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1 Introduction

In this paper, we study the problem of analyzing functions on the sphere by means of Gabor
frames. To analyze a given signal, the first step is always to decompose it into suitable building
blocks. These building blocks depend on the given situation, they may consist of the elements
of an (orthonormal) basis, of a frame, or even of the elements of huge dictionaries. At first
sight, an orthonormal or more general a Riesz basis seems to be the most promising choice
since then the representation of the signal is unique and usually very fast decomposition and
reconstruction algorithms are available. However, in recent studies, it has turned out that the
Riesz basis setting is very often not flexible enough. Indeed, when dealing with complicated
domains or manifolds, such a suitable Riesz basis might not exist or it might suffer from serious
problems such as a lack of numerical stability. Moreover, in other applications such as in Gabor
analysis a Balian–Low theorem [15] prohibits the existence of a good basis.

One way to overcome these difficulties is to work with a weaker concept, i.e., to work
with frames. Frames provide stable and usually redundant nonorthogonal expansions in a
Hilbert spaces H. In general, a countable set of elements {ei}i∈Z is called a frame if there exist
constants 0 < A1 ≤ A2 <∞ such that

A1‖f‖2
H ≤

∑

i∈Z

|〈f, ei〉H|2 ≤ A2‖f‖2
H.

Recent studies indeed indicate that frames on domains and manifolds are much easier to
construct than a Riesz basis, see, e.g., [3, 4, 17]. In this overview article, we are especially
interested in the construction of Gabor frames on a very prominent manifold, the sphere. The
approach presented here has been introduced and discussed in its full generality in [3, 4, 5].
It is essentially based on square integrable group representations and generalizes the well–
known coorbit space theory developed by Feichtinger and Gröchenig in a series of papers, e.g.,
[8, 9, 10, 11, 14]. The important Feichtinger-Gröchenig theory has the following advantages:

• The theory is universal in the following sense: Given a Hilbert space H and a square
integrable representation of a group G, the whole abstract machinery can be applied.

• The approach provides us with natural families of smoothness spaces, the coorbit spaces.
They are defined as the collection of all elements in the Hilbert space H for which the voice
transform associated with the group representation has a certain decay. In many cases,
e.g., for the affine group and the Weyl-Heisenberg group, these coorbit spaces coincide
with classical smoothness spaces such as Besov and modulation spaces, respectively.

• The Feichtinger-Gröchenig theory does not only give rise to Hilbert frames in H, but also
to frames in scales of the associated coorbit spaces. Moreover, not only Hilbert spaces,
but also Banach spaces can be handled.

• The discretization process that produces the frame does not take place on the manifold
(which might look ugly and complicated), but on the Lie group at hand (which is usually
a more handy object), and is transported to the manifold by the group representation.

So far, the Feichtinger-Gröchenig theory is well–established for problems on the whole
Euclidean plane. In view of the advantages stated above, it seems to be quite natural to apply
this approach also to compact manifolds such as the spheres. However, then one is usually faced

2



with the following problem: in many cases, there exist group representations, but they are not
square integrable since the groups are ‘too large’ with respect to the manifold. Therefore it
is necessary to make the group ‘smaller’ which can be performed by factoring out a suitable
subgroup. Then one has to work with coset spaces. This might cause serious problems since
usually the group structure gets lost. Nevertheless, in a small series of papers [3, 4, 5] we have
shown that a generalization of the Feichtinger-Gröchenig theory to representations of quotient
spaces is indeed possible.

In this paper, we present the basic steps of this construction. Special emphasis is laid
on the application to the spheres. We show that by combining our approach with the local
Fourier transform on the spheres as introduced by Torressani [18], one obtains generalized
modulation spaces on the spheres and atomic decompositions and Banach frames for these
scales of spaces. We recall the principle ideas without going into details, but nevertheless the
proofs of the central Theorems 4.1 and 4.2 that provide us with atomic decompositions and
Banach frames, respectively, are briefly sketched. We also discuss a new aspect of constructing
atomic decompositions and Banach frames on spheres, namely uncertainty relations. Given a
square integrable group representation, one obtains a set of self–adjoint differential operators
by taking the derivatives of the representation at the identity element. Then any pair of these
operators gives rise to ‘spherical’ Heisenberg uncertainty principles, and those vectors that
minimize the uncertainty can be interpreted as canonical analyzing atoms.

This paper is organized as follows. In Section 2, we briefly review the group theoretical
background and introduce the generalized wavelet transform. In Section 3, we define associated
coorbit spaces and state the basic correspondence principle. The main result is then given in
Section 4. In this section we formulate conditions for the existence of atomic decompositions
and Banach frames. After having established decomposition (and therewith approximation)
principles, the next natural goal is to determine the quality of approximation. This is the topic
of Section 5. As the special focus of this paper, we consider in Section 6 the application of the
general theory to the construction of local Gabor frames and associated modulation spaces on
spheres. As a new aspect, we state related uncertainty principles for the local Fourier transform
on the sphere S1 and compute the corresponding minimizing states in Section 6.2. Since these
minimizing states do not meet all the conditions of the proposed coorbit theory, we suggest a
reasonable approximation.

2 Square Integrable Representations modulo Subgroups

Let G be a locally compact group with left Haar measure ν and let U be a strongly continuous,

unitary representation of G on a separable Hilbert space H. We say that U is square integrable

if there exists ψ ∈ H\{0} such that

∫

G
|〈ψ,U(g)ψ〉H |2 dν(g) <∞.

For the classical integral transforms like the short time Fourier transform and wavelet trans-
form related to the reduced Weyl-Heisenberg-group and the affine group, respectively, the
representations in question are in fact square-integrable. However, for integral transforms re-
lated to group representations on L2-spaces on manifolds, for example on the sphere, square
integrability fails to hold. In other words, the corresponding group is too large.
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A way to overcome this fact is to factor out a suitable closed subgroup H. In this way,
we restrict the representation to a quotient X := G/H which always admits a strongly quasi-
invariant measure. Since in general the representation is not directly defined on X we need
to introduce a section σ : X → G which assigns to each coset a point lying in it. In other
words, if Π : G → X denotes the canonical projection then Π ◦ σ = Id. It is always possible
to choose a measurable section or even a continuous one on some dense open subset of X. In
many examples the section will be continuous. For technical reasons we assume further that
G and, hence, also X = G/H is σ-compact. A unitary representation U of G on H is called
square-integrable modulo (H,σ) if there exists a function ψ ∈ H such that the self-adjoint
operator Aσ : H → H weakly defined by

Aσf :=

∫

X
〈f,U(σ(x))ψ〉H U(σ(x))ψ dµ(x),

is bounded and has a bounded inverse A−1
σ . The function ψ is called admissible. If Aσ is

a multiple of the identity then ψ is called strictly admissible. In this paper, we restrict our
attention to the strictly admissible setting, where Aσ = Id. More general operators Aσ were
considered in [5].

The wavelet transform Vψ : H → L2(X) is defined by

Vψf(x) := 〈f,U(σ(x))ψ〉H, x ∈ X. (2.1)

Note that the set Sσ := {U(σ(x))ψ : x ∈ X} is total in H, i.e., S⊥
σ = {0}. Based on the wavelet

transform we introduce the Hermitian kernel

Rψ(x, y) = Vψ(U(σ(x))ψ)(y) = 〈U(σ(x))ψ,U(σ(y))ψ〉H . (2.2)

Then Vψ gives rise to the following correspondence between H and the reproducing kernel
Hilbert space

M2 := {F ∈ L2(X) : 〈F,Rψ(x, ·)〉 = F (x) a.e.}.

Theorem 2.1. (Correspondence between H and M2) Let U be a square integrable re-

presentation of G mod (H,σ) with a strictly admissible function ψ. Suppose that Vψ and Rψ
are defined by (2.1) and (2.2), respectively. Then Vψ is a bijection of H onto the reproducing

kernel Hilbert space M2.

For a proof see, e.g., [1, Theorem 7.3.1]. Furthermore, Vψ is an isometry such that it can
be inverted on its range by its adjoint V ∗

ψ . For f ∈ H, we have the reconstruction formula
f = V ∗

ψVψf .

3 Weighted Coorbit Spaces on Homogeneous Spaces

We want to extend our consideration from L2(X) to more general weighted Lp–spaces. For
some positive, measurable weight function v on X and 1 ≤ p ≤ ∞, let

Lp,v(X) := {f measurable : fv ∈ Lp(X)}

with ‖f‖Lp,v :=
(∫

X |f(x)|pv(x)pdµ(x)
)1/p

, 1 ≤ p <∞ and ‖f‖L∞,v := ess sup
x∈X

|f(x)|v(x).
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The spaces H1,w and H′
1,w. First we need to provide a suitable large reservoir for the

objects of our coorbit spaces. To this end, let w be some weight function on X satisfying
w(x) ≥ 1 for all x ∈ X. Throughout this paper, we impose the fundamental condition

ess sup
y∈X

∫

X
|Rψ(x, y)|w(x)

w(y)
dµ(x) <∞. (3.1)

By the Generalized Young Inequality A.1, this implies that Rψ(x, ·) = Vψ(U(σ(x))ψ) is in L1,w

and that the map F 7→ 〈F,Rψ(x, ·)〉 is continuous on L1,w. Then the linear space

H1,w := {f ∈ H : Vψ(f) ∈ L1,w(X)}

together with the norm ‖f‖H1,w := ‖Vψf‖L1,w becomes a Banach space which is continuously
embedded in H. In particular, since Rψ(x, ·) ∈ L1,w(X) we see that U(σ(x))ψ ∈ H1,w. Intro-
ducing the dual space H′

1,w of H1,w we have the continuous embeddings H1,w ⊂ H ⊂ H′
1,w,

where H1,w is norm dense in H and H is weak-∗ dense in H′
1,w. In other words, (H1,w,H,H′

1,w)
forms a Gelfand triple. Now the operator Vψ can be extended to an operator on H ′

1,w by

Vψf(x) := 〈f,U(σ(x))ψ〉H′
1,w×H1,w

.

By (3.1), we see that Vψ : H′
1,w → L∞,1/w(X) is a continuous operator. Then an operator Ṽψ

can be weakly defined on L∞,1/w(X) by

〈ṼψF, g〉H′
1,w×H1,w

:= 〈F, Vψg〉 for all g ∈ H1,w .

It can be shown that Ṽψ, is a bounded operator on L∞,1/w(X) and we obtain for F ∈ L∞,1/w(X)

VψṼψF (x) = 〈ṼψF,U(σ(x))ψ〉H′
1,w×H1,w

= 〈F, Vψ(U(σ(x))ψ)〉 = 〈F,Rψ(x, ·)〉, (3.2)

Weighted coorbit spaces. Now we introduce the weighted coorbit spaces. To this end, let
v be a positive measurable weight function on X. We impose the fundamental conditions

ess sup
y∈X

∫

X
|Rψ(x, y)|v(x)

v(y)
dµ(x) <∞ and ess sup

x∈X

∫

X
|Rψ(x, y)|v(x)

v(y)
dµ(y) <∞. (3.3)

By the Generalized Young Inequality A.1, this implies that F 7→ 〈F,Rψ(x, ·)〉 is continuous
on Lp,v. Additionally, we require that the weight function w is associated to v in the sense
that {〈F,Rψ(x, ·)〉 : F ∈ Lp,v} ⊂ L∞,1/w. In [5] natural weight functions w associated to v are
proposed. In particular, we can chose w = 1 if v ≥ 1. For 1 ≤ p ≤ ∞, we define the weighted

coorbit spaces

Hp,v := {f ∈ H′
1,w : Vψf ∈ Lp,v(X)}

with norms ‖f‖Hp,v := ‖Vψf‖Lp,v . The spaces (Hp,v, ‖ · ‖Hp,v ) are Banach spaces. Under mild
additional conditions it can be shown that Hp,v does not depend on the choice of ψ.
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Correspondence principle. The basic ingredient in the coorbit theory is a correspondence
principle between the spaces Hp,v, and certain subspaces of functions on X, which are defined
by means of the reproducing kernel Rψ. For 1 ≤ p ≤ ∞ and Rψ with property (3.3), let

Mp,v := {F ∈ Lp,v(X) : 〈F,Rψ(x, ·)〉 = F (x) a.e. }.

Theorem 3.1. (Correspondence between Hp,v and Mp,v) Let ψ ∈ H be given such that

the corresponding kernel Rψ satisfies (3.3). Then, Vψf ∈ Mp,v, i.e.,

〈Vψf,Rψ(x, ·)〉 = Vψf(x), f ∈ Hp,v.

Conversely, for every F ∈ Mp,v, 1 ≤ p ≤ ∞, there exists a uniquely determined element

f ∈ Hp,v such that F = Vψf .

By Theorem 3.1 and (3.2) we see that VψṼψ is the identity on Mp,v. Since we have for
f ∈ Hp,v that Vψf ∈ Mp,v it follows VψṼψVψf = Vψf . Now Vψ is injective on H′

1,w so that

ṼψVψ is the identity on Hp,v.

4 Atomic Decompositions and Banach Frames

In this section we show that judicious discretizations of the continuous wavelet transform
give rise to atomic decompositions and Banach frames of the form {U(σ(xi))ψ : xi ∈ X} for
weighted coorbit spaces.

Discretizations. A major tool is that of a bounded uniform partition of unity which we
adapt to homogeneous spaces. A sequence (xi)i∈I ⊂ X is called U -dense if

⋃

i∈I σ(xi)U ⊃
σ(X) for some relatively compact neighborhood U of e ∈ G with non–void interior and it is
called relatively separated, if supj∈I #{i ∈ I : σ(xi)L ∩ σ(xj)L 6= ∅} ≤ CL for all compact
subsets L ⊂ G. It can be proved that there exist relatively separated and U -dense sequences
(xi)i∈I ⊂ X for all (σ–compact) locally compact groups G, all closed subgroups H and all
relatively compact neighborhoods U ⊂ G of e ∈ G with non–void interior.

It is standard to construct a bounded partition of unity corresponding to some U -dense
and relatively separated sequence (xi)i∈I , i.e., a sequence of (continuous) functions φi, i ∈ I,
on G such that

(a) 0 ≤ φi(g) ≤ 1 for all g ∈ G,

(b) supp φi ⊂ σ(xi)U ,

(c)
∑

i∈I φi(σ(x)) = 1 for all x ∈ X.

We introduce the subsets Xi := {x ∈ X : σ(x) ∈ σ(xi)U}. Clearly, these sets form a covering
of X with uniformly finite overlap. In order to carry through the discretization machinery we
require for the weight function v that

v(x)

v(y)
≤ D for all x, y ∈ Xi, i ∈ I (4.1)

for some constant D <∞ independent of i ∈ I. In the terminology of Feichtinger and Gröbner
[12] this means that v is moderate with respect to the covering {Xi}i∈I .

6



For simpler notation, we introduce the numbers ai := µ(Xi). Let `p,va1/p denote the space
of sequences over I for which

‖(ηi)i∈I‖`
p,va1/p

:= ‖(ηiv(xi)a1/p
i )i∈I‖`p(I) <∞.

Clearly, if (ai)i∈I is bounded from above and below then `p,va1/p = `p,va1/p−1 = `p,v with
equivalent norms. In particular, this is the case if Xi = σ(xi)Π(U).

Atomic decompositions. For some relatively compact set U , we introduce the kernel oscU
dependent on ψ

oscU (x, y) := sup
u∈U

|〈U(σ(x))(Id − U(u−1))ψ.U(σ(y))ψ〉|.

The first theorem is a decomposition theorem which says that discretizing the representation
by means of an U–dense set indeed produces an atomic decomposition of Hp,v.

Theorem 4.1. Let G be a locally compact group with closed subgroup H and let v be a weight

function on X = G/H. Further, let U be a square integrable representation of G mod (H,σ)
with strictly admissible function ψ. Assume that the kernel Rψ fulfills (3.3) and (3.1) with a

weight w(x) ≥ 1 associated to v. Let a relatively compact neighborhood U of the identity in G
∫

X
oscU (y, x)

v(x)

v(y)
dµ(x) ≤ γ and

∫

X
oscU (y, x)

v(x)

v(y)
dµ(y) ≤ γ, (4.2)

where γ < 1. Let (xi)i∈I be a U–dense, relatively separated family and assume that v satisfies

(4.1). Then Hp,v, 1 ≤ p ≤ ∞, has the following atomic decomposition: if f ∈ Hp,v, 1 ≤ p ≤ ∞,

then f can be represented as

f =
∑

i∈I

ciU(σ(xi))ψ, (4.3)

where the sequence of coefficients (ci)i∈I = (ci(f))i∈I ∈ `p,va1/p−1 depends linearly on f and

satisfies

||(ci)i∈I ||`
p,va1/p−1

≤ A||f ||Hp,v . (4.4)

If (ci)i∈I ∈ `p,va1/p−1 , then f =
∑

i∈I ciU(σ(xi))ψ is contained in Hp,v and

||f ||Hp,v ≤ B||(ci)i∈I ||`
p,va1/p−1

. (4.5)

Banach frames. Given such an atomic decomposition, the problem arises under which con-
ditions a function f is completely determined by its moments and how f can be reconstructed
from these moments. This question is answered by the following theorem which shows that
{ψi := U(σ(xi))ψ : i ∈ I} indeed gives rise to a Banach frame.

Theorem 4.2. Impose the same assumptions as in Theorem 4.1 with
∫

X
oscU (x, y)

v(x)

v(y)
dµ(x) ≤ γ̃

Cψ
and

∫

X
oscU (x, y)

v(x)

v(y)
dµ(y) ≤ γ̃

Cψ
, (4.6)

where γ̃ < 1, instead of (4.2)
Then the set

{ψi := U(σ(xi))ψ : i ∈ I}
is a Banach frame for Hp,v. This means that
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i) f ∈ Hp,v if and only if (〈f, ψi〉H′
1,w×H1,w

)i∈I ∈ `p,va1/p ;

ii) there exist two constants 0 < A′ ≤ B′ <∞ such that

A′ ‖f‖Hp,v ≤ ‖(〈f, ψi〉H′
1,w×H1,w

)i∈I‖`
p,va1/p

≤ B′ ‖f‖Hp,v ;

iii) there exists a bounded, linear reconstruction operator S from `p,va1/p to Hp,v such that

S
(

(〈f, ψi〉H′
1,w×H1,w

)i∈I

)

= f.

Approximation operators. Let us briefly explain the basic concept of the proofs of The-
orems 4.1 and 4.2. The main ingredient is that the operator which maps F ∈ Mp,v onto the
function 〈F,Rψ(x, ·)〉 is the identity on Mp,v. The idea now is to approximate this operator
which is given by an integral by a sum. As in [4, 5] we use the following two approximation
operators

TφF (x) :=
∑

i∈I

〈F, φi ◦ σ〉Rψ(xi, x)

=
∑

i∈I

∫

X
F (y)φi(σ(y)) dµ(y)Rψ(xi, x),

SφF (x) :=
∑

i∈I

F (xi)〈φi ◦ σ,Rψ(x, ·)〉

=
∑

i∈I

∫

X
F (xi)φi(σ(y))Rψ(y, x) dµ(y).

We have to prove that these operators are invertible under certain conditions, see Theorem 4.3
below. Then the correspondence principle (Theorem 3.1) combined with the operators Tφ and
Sφ yields an atomic decomposition and a Banach frame, respectively.

We shall only briefly explain how the operator Tφ can be used to obtain the atomic decom-
position (4.3). For a detailed discussion on the operator Sφ we again refer to [4, 5]. Assume
f ∈ Hp,v so that Vψf ∈ Lp,v. If the operator Tφ is boundedly invertible, we obtain

Vψf(x) = TφT
−1
φ Vψf(x) =

∑

i∈I

〈T−1
φ Vψf, φi ◦ σ〉Rψ(xi, x). (4.7)

Since Rψ(xi, x) = Vψ(U(σ(xi)ψ))(x) and ṼψVψ is the identity on Hp,v, equation (4.7) yields

f = Ṽψ

(

∑

i∈I

ci(f)VψU(σ(xi))ψ

)

with ci(f) := 〈T−1
φ Vψf, φi ◦ σ〉. As Ṽψ is continuous on Hp,v, we obtain

f =
∑

i∈I

ci(f)U(σ(xi))ψ.

For the proof of the frame bounds (4.4), (4.5) we refer again to [4, 5].
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Theorem 4.3. i) Suppose that there exists γ < 1 such that (4.2) holds. Then ‖Id−Tφ‖Mp,v→Mp,v ≤
γ < 1. In particular, Tφ is bounded with bounded inverse.

ii) Suppose that R fulfills (3.3) and that there exists γ̃ < 1 such that (4.6) holds where Cψ is

the constant in (3.3). Then ‖Id − Sφ‖Mp,v→Mp,v ≤ γ̃ < 1. In particular, Sφ is bounded with

bounded inverse.

Proof: We only sketch the proof of part (i), the second part can be proved analogously. Using
the reproducing formula on Mp,v and the fact that (φi ◦ σ)i∈I is a partition of unity on X we
obtain for F ∈ Mp,v

F (x) =

∫

X
F (y)Rψ(x, y)dµ(y) =

∑

i∈I

∫

X
F (y)φi(σ(y))Rψ(y, x) dµ(y).

It follows immediately that

F (x) − TφF (x) =
∑

i∈I

∫

X
F (y)φi(σ(y))[Rψ(y, x) −Rψ(xi, x)] dµ(y),

By definition of R we obtain

|F (x) − TφF (x)| ≤
∑

i∈I

∫

X
|F (y)|φi(σ(y)) |Rψ(y, x) −Rψ(xi, x)| dµ(y)

=
∑

i∈I

∫

X
|F (y)|φi(σ(y)) |〈

(

U(σ(y)) − U(σ(xi))
)

ψ,U(σ(x))ψ〉| dµ(y).

Since supp φi ⊂ σ(xi)U we are only interested in those y ∈ X such that σ(y) ∈ σ(xi)U which
implies σ(y) = σ(xi)u for some u ∈ U or equivalently σ(xi) = σ(y)u−1. Hence, we have

|F (x) − TφF (x)|

≤
∑

i∈I

∫

X
|F (y)|φi(σ(y)) sup

u∈U
|〈
(

U(σ(y)) − U(σ(y)u−1)
)

ψ,U(σ(x))ψ〉| dµ(y)

=
∑

i∈I

∫

X
|F (y)|φi(σ(y)) oscU (y, x) dµ(y) =

∫

X
|F (y)| oscU(y, x) dµ(y).

By (4.2) and the generalized Young inequality, see Theorem A.1, we obtain

‖F − TφF‖Mp,v = ‖(Id − Tφ)F‖Mp,v ≤ γ‖F‖Mp,v .

Hence, ‖Id− Tφ‖Mp,v→Mp,v ≤ γ < 1 and thus Tφ is boundedly invertible on Mp,v.

5 Nonlinear Approximation

The established atomic decomposition can now be used to decompose, to approximate and
to analyze certain functions on Hp,v. Then it is clearly desirable to determine the quality of
certain approximation schemes based on our atomic decomposition, i.e., the approximation
order comes into play. In this section, we are interested in the quality of the best N–term

approximation. We restrict ourselves to the case where the sequence (ai)i∈I is bounded from
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below and from above. This is the case if the measure under consideration is invariant and not
only quasi–invariant. Fortunately, for the application we have in mind this property is indeed
satisfied, see Subsection 6.1.

The setting can be described as follows. Let {ψi = U(σ(xi))ψ : i ∈ I} denote the set of
atomic functions constructed in the previous section, i.e., we have for any f ∈ Hp,v that

f =
∑

i∈I

ciψi (5.1)

and
‖(ci)i∈I‖`p,v ∼ ‖f‖Hp,v . (5.2)

We want to approximate our functions f ∈ Hp,v by elements from the nonlinear manifolds Σn,
n ∈ N, which consist of all functions S ∈ Hp,v whose expansions with respect to our discrete
coherent states have at most n nonzero coefficients, i.e.,

Σn := {S ∈ Hp,v : S =
∑

i∈J

biψi, J ⊆ I, cardJ ≤ n} .

Then we are interested in the asymptotic behavior of the error

En(f)Hp,v := inf
S∈Σn

‖f − S‖Hp,v .

Usually, the order of approximation which can be achieved depends on the regularity of the
approximated function as measured in some associated smoothness space. For instance, for
nonlinear wavelet approximation, the order of convergence is determined by the regularity as
measured in a specific scale of Besov spaces. For nonlinear approximation based on Gabor
frames, it has been shown in [16] that the ‘right’ smoothness spaces are given by a specific
scale of modulation spaces. It turns out that at least a partial result from [16], i.e., an estimate
in one direction, carries over to our case without any difficulty. The basic ingredient in the
proof of the theorem is the following lemma which has been shown in [16], see also [7].

Lemma 5.1. Let a = (ai)
∞
i=1 be a decreasing sequence of positive numbers. For p, q > 0 set

α := 1/p− 1/q and En,q(a) := (
∑∞

i=n a
q
i )

1/q
. Then for 0 < p < q ≤ ∞ we have

2−1/p‖a‖`p ≤
(

∞
∑

n=1

(nαEn,q(a))
p 1

n

)1/p

≤ C ‖a‖`p

with a constant C > 0 depending only on p.

Now one can prove the following theorem, see also [16].

Theorem 5.1. Let {ψi : i ∈ I} be a set of atomic functions for Hp,v, 1 ≤ p ≤ ∞, as

constructed by Theorem 4.1. If 1 ≤ p < q, α := 1/p− 1/q and f ∈ Hp,v, then

(

∞
∑

n=1

1

n

(

nαEn(f)Hq,v

)p

)1/p

≤ C‖f‖Hp,v

for a constant C <∞.
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Proof: Let π permutate the sequence (ci)i∈I in (5.1) in a decreasing order, i.e. |cπ(1)| ≥
|cπ(2)| ≥ . . . . Then we obtain

En(f)Hq,v ≤ ‖
∞
∑

i=n+1

cπ(i)ψπ(i)‖Hq,v

and by (5.2) further that

En(f)Hq,v ≤ C

(

∞
∑

i=n+1

|cπ(i)|qv(xπ(i))
q

)1/q

= C En+1,q(|cπ(i)|v(xπ(i))) ≤ C En,q(|cπ(i)|v(xπ(i))) .

Now we finish by applying Lemma 5.1 and (5.2)

(

∞
∑

n=1

1

n

(

nαEn(f)Hq,v

)p

)1/p

≤
(

∞
∑

n=1

1

n

(

nαC En,q(|cπ(i)|v(xπ(i)))
)p

)1/p

≤ C ′ ‖(|cπ(i)|v(xπ(i))))‖`p = C ′‖c‖`p,v

≤ C ′′ ‖f‖Hp,v .

6 Application to the Sphere

In this section, we want to fill our technical consideration with live by deriving a generalized
windowed Fourier transform on the spheres Sn−1 and check that the proposed construction of
weighted modulation spaces and Banach frames works well for this setting.

6.1 Modulation Spaces and Banach Frames

We start by establishing a suitable group representation for the Hilbert space H = L2(S
n−1).

Having the usual windowed Fourier transform generated by translations and modulations in
mind, Torresani suggested in [18] to choose the Euclidean group G := E(n) = SO(n) n R

n,
with group operation

(R, p) ◦ (R̃, p̃) = (R̃R, R̃p+ p̃), (R, p)−1 = (R−1,−R−1p).

As a natural analogue to the Schrödinger representation of the Weyl-Heisenberg group on
L2(R

n), we can define the continuous unitary representation

U(R, p)f(s) := e−i<Rs,p>f(Rs) , s ∈ Sn−1

of G on H. Since this representation is not square integrable, we are looking for suitable
representations modulo a subgroup H of G.

In order to keep the notation simple, we restrict ourselves to the case H = L2(S
1) ∼=

L2([−π, π]). In this setting, R ∈ SO(2) and s ∈ S1 are given explicitly by

R =

(

cos θ sin θ
− sin θ cos θ

)

, s =

(

sin γ
cos γ

)

.
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To overcome the integrability problem, we use the subgroup H := {(0, 0, p2) : p2 ∈ R} of G
together with the flat section σ(θ, p1) := (θ, p1, 0). Then X := G/H carries the G–invariant
measure dµ(x) = dpxdθx, where x = (θx, px, 0). In this case, the representation reads as

U(σ(θ, p1)f(γ) = e−i sin(γ+θ)p1f(γ + θ). (6.1)

The following lemma ensures strictly square integrability of U mod (H,σ).

Lemma 6.1. Assume that the function ψ ∈ L2([−π, π]) is such that supp ψ ⊂ [−π/2, π/2]
and

2π

π/2
∫

−π/2

|ψ(γ)|2
cos γ

dγ = 1 .

Then the map Vψ defined by (2.1) is an isometry.

The proof in [18] uses that

Vψf(x) = 〈U(σ(x)−1)f, ψ〉 =

π/2
∫

−π/2

eipx sin γf(γ − θx)ψ̄(γ) dγ.

As a consequence of the theorem, the wavelet transform can be inverted by using the adjoint
V ∗
ψ . Of course the approach works also if

0 < cψ := 2π

π/2
∫

−π/2

|ψ(γ)|2
cos γ

dγ <∞. (6.2)

Then the inverse of the wavelet transform is given by V ∗
ψ /

√
cψ.

In the following, we choose the admissible function

ψ(γ) = cos6 γ · χ[−π/2,π/2](γ).

For x = (θx, px, 0), y = (θy, py, 0) ∈ X and θ = θx − θy we see as in [3] that the kernel Rψ can
be rewritten as

Rψ(y, x) = F̂θ,py(−px) ,
where

Fθ,py(t) := e−ipy sin(arcsin t−θ)ψ(arcsin t− θ)ψ(arcsin t)/
√

1 − t2.

The plots of |Rψ(x, y)| = |F̂θ,py(−px)| for two values of θ in Figure 1 describe the typical decay
behavior of Rψ.

In analogy to the classical modulation spaces on the Euclidean plane, we consider specific
weight functions of the form v(θ, p1) = (1 + |p1|)s, s > 0 i.e., the modulation spaces are
generalized Bessel–potential spaces. To v we associate w = 1. In order to construct properly
defined weighted modulation spaces we have to establish the fundamental properties (3.3) of
our kernel Rψ. To this end, we use that

∫

X

|R(x, y)|w(x)

w(y)
dµ(x) =

π
∫

−π

∫

R

|F̂θ,py(px)|
(1 + |px|)s
(1 + |py|)s

dpx dθx.
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Figure 1: Left: |F̂θ,py(−px)| for θ = −2.642, right: |F̂θ,py(−px)| for θ = 1.758

Regarding that the outer integration is over a finite interval it remains to check that

∫

R

|F̂θ,py(px)|
(1 + |px|)s
(1 + |py|)s

dpx ≤ C, and

∫

R

|F̂θ,py(px)|
(1 + |px|)s
(1 + |py|)s

dpy ≤ C (6.3)

with some constants C independent of θ and py and px, respectively.
These properties are confirmed numerically and the results are presented in the Figures 2 – 4

for s = 0.5. Figure 2 shows the approximated values of
∫

R
|F̂θ,py(px)|(1+|px|)0.5/(1+|py|)0.5 dpx

as functions of py and Figure 3 the approximated values of
∫

R
|F̂θ,py(px)|(1 + |px|)0.5/(1 +

|py|)0.5 dpy as functions of px. Finally, in Figure 4, we have displayed maxpy

∫

|F̂θ,py(px)(1 +
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Figure 2:
∫

R
|F̂θ,py(px)|(1 + |px|)0.5/(1 + |py|)0.5 dpx, left: θ = 2.642, right: θ = 1.758

|px|)0.5/(1 + |py|)0.5 dpx and maxpx

∫

|F̂θ,py(px)(1 + |px|)0.5/(1 + |py|)0.5 dpy for all θ ∈ [−π, π].
These results clearly show that conditions (6.3) are satisfied.
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∫

R
|F̂θ,py(px)|(1 + |ph|)0.5/(1 + |py|)0.5 dpy, left: θ = 2.642, right: θ = 1.758
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Figure 4: Maximum plot for all θ ∈ [−π, π]; left: maxpy

∫

R
|F̂θ,py(px)|(1 + |px|)0.5/(1 +

|py|)0.5 dpx, right: maxpx

∫

R
|F̂θ,py(px)|(1 + |px|)0.5/(1 + |py|)0.5 dpy.

For the construction of Banach frames in Mp,v we choose the neighborhood U := [−π/N, π/N ]×
[−π/M, π/M ] × [−π/M, π/M ] of the identity and a U–dense set (xn,m)(n,m)∈I with xn,m =
(θn, pm, qm). Then the assumptions concerning oscU in Theorem 4.1 and Theorem 4.2, re-
spectively, can be verified directly by slightly modifying the steps in [3] with respect to the
additional weight function.

6.2 Time-Frequency Localized Analyzing Atmos

A general theorem which is well-known in quantum mechanics and harmonic analysis [13]
relates an uncertainty principle to any two self-adjoint operators and provides a mechanism for
deriving a minimizing function for the uncertainty relation. Before repeating this well-known
result on uncertainties, let us fix some notation. Let A, B be two self-adjoint operators. Their
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commutator is defined by
[A,B] := AB −BA,

the expectation of A with respect to some state ϕ ∈ dom(A), with ‖ϕ‖ = 1, by

µ(A) := µA := 〈Aϕ,ϕ〉

and, finally, the variance of A with respect to some state ϕ ∈ dom(A) by

(∆A)2 := µ((A− µ(A))2).

Theorem 6.1. Given two self-adjoint operators A and B, then for all ϕ ∈ dom(A) ∩ dom(B)
they obey the uncertainty relation:

∆A∆B ≥ 1

2
|〈[A,B]〉|, (6.4)

where |〈[A,B]〉| := |〈[A,B]ϕ,ϕ〉|. A state ψ is said to have minimal uncertainty if the above

inequality turns into an equality. This happens iff there exists an λ ∈ iR such that

(A− µA)ϕ = λ(B − µB)ϕ. (6.5)

Suppose that we are given a unitary representation of a Lie group. The linearized operation
of the group at the identity element can be described by the infinitesimal generators of the
related Lie algebra. If the group representation is unitary, then the infinitesimal generators
can transformed to be self-adjoint operators. Thus, the general uncertainty theorem stated
above provides a tool for obtaining uncertainty principles using these infinitesimal generators.
In the case of the Weyl-Heisenberg group, the canonical functions that minimize the corre-
sponding uncertainty relation are Gaussian functions. The canonical functions that minimize
the uncertainty relations for the affine group in one dimension and for the similitude group in
two dimensions, were the subject of the previous studies [1, 2].

In this section, we want to compute the canonical minimizing states for the local Fourier
transform on the sphere as introduced in Subsection 6.1. Since we are working with quotient
manifolds, we are usually loosing the group structure, but nevertheless, in the case of the
flat section, there is a canonical substitute for the identity element, namely (θ, p1) = (0, 0).
Since the representation is smooth, we may compute the derivatives at this point to obtain
generalized infinitesimal generators.

Theorem 6.2. The infinitesimal operators Aθ, Ap1 associated with the local Fourier transform

on the sphere are given by

(Aθϕ)(γ) = iϕ′(γ), and (Ap1ϕ)(γ) = sin γ ϕ(γ). (6.6)

The state ϕ which is the minimizer of the associated uncertainty is of the form

ϕ(γ) = cet cos γ−iµθγ , (6.7)

where t ∈ R, µθ := µAθ
, and c has to be chosen that such ‖ϕ‖L2(S1) = 1.
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Proof: Taking the derivatives with respect to θ and p1 in (6.1) and evaluating them at
θ = 0, p1 = 0 leads to

∂

∂θ
U(σ(θ, p1))ϕ|(θ,p1)=(0,0)(γ) = ϕ′(γ),

∂

∂p1
U(σ(θ, p1))ϕ|(θ,p1)=(0,0)(γ) = −i sin γ ϕ(γ).

These operators are not self-adjoint, but multiplication with the imaginary unit i yields self-
adjoint operators Aθ = i ∂∂θU and Ap1 = i ∂

∂p1
U . This proves (6.6).

The commutator between these two operators is non-zero. By means of Theorem 6.1, we
may calculate those states that minimize the corresponding uncertainty principle. Indeed, (6.5)
provides us with the differential equation

ϕ′(γ) = −iϕ(γ) (λ sin γ − λµp1 + µθ) . (6.8)

Now (6.8) can be solved by separation of variables which leads with λ = it, t ∈ R to

ϕ(γ) = ce−t cos γ−(iµθ+tµp1
)γ .

However, since we need periodic functions, we necessarily have to choose µp1 = 0. This proves
(6.7) 2

Unfortunately, the conditions of Lemma 6.1 and Theorem 6.2 cannot be satisfied at the
same time, i.e., the minimizing states are not admissible. Nevertheless, we may define canonical

admissible vectors ψ supported on [−π/2, π/2] which fit ϕ in the least squares sense and fulfill
the admissibility condition (6.2). To this end, let us consider the strictly convex functional

Φ(ψ) := α

∫ π/2

−π/2

|ψ(γ)|2
cos γ

dγ +

∫ π/2

−π/2
|ψ(γ) − ϕ(γ)|2dγ. (6.9)

and compute the minimizers.

Theorem 6.3. The minimizer of the functional Φ(ψ) is given by

ψ(γ) = ϕ(γ)
cos γ

cos γ + α
χ[−π/2,π/2](γ). (6.10)

Proof: Setting the first variation of (6.9) to zero we obtain the necessary and sufficient
minimum condition

α

∫ π/2

−π/2

ψ(γ)h(γ) + ψ(γ)h(γ)

cos γ
dγ +

∫ π/2

−π/2
{(ψ(γ) − ϕ(γ))h(γ) + h(γ)(ψ(γ) − ϕ(γ))}dγ = 0

for all h ∈ L2(S
1) which is satisfied if

α
ψ(γ)

cos γ
= ϕ(γ) − ψ(γ), i.e. ψ(γ) = ϕ(γ)

cos γ

cos γ + α
.
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A Appendix

The generalized Young inequality for Lp,v is a major tool in our considerations:

Theorem A.1. Let K be some kernel on X ×X. We associate to K the integral operator

K(F )(x) :=

∫

X
K(x, y)F (y)dµ(y).

If K satisfies

ess sup
x∈X

∫

X
|K(x, y)|v(x)

v(y)
dµ(y) ≤ CK <∞, (A.1)

then K is a continuous operator on L∞,v(X). If K satisfies

ess sup
y∈X

∫

X
|K(x, y)|v(x)

v(y)
dµ(x) ≤ CK <∞, (A.2)

then K is a continuous operator on L1,v(X). If K satisfies both (A.1) and (A.2) then K is a

continuous operator on Lp,v(X), 1 ≤ p ≤ ∞, and satisfies

‖K(F )‖Lp,v(X) ≤ CK‖F‖Lp,v(X).
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