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Abstract. Finding optimal representations of signals in higher dimensions, in particular
directional representations, is currently the subject of intensive research. Since it might be
difficult to obtain directional information by means of wavelets, several new representation
systems were proposed in the past, including ridgelets, curvelets and, more recently, shear-
lets. In this paper we study and visualize the continuous Shearlet transform. Moreover, we
aim at deriving mother shearlet functions which ensure optimal accuracy of the parameters
of the associated transform. For this, we first show that this transform is associated with
a unitary group representation coming from the so-called Shearlet group and compute the
associated admissibility condition. This enables us to employ the general uncertainty prin-
ciple in order to derive mother shearlet functions that minimize the uncertainty relations
derived for the infinitesimal generators of the Shearlet group: scaling, shear and transla-
tions. We further discuss methods to ensure square-integrability of the derived minimizers
by considering weighted L2-spaces. Moreover, we study whether the minimizers satisfy the
admissibility condition, thereby proposing a method to balance between the minimizing and
the admissibility property.
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1. Introduction

Optimal representation of functions is an important topic in signal and image processing.
Usually, a family of functions, that is a frame or a Riesz basis, is utilized for the sake of
representation of signals. One way is to create this family of functions by applying certain
group operations on a mother function. The classical examples are the Gabor functions,
which account for time-frequency representations of signals and are associated with the
Weyl-Heisenberg group, or wavelets, which account for time-scale representations and are
associated with the affine group. The ultimate goal is to faithfully describe functions using
as few basic elements as possible, and to obtain a compact representation that can be useful
in various applications, e.g., in compression.

The representation of signals in both, the time and frequency domain, has been given
enormous attention in the last century. It was already studied more than one hundred years
ago in the context of coherent states of quantum systems. In the seminal work of Gabor
in 1946 the information uncertainty principle was derived [13]. Since then the theoretical
and applicative aspects of time-frequency representations were intensively studied. The
time representation provides accurate information regarding the value of the signal at each
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instant in time, while the Fourier representation provides accurate information regarding the
frequency contents of the signal. Two interesting questions have risen at this point: the first
involves a search for an optimal representation in both, the time and the frequency domain.
The second aims at finding other possible representations of functions, accounting for other
attributes they may have.

The first question was addressed and answered by Gabor [13]. He introduced the Gaussian
modulated sine-wave functions that later on were named after him. The Gabor transform
is a convolution of a function with Gaussian-modulated complex exponentials, thus a local
Fourier transform with a Gaussian window. This approach proved to have minimal inaccu-
racy with respect to both the time and frequency attributes of the function. In quantum
mechanics, these Gaussian window functions, for which the minimal combined uncertainty is
obtained, are a family of canonical coherent states generated by the Weyl-Heisenberg group.

The second question led to a vast research yielding numerous transforms such as the
wavelet transform, and more recently the directional wavelet [3], complex wavelet [18],
ridgelet [5], curvelet [6], contourlet [11] and shearlet [14] transform. Each transform is unique
in emphasizing different attributes of functions: frequency, scale, orientation etc. Many of
these transforms can be considered as the integral transform related to a unitary represen-
tation of some group: the windowed Fourier transform is the integral transform related to
the Weyl-Heisenberg group and the wavelet transform is related to the affine group.

Given such an integral transform, then, similar to the classical Gabor case, a very natural
question arises: do there exist representations that are optimal with respect to this trans-
form? That is, can we find nontrivial analyzing functions that minimize the uncertainty
principles related to the transform? Previous studies have already considered this issue for
the affine group in one dimension and the similitude as well as the affine group in two dimen-
sions [1, 3, 7, 22]. For the one dimensional affine group it was possible to find an analytical
solution of the form:

ψ(x) = c(x− η)−
1
2
−iηµ2+iµ1 ,

where c is some constant, η is purely imaginary and µ1, µ2 ∈ R. This function, when used
as the basic window function, provides the minimal combined uncertainties with respect to
time and scale. For the two dimensional SIM(2) group, it was not possible to find solutions
which simultaneously minimize the combined uncertainty with respect to all the parameters
involved: position, scale and orientation, and therefore solutions that accounted for various
subgroups were employed [1, 7].

In this study, we apply the analysis of finding uncertainty minimizers to the Shearlet trans-
form, and the group associated with it, the Shearlet group. This transform was introduced
in [14]. The basic elements of this transform are dilations, shear and translations. Thus
shearlets are given by

ψast(x) = a−
3
4ψ
(
A−1
a S−1

s (x− t)
)
, (1)

where

Aa =

(
a 0
0

√
a

)
(2)
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and

Ss =

(
1 s
0 1

)
. (3)

The Shearlet transform is advantageous over the classical wavelet transform as it provides
information about the directionality within the image [19]. In previous studies it was shown
that the continuous Shearlet transform precisely resolves the wavefront set of a distribution
[19]. Moreover, the associated discrete shearlet system provides sparse representation for
2D functions which are smooth away from discontinuities along curves [14, 15], and a multi-
resolution analysis, similar to the one offered for classical wavelets, was offered [20].

So far, the known machinery of finding uncertainty minimizers is based on unitary group
representations. Therefore, if we want to apply these concepts to the shearlet transform, then
it is necessary to verify that this transform indeed stems from a suitable group representation.
A priori, this is by no means clear, and many other directional transforms do not have this
property. Nevertheless, in this paper we show that the continuous Shearlet transform can
indeed be treated within group theory framework. The group associated with this transform
is a subgroup of the affine group in 2D and will be referred to in the following as the Shearlet
group. We use the unitary representation of the Shearlet group to derive its infinitesimal
generators, and calculate the uncertainty equations related to each couple of them.

This paper is organized as follows. In Section 2 we first show that the continuous Shearlet
transform is associated with a group representation, and then determine the admissibility
condition associated with it. In Section 3 we illustrate directional properties of the continuous
shearlet transform with some numerical examples. In Section 4 we very briefly review the
uncertainty principle theorem. This framework is then applied to calculate the uncertainty
minimizers to the Shearlet group in Section 5, where we provide possible solutions. Section 6
deals with ensuring square-integrability of the derived minimizers by considering weighted L2-
spaces and discussing methods to provide “almost” minimizers which satisfy the admissibility
condition. We finish with stating some conclusions in Section 7.

2. The Shearlet Transform along with the Group Associated with it

Set Aa =

(
a 0
0

√
a

)
and Ss =

(
1 s
0 1

)
. Let ψ ∈ L2(R2), and for each a ∈ R+, s ∈ R, and

t ∈ R2 define ψast ∈ L2(R2) by

ψast(x) = a−
3
4ψ(A−1

a S−1
s (x− t)).

Then the shearlet system generated by ψ is defined by

{ψast : a ∈ R+, s ∈ R, t ∈ R2}.

The associated continuous Shearlet transform of some f ∈ L2(R2) is given by

SHf : R+ × R× R2 → C, SHf (a, s, t) = 〈f, ψast〉.

These definitions are taken from [14] and [19].
In this section we show that the elements of a shearlet system can be generated by using

a representation of a special group that we will refer to as the Shearlet group. Moreover, we
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calculate the left and right Haar measures for the Shearlet group, and obtain the admissibility
condition associated with the considered unitary representation of this group.

2.1. The Group Structure of the Shearlet Group. We consider a special multiplication
on R+×R×R2. In the following lemma we show that this is indeed a group multiplication.

Lemma 2.1. The set R+ × R× R2 equipped with multiplication given by

(a, s, t) · (a′, s′, t′) = (aa′, s+ s′
√
a, t+ SsAat

′)

forms a group.

Proof. It can be easily checked that (1, 0, 0) is the neutral element. The inverse of some
(a, s, t) ∈ R+ × R× R2 is given by

(a, s, t)−1 = ( 1
a
,− s√

a
,−A−1

a S−1
s t),

since

(a, s, t) · ( 1
a
,− s√

a
,−A−1

a S−1
s t) = (a 1

a
, s− s√

a

√
a, t− SsAaA

−1
a S−1

s t) = (1, 0, 0)

and

( 1
a
,− s√

a
,−A−1

a S−1
s t) · (a, s, t) = ( 1

a
a,− s√

a
+ s 1√

a
,−A−1

a S−1
s t+ S− s√

a
A 1

a
t) = (1, 0, 0)

by using the fact that

S− s√
a
A 1

a
=

(
1 − s√

a

0 1

)(
1
a

0
0 1√

a

)
=

(
1
a
− s
a

0 1√
a

)
=

(
1
a

0
0 1√

a

)(
1 −s
0 1

)
= A−1

a S−1
s .

The multiplication is also transitive as the following computation shows:

((a, s, t) · (a′, s′, t′)) · (a′′, s′′, t′′)
= (aa′, s+ s′

√
a, t+ SsAat

′) · (a′′, s′′, t′′)
= (aa′a′′, s+ s′

√
a+ s′′

√
aa′, t+ SsAat

′ + Ss+s′√aAaa′t′′)

= (a(a′a′′), s+ (s′ + s′′
√
a′)
√
a, t+ SsAa(t

′ + Ss′Aa′t′′))

= (a, s, t) · (a′a′′, s′ + s′′
√
a′, t′ + Ss′Aa′t′′)

= (a, s, t) · ((a′, s′, t′) · (a′′, s′′, t′′)).
For the third equality observe that

SsAaSs′Aa′ =

(
1 s
0 1

)(
a 0
0

√
a

)(
1 s′

0 1

)(
a′ 0

0
√
a′

)
=

(
a s

√
a

0
√
a

)(
a′ s′

√
a′

0
√
a′

)
=

(
aa′ s′a

√
a′ + s

√
aa′

0
√
aa′

)
=

(
1 s+ s′

√
a

0 1

)(
aa′ 0

0
√
aa′

)
= Ss+s′√aAaa′ . �
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Using this lemma, we can now define the Shearlet group.

Definition 2.2. Let the Shearlet group S be defined to be the set R+ × R× R2 along with
the multiplication law given by

(a, s, t) · (a′, s′, t′) = (aa′, s+ s′
√
a, t+ SsAat

′).

Remark 2.3. Notice that the Shearlet group is isomorphic to the locally compact group
Gn R2, where

G = {SsAa : a ∈ R+, s ∈ R}.
Thus it is a subgroup of the full group of motions GLn(R) n Rn with multiplication defined
by (M, t) · (M ′, t′) = (MM ′, t+Mt). We also refer to [4] for wavelet-related results for those
groups.

In the next lemma we define the mapping σ : S → U(L2(R2)), where U(L2(R2)) denotes the
group of unitary operators on L2(R2), and prove that it is indeed a unitary representation of
the Shearlet group. This representation can be related to the continuous Shearlet transform
in the following way:

SHf (a, s, t) = 〈f, ψast〉 = 〈f, σ(a, s, t)ψ〉 for all f ∈ L2(R2).

This observation will turn out to become essential for deriving an admissibility condition
associated with the continuous Shearlet transform in the next subsection and for studying
uncertainty relations in Section 5.

Lemma 2.4. Define σ : S → U(L2(R2)) by

σ(a, s, t)ψ(x) = ψast(x) = a−
3
4ψ(A−1

a S−1
s (x− t)). (4)

Then, for all (a, s, t), (a′, s′, t′) ∈ S, we have

σ(a, s, t)σ(a′, s′, t′) = σ((a, s, t) · (a′, s′, t′)),
and, moreover, for all (a, s, t) ∈ S, the operator σ(a, s, t) belongs indeed to U(L2(R2)).

Proof. Let ψ ∈ L2(R2) and x ∈ R2. Then

σ(a, s, t)(σ(a′, s′, t′)ψ)(x) = a−
3
4σ(a′, s′, t′)ψ(A−1

a S−1
s (x− t))

= (aa′)−
3
4ψ(A−1

a′ S
−1
s′ (A−1

a S−1
s (x− t)− t′))

= (aa′)−
3
4ψ(A−1

a′ S
−1
s′ A

−1
a S−1

s (x− (t+ SsAat
′)))

= (aa′)−
3
4ψ(A−1

aa′S
−1
s+s′

√
a
(x− (t+ SsAat

′))),

since

A−1
a′ S

−1
s′ A

−1
a S−1

s =

(
1
a′ 0
0 1√

a′

)(
1 −s′
0 1

)(
1
a

0
0 1√

a

)(
1 −s
0 1

)
=

(
1
a′ − s′

a′

0 1√
a′

)(
1
a
− s
a

0 1√
a

)
=

(
1
aa′ − s

aa′ − s′

a′√a
0 1√

aa′

)
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and

A−1
aa′S

−1
s+s′

√
a

=

(
1
aa′ 0
0 1√

aa′

)(
1 −s− s′

√
a

0 1

)
=

(
1
aa′ − s

aa′ − s′

a′√a
0 1√

aa′

)
.

The second assertion follows immediately by that fact that Id = σ(a, s, t)∗σ(a, s, t) which in
turn yields σ(a, s, t)∗ = σ((a, s, t)−1). �

In the sequel let the unitary representation σ : S → U(L2(R2)) be always defined as in
Lemma 2.4.

2.2. The Admissibility Condition associated with the Shearlet Group. Having es-
tablished the group structure of the Shearlet group and determined the unitary represen-
tation of S which gives rise to the continuous Shearlet transform, we are ready to extract
the associated admissibility condition. As a first step we will obtain the left and right Haar
measures for this group, and then formulate the admissibility condition.

2.2.1. The Left and Right Haar Measures for the Shearlet Group. It is already known that
for locally compact groups, there always exist left and right invariant Haar integrals [16].
For the Shearlet group, this invariance implies∫

S
f(a, s, t)dµl =

∫
S
f(a′a, s′ + s

√
a′, t′ + S ′sA

′
at)dµl

where dµl = ν(a, s, t)dadsdt and ν is a function of the parameters of the Shearlet transform.
The calculation of ν can be done by calculating the Jacobian of the change of variables:

a′′ = a′a, s′′ = s′ + s
√
a′, t′′ = t′ + S ′sA

′
at

which turns out to be 1
a3 . Thus, the left Haar measure is dadsdt

a3 . This result can also be found
in [19]. In order to calculate the right Haar measure, we apply the same procedure, but this
time with the right-operation of the group. This yields the right Haar measure dadsdt

a
.

2.2.2. The Admissibility Condition. Next we intend to derive the admissibility condition
associated with the representation σ of the Shearlet group S given by (4). In general, given
a unitary representation U of a locally compact group G on a Hilbert space H, a function
ψ ∈ H is called admissible, if ∫

G

|〈ψ,U(g)ψ〉|2dµl(g) <∞.

The admissibility condition is important, since it usually yields to a resolution of iden-
tity that allows the reconstruction of signals f ∈ H from the representation coefficients
(〈f, U(g)ψ〉)g∈G.

Let us now turn to the computation of the admissibility condition for the representation
σ of the Shearlet group S. We wish to mention that a similar approach can be found in [10]
for the affine group and the wavelet transform.
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Theorem 2.5. If f, ψ ∈ L2(R2), then∫
S
|〈f, ψast〉|2

da ds dt

a3
=

∫
R

∫ ∞

0

|f̂(ω)|2 dωxdωy
∫ ∞

0

∫
R

|ψ̂(νx, νy)|2

ν2
x

dνy dνx (5)

+

∫
R

∫ 0

−∞
|f̂(ω)|2 dωxdωy

∫ 0

−∞

∫
R

|ψ̂(νx, νy)|2

ν2
x

dνy dνx.

Proof. We first observe that the Shearlet transform of some function f ∈ L2(R2) can be
regarded as a convolution. In fact, we have

SHf (a, s, t) = 〈f, a−
3
4ψ(A−1

a S−1
s (· − t))〉 = f ∗ ψ∗as0(t), (6)

where ψ∗as0(x) = ψas0(−x) for all x ∈ R2. Furthermore, we will need the Fourier transform
of the shearlets, which can be easily computed to be

ψ̂ast(ω) = a
3
4 e−2πitωψ̂(ATaS

T
s ω) = a

3
4 e−2πitωψ̂(aωx,

√
a(ωy + sωx)), (7)

where MT denotes the transpose of a matrix M . Employing (6), the Plancherel theorem,
and (7), we obtain∫

S
|〈f, ψast〉|2

da ds dt

a3
=

∫
S
|f ∗ ψ∗as0(t)|2 dt ds

da

a3

=

∫ ∞

0

∫
R

∫
R2

|f̂(ω)|2|ψ̂∗as0(ω)|2 dω ds da
a3

=

∫ ∞

0

∫
R

∫
R2

|f̂(ω)|2a
3
2 |ψ̂(ATaS

T
s ω)|2 dω ds da

a3

=

∫ ∞

0

∫
R2

∫
R
|f̂(ω)|2a−

3
2 |ψ̂(aωx,

√
a(ωy + sωx))|2 ds dω da

=

∫
R

∫ ∞

0

∫ ∞

0

∫
R
|f̂(ω)|2a−2ω−1

x |ψ̂(aωx, νy)|2 dνy da dωxdωy

−
∫

R

∫ 0

−∞

∫ ∞

0

∫
R
|f̂(ω)|2a−2ω−1

x |ψ̂(aωx, νy)|2 dνy da dωxdωy

=

∫
R

∫ ∞

0

|f̂(ω)|2 dωxdωy
∫ ∞

0

∫
R

|ψ̂(νx, νy)|2

ν2
x

dνy dνx

+

∫
R

∫ 0

−∞
|f̂(ω)|2 dωxdωy

∫ 0

−∞

∫
R

|ψ̂(νx, νy)|2

ν2
x

dνy dνx.

�

The following two corollaries follow immediately from Theorem 5.

Corollary 2.6. The representation σ of the shearlet group S is square integrable, and every
ψ ∈ L2(R2) that satisfies ∫

R2

|ψ̂(νx, νy)|2

ν2
x

dνy dνx <∞. (8)

is admissible.
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Corollary 2.7. Given an admissible ψ ∈ L2(R2), define

c+ψ =

∫ ∞

0

∫
R

|ψ̂(νx, νy)|2

ν2
x

dνy dνx, c−ψ =

∫ 0

−∞

∫
R

|ψ̂(νx, νy)|2

ν2
x

dνy dνx.

If c−ψ = c+ψ = cψ, then the shearlet transform is a cψ-multiple of an isometry.

Definition 2.8. A function ψ ∈ L2(R2) is called a continuous shearlet, if it satisfies the
admissibility condition (8).

Now we would like to obtain an inversion formula for the shearlet transform. The following
result is again similar to the wavelet setting.

Theorem 2.9. Suppose ψ ∈ L2(R2) is admissible with c+ψ = c−ψ = 1. Let {ρn}∞n=1 be an

approximate identity such that ρn ∈ L2(R2) and ρn(x) = ρn(−x) for all x. Then limn→∞ ‖f−
fn‖2 = 0 for all f ∈ L2(R2), where

fn(x) =

∫
S
SHf (a, s, t)(ρn ∗ ψa,s,t)(x) dt ds

da

a3
.

Proof. Let Tx, x ∈ R2 denote the translation operator Txf(y) = f(x − y). Since ρn is even
and the Shearlet transform is an isometry, we obtain

(f ∗ ρn)(x) =

∫
R2

f(y)ρn(x− y)dy

= 〈f, Txρn〉
= 〈SHf ,SHTxρn

〉

=

∫
S
SHf (a, s, t)〈ρn(· − x), ψa,s,t(·)〉dt ds

da

a3

=

∫
S
SHf (a, s, t)(ρn ∗ ψa,s,t)(x)dt ds

da

a3
.

But {ρn}∞n=1 is an approximate identity, so limn→∞ ‖f − fn‖2 = 0. �

Remark 2.10. Consider the function ψ ∈ L2(R2) defined by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where ψ1 is a continuous wavelet, ψ̂1 ∈ C∞(R), and supp ψ̂1 ⊆ [−2,−1
2
] ∪ [1

2
, 2], and where

ψ2 is such that ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1]. This generating function was employed
in [19] to show that the continuous Shearlet transform precisely resolves the wavefront set. It
is an easy computation to show that this function is indeed a continuous shearlet as defined
above.

In Section 3 we will underpin the directional properties of the transform f 7→ 〈f, ψast〉
by showing and discussing some numerical examples. After that, equipped with the group
structure of the Shearlet transform and the relevant associated unitary representation, in
Section 5 we can use the framework reviewed in Section 4, which provides those functions
that are the minimizers of uncertainty relations.
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Figure 1. Originals: Square (left) and circle(right).

3. Visualization of the Shearlet Coefficients

The purpose of this section is, to visualize the behavior of the shearlet coefficients 〈f, ψast〉,
i.e., of the values of the Shearlet transform SHf (a, s, t). Given the original f we shall select
specific values for a and s, respectively, and display 〈f, ψast〉 as a function of t ∈ R2, i.e., as
an image. For simplicity this image is denoted with T(ψ,a,s).

The admissibility condition is needed to ensure invertibility of the map f 7→ 〈ψast, f〉.
Having possible applications in texture analysis [22] in mind, e.g., tunable detection of
orientations in images, it seems to be justified to investigate 〈ψast, f〉 even if ψ does not
satisfy the admissibility condition.

In this section we study

ψ1(x, y) = ψH(x)χ(− 1
2
, 1
2)

(y) with ψH(x) =

 1 : −1
2
≤ x < 0

−1 : 0 ≤ x ≤ 1
2

0 : else

and χ(− 1
2
, 1
2)

denoting the characteristic function of the open interval
(
−1

2
, 1

2

)
. Clearly, ψH is

a shifted version of the well-known one-dimensional Haar-wavelet. Moreover, we consider

ψ2(x, y) = e−4r2(32r2 − 4) with r2 = x2 + y2,

i.e., the second radial derivative of a Gaussian. Both ψ1 and ψ2 have zero mean, thus
“reacting on” edges in f . Obviously ψ1 will respond on vertical edges, whereas ψ2 is isotropic.

Note that in all plots discussed below the gray-level-coding is scaled, i.e., the smallest value
is displayed black, the largest white. Since we want to focus on shear, in all plots a = 1 was
chosen.

Fig. 1 shows the respective originals f , to be analyzed. In order to investigate, how T(ψ,a,s)

responds on shear, we compute and display T(ψ,a,s) for sheared versions of f , i.e., for fa′s′t′ .
We restrict ourselves to a′ = 1 and, in order to keep notation simple, regard fa′s′t′ (t

′ ∈ R2)
as an image, which is denoted with fs′ .



10 S. DAHLKE, G. KUTYNIOK, P. MAASS,C. SAGIV, H.-G. STARK, AND G. TESCHKE

Figure 2. Sheared square f1 (left) and |T(ψ1,1,0)| (right, ”wrong” shear factor).

Figure 3. Sheared square f1 (left) and |T(ψ1,1,1)| (right, ”matching” shear factor).

Figs. 2-9 demonstrate a reasonable behavior, both with respect to concentration properties
at matching shear factors and with respect to directional properties of the underlying ψ.
Thus, e.g., Figs. 5 and 9 clearly illustrate the isotropy of ψ2, whereas Figs. 2 and 3 exhibit
the above mentioned concentration effect.

4. Uncertainty Relations and Uncertainty Minimizers

In this section we briefly review the basics of the uncertainty relations in terms of group
theory and harmonic analysis. A general theorem which is well known in quantum mechanics
and harmonic analysis [12] relates an uncertainty principle to any two self-adjoint operators
and provides a mechanism for deriving a minimizing function for the uncertainty equation.
We first recall some basic definitions and fix some notations.
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Figure 4. Sheared square f1 (left) and |T(ψ2,1,0)| (right, ”wrong” shear factor).

Figure 5. Sheared square f1 (left) and |T(ψ2,1,1)| (right, ”matching” shear factor).

Definition/Notation 4.1. Let P be an operator on a Hilbert space H and let ψ be an
element of H. The mean of the action of P on ψ is defined by µP (ψ) = 〈P 〉, where the
triangular parenthesis mean an average over the signal, i.e., 〈X〉 =

∫
ψ∗Xψ. The variance

of P with respect to ψ is defined by

∆Pψ := 〈(P − µP (ψ))2ψ, ψ〉. (9)

Let Q be also an operator on H. Then the commutator [P,Q] is given by

[P,Q] := PQ−QP.

Now we can state the general uncertainty principle, which can for instance be found in
the book [12].
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Figure 6. Sheared circle f0.5 (left) and |T(ψ1,1,0)| (right, ”wrong” shear factor).

Figure 7. Sheared circle f0.5 (left) and |T(ψ1,1,0.5)| (right, ”matching” shear factor).

Theorem 4.2. Two self-adjoint operators A and B on a Hilbert space H obey the uncertainty
relation

∆Aψ∆Bψ ≥ 1

2
|〈[A,B]〉| for all ψ ∈ H. (10)

A function ψ is said to have minimal uncertainty if the inequality (10) turns into an equality.
This happens if and only if there exists an η ∈ iR such that

(A− µA(ψ))ψ = η(B − µB(ψ))ψ. (11)

In many cases, this last relation yields a partial differential equation for each non-commuting
couple of operators.

In this study, we consider a bank of filters that is generated by the application of the
operations of the Shearlet group to some mother function. The operation of the group close
to the identity element can be described using the infinitesimal generators of the group.
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Figure 8. Sheared circle f0.5 (left) and |T(ψ2,1,0)| (right, ”wrong” shear factor).

Figure 9. Sheared circle f0.5 (left) and |T(ψ2,1,0.5)| (right, ”matching” shear factor).

The group representation is unitary and thus the infinitesimal generators can be made self-
adjoint operators. Therefore, the general uncertainty theorem stated above provides a tool
for obtaining uncertainty principles using these infinitesimal generators.

This study aims at providing the minimizers of the uncertainty relations associated with
the Shearlet group, thereby providing mother shearlets for optimal accuracy of the param-
eters of the continuous Shearlet transform. Before doing so, we shall make an important
comment about the minimizers, determined using Theorem 4.2.

Minimizing the combined uncertainties ∆Aψ∆Bψ globally means to determine the set

M := {ψ ∈ H |∆Aψ∆Bψ ≤ ∆Aψ′∆Bψ′ ∀ψ′ ∈ H}.

Minimizers corresponding to Theorem 4.2 belong to the set

M′ := {ψ ∈ H |∆Aψ∆Bψ = 1
2
|〈ψ, [A,B]ψ〉|}.
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Thus, the combined uncertainties of those minimizers reach their individual lower bound,
which not necessarily means, that they are global minimizers in the sense of M.

Note that M = M′ if 1
2
|〈[A,B]〉| does not depend on ψ. This will be the case if [A,B] is

a multiple of the identity, which is true for the Weyl-Heisenberg group in the classic work
of Gabor [13]. If [A,B] does not have this property, we may not necessarily expect, that
minimizers derived according to Theorem 4.2 are global minimizers in the sense, discussed
above. This applies to the shearlet group, discussed in this paper, as well as to earlier work
[7], [22].

5. The Minimizers of the Uncertainty Principle Related to the Shearlet
Transform

In this section we will formulate the uncertainty principles that are related to the Shearlet
group and the Shearlet transform and derive functions that attain minimal uncertainty.

Theorem 5.1. (i) The infinitesimal generators of the Shearlet group S, with respect
to the scaling a ∈ R+, the shear parameter s ∈ R and the translation parameters
t1, t2 ∈ R, are given by

(Taψ)(x, y) = −i(3
4
ψ + x

∂

∂x
ψ +

y

2

∂

∂y
ψ),

(Tsψ)(x, y) = −iy ∂
∂x
ψ,

(Tt1ψ)(x, y) = −i ∂
∂x
ψ,

(Tt2ψ)(x, y) = −i ∂
∂y
ψ.

(ii) We have
[Ts, Tt1 ] = [Tt1 , Tt2 ] = 0.

Moreover, the partial differential equations that result from the non-vanishing com-
mutation relations are
(a) for the scale and shear operators,

−3i

4
ψ − ixψx −−iy

2
ψy − µaψ = λ1(−iyψx − µsψ), (12)

(b) for the scale and x-translation operator,

−3i

4
ψ − ixψx −−iy

2
ψy − µaψ = λ2(−iψx − µt1ψ), (13)

(c) for the scale and y-translation operator,

−3i

4
ψ − ixψx −−iy

2
ψy − µaψ = λ3(−iψy − µt2ψ), (14)

(d) and for the shear and translation operator in the y-direction,

−iyψx − µsψ = λ4(−iψy − µt2ψ). (15)

(iii) The partial differential equations (12)–(15) do not possess a simultaneous solution.
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(iv) There exists a solution for the differential equations (12)–(14), hence a minimizer
for the scale-shear and scale-translations uncertainty, which is obtained on the char-
acteristic lines x = cy2 and is given by

ψ(x, y) = ψ(cy2, y) = τ(
x

y2
)y−

3
2
+2iµa , where τ ∈ L2(R2).

(v) There exists a solution for the differential equation (15), hence a minimizer for the
scale and y-translation uncertainty, which is given by

ψ(x, y) = ceiµs
x
y .

Proof. (i) The derivation of the infinitesimal generators is straightforward and is done by
calculating the appropriate derivatives of the unitary representation of the Shearlet
group with respect to the parameters of S. We obtain

(Taψ)(x, y) := i
∂

∂a
[σ(a, s, t1, t2)ψ](x, y)|a=1,s=0,t1=0,t2=0

= −i(3
4
ψ + x

∂

∂x
ψ +

y

2

∂

∂y
ψ)

(Tsψ)(x, y) := i
∂

∂s
[σ(a, s, t1, t2)ψ](x, y)|a=1,s=0,t1=0,t2=0 = −iy ∂

∂x
ψ

(Tt1ψ)(x, y) := i
∂

∂t1
[σ(a, s, t1, t2)ψ](x, y)|a=1,s=0,t1=0,t2=0 = −i ∂

∂x
ψ

(Tt2ψ)(x, y) := i
∂

∂t2
[σ(a, s, t1, t2)ψ](x, y)|a=1,s=0,t1=0,t2=0 = −i ∂

∂y
ψ

(ii) To prove the first claim we compute

[Ts, Tt1 ] = (−i)2y
∂

∂x

∂

∂x
− (−i)2 ∂

∂x
y
∂

∂x
= 0.

A similar computation shows that [Tt1 , Tt2 ] = 0. On the other hand, it is easy to
see that the operator Ta does not commute with Ts, Tt1 and Tt2 , and Ts does not
commute with Tt2 . By using (11), we obtain the set of four differential equations for
those pairs of operators.

(iii) Since τ cannot be chosen such that the solution for (12)–(14) in (iv) does coincide
with the solution for (15) in (v), there is no simultaneous solution for the full set of
differential equations.

(iv) Our analysis involves solving each differential equation independently, thus to min-
imize the uncertainties between pairs of operators. First, we find a solution that
minimizes the combined uncertainties of the scale and shear operators (12), which
is given by

ψ(cy2 + 2λ1y, y) = τ(
2λ1y + cy2

y2
)y−

3
2
+2iµa−2iλ1µs ,

where τ is a L2 function. This solution is given along the characteristic line x =
2λ1y + cy2. As x and y are both real valued variables, we are forced to constraint
λ1 = 0 to obtain a valid expression: x = cy2. Next, we consider the differential
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Figure 10. A possible solution for minimal uncertainty for the scale-shear
and scale-translations uncertainty. The minimizer shown here is given by:

ψ(x, y) = e
− 1

2
( x

y2 )2
y−

3
2
+2iµa . On the left we see the real value of the function,

at the middle its imaginary value and on the right its absolute value.

equation (13) that arises for the scale and x-translation operators. The function
that minimizes their mutual uncertainty is calculated to be

ψ(cy2 + λ2, y) = τ(
λ2 + cy2

y2
)y−

3
2
+2iµa−2iλ2µt1 . (16)

This solution is given for values of x that satisfy: x = λ2 + cy2. Again, we are
forced to set λ2 = 0 to obtain real values for the coordinates. This solution then
coincides with the one obtained for the scale and shear uncertainties. The function
that minimizes the combined uncertainty of the scale and y-translations operators
(14) is given by

ψ(c(y − 2λ3)
2, y) = τ(

(y − 2λ3)
2

y2
)(y − 2λ3)

− 3
2
+2iµa−2iλ3µt2 .

As can be seen, also here λ3 = 0 and the three solutions coincide for the setting
λ1 = λ2 = λ3 = 0. In order for this solution to be square integrable the function
τ( x

y2
) should be square integrable.

(v) We set, in the original equation, λ4 = 0, and obtain Tsψ = 0 namely

−iyψx − µsψ = 0

which has the solution
ψ(x, y) = ceiµs

x
y .

�

A sketch of the solution in (iv) can be seen in Figure 10 for which τ is selected to be

τ
(
x
y2

)
= e

− 1
2
( x

y2 )2
.

Part (ii) of Theorem 5.1 shows that the exact shear attribute can be simultaneously known
with the position in the x direction and that the exact positions in the x- and y-direction
can also be simultaneously known.

As an adding to part (iii) we mention that considering a general solution of the type
of the rotation invariant solution that is offered in [7] for the SIM(2) group, we may get
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”shear-invariant” solutions. These, however, are simply constant along one direction, and
are therefore not very interesting.

We further remark that the minimizer derived in (v) gives us a shear-invariant solution,
that minimizes the uncertainties between the shear and the y-translations as well as the
shear and the scaling. Any function that is constant along its x-direction (solutions with
µs = 0) or that depends only on x

y
can be valid solutions.

6. Square-Integrability and Admissibility of the Minimizers

In the previous section it was proven that the minimal uncertainty for the scale-shear and
scale-translation relations is attained by choosing a function of the form

ψ(x, y) = τ(
x

y2
)y−

3
2
+2iµa . (17)

The first expression of the RHS (τ( x
y2

)) is defined along the characteristic lines x = cy2. It is

easy to observe that this function can never be contained in L2 unless it coincides with the
zero function. Moreover, in Section 2.2 we have formulated the admissibility condition related
to the unitary representation σ of the Shearlet group (see (8)). Naturally, we would like the
minimizer of the uncertainty related to the Shearlet group to be an admissible function.
In the next subsections, we first address the issue of square integrability, and choose an
appropriate weight function to obtain this quality. Then, we reformulate the admissibility
condition as a variational problem in which we search for a function that is the closest to
our minimizer in the L2-sense, and in the same time satisfies the admissibility equation.

6.1. Square-Integrability of the Minimizers. It is possible to choose an appropriate
weight function on R2 in order to obtain square integrability. The idea will be to choose a
parameterization of R2\(({0} ×R)∪ (R× {0})) in such a way that one parameter indicates
to which characteristic line a point belongs to, whereas the second parameter parameterizes
the particular characteristic line itself. Notice that the cross ({0} × R) ∪ (R × {0}) needs
to be excluded due to the fact that no characteristic line intersects it except for the origin.
The weight function will then be chosen accordingly in the sense that it does not act on the
first parameter, but provides sufficient decay with respect to the second one.

The parameterization of

R := R2\(({0} × R) ∪ (R× {0})) (18)

that we employ here is given by

ϕ : R→ R, ϕ : (c, t) 7→ (ct2, t) = (x, y). (19)

It is easy to see that this map is indeed bijective with the inverse given by ϕ−1(x, y) = ( x
y2
, y).

The Jacobian determinant of ϕ is t2. We also wish to mention that this is by far not the
only possible choice. We chose this parameterization because the form of the characteristic
lines c = x

y2
seems to mark it as the most natural one.

The following proposition makes these considerations precise.

Proposition 6.1. Let τ ∈ L2(R), let w2 : R → [0,∞) be a weight function which satisfies∫
R |t|

−1w2(t) dt < ∞, and let R and ϕ be defined by (18) and (19), respectively. Define
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w : R → R+ by w(x, y) = (1 ⊗ w2)(ϕ
−1(x, y)), where 1(t) = 1 for all t ∈ R. Then the

minimizer ψ defined by (17) satisfies

ψ ∈ L2
w(R2).

Proof. Employing the definition of the parameterization ϕ, we obtain∫
R2

|ψ(x, y)|2w(x, y) d(x, y) =

∫
R2

|ψ(ct2, t)|2w(ct2, t) t2 d(c, t)

=

∫
R2

|τ(c)|2|t|−3t2(1⊗ w2)(c, t) d(c, t)

= ‖τ‖2
2

∫
R
|t|−1w2(t) dt

< ∞,

where the last step follows from the choice of the weight w2. �

In the following we provide an example of a family of appropriate weight functions w2.

Example 6.2. Let w2 : R → R+ be defined by

w2(t) = |t|α+1(1 + t2)−
α+β

2 .

Provided that α > 1 and β > 1, it is straightforward to show that w2 then satisfies∫
R
|t|−1w2(t) dt <∞,

thereby serving as a possible choice for the weight function in Proposition 6.1.

6.2. Admissibility of the Minimizers. In Section 2.2 we have formulated the admissibil-
ity condition associated with the Shearlet group,∫

R

∫
R

|ψ̂(ωx, ωy)|2

ω2
x

dωy dωx < +∞.

In Section 5 we have obtained the minimizer with respect to the scale-shear and scale-
translation uncertainty relations,

ψ̃(x, y) = τ(
x

y2
)y−

3
2
+2iµa .

In this section, we would like to obtain the function that is closest to this minimizer in
the L2-sense, and that is minimizing the admissibility condition integral. We formulate this
problem in a variational setting and obtain the solution as the minimizer of a functional.

Proposition 6.3. Let us define the following functional

F (ψ̂) = α

∫
R

∫
R

|ψ̂(ωx, ωy)|2

|ωx|2
dωy dωx +

∫
R

∫
R
|ψ̂(ωx, ωy)− ˆ̃ψ(ωx, ωy)|2 dωy dωx (20)
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where ψ̃ is the above mentioned minimizer obtained for the scale-shear and scale-translation
uncertainty relation. Then, the minimizer for this functional is given by

ψ̂(ωx, ωy) =
|ωx|2

α+ |ωx|2
ˆ̃ψ(ωx, ωy). (21)

Proof. Let us consider the functional Φ(t) = F (ψ̂ + tĥ) and look for the minimizer of this
functional by calculating its derivative with respect to t and evaluating it for t = 0. This
gives the following equation

α

∫
R

∫
R

(
ψ̂(ωx, ωy)ĥ(ωx, ωy) + ψ̂(ωx, ωy)ĥ(ωx, ωy)

|ωx|2

)
dωy dωx

+

∫
R

∫
R

(
(ψ̂(ωx, ωy)− ˆ̃ψ(ωx, ωy))ĥ(ωx, ωy) + (ψ̂(ωx, ωy)− ˆ̃ψ(ωx, ωy))ĥ(ωx, ωy)

)
dωy dωx

= 0,

that may be rearranged as

αψ̂(ωx, ωy) + |ωx|2ψ̂(ωx, ωy) = ˆ̃ψ(ωx, ωy)|ωx|2 (22)

to finally obtain the result

ψ̂(ωx, ωy) =
|ωx|2

α+ |ωx|2
ˆ̃ψ(ωx, ωy). (23)

�

Thus, we obtain an approximation to the minimizer with respect to the scale-shear and
scale-translation uncertainties that is admissible and has a minimal distance to the minimizer
in the L2-sense. The real value of a possible minimizer is presented in Figure 11 along with
its various versions with respect to different values of α (Figure 12).

Figure 11. Original minimizer
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Figure 12. A possible approximation for the solution of minimal uncertainty
for the scale-shear and scale-translations uncertainty that is admissible in the
sense that it minimizes the admissibility condition integral. We provide this
function for several values of the weight factor α: α = 0.1 (top left), α = 1
(top middle), α = 10 (top right), α = 100 (bottom left) and α = 106 (bottom
right).

7. Discussion

Wavelets have proven to be a useful tool in several signal and image processing applications.
Still, there is a growing interest in recent years in oriented wavelets, as the isotropic ones do
not capture singularities along curves in images. This interest has led to the introduction of
ridgelets, curvelets and shearlets to name a few.

Usually, the generation of 2D wavelets is done by applying the operations of the SIM(2)
group to some mother function. The full span of linear transforms can naturally be given by
the full affine group. Looking at subsets of the full affine group, we may obtain the SIM(2)
group that accounts for rotations and a single scaling that generate the usual 2D wavelet
transform, or alternatively, the Shearlet group that accounts for some coupled scaling and
shear, with no rotations. It seems that the shear and rotation operations play similar roles
in terms of the tiling of the frequency plane. The shear operation can be seen as a partial
rotation in terms of the infinitesimal generators of the associated group.

Once we select some representation, we also have to determine a mother function. Then,
a whole bank of filters is generated by applying the actions of the associated group on
this mother function. The selection of this mother function can be done according to the
application and numerical simplicity. It can also be the function that provides the minimal
uncertainty regarding the localization of information in the feature space (where features
can be location in space, frequency, scale, shear etc.).
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In this study, we have shown that the Shearlet transform can be related to a group,
and provided the representation of this group. Then, we have applied the mechanism of
calculating the uncertainty relations between the infinitesimal operators that generate this
Shearlet group: scaling, shear and translations. Two commutation relations have vanished:
those between the translations in the x and the y directions, and those between the shear
and the translations in the x direction. This means that knowing exactly our location in
both the x and y directions is possible. Moreover, we may exactly know our location in
the x direction, as well as the shear value. For those commutation relations that did not
vanish, we have learnt that finding a solution with respect to all of them is not possible.
Nevertheless, we obtain a solution that allows good localization with respect to scale and
shear, and scale and translations. This solution, however, does not allow good localization
(in terms of minimal uncertainty) for shear and translations in the y-direction.

To conclude, even in cases where the efforts to obtain a global minimizer with respect to
all the pairs of non-commuting operators are futile, there is a possibility to find solutions
that minimize some sub-set of these uncertainties. Determining which parameters are needed
with greater accuracy and which are not, probably depends on the application at hand.
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