote by wγ(x) = (1 + |x|)γ the polynomially growing, submultiplicative, and
radial symmetric weight function on Rd. A weight m on Rd is called γ-moderate if m(x +
y) ≤ wγ(x)m(y). In particular, if m is γ-moderate then m−1 is also γ-moderate and both
m(x)−1 . wγ(x) and m(x) . wγ(x) for all x ∈ Rd.

Definition 3. Given two frames G = {gn : n ∈ N} and F = {fx : x ∈ N} for the
Hilbert space H, the (cross-) Gramian matrix A = A(G,F) of G with respect to F is the
N ×N -matrix with entries

axn = 〈gn, fx〉.

The frame G for H is called A-localized with respect to the frame F if A(G,F) ∈ A. In
this case we write G ∼A F . If G ∼A G, then G is called A-self-localized or intrinsically
A-localized.

Intrinsic localization of frames is a very powerful concept and is essential for the following
general principle which has been shown in [19, Corollary 3.7].

Theorem 2.3. Let G be a frame for H and let γ > d. If the Gramian of G satisfies the
condition

|〈gk, gl〉| ≤ Cwγ(k − l)−1 for all k, l ∈ N ,

then the Gramian of the dual frame G̃ also satisfies

|〈g̃k, g̃l〉 ≤ C ′wγ(k − l)−1 for all k, l ∈ N ,
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and
|〈g̃k, gl〉| ≤ C ′wγ(k − l)−1 for all k, l ∈ N .

More generally, if G is A-self-localized, then G̃ is also A-self-localized and G̃ ∼A G.

REMARK: Since the canonical dual frame G̃ is defined implicitly by the equations

Sg̃n = gn, n ∈ N , (15)

it is usually difficult to check the properties of G̃ and almost impossible to derive explicit
formulas for g̃n. Theorem 2.3 provides some control of the dual frame and lies at the heart
of the efficient and implementable methods for the approximation of G̃.

Next we illustrate how certain families of Banach spaces can be characterized by A-
self-localized frames. In the following we assume that γ > s + d and m is an s-moderate
weight.

Let (G, G̃) be a pair of dual A-self-localized frames for H. Assume 1 ≤ p ≤ ∞ and
`p
m(N ) ⊂ `2(N ). Then the Banach space Hp

m(G, G̃) is defined to be

Hp
m(G, G̃) := {f ∈ H : f =

∑
n∈N

〈f, g̃n〉gn, (〈f, g̃n〉)n∈N ∈ `p
m(N )} (16)

with the norm
‖f‖Hp

m
= ‖(〈f, g̃n〉)n∈N ‖`p

m
.

Since `p
m(N ) ⊂ `2(N ), Hp

m is a dense subspace of H. If `p
m(N ) is not included in `2(N )

and 1 ≤ p < ∞, then we define Hp
m to be the completion of the subspace H0 of all finite

linear combinations in G with respect to the Hp
m-norm. If p = ∞, then we take the weak∗-

completion of H0 to define H∞
m .

REMARK: The definition of Hp
m(G, G̃) does not depend on the particular A-self localized

dual chosen, and any other A-self-localized frame F which is localized with respect to G
generates the same space with an equivalent norm. For more details we refer to [19].

Theorem 2.4. Assume that G is an Aγ-self-localized frame for H for some γ > s + d.
Then both G and and its canonical dual frame G̃ form a Banach frame for Hp

m(G, G̃) for
1 ≤ p ≤ ∞ and every s-moderate weight m. Moreover, for the same range of parameters,
the pair (G, G̃) yields an atomic decomposition of Hp

m with sequence space `p
m.

3 Matrix Computations in the Jaffard Algebra

In this section, we want to discuss the basic subroutines required for the approximate
numerical solution of the system of equations

Au = f . (17)

As already indicated in Subsection 2.2, this task requires the approximation of infinite
vectors and bi-infinite matrix-vector products by finite ones. The first issue is addressed in
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Subsection 3.1 and is settled by the N–nearest neighborhood approximation. The second
problem will be discussed in Subsection 3.2 where we derive a subroutine for the computation
of a finite vector wε such that

‖wε −Av‖`2 ≤ ε. (18)

Finally, in Subsection 3.3 we combine these building blocks and obtain a numerical
scheme that is guaranteed to converge with optimal order.
REMARK: The occurrence of the many parameters γ, r, s, t, etc. is unavoidable and requires
some clarification. First, γ parametrizes the off-diagonal decay of a matrix and can be
understood as a measure for sparsity. The parameter s indicates the decay of an infinite
vector and serves as a measure for the localization. Usually s depends on γ, the common
hypothesis is s + d < γ. The parameter r is a measure for the complexity of an algorithm
and occurs in the operation count. It is always given by r = s/d − 1/2. Finally, for the
convergence of iterative algorithms we will use weighted `p-spaces. In this context the
parameter t measures the maximal growth of the admissible weight, t depends on s and γ.

3.1 Nearest Neighborhood Approximation

In this section, we want to introduce the sequence spaces and the approximation schemes
that are needed for our purpose.

Let us start by clarifying our notion of an optimal numerical algorithm. Let V ⊂ `2 be
a normed vector space. Assume that there exists an r such that every v ∈ V possesses a
finite approximation vε ∈ V with the properties:

(a) ‖v − vε‖`2 ≤ ε;

(b) # supp(vε) . ε−1/r‖v‖1/r
V .

Clearly, the larger r, the smaller the support of vε. We will denote the maximal exponent
that works for all v ∈ V by r = r(V). Then a numerical scheme will be called optimal, if
it produces an approximation vε with the properties (a) and (b) and with computational
costs satisfying

(c)
C(vε) . ε−1/r‖v‖1/r

V .

Let us now introduce the sequence spaces `∞ws
.

Definition 4. For s > d, x ∈ N , and for v ∈ `∞ws
we define the norm

‖v‖s,x := sup
k∈N

|vk|(1 + |x− k|)s. (19)

Of course, for x, y ∈ N , y 6= x one has

(1 + |x− y|)−s‖v‖s,x ≤ ‖v‖s,y ≤ (1 + |x− y|)s‖v‖s,x. (20)

Therefore the norms ‖ · ‖s,x are equivalent to ‖ · ‖s,0 = ‖ · ‖`∞ws
. Nevertheless, we will use

this general notation to indicate that a vector is “localized”.
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Definition 5. A vector v ∈ `2(N ) is s-localized at x ∈ N , if v ∈ `∞ws
(N ) and

‖v‖s,x = min
y∈N

‖v‖`s,y . (21)

In `∞ws
, we consider the following approximation scheme.

Definition 6. Given a vector v ∈ `∞ws
localized at x, we define its N -nearest neighborhood

approximation by

vN−nearest
k :=

{
vk , |k − x| ≤ N

0 , otherwise.

By a small computation, we have

‖v − vN−nearest‖`2 . ‖v‖s,xNd/2−s.

Given ε > 0, set r = s
d −

1
2 , N = (‖v‖s,xε−1)

1
dr , and vε = vN−nearest. Then

‖v − vε‖`2 ≤ ε and # supp(vε) . ε−1/r‖v‖1/r
s,x .

Moreover, since there is no need of algebraic operations to compute vε the computational
cost can be assumed constant and certainly C(vε) . ε−1/r‖v‖1/r

s,x . Consequently, the nearest
neighborhood approximation gives rise to an optimal approximation for vectors in `∞ws

,
provided that we have clarified that r = s

d −
1
2 is really the maximal choice for the rate of

approximation, as we shall now explain.
As an alternative to the N -nearest neighborhood approximation we consider the best

M -term approximation of a vector v ∈ `2. Let vM−best be the vector of the M coefficients of
v that are largest in modulus (or, equivalently, the first M coefficients of its non-increasing
rearrangement γ(v)). If v ∈ `∞ws

and M = #{k : |k − x| ≤ N}, then clearly

‖v−vM−best‖`2 ≤ ‖v−vN−nearest‖`2 , where #suppvN−nearest = #suppvM−best � Nd .

The M -term approximation is related with the weak `τ -spaces. Let γn(v) be the n-th term
of a non-increasing rearrangement of v and 0 < τ < 2. Then the space `τ,w(N ) is defined
by

`τ,w(N ) := {v ∈ `2(N ) : |v|`τ,w := sup
n∈N

n1/τ |γn(v)| < ∞}. (22)

It is easy to verify the following properties of `τ,w:

(a) ‖v‖`τ,w is a quasi-norm, i.e., ‖v + w‖`τ,w ≤ Cτ (‖v‖`τ,w + ‖w‖`τ,w) for some constant
Cτ > 1;

(b) `τ ⊂ `τ,w ⊂ `τ+δ for any δ ∈ (0, 2− τ ];

(c) if τ = (1/2 + r)−1, then

|v|`τ,w ∼ sup
M≥1

M r‖v − vM−best‖`2 .
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Thus, if ε = M−r|v|`τ,w and vε = vM−best, then

‖v − vε‖`2 ≤ ε and # suppvε = M = (ε−1|v|`τ,w)1/r.

This implies immediately that `∞ws
⊂ `τ,w, for τ = (1/2 + r)−1 and r = s

d −
1
2 . Moreover,

there exists v ∈ `∞ws
, but v /∈ `τ̃ ,w for τ̃ < τ = (1/2+ r)−1 and r = s

d −
1
2 , for which the best

M -coefficient approximation cannot be more efficient than the N -nearest neighborhood
approximation. Just consider for example v = w−1

s . Thus the N -nearest neighborhood
approximation is optimal.

The discussion above shows that for vectors v ∈ `∞ws
(N ) the N–nearest neighborhood

approximation provides an implementable, optimal procedure, which we call RHS as in
[12]. It has the following properties.

RHS[ε,v] → vε: determines for v ∈ `∞ws
(N ) a finitely supported vε such that

(a)
‖v − vε‖`2 ≤ ε; (23)

(b) supp(vε) ⊆ B(x,N) and # supp(vε) . Nd . ε−1/r‖v‖1/r
s,x ;

(c) C(vε) . ε−1/r‖v‖1/r
s,x .

3.2 Matrix Computations

The aim of this section is to establish the second fundamental subroutine, namely a fast
algorithm for the computation of a finite vector wε, possibly with small (or minimal) support
such that

‖wε −Av‖`2 ≤ ε.

We first study the approximation of an arbitrary matrix A on N by a banded matrix. For
N ∈ N, we define the matrix BN by

bN
hk :=

{
0 , |h− k| > N

ahk , otherwise.

Clearly, a matrix with fast off-diagonal decay will be approximated well by banded
matrices. The following lemma studies the error A − BN for the Jaffard class on various
sequence spaces.

Lemma 3.1. Assume that A ∈ Aγ.
(a) If γ > d, then we have, in the operator norm on `2(N ),

‖A−BN‖ := ‖A−BN‖`2→`2 . Nd−γ . (24)

(b) If s + d < γ, 1 ≤ p ≤ ∞, and m is an s-moderate weight, then, in the operator norm
on `p

m, we have
‖A−BN‖`p

m→`p
m

. Nd+s−γ . (25)
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(c) In particular, if s + d < γ, then

‖A−BN‖s,x := ‖A−BN‖`∞ws
→`∞ws

. Nd+s−γ , (26)

where the constant does not depend on x. Here the notation ‖C‖s,x indicates the operator
norm of C acting on `∞ws

endowed with the norm ‖ · ‖s,x.

Proof. (a) We use the Schur test to estimate the operator norm on `2 .

sup
h∈N

∑
k∈N

|ahk − bN
hk| = sup

h∈N

∑
k∈N : |k−h|>N

|ahk|

≤ ‖A‖Aγ sup
h∈N

∑
k∈N : |k−h|>N

|(1 + |k − h|)−γ

. ‖A‖AγNd−γ ,

and likewise with k and h interchanged. Thus (24) follows.
(b) We fix the weight m and prove (25) first for p = 1 and p = ∞. Since m(k) .

(1 + |k − l|)s m(l), we obtain

‖(A−BN )c‖`1m
=

∑
k

∣∣∣ ∑
l:|l−k|>N

aklcl

∣∣∣m(k)

≤ ‖A‖Aγ

∑
k

∑
l:|l−k|>N

(1 + |k − l|)−γ |cl|m(k − l + l)

. ‖A‖Aγ

∑
l

(
sup

l

∑
k:|k−l|>N

(1 + |k − l|)−γ+s
)
|cl|m(l)

. ‖A‖Aγ N−γ+s+d ‖c‖`1m
.

Similarly, for p = ∞ we obtain

‖(A−BN )c‖`∞m = sup
k

∣∣∣ ∑
l:|l−k|>N

aklcl

∣∣∣m(k)

≤ ‖A‖Aγ sup
k

∑
l:|l−k|>N

(1 + |k − l|)−γ+s|cl|m(l)

. ‖A‖Aγ ‖c‖`∞m sup
k

∑
l:|k−l|>N

(1 + |k − l|)−γ+s (27)

. ‖A‖Aγ‖c‖`∞m N−γ+s+d .

For 1 < p < ∞, (25) now follows by interpolation.
(c) Since m(k) = (1 + |k − x|)s is s-moderate, the uniform estimate in the (s, x)-norm

is a special case of (27).

Lemma 3.1 gives an error estimate for the approximation of a matrix in the Jaffard
class by a banded matrix. This should be distinguished from the more general concept of
approximations by sparse matrices of [12]. According to [12], a matrix A : `2(N ) → `2(N )

12



is called r∗–compressible for r∗ > 0 if for each j ∈ N there exist constants αj , Cj , and a
matrix Aj having at most αj2j non–zero entries in each column, such that

‖A−Aj‖ ≤ Cj , (28)

where (αj)j∈N is summable, and for any 0 < r < r∗, (Cj2rj)j∈N is summable.

Lemma 3.2. If A ∈ Aγ for γ > d, then A is at least (γ − d)/d–compressible.

Proof. For all j ∈ N denote Aj := B2j/d/j2
. Then Aj has at most 2j/j2d entries in each

column, and
∑

j αj =
∑

j j−2d < ∞. By Lemma 3.1, one has

‖A−Aj‖ . (
2j/d

j2
)d−γ =: Cj , and

∑
j

Cj2j(γ−d)/d =
∑

j

j−2(γ−d) < ∞.

We now turn to the fast matrix-vector multiplication for matrices in the Jaffard class
and vectors in `∞ws

. The results are very much inspired by [12] and [27], and the proofs
partially follow their lines. Nevertheless, there is a substantial difference. Our algorithm
exploits decay conditions instead of sparsity, and it does not require any sorting routines or
binary binning strategies.

We now introduce the following numerical procedure for approximating Av.

APPLY[ε,A,v] → wε:

(i) With
Ck = N ∩ ([−2k/d−1, 2k/d−1]d + x), C0 = ∅

define the dyadic coronas
Vk = Ck\Ck−1.

(ii) Set v[k] := vχVk
. Then # suppv[k] = #Vk � 2k−1. Choose k∗ such that

‖A‖

∥∥∥∥∥v −
k∗∑

k=0

v[k]

∥∥∥∥∥
`2

≤ ε

2
. (29)

(iii) Compute the smallest j ≥ k∗ such that

k∗∑
k=0

Cj−k‖v[k]‖`2 ≤
ε

2
, (30)

where Cj is as in the proof of Lemma 3.2.

(iv) Compute

wε :=
k∗∑

k=0

Aj−kv[k]. (31)

13



From now on we denote the ball of radius R centered at x by B(x, R) = {y : |y−x| ≤ R}
and note that #(B(x,R) ∩N � Rd.

Theorem 3.3. Let γ > s + d, r = s
d −

1
2 , and ε > 0. Assume that A ∈ Aγ and v ∈ `∞ws

is s-localized at x. Then the algorithm APPLY produces a vector wε with the following
properties:

(a) ‖wε −Av‖`2 ≤ ε;

(b) supp(wε) ⊆ B(x,N) and # supp(wε) . Nd . ε−1/r‖v‖1/r
s,x ;

(c) C(wε) . ε−1/r‖v‖1/r
s,x ;

(d)
‖wε‖s,x . ‖v‖s,x, (32)

with a constant independent of ε and x.

Thus APPLY is optimal.

Proof. Step 1. The error estimates (a) and (d)
Since v =

∑∞
k=0 v[k], we may write

wε −Av =
k∗∑

k=0

(Aj−k −A)v[k] + A
k∗∑

k=0

(v[k] − v) .

Taking first the `2-norm, we estimate, with formulas (29) and (30),

‖wε −Av‖`2 ≤
k∗∑

k=0

‖Aj−k −A‖ ‖v[k]‖`2 + ‖A‖

∥∥∥∥∥
k∗∑

k=0

(v[k] − v)

∥∥∥∥∥
`2

≤
k∗∑

k=0

Cj−k‖v[k]‖`2 +
ε

2
< ε ,

and so (a) is proved.
Taking next the (s, x)-norm and using Lemma 3.1(c), one has the following estimates:

‖wε −Av‖s,x ≤
k∗∑

k=0

‖Aj−k −A‖s,x ‖v[k]‖s,x + ‖A‖s,x

∥∥∥∥∥
∞∑

k=k∗+1

v[k]

∥∥∥∥∥
s,x

.
k∗∑

k=0

( 2(j−k)/d

(j − k)2
)d+s−γ

‖v‖s,x + ‖A‖s,x‖v‖s,x . ‖v‖s,x .

Consequently,

‖wε‖s,x . ‖wε −Av‖s,x + ‖Av‖s,x . ‖v‖s,x + ‖A‖s,x ‖v‖s,x . ‖v‖s,x ,

and (d) is proved.
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Step 2. Support and operation count for wε

If B is a banded matrix with Bhk = 0 for |h−k| > N and v is a localized vector with vk = 0
for |k − x| > M , then (Bv)(h) = 0 for |h − x| > M + N and so suppBv ⊆ B(x,M + N)
and # supp Bv . (M + N)d. The computation of each entry of Bv requires Nd (the
number of non-zero entries in a row or column of B) or Md . #suppv multiplications,
whichever number is smaller. This means that the computation of Bv requires . (M +
N)d min(Nd,Md) ≤ 2MdNd operations.

As a consequence wε =
∑k∗

k=0 Aj−kv[k] is supported on the set
⋃k∗

k=0 B(x, α
1/d
j−k2

(j−k)/d+
2k/d) ⊆ B(x, 2j/d) and # suppwε . 2j .

For the operation count we have, according to the conventions of Lemma 3.2, that

C(wε) .
k∗∑

k=0

αj−k2j−k#suppv[k] .
k∗∑

k=0

αj−k2j−k2k . 2j .

Step 3. To conclude the proof, it suffices to show that 2j . ε−1/r‖v‖1/r
s,x for j as defined

in (30). Let us estimate the norm of v[k]. Since suppv[k] ⊆ Vk ⊆ {l : |l − x| ≥ 2k/d−1}, the
norm is bounded by

‖v[k]‖`2 ≤ ‖v‖s,x

( ∑
{l:|l−x|≥2k/d−1}

(1 + |l − x|)−2s
)1/2

(33)

. ‖v‖s,x

(
2k/d−1

)d/2−s
. ‖v‖s,x 2−rk .

Since j is the smallest integer satisfying (30), we have

ε

2
≤

k∗∑
k=0

Cj−1−k‖v[k]‖

. ‖v‖s,x

k∗∑
k=0

Cj−1−k2−rk

= 2−r(j−1) ‖v‖s,x

k∗∑
k=0

Cj−1−k2(j−1−k)r .

The hypothesis γ > s + d implies that r = s
d −

1
2 < γ−d

d . Therefore

2rjε‖v‖−1
s,x .

k∗∑
k=0

Cj−1−k2
γ−d

d
(j−1−k) < ∞ ,

and so 2j .
(
ε−1‖v‖s,x

)1/r. As observed above, this concludes the proof.

3.3 Numerical Solution of Bi-Infinite Systems of Linear Equations

We come back to the numerical treatment of operator equations (8). As already outlined
in Subsection 2.2, the discretization of (8) leads to a bi-infinite system

Au = f , (34)
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which can be treated by means of the damped Richardson iteration (14). We shall focus on
matrices A ∈ Aγ and u, f ∈ `∞ws

(N ).
The iterations (14) cannot be implemented numerically since in general they act on

infinite sequences. To turn the abstract iteration (14) into a realizable algorithm, we sub-
stitute the infinite sequence f and the infinite exact matrix-vector multiplication by the
finite approximations RHS[ε, f ] and APPLY[ε,A,v] as introduced in the Subsections 3.1
and 3.2. Furthermore, we let the accuracy depend on the iteration by choosing a suitable
sequence εn converging to 0. We now try the following iteration scheme:

v(n+1) = v(n) − α(APPLY[εn,A,v(n)]−RHS[εn, f ]), v(0) = 0, n = 0, 1, . . . . (35)

Following again the lines of [13, 15, 16, 27], the precise algorithm also includes a stopping
criterion and reads as follows.

Algorithm 1. SOLVE[ε,A, f ] → uε:

Let K ∈ N be fixed such that 2ρK < 1, ρ := ‖(id−αA)|ran(A)‖`2(N ).
n := 0, v(0) := 0, ε0 := ‖A†‖‖f‖`2(N )

While εn > ε do
n := n + 1
εn := 2ρKεn−1

f (n) := RHS[ εn
4αK , f ]

v(n,0) := v(n−1)

For j = 1, ...,K do
v(n,j) := v(n,j−1) − α(APPLY[ εn

4αK ,A,v(n,j−1)]− f (n))
enddo
v(n) := v(n,K)

enddo
uε := v(n).

It remains to show that Algorithm 1 converges to the solution of the bi-infinite system of
linear equations (34) and that it is optimal with respect to the support of the approximation
uε and the operation count. The assumptions A ∈ Aγ and u, f ∈ `∞ws

(N ) are again crucial.

Theorem 3.4. Let M be a closed subspace of `2(N ) with orthogonal projection P onto M.
Assume that A = A∗ ∈ Aγ, kerA = M⊥ and that A : M −→ M is invertible. Then
the pseudoinverse A†, i.e., the unique element in L(`2) satisfying A†A = AA† = P and
kerA† = M⊥, is an element of Aγ. In particular P ∈ Aγ.

Proof. See [19, Theorem 3.4].

Corollary 3.5. Let M be a closed subspace of `2(N ) with orthogonal projection P onto
M. Assume that A = A∗ ∈ L(`2), kerA = M⊥ and that A : M −→ M is invertible. If
f ∈M then there exists a unique solution u ∈M of equation (34). Moreover if one assumes
A ∈ Aγ and if d + s < γ and f ∈M∩ `∞ws

(N ), then there exists a unique u ∈M∩ `∞ws
(N )

such that Au = f .
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Proof. Since A : M −→ M is invertible and f ∈ M then there exists a unique u ∈ M
solution of (34). Moreover, the inverse of A on M coincides with A†. Since A ∈ Aγ then
by Theorem 3.4 A† ∈ Aγ and u = A†f . If f ∈ `∞ws

(N ), then u ∈ `∞ws
(N ) by Lemma 3.1(b).

Theorem 3.6. Let M be a closed subspace of `2(N ) with orthogonal projection P onto M.
Assume that A = A∗ ∈ Aγ is a positive operator, kerA = M⊥ and that A : M −→M is
invertible. Moreover, assume s + d < γ, r = s

d −
1
2 , and f ∈ M ∩ `∞ws

is s-localized at x.
Then for all 0 < ε ≤ ε0 the vector uε = SOLVE[ε,A, f ] satisfies the following properties:

(a) ‖P(uε − u)‖`2 ≤ ε, where u ∈M is the unique solution of Au = f in M;

(b) supp(uε) ⊆ B(x, N) and # supp(uε) . Nd . ε−1/r‖u‖1/r
s,x ;

(c) C(uε) . ε−1/r‖u‖1/r
s,x ;

(d) The procedure is bounded in the sense that

‖uε‖s,x . ‖u‖s,x (36)

uniformly with respect to ε → 0 and x ∈ N .

Proof. We apply Algorithm 1 and stop the iteration when εN ≤ ε, but εN−1 > ε. Then set
uε = v(N). The estimate for the projected error (a) is shown by following the arguments of
[13, 15, 16, 27] and is therefore omitted.

We prove claims (b) — (d) by induction of n (in the outer loop) and over j (in the
inner loop of the iteration). Since v0 = 0, the start of the induction is trivial. So let
us assume that we have already shown that suppv(n−1) ⊆ B(x,N) and # supp(v(n−1)) .

Nd . ε
−1/r
n−1 ‖u‖

1/r
s,x , and ‖v(n−1)‖s,x . ‖u‖s,x for n ≤ N . Since v(n) = v = v(n,K) is the

result of K iterations of

v(n,j) := v(n,j−1) − α(APPLY[
εn

4αK
,A,v(n,j−1)]−RHS[

εn

4αK
, f ]).

By the Remark in Section 3, RHS can be implemented by N -nearest neighborhood ap-
proximation and one has supp(RHS[ εn

4αK , f ]) ⊆ B(x,M) and

# supp(RHS[
εn

4αK
, f ]) . Md .

( εn

4αK

)−1/r
‖f‖1/r

s,x . ε−1/r
n ‖u‖1/r

s,x . (37)

Moreover ‖RHS[ εn
4αK , f ]‖s,x ≤ ‖f‖s,x . ‖u‖s,x. Likewise, by Theorem 3.3 and by the

inductive hypothesis one has supp(APPLY[ εn
4αK ,A,v(n,j−1)]) ⊆ B(x,M) and

# supp(APPLY[
εn

4αK
,A,v(n,j−1)]) . Md .

( εn

4αK

)−1/r
‖v(n,j−1)‖1/r

s,x . ε−1/r
n ‖u‖1/r

s,x ,

(38)
Since we are assuming by induction that suppvn,j−1 ⊆ B(x, M) and Md . ε

−1/r
n .‖u‖1/r

s,x ,
we deduce that suppv(n) ⊆ B(x,M) with Md . ε

−1/r
n ‖u‖1/r

s,x , and (b) is proved.
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To see claim (d), we use the obvious estimate ‖RHS[ εn
4αK , f ]‖s,x ≤ ‖f‖s,x . ‖u‖s,x for

RHS and (32) for APPLY

‖APPLY[
εn

4αK
,A,v(n,j−1)]‖s,x . ‖v(n,j−1)‖s,x . ‖u‖s,x . (39)

Thus if ‖v(n,j−1)‖s,x . ‖u‖s,x, then also ‖v(n)‖s,x = ‖v(n,K)‖s,x . ‖u‖s,x, and the uniform
boundedness of (d) is proved.

For the operation count, we already know that

C(RHS[
εn

4αK
, f ]) . ε−1/r

n ‖u‖1/r
s,x , (40)

and
C(APPLY[

εn

4αK
,A,v(n,j−1)]) . ε−1/r

n ‖u‖1/r
s,x . (41)

Thus the iteration v(n,j−1) → v(n,j) requires O(ε−1/r
n ‖u‖1/r

s,x ) operations, and therefore the
iteration v(n−1) → v(n) requires O(Kε

−1/r
n ‖u‖1/r

s,x ) operations. The total operation count
for uε = v(N) requires therefore . ‖u‖1/r

s,x
∑N

n=0 ε
−1/r
n operations, and this is easily seen to

be O(ε−1/r‖u‖1/r
s,x ) after recalling the definition of εn. This concludes both the inductions

and the proof.

REMARKS:

(i) Since the components of v(n) in ker(A) are not reduced in the iteration, we only get
an error estimate for the projected error P(uε−u). As already outlined in Subsection
2.2, this does not effect the overall convergence of the scheme.

(ii) The analysis of Algorithm 1 for `∞ws
is simpler and more direct than the analysis of

the adaptive algorithms for `τ,w in [12, 13, 15, 16, 27]. The key point in Theorem 3.6
is the localization of all vectors around some x and the control of their supports near
x. The assumptions of Theorem 3.6 are satisfied in many problems, notably in Gabor
analysis and sampling theory. Of course, in applications where the matrix A and
the input f are sparse, but not localized, one should always work with the adaptive
algorithms based on `τ,w.

(iii) In contrast to the adaptive algorithms for `τ,w, our algorithm on `∞ws
does not require

a thresholding of the iterand v(n), i.e., no COARSE routine as in [12, 13] is needed.

(iv) For the optimality stated in Theorem 3.6 it is crucial that the projection P and the
pseudo-inverse A† are both in Aγ and therefore bounded on `∞ws

. The analogous
statement for wavelet based adaptive algorithms is open: it is not clear that the
projection P is bounded in `τ,w, because one has to deal with the Lemarié algebra
which is not inverse-closed, see [15, 16, 27]. Therefore, the optimality of the scheme
on `τ,w can be shown only under the additional hypothesis that P is bounded on `τ,w,
see [27, Thm. 3.12].

Next we show that the SOLVE routine converges not only in the `2-norm, but also for
much larger class of norms. First we state a technical lemma.
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Lemma 3.7. Assume that u ∈ `∞ws
(N ) is localized at x. If v is a finitely supported vector

such that
supp(v) ⊂ B(x,M)

and
‖u− v‖`2 ≤ ε,

then
‖u− v‖`p

m
. m(x)

(
M

t+d max(0, 1
p
− 1

2
)
ε + M

t−s+ d
p ‖u‖s,x

)
where 1 ≤ p ≤ ∞ and m is t-moderate for some t < s− d/p.

Proof. Set S = supp(v) ⊂ B(x, M) and note that #S . Md. Restricting u to S and to Sc,
respectively, we may write

u− v = u|S − v + u|Sc .

For the estimate of u outside S, we may use the embedding `∞ws
⊂ `p

m and obtain

‖u|Sc‖p
`p
m

=
∑

|k−x|>M

|uk|pm(k)p

. ‖u‖p
s,x

∑
|k−x|>M

(1 + |k − x|)−psm(k − x + x)p

. ‖u‖p
s,xm(x)p

∑
|k|>M

(1 + |k|)−ps(1 + |k|)tp

. ‖u‖p
s,xm(x)pM (t−s)p+d.

On S, we extract the weight and find

‖u|S − v‖`p
m

. max
|k−x|≤M

m(k)‖u|S − v‖`p

. m(x) max
|k|≤M

(1 + |k|)t‖u|S − v‖`p

. m(x)M t‖u|S − v‖`p .

If p ≥ 2, the embedding `2 ⊂ `p yields

‖u|S − v‖`p ≤ ‖u|S − v‖`2 ≤ ‖u− v‖`2 ≤ ε.

If p < 2, then Hölders’s inequality with exponents q = 2
p and q′ = 2

2−p yields

‖u|S − v‖`p ≤ ‖u|S − v‖`2 (#S)
1
p
− 1

2 . εM
d( 1

p
− 1

2
)
.

By combining these estimates, we obtain

‖u− v‖`p
m

. m(x)
(
M

t+d max(0, 1
p
− 1

2
)
ε + M

t−s+ d
p ‖u‖s,x

)
.
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Theorem 3.8. If f ∈ `∞ws
is localized at x, then under the assumptions of Theorem 3.6

SOLVE converges in `p
m for 1 ≤ p ≤ ∞ and every t-moderate weight with t < s − d

p . The
error can be estimated by

‖P(u− uε)‖`p
m

. ε
1− t

rd
− 1

r
max(0, 1

p
− 1

2
) + ε

s−t
rd

− 1
rp .

Proof. By Corollary 3.5, the solution u = Pu of (34) belongs to `∞ws
. Let uε = SOLVE(ε,A, f)

be the output of Algorithm 1, and set

v = RHS(ε,Puε).

By Theorem 3.6 uε is localized at x, and by Theorem 3.4 Puε is also localized at x. We
write

P(u− uε) = Pu− v + v −Puε.

Then, by the properties of RHS,

‖v −Puε‖`2 < ε,

and likewise
‖Pu− v‖`2 ≤ ‖Pu−Puε‖`2 + ‖Puε − v‖`2 < 2ε.

Here we have used the fact that uε is the outcome of the SOLVE algorithm and Theorem
3.6 (a). Furthermore suppv ⊂ {k : |k − x| ≤ M}, where, by the properties of RHS

# suppv . Md . ε−
1
r ‖Puε‖

1
r
s,x.

Since by Theorem 3.6 (d) ‖Puε‖s,x . ‖uε‖s,x . ‖u‖s,x, the estimate for M is

M . ε−
1
rd ‖u‖

1
rd
s,x.

Both Pu and Puε satisfy the assumptions of Lemma 3.7, hence the conclusion for `p
m is

‖P(u− uε)‖`p
m

≤ ‖Pu− v‖`p
m

+ ‖v −Puε‖`p
m

. m(x)
(
(‖u‖s,xε−1)

1
rd

(t+d max(0, 1
p
− 1

2
))
ε + (ε−1‖u‖s,x)

t−s
rd

+ 1
rp ‖u‖s,x

)
. ε

1− t
rd
− 1

r
max( 1

p
− 1

2
,0) + ε

s−t
rd

− 1
rp .

REMARK: Once again, Theorem 3.8 relies on the specific structure of the algebra Aγ , and
it illuminates another important difference to adaptive schemes on `τ,w. For these schemes,
the convergence is only guaranteed in `2, and to our knowledge no result is known concerning
convergence in stronger norms.
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4 Convergence of the Frame Algorithm

In this section we apply Algorithm 1 to the frame operator and the efficient approximation
of the canonical dual frame. The hypotheses of Algorithm 1 are a perfect match for the
class of (intrinsically) localized frames. The key point is that this algorithm produces an
approximation in all associated Banach spaces Hp

m(G, G̃). This removes a serious restriction
of the previous contribution [15, Section 7], where the approximation worked only for the
underlying Hilbert space H.

To find the canonical dual frame f̃n = S−1fn, n ∈ N , we have to solve the equation

Su = fn for all n ∈ N . (42)

Since the frame operator is positive and boundedly invertible on H, we are exactly in the
setting of the Subsections 2.2 and 3.3, so that the entire machinery developed so far can be
applied. Consequently, be discretizing (42) by means of a second frame G = {gn}n∈N , we
end up with the bi-infinite matrix equation

Au = fn, (43)

where
A = FSF ∗ = (〈Sgn, gm〉)n,m. (44)

However, to fully exploit the theory of Subsection 3.3, we need to impose further conditions
on A. The following lemma establishes the link between the localization of a frame and the
almost diagonalization of A, see also [23].

Lemma 4.1. Assume that F ∼Aγ G for some γ > d. Then A ∈ Aγ.

Proof. By hypothesis, the (cross) Gramian C = A(G,F) of G and F with entries Cl,n =
〈gn, fl〉 is contained in Aγ . Rewriting A as

Am,n = 〈Sgn, gm〉 =
∑
l∈N

〈gn, fl〉〈fl, gm〉 = (C∗C)m,n,

we see that A = C∗C. Since Aγ is a Banach ∗-algebra, we obtain A ∈ Aγ .

As a first consequence of Lemma 4.1, we show that the standard frame algorithm con-
verges in many norms beside H.

Theorem 4.2. (a) If F ,G are two frames for H, then the canonical dual of F can be
computed by

f̃n = F ∗f̃n =
∑
l∈N

(
f̃n
)

l
gl, f̃n =

(
α

∞∑
n=0

(id−αA)n

)
fn, (45)

for 0 < α < 2
‖A‖ .

(b) If F ,G are both intrinsically Aγ-localized and F ∼Aγ G for some γ > d, then the series

in (45) converges in the `p
m-norm on ran`p

m
(F ) =

{
c ∈ `p

m : ∃f ∈ Hp
m(G, G̃), (〈f, gn〉)n = c

}
,

for all 1 ≤ p ≤ ∞ and every s-moderate weight m with s < γ − d. Consequently,
f̃n ∈ `p

m(N ) and f̃n ∈ Hp
m(G, G̃) for all n ∈ N .
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Proof. (a) is a consequence of Theorem 2.2. It remains to show (b). By Theorem 3.4, the
orthogonal projector P onto ran`2(F ) = ran(A) is contained in Aγ , hence P is bounded on
`p
m for every s-moderate weight m.

Let σran
`
p
m

(F )(A) be the spectrum of A acting on ran`p
m

(F ) and rran
`
p
m

(F )(A) := max{|λ| :
λ ∈ σran

`
p
m

(F )} the spectral radius. If λ /∈ σran(F )(A) then A − λP is invertible on ran(F )

and by [19, Theorem 3.4] there exists (A− λP)† ∈ Aγ such that

(A− λP)†(A− λP) = (A− λP)(A− λP)† = P. (46)

Since Aγ ⊂ L(`p
m), (46) also holds as an identity of operators on `p

m for 1 ≤ p ≤ ∞ and all
s-moderate weights. Restricting (46) to the invariant subspace ran`p

m
(F ), we see that

λ /∈ σran
`
p
m

(F )(A) and so σran
`
p
m

(F )(A) ⊆ σran(F )(A). (47)

Applying (47) to P− αA, we find

rran
`
p
m

(F )(P− αA) ≤ rran(F )(P− αA) < 1

(by our choice of α < 2/‖A‖`2→`2). Consequently, the geometric series
∑∞

n=0(P − αA)n

converges on ran`p
m

(F ).
If F ∼Aγ G, then fn = (〈fn, gm〉)m∈N ∈ ran`p

m
(F ), and thus f̃n ∈ ran`p

m
(F ) or equiva-

lently f̃n ∈ Hp
m(G, G̃).

Next we show that the adaptive numerical schemes discussed in Subsection 3.3 can again
be applied to approximate the infinite series in (45) up to a given precision.

Theorem 4.3. Assume s+ d < γ, r = s
d −

1
2 . Let F ,G be intrinsically Aγ-localized frames,

F ∼Aγ G and ε > 0.

(A) Assume that fn is localized localized at n. Then the finite vector

f̃n,ε = SOLVE[ε,A, fn], (48)

has the following properties:

(a) ‖P(f̃n − f̃n,ε)‖`2 ≤ ε, where f̃n is the solution to (43);

(b) supp f̃n,ε ⊆ B(n, N) and # supp f̃n,ε . Nd . ε−1/r‖f̃n‖1/r
s,n ;

(c) C(f̃n,ε) . ε−1/r‖f̃n‖1/r
s,n ;

(d) ‖f̃n,ε‖s,n . ‖fn‖s,n.

Therefore, one has the following approximation of the canonical dual∥∥∥∥∥f̃n −
∑
m

(
f̃n,ε

)
m

gm

∥∥∥∥∥
H

≤ B
1
2
G ε. (49)
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(B) SOLVE converges in `p
m for 1 ≤ p ≤ ∞ and every t-moderate weight with t < s− d

p .
The error can be estimated by∥∥∥∥∥f̃n −

∑
m

(
f̃n,ε

)
m

gm

∥∥∥∥∥
Hp

m

. ‖P(f̃n − f̃n,ε)‖`p
m

. ε
1− t

rd
− 1

r
max(0, 1

p
− 1

2
) + ε

s−t
rd

− 1
rp . (50)

(C) supn ‖f̃n,ε‖s,n < ∞.

Proof. (A) and (B) follow immediately by applying Theorem 3.6 and Theorem 3.8, respec-
tively.

Item (C) follows from (b) and (d). Since supp f̃n,ε ⊆ B(n, N), the (s, n)-norm is domi-
nated by

‖f̃n,ε‖s,n = sup
k
|(f̃n,ε)k|(1 + |k − n|)s

. N s‖f̃n,ε‖∞ ≤ N s‖f̃n,ε‖`2 . N s‖f̃n‖`2 . N s‖f̃n‖H

Since {f̃n} is a frame, it is a bounded set in H, and (C) is proved.

REMARK:

(i) This last theorem not only ensures the convergence of the procedure to the canonical
dual in the H norm, but also in the norm of Hp

m for 1 ≤ p ≤ ∞ and for certain
t-moderate weights m.

(ii) Let us remark again that, although the error estimate (50) is stated for the pro-
jected error, this does not destroy the convergence of the scheme. Moreover, it is not
necessary to have explicit knowledge of P.

Example 1 (Gabor frames). Let z = (x, ω) ∈ R2d and

π(z)f(t) = e2πiω·tf(t− x) t, x, ω ∈ Rd

be the time-frequency shift of the function f by z ∈ R2d. Assume that X is a relatively
separated subset of R2d and that g ∈ S(Rd) \ {0} (or that g possesses sufficient time-
frequency localization). If the set G = G(g,X ) := {π(z)g : z ∈ X} generates a frame
(called a Gabor frame), then G is intrinsically Aγ-localized for any γ > d and thus it
possesses an intrinsically Aγ-localized canonical dual G̃ = {g̃z : z ∈ X} by the results in
[19, 23]. Therefore, an approximation of the canonical dual frame can be computed by using
Theorem 4.3.

In this case, both G = G(g,X ) := {π(z)g : z ∈ X} and G̃ form a Banach frame for the
class of modulation spaces Mp,q

m for any s-moderate weight with s + d < γ [22, Chpt. 13].
If p = q, then Mp,p

m coincides with the abstract Banach space Hp
m(G, G̃) [19]. Since for

suitable weight m, M2,2
m (Rd) concides with weighted L2-spaces and also with Ht(Rd), the

L2-Sobolev space of Sobolev smoothness t [22, Thm. 11.3.1], the approximation in (50)
ensures the convergence of derivatives and convergence in weighted L2-spaces.

Another possible application of Algorithm 1 is the fast approximate reconstruction of
functions in shift-invariant spaces, because the theory of localized frames and hence our
main theorems are applicable. For details about sampling theory see [1, 20, 23].
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5 Error Estimates

So far we have shown how to approximate a single vector of the dual frame by applying
the SOLVE-routine. More precisely, if A is the matrix of the frame operator with respect
to a frame G as defined in (44) and fn = (〈fn, gm〉)m, we compute a sequence of finitely
supported vectors γ n = (γnm)m by

γn = γε
n = SOLVE[ε,A, fn] . (51)

Theorem 3.6 asserts that

suppγn ⊆ {m : |m− n| ≤ N} (52)
#suppγn � Nd . ε−1/r‖f̃n‖s,n . ε−1/r (53)

‖f̃n − γn‖`2 ≤ ε . (54)

Setting f̃ε
n =

∑
m γnmgm for the approximate dual of f̃n =

∑
m〈f̃n, g̃m〉gm, we then have

the individual error estimate ‖f̃n− f̃ε
n‖H . ε for each n. For the solution of a single operator

equation Au = fn such an estimate is good enough. However, when approximating the dual
frame of F , then we need to know much more about the collection Fε = {f̃ε

n : n ∈ N}.
In particular, we need to compare the exact frame expansion f =

∑
n〈f, fn〉f̃n with the

approximate expansion
fε =

∑
n∈N

〈f, fn〉f̃ε
n, (55)

and derive error estimates, if possible. A priori, it is not at all clear whether Fε is again
a frame or a Banach frame or a set for an atomic decomposition. In general, an estimate
‖f̃n− f̃ε

n‖ . ε for all n is insufficient to guarantee that Fε is again a frame. Once again the
crucial property is a localization property, this time in the form (52)-(54).

We first prove a small technical lemma, then derive an error estimate for ‖f − fε‖, and
finally apply the perturbation theory of (Banach) frames [9, 10] to show that Fε is also a
frame.

Lemma 5.1. Assume that A is a banded matrix, such that akl = 0 for |k − l| > N and
|akl| ≤ ε for |k − l| ≤ N . If m is a t-moderate weight, then the operator norm of A on `p

m

is majorized by
‖A‖`p

m→`p
m

. εN t+d . (56)

Proof. Using a naive estimate and Hölder’s inequality, we find that

|(Ac)(k)| =

∣∣∣∣∣∣
∑

l:|l−k|≤N

aklcl

∣∣∣∣∣∣
≤ ε

∑
l:|l−k|≤N

|cl|

. ε
( ∑

l:|l−k|≤N

|cl|p
)1/p

Nd/p′ .
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So the `p
m-norm of Ac is bounded by

‖Ac‖p
`p
m

=
∑

k

|Ac(k)|p m(k)p

. εp Ndp/p′
∑

k

( ∑
l:|l−k|≤N

|cl|p
)
m(k − l + l)p

. εp Ndp/p′
∑

l

|cl|pm(l)p
( ∑

k:|k−l|≤N

(1 + |k − l|)tp
)

. εp Ndp/p′ N tp+d ‖c‖p
`p
m

.

Taking the p-th root, we obtain

‖A‖`p
m→`p

m
. εNd/p′+t+d/p = εN t+d .

Theorem 5.2. Assume that G and F are Aγ-intrinsically localized frames and F ∼Aγ G.
Let 1 ≤ p ≤ ∞ and m be a t-moderate weight for t < s− 3d/2.

If Fε is a set satisfying conditions (52)-(54), then

‖f − fε‖Hp
m

. (ε(γ−t−d)/(rd) + ε1− t+d
rd )‖f‖Hp

m
for all f ∈ Hp

m . (57)

Proof. We first look at the difference f − fε in detail. We expand both f̃n and f̃ε
n with

respect to the frame G and obtain

f − fε =
∑

n

〈f, fn〉(f̃n − f̃ε
n)

=
∑

n

〈f, fn〉
(∑

m

(〈f̃n, g̃m〉 − γnm)gm

)
=

∑
m

(∑
n

〈f, fn〉(〈f̃n, g̃m〉 − γnm)
)
gm .

The computation of the coefficients of gm involves the cross-Gramian C = A(F̃ , G̃) with
entries Cmn = 〈f̃n, g̃m〉 and the banded matrix Γ with entries γmn. Thus we can write the
error as

f − fε =
∑
m

(
(C− Γ)FFf

)
(m) gm = F ∗

G(C− Γ)FFf . (58)

The initial estimates now follow from the fact that G is a Banach frame for Hp
m and the

assumption F ∼Aγ G. On the one hand we know that ‖F ∗
Gc‖Hp

m
. ‖c‖`p

m
for any s-moderate

weight function m with s < γ−d by [23, Proposition 8 (b)]. On the other hand, we have the
norm equivalence ‖f‖Hp

m
:= ‖FGf‖`p

m
� ‖FFf‖`p

m
by [19, Proposition 2.4]. In addition, we

know that the cross-Gramian C = A(F̃ , G̃) is in Aγ , whence follows the boundedness of C
on `p

m for the same class of weights and 1 ≤ p ≤ ∞ by Lemma 3.1(b). Likewise the banded
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matrix Γ is bounded on any `p
m by Lemma 5.1. Thus all steps of the following estimate are

well defined.

‖f − fε‖Hp
m

. ‖(C− Γ)FFf‖`p
m

. ‖C− Γ‖`p
m→`p

m
‖FFf‖`p

m

. ‖C− Γ‖`p
m→`p

m
‖f‖Hp

m
.

This estimate reveals the key issue arising in the error analysis. We need a good bound on
the operator norm of C−Γ. The necessary preparations have already been accomplished in
Lemma 5.1 and 3.1(b). As in Lemma 3.1 we approximate C by a banded matrix BN with
entries BN

kl = Ckl for |k−l| ≤ N and BN
kl = 0 for |k−l| > N . Then C−Γ = C−BN +BN−Γ.

Lemma 3.1(b) and (53) imply that

‖C−BN‖`p
m→`p

m
. Nd+t−γ . ε(γ−t−d)/rd .

For the banded part BN − Γ we note that |〈f̃n, g̃m〉 − γmn| ≤ ‖f̃n − γn‖`2 ≤ ε by
construction (54). Thus all non-zero entries of BN − Γ are bounded by ε. Consequently
Lemma 5.1 implies that

‖BN − Γ‖`p
m→`p

m
. εN t+d . ε1− t+d

rd ,

and we have ‖C−Γ‖`p
m→`p

m
. ε(γ−t−d)/rd +ε1− t+d

rd . For convergence, as ε → 0, we need that
the exponents are positive. Since rd = s− d/2 > t + d by assumption, we have 1− t+d

rd > 0,
and obviously γ − t− d > 0. Thus the statement is proved.

REMARK: Note that in the proof of Theorem 5.2 we have used only established estimates
for localized frames and the properties (52)–(54) for the approximate dual frame. We have
not used any special features of the SOLVE-algorithm. Therefore the error analysis is valid
for any approximation of the dual frame satisfying (52)–(54). The virtue of SOLVE is to
provide a practical numerical method for the approximation of the dual frame.

Corollary 5.3. For ε > 0 small enough Fε provides an atomic decomposition for Hp
m.

Proof. Set Aεf = fε =
∑

n〈f, fn〉f̃ε
n. Theorem 5.2 implies that ‖ id−Aε‖Hp

m→Hp
m

< 1
for ε small enough. Then Aε is invertible on Hp

m. The factorization f = AεA
−1
ε f =∑

n〈A−1
ε f, fn〉f̃ε

n and the unconditional convergence of this sum together imply that Fε

provides an atomic decomposition for Hp
m. See [10, Theorem 2.3] and its proof for more

details.
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[10] O. Christensen and C. Heil, Perturbations of Banach frames and atomic decomposi-
tions, Math. Nachr. 186 (1997), 33–47.

[11] O. Christensen and T. Strohmer, The finite section method and problems in frame
theory., J. Approx. Th. 133 (2005), no. 2, 221–237.

[12] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator
equations — Convergence rates, Math. Comput. 70 (2001), 27–75.

[13] , Adaptive wavelet methods II: Beyond the elliptic case, Found. Comput. Math.
2 (2002), no. 3, 203–245.
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[27] R. Stevenson, Adaptive solution of operator equations using wavelet frames, SIAM J.
Numer. Anal. 41 (2003), no. 3, 1074–1100.

[28] R. Verfürth, A posteriori error estimation and adaptive mesh–refinement techniques,
J. Comp. Appl. Math. 50 (1994), 67–83.

Stephan Dahlke, FB 12 Mathematik und Informatik, Philipps-Universität Marburg, Hans-
Meerwein Strasse Lahnberge, D-35032 Marburg, Germany
email: dahlke@mathematik.uni-marburg.de

Massimo Fornasier, Johann Radon Institute for Computational and Applied Mathemat-
ics, Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040, Linz, Austria.
email: massimo.fornasier@oeaw.ac.at
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