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Abstract. In this paper, we study the relationships of the newly developed continuous shearlet
transform with the coorbit space theory. It turns out that all the conditions that are needed to
apply the coorbit space theory can indeed be satisfied for the shearlet group. Consequently, we
establish new families of smoothness spaces, the shearlet coorbit spaces. Moreover, our approach
yields Banach frames for these spaces in a quite natural way. We also study the approximation
power of best n-term approximation schemes and present some first numerical experiments.

1. Introduction

One of the central issues in applied analysis is the problem of analyzing and approximating a
given signal. The first step is always to decompose the signal with respect to a suitable set of
building blocks. These building blocks may, e.g., consist of the elements of a basis, a frame, or even
of the elements of huge dictionaries. Classical examples with many important practical applications
are wavelet bases/frames and Gabor frames, respectively. The goal is always to find those building
blocks that are most appropriate for the given signal. This means, e.g., that the building blocks give
rise to sparse representations and/or that interesting features of the signal can be easily extracted.

In signal/image analysis/processing, the wavelet transform has already been very successfully
applied and is therefore very often the method of choice. Nevertheless, there is still a serious prob-
lem: in image analysis, it is desirable to obtain directional information which is very complicated
in the wavelet setting. To overcome this deficiency, several approaches have been suggested in the
last few years such as ridgelets [2], curvelets [3], contourlets [9], shearlets [18] and many others.
Among all these approaches, the shearlet transform stands out for the following reason. In recent
studies [5], it has been shown that the shearlet transform is related with group theory, i.e., this
transform can be derived from a strongly continuous, irreducible square-integrable representation
of a certain group, the shearlet group. This property provides us with a link to another central
problem in applied analysis, namely how to measure the smoothness of a given function. Classical
approaches are, e.g., based on (strong or weak) derivatives (Hölder and Sobolev spaces), or mod-
uli of smoothness (Besov spaces). However, by means of the concept of square-integrable group
representations it is possible to derive a unified approach to many different smoothness measures:
they can all be restated in terms of the decay of the voice transform associated with the repre-
sentation. Moreover, by discretizing the representation in a judicious way, one obtains frames for
these smoothness spaces which can therefore be interpreted as the natural building blocks for the
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underlying transformation. All these relationships have been clarified in the so-called coorbit space
theory which has been derived by Feichtinger and Gröchenig in a series of papers [10, 11, 12, 13].

Now, once we know that the shearlet transform also stems from a square-integrable group rep-
resentation, it is quite natural to study the relationships with the coorbit theory and to ask the
following questions:

• Is it possible to apply the general coorbit theory to the shearlet group, i.e., can all the
necessary assumptions indeed be satisfied?

• If so, what can be said about the structure of the associated new families of smoothness
spaces, the shearlet coorbit spaces?

• What is the convergence order that can be achieved by approximation schemes based on
the shearlet frames?

• Are the resulting shearlet frames really useful in practice, i.e., is it possible to decompose
and to reconstruct images in an efficient way?

In this paper, we give at least partial answers to these questions. It turns out that indeed all
the assumptions needed for the coorbit theory can be fulfilled. The resulting conditions look quite
canonical and the associated shearlet frames can be derived in a very natural way. Note that
curvelet–type decomposition spaces were considered in [1].

The second question is clearly substantial enough to fill a whole series of papers, however, in
this article we prove a first result which says that at least the very important Schwartz space is
contained in the shearlet coorbit spaces.

In the context of the third question, especially nonlinear approximation methods such as best
n-term approximations are of interest. In this paper, we show that similar to Gabor frames [17]
the approximation order of best n-term approximation schemes based on shearlet frames depends
on the smoothness of the signal as measured in a second shearlet coorbit space.

The answer to the fourth question is again a long-term project. Nevertheless, we present some
first numerical experiments that indicate the usability of the shearlet approach.

This paper is organized as follows. In Section 2, we introduce the shearlet group and establish the
square-integrability of its representation in L2(R2). For a slightly different version of the shearlet
group, the reduced shearlet group, similar questions have already been studied in [5]. However,
the representation of the reduced shearlet group fails to be irreducible so that this group is not
suitable in our setting. In Section 3, we briefly recall the basic concepts of the coorbit space theory
as far as it is needed for our purposes. In Section 4, we study the relationships of the shearlet
transform with the coorbit space theory. First of all, in Subsection 4.1, we show that all the
conditions to construct the coorbit spaces can be satisfied, i.e., the new family of shearlet coorbit
spaces is established. Then, in Subsection 4.2, we derive the associated (Banach) frames for these
spaces. To this end, suitable discrete subsets, the so-called U -dense sets, have to be constructed
and an additional integrability condition has to be satisfied. In Subsection 4.3, we prove that the
Schwartz space is contained in our shearlet coorbit spaces. Then, in Subsection 4.4, we study the
power of best n-term approximation schemes based on the shearlet frames. Finally, in Section 5 we
investigate the performance of our new frame algorithms by applying them to some test images.

2. Continuous Shearlet Transform

In this section, we introduce the definition and basic properties of shearlet systems and of the
Continuous Shearlet Transform from a group–theoretical point of view.

Recall that a unitary representation of a locally compact group G with the left–invariant Haar
measure µG on a Hilbert space H is a homomorphism π from G into the group of unitary operators
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U(H) on H which is continuous with respect to the strong operator topology. Given a unitary
representation π of G on H, a function ψ ∈ H is called admissible, if∫

G
|〈ψ, π(g)ψ〉|2dµG(g) <∞.

The admissibility condition is important, since it yields to a resolution of identity that allows the
reconstruction of a function f ∈ H from its voice transform Vψ : H → L2(G) given by

Vψ(f)(g) := 〈f, π(g)ψ〉 . (1)

Suppose that W is a closed subspace of H. Then W is called an invariant subspace for π, if
π(g)W ⊆ W for all g ∈ G. If there exists a nontrivial invariant subspace for π, then π is called
reducible, otherwise π is irreducible. If π is irreducible and there exists at least one nontrivial
admissible function ψ ∈ H, then π is called square-integrable. In this case there exists a positive,
densely defined self-adjoint operator A on H such that the following orthogonality relation holds
true: ∫

G
〈π(g)f̃1, f1〉〈π(g)f̃2, f2〉dµG(g) = 〈Af̃2, Af̃1〉〈f1, f2〉. (2)

For more details on the theory of locally compact groups and group representations we refer to [14].
In this paper, we are interested in the shearlet group. For a ∈ R∗ := R \ {0} and s ∈ R, let

Aa =
(
a 0
0 sgn (a)

√
|a|

)
and Ss =

(
1 s
0 1

)
denote the parabolic scaling matrix and the shear matrix, respectively, where sgn (a) denotes the
sign of a. Further, for t ∈ R2 and M ∈ GL(2,R), let

Tt f(x) := f(x− t) and DM f(x) := |detM |−
1
2 f(M−1x)

denote the translation and dilation operator on L2(R2), respectively. It is easy to check that
TtDSsAa is a unitary operator on L2(R2). The (full) shearlet group S is then defined to be the set
R∗ × R× R2 endowed with the group operation

(a, s, t) (a′, s′, t′) = (aa′, s+ s′
√
|a|, t+ SsAat

′).

A left–invariant Haar measure of S is given by

µS =
da

|a|3
ds dt.

Let π : S → U(L2(R2)) be defined by

π(a, s, t)ψ(x) := TtDSsAa ψ = |a|−
3
4 ψ(A−1

a S−1
s (x− t)). (3)

In the following, we use the abbreviation ψa,s,t := π(a, s, t)ψ. In [5] it was shown that the mapping
π is a unitary representation of the reduced shearlet group R+ × R × R2, i.e., the group with only
positive scalings a > 0. For the convenience of the reader we provide a short proof of this fact for
the full shearlet group.

Lemma 2.1. The mapping π defined by (3) is a unitary representation of S.

Proof. Let ψ ∈ L2(R2), x ∈ R2, and (a, s, t), (a′, s′, t′) ∈ S. Using that

A−1
a′ S

−1
s′ A

−1
a S−1

s =

(
1
a′ − s′

a′

0 sgn (a′)√
|a′|

)(
1
a − s

a

0 sgn (a)√
|a|

)
=

 1
aa′ − s

aa′ −
s′sgn (a)

a′
√
|a|

0 sgn (aa′)√
|aa′|

 = A−1
aa′S

−1

s+s′
√
|a|
,



4 STEPHAN DAHLKE, GITTA KUTYNIOK, GABRIELE STEIDL, AND GERD TESCHKE

we obtain

π(a, s, t)(π(a′, s′, t′)ψ)(x) = |a|−
3
4π(a′, s′, t′)ψ(A−1

a S−1
s (x− t))

= |aa′|−
3
4ψ(A−1

a′ S
−1
s′ (A−1

a S−1
s (x− t)− t′))

= |aa′|−
3
4ψ(A−1

a′ S
−1
s′ A

−1
a S−1

s (x− (t+ SsAat
′)))

= |aa′|−
3
4ψ(A−1

aa′S
−1

s+s′
√
|a|

(x− (t+ SsAat
′)))

= π((a, s, t)(a′, s′, t′))ψ(x).

�

Let the Fourier transform be defined by

Ff(ω) = f̂(ω) =
∫

R2

f(x)e−2πi〈ω,x〉 dx.

Then straightforward computation yields

ψ̂a,s,t(ω) = |a|
3
4 e−2πitωψ̂

(
AT
aS

T
s ω
)

= |a|
3
4 e−2πitωψ̂

(
aω1, sgn (a)

√
|a|(sω1 + ω2)

)
. (4)

The following result shows that the unitary representation π defined in (3) is a square-integrable
representation of S. This is not the case for the reduced shearlet group, in particular the represen-
tation is not irreducible.

Theorem 2.2. A function ψ ∈ L2(R2) is admissible if and only if it fulfills the admissibility
condition

Cψ :=
∫

R

∫
R

|ψ̂(ω1, ω2)|2

ω2
1

dω2 dω1 <∞. (5)

Then, for any f ∈ L2(R2), the following equality holds true:∫
S
|〈f, ψa,s,t〉|2 dµS(a, s, t) = Cψ ‖f‖2

2 . (6)

In particular, the unitary representation π is irreducible and hence square-integrable.

Proof. Employing the Plancherel theorem and (4), we obtain∫
S
|〈f, ψa,s,t〉|2 dµS(a, s, t) =

∫
S
|f ∗ ψ∗a,s,0(t)|2 dt ds

da

|a|3

=
∫

R

∫
R

∫
R2

|f̂(ω)|2|ψ̂∗a,s,0(ω)|2 dω ds da

|a|3

=
∫

R

∫
R

∫
R2

|f̂(ω)|2|a|
3
2 |ψ̂(ATa S

T
s ω)|2 dω ds da

|a|3

=
∫

R

∫
R2

∫
R
|f̂(ω)|2|a|−

3
2 |ψ̂(aω1, sgn (a)

√
|a|(ω2 + sω1))|2 ds dω da,

where ψ∗a,s,0(x) = ψa,s,0(−x). Now we use that∫
R

∫
R

f(ax) dx da =
∫
R

∫
R

1
|a|

f(y) dy da.
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Substituting ξ2 := sgn (a)
√
|a|(ω2 + sω1), i.e., sgn (a)

√
|a|ω1 ds = dξ2, we obtain∫

S
|〈f, ψa,s,t〉|2 dµS(a, s, t) =

∫
R

∫
R2

∫
R
|f̂(ω)|2 a

−2

|ω1|
|ψ̂(aω1, ξ2)|2 dξ2 dω da.

Next, we substitute ξ1 := aω1, i.e., ω1 da = dξ1 which results in∫
S
|〈f, ψa,s,t〉|2 dµS(a, s, t) =

∫
R

∫
R2

∫
R
|f̂(ω)|2 ω2

1

ξ21ω
2
1

|ψ̂(ξ1, ξ2)|2 dξ2 dω dξ1 = Cψ ‖f‖2
2.

Setting f := ψ, we see that ψ is admissible if and only if Cψ is finite.
Now we show how (6) implies the irreducibility of π. Towards a contradiction, assume that there

exists a closed, proper, nontrivial subspace W of L2(R2) such that π(g)W ⊆W for all g ∈ S. Hence
there exist nontrivial functions ψ ∈W and f ∈W⊥ such that

〈f, ψa,s,t〉 = 0 for all (a, s, t) ∈ S.

Employing (6) we obtain

0 =
∫

S
|〈f, ψa,s,t〉|2

da

|a|3
ds dt = ‖f‖2

2

∫
R

∫
R

|ψ̂(ω1, ω2)|2

ω2
1

dω2 dω1,

which is only possible if

0 =
∫

R

∫
R

|ψ̂(ω1, ω2)|2

ω2
1

dω2 dω1.

This is a contradiction, since ψ 6= 0. �

A function ψ ∈ L2(R2) fulfilling the admissibility condition (5) is called a continuous shearlet.
Further, the voice transform (1) which we denote for our special case G = S by SHψ instead of Vψ
is given by SHψ : L2(R2) → L2(S),

SHψf(a, s, t) = 〈f, ψa,s,t〉 = (f ∗ ψ∗a,s,0)(t), (7)

and is called Continuous Shearlet Transform. An example of a continuous shearlet can be con-
structed as follows: Let ψ1 be a continuous wavelet with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−2,−1

2 ]∪[12 , 2],
and let ψ2 be such that ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1]. Then the function ψ ∈ L2(R2) defined
by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2ξ1 )

is a continuous shearlet. The corresponding family of continuous shearlets was exploited in [20]
to show that the Continuous Shearlet Transform precisely resolves the wavefront set of a distribu-
tion. Generally speaking, for a given (small) scale a the Continuous Shearlet Transform provides
information about the location t and orientation s of singularities of f .

3. Coorbit Theory

In this section, we want to briefly recall the basic facts concerning the coorbit theory as developed
by Feichtinger and Gröchenig in a series of papers [10, 11, 12, 13]. This theory is based on square-
integrable group representations and has the following important advantages:

• The theory is universal in the following sense: Given a Hilbert space H and a square-
integrable representation of a group G, the whole abstract machinery can be applied.
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• The approach provides us with natural families of smoothness spaces, the coorbit spaces.
They are defined as the collection of all elements in the Hilbert space H for which the voice
transform associated with the group representation has a certain decay. In many cases,
e.g., for the affine group and the Weyl-Heisenberg group, these coorbit spaces coincide with
classical smoothness spaces such as Besov and modulation spaces, respectively.

• The Feichtinger-Gröchenig theory does not only give rise to Hilbert frames in H, but also
to frames in scales of the associated coorbit spaces. Moreover, not only Hilbert spaces, but
also Banach spaces can be handled.

• The discretization process that produces the frame does not take place in H (which might
look ugly and complicated), but on the topological group at hand (which is usually a more
handy object), and is transported to H by the group representation.

First of all, in Subsection 3.1, we explain how the coorbit spaces can be established. Then, in
Subsection 3.2, we discuss the discretization problem, i.e., we outline the basic steps to construct
Banach frames for these spaces. The facts are mainly taken from [15].

3.1. Coorbit Spaces. Fix an irreducible, unitary, continuous representation π of a σ-compact
group G in a Hilbert space H. Moreover, choose a weight function w, i.e., w(gh) ≤ w(g)w(h) and
w(g) ≥ 1 for all g, h ∈ G. Let us assume that the representation π is w–integrable, in other words

Aw := {ψ ∈ H :
∫
G
|〈ψ, π(g)ψ〉|w(g)dµG(g) <∞} is non-trivial. (8)

Then, the first step is to construct a suitable large object that may serve as the reservoir for the
coorbit spaces. For 1 ≤ p <∞, let

Lp,w(G) := {f measurable on G : ‖f‖Lp,w(G) :=
(∫

G
|f(g)|pw(g)pdµG(g)

)1/p

<∞},

and let L∞,w be defined with the usual modifications. We consider the space

H1,w := {f ∈ H : Vψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(G)}, (9)

with norm
‖f‖H1,w := ‖Vψf‖L1,w . (10)

Then, the anti-dual H∼
1,w, the space of all continuous conjugate-linear functionals on H1,w, will

serve as the reservoir for selection. H1,w and H∼
1,w are π-invariant Banach spaces with continuous

embeddings
H1,w ↪→ H ↪→ H∼

1,w, (11)
and their definition is independent of the analyzing vector ψ ∈ Aw. Moreover, it follows that
H1,w = Aw as sets. The inner product on H ×H extends to a sesquilinear form on H∼

1,w ×H1,w,
therefore for ψ ∈ H1,w and f ∈ H∼

1,w the extended representation coefficients

Vψ(f)(x) := 〈f, π(x)ψ〉H∼1,w×H1,w

are well-defined. Now, for 1 ≤ p ≤ ∞, we define the coorbit spaces

Hp,w := {f ∈ H∼
1,w : Vψ(f) ∈ Lp,w(G)} (12)

with norms
‖f‖Hp,w := ‖Vψf‖Lp,w(G).

Indeed H1,w is the same space as those defined in (9). Moreover, we have that H = H2,1. Again,
the definition is independent of the analyzing vector ψ and of the weight w in the sense that w̃
with w̃(g) ≤ Cw(g) for all g ∈ G and with Aw̃ 6= {0} gives rise to the same spaces.
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3.2. Banach Frames. The Feichtinger-Gröchenig theory also provides us with a machinery to
construct atomic decompositions and Banach frames for the coorbit spaces introduced above. Some
further preparations are necessary. Given a compact set U with non-void interior and e ∈ U , the
set of basic atoms is defined by

Bw := {ψ ∈ H : 〈ψ, π(·)ψ〉 ∈ M(L1,w(G))}, (13)

where
M(L1,w) := {F such that MF (g) := sup

u∈gU
|F (u)| ∈ L1,w(G)}.

It follows that Bw ⊂ H1,w. Moreover, a (countable) family X = (gλ)λ∈Λ in G is said to be U -dense if
∪λ∈ΛgλU = G, and separated if for some compact neighborhood Q of e we have giQ∩gjQ = ∅, i 6= j,
and relatively separated if X is a finite union of separated sets. Finally, the U–oscillation is defined
as

oscU (g) := sup
u∈U

|Vψ(ψ)(ug)− Vψ(ψ)(g)|. (14)

Then, one can show the following decomposition theorem which says that discretizing the repre-
sentation by means of an U -dense set produces an atomic decomposition for Hp,w.

Theorem 3.1. Assume that the irreducible, unitary representation π is w-integrable and choose
ψ ∈ Bw normalized by ‖Aψ‖ = 1, where A is defined by (2). Choose a neighborhood U so small
that

‖ oscU ‖L1,w(G) < 1. (15)

Then for any U -dense and relatively separated set X = (gλ)λ∈Λ the space Hp,w has the following
atomic decomposition: If f ∈ Hp,w, then it has the atomic decomposition

f =
∑
λ∈Λ

cλ(f)π(gλ)ψ (16)

where the sequence of coefficients depends linearly on f and satisfies

‖(cλ(f))λ∈Λ‖`p,w ≤ C‖f‖Hp,w (17)

with a constant C depending only on ψ and with `p,w being defined by

`p,w := {c = (cλ)λ∈Λ : ‖c‖`p,w := ‖cw‖`p <∞},

where w = (w(gλ))λ∈Λ. Conversely, if (cλ(f))λ∈Λ ∈ `p,w, then f =
∑

λ∈Λ cλπ(gλ)ψ is in Hp,w and

‖f‖Hp,w ≤ C ′‖(cλ(f))λ∈Λ‖`p,w . (18)

Given such an atomic decomposition, the problem arises under which conditions a function f
is completely determined by its moments 〈f, π(gλ)ψ〉 and how f can be reconstructed from these
moments. This is answered by the following theorem which establishes the existence of Banach
frames.

Theorem 3.2. Impose the same assumptions as in Theorem 3.1. Choose a neighborhood U of e
such that

‖ oscU ‖L1,w(G) < 1/‖Vψ(ψ)‖L1,w(G). (19)

Then, for every U -dense and relatively separated family X = (gλ)λ∈Λ in G the set {π(gλ)ψ : λ ∈ Λ}
is a Banach frame for Hp,w. This means that

i) f ∈ Hp,w if and only if (〈f, π(gλ)ψ〉H∼1,w×H1,w)λ∈Λ ∈ `p,w;
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ii) there exist two constants 0 < D ≤ D′ <∞ such that

D ‖f‖Hp,w ≤ ‖(〈f, π(gλ)ψ〉H∼1,w×H1,w)λ∈Λ‖`p,w ≤ D′ ‖f‖Hp,w ; (20)

iii) there exists a bounded, linear reconstruction operator S from `p,w to Hp,w such that

S
(
(〈f, ψ(gλ)ψ〉H∼1,w×H1,w)λ∈Λ

)
= f.

It remains to check how the conditions (15) and (19) can be ensured. One answer is given by
the following lemma proved in [15].

Lemma 3.3. Let Vψ(ψ) ∈ L1,w and oscU ∈ L1,w for one compact neighborhood U of e. Then we
have that ψ ∈ Bw. If, in addition, Vψ(ψ) is continuous, then

lim
U→{e}

‖ oscU ‖L1,w(G) = 0. (21)

For further information on coorbit space theory, the reader is referred to [10, 11, 12, 13, 15].

4. Shearlet Coorbit Theory

In this section we want to establish a coorbit theory based on the square-integrable representation
(3) of the shearlet group.

4.1. Shearlet Coorbit Space. We consider weight functions w(a, s, t) = w(a, s) that are locally
integrable with respect to a and s, i.e., w ∈ Lloc1 (R2). To obtain well–defined shearlet coorbit spaces
(12) which we denote for our special setting G = S by SCp,w instead of Hp,w, more precisely, to get,

SCp,w := {f ∈ H∼
1,w : SHψ(f) ∈ Lp,w(S)},

we have only to ensure that there exists a function ψ ∈ L2(R2) such that SHψ(ψ) = 〈ψ, π(g)ψ〉 ∈
L1,w(S). To this end, we need a preliminary lemma on the support of ψ.

Lemma 4.1. Let a1 > a0 ≥ α > 0, b > 0 and supp ψ̂ ⊆ ([−a1,−a0] ∪ [a0, a1]) × [−b, b]. Then
ψ̂ψ̂a,s,0 6≡ 0 implies a ∈

[
− a1

a0
,−a0

a1

]
∪
[
a0
a1
, a1
a0

]
and s ∈ [−c, c], where c := b

a0

(
1 +

(
a1
a0

)1/2).
Proof. By (4) and since a > 0, we see that the following conditions are necessary for ψ̂(ω)ψ̂a,s,0(ω) 6≡
0:

i)
a0 ≤ ω1 ≤ a1 and a0

a ≤ ω1 ≤ a1
a or

−a1 ≤ ω1 ≤ −a0 and −a1
a ≤ ω1 ≤ −a0

a

ii) −b ≤ ω2 ≤ b and − a−1/2b− sω1 ≤ ω2 ≤ a−1/2b− sω1

Condition i) implies that
a ∈

[a0

a1
,
a1

a0

]
. (22)

For s ≥ 0 and a0 ≤ ω1 ≤ a1 the second condition in ii) becomes

−a−1/2b− sa1 ≤ ω2 ≤ a−1/2b− sa0

and with (22) further

−
(
a0

a1

)−1/2

b− sa1 ≤ ω2 ≤
(
a0

a1

)−1/2

b− sa0.

Together with the first condition in ii) this results in s ≤ b
a0

(
1 +

(
a1
a0

)1/2). The same condition can
be deduced for s ≥ 0 and −a1 ≤ ω1 ≤ −a0.
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For s < 0 and a0 ≤ ω1 ≤ a1 or −a1 ≤ ω1 ≤ −a0, we obtain that s ≥ − b
a0

(
1 +

(
a1
a0

)1/2) is
necessary for ψ̂(ω)ψ̂a,s,0(ω) 6≡ 0. Finally, the case a < 0 can be treated similarly which results in
a ∈

[
− a1

a0
,−a0

a1

]
. This completes the proof. �

Now we can prove the required property of SHψ(ψ) for the shearlet transform SHψ.

Theorem 4.2. Let ψ be a Schwartz function such that supp ψ̂ ⊆ ([−a1,−a0] ∪ [a0, a1]) × [−b, b].
Then we have that SHψ(ψ) ∈ L1,w(S), i.e.,∫

S
|SHψ(ψ)(g)|w(g) dµ(g) <∞.

Proof. Straightforward computation gives∫
S
|SHψ(ψ)(g)|w(g) dµ(g) =

∫
R

∫
R

∫
R2

|〈ψ,ψa,s,t〉|w(a, s) dtds
da

|a|3

=
∫

R

∫
R

∫
R2

|ψ ∗ ψ∗a,s,0(t)|w(a, s) dtds
da

|a|3

=
∫

R

∫
R

∫
R2

|F−1F
(
ψ ∗ ψ∗a,s,0

)
(t)| dtw(a, s) ds

da

|a|3

=
∫

R

∫
R
‖F
(
ψ ∗ ψ∗a,s,0

)
‖F−1L1

w(a, s) ds
da

|a|3

=
∫

R

∫
R
‖ψ̂ ¯̂

ψa,s,0‖F−1L1
w(a, s) ds

da

|a|3
,

where ψ∗ = ψ̄(− ·) and ‖f‖F−1L1
:=
∫

R2 |F−1f(x)| dx for f ∈ L1. By Lemma 4.1 this can be
rewritten as∫

S
|SHψ(ψ)(g)|w(g) dµ(g) =

(∫ −a0/a1

−a1/a0

+
∫ a1/a0

a0/a1

)∫ c

−c
‖ψ̂ ψ̂∗a,s,0‖F−1L1

w(a, s) ds
da

|a|3
,

which is obviously finite. �

4.2. Shearlet Banach Frames. In order to find atomic decompositions and Banach frames for
our shearlet coorbit spaces SCp,w, we have to determine the corresponding U–dense sets first.

Proposition 4.3. Let U be a neighborhood of the identity in S, and let α > 1 and β, γ > 0 be
defined such that

[α−
1
2 , α

1
2 )× [−β

2 ,
β
2 )× [−γ

2 ,
γ
2 )2 ⊆ U. (23)

Then the sequence

{(εαj , βkα
j
2 , S

βkα
j
2
Aαjγm) : j, k ∈ Z, m ∈ Z2, ε ∈ {−1, 1}}

is U -dense and relatively separated.

Proof. Let U be a neighborhood of the identity in S. Then the existence of α > 1 and β, γ > 0
satisfying (23), follows immediately from the fact that

{[a−
1
2 , a

1
2 )× [− b

2 ,
b
2)× [− c

2 ,
c
2)2 : a > 1, b, c > 0}

forms a fundamental system of neighborhoods of the identity in S.
Now set

U0 = [α−
1
2 , α

1
2 )× [−β

2 ,
β
2 )× [−γ

2 ,
γ
2 )2.
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Observe that, by (23), it is sufficient to prove that the sequence {(εαj , βkα
j
2 , S

βkα
j
2
Aαjγm) : j, k ∈

Z, m ∈ Z2, ε ∈ {−1, 1}} is U0-dense.
For this, fix any (x, y, z) ∈ S. In the following we assume that x ∈ R+ in which case we have to

set ε = 1. If x < 0, the same arguments apply while choosing ε = −1.
For all α > 1 and β, γ > 0,

(αj , βkα
j
2 , S

βkα
j
2
Aαjγm) · U0

= {(αju, βkα
j
2 + vα

j
2 , S

βkα
j
2
Aαjγm+ S

βkα
j
2
Aαjw) : (u, v, w) ∈ U0}

= {(αju, α
j
2 (βk + v), S

βkα
j
2
Aαj (γm+ w)) : (u, v, w) ∈ U0}.

Then [logα x− 1
2 , logα x+ 1

2) contains a unique integer j, and there exists a unique u ∈ [α−
1
2 , α

1
2 )

such that logα x = logα u+ j. Further, there exist a unique integer k and a unique v ∈ [−β
2 ,

β
2 ) so

that βk+ v = α−
j
2 y. Finally, there exist unique m2 ∈ Z and w2 ∈ [−γ

2 ,
γ
2 ) with γm2 +w2 = α−

j
2 z2

and unique m1 ∈ Z and w1 ∈ [−γ
2 ,

γ
2 ) such that γm1 + w1 = α−jz1 − βk(γm2 + w2). Since

S
βkα

j
2
Aαj (γm+ w) =

(
αj βkαj

0 α
j
2

)
(γm+ w) =

(
αj(γm1 + w1) + βkαj(γm2 + w2)

α
j
2 (γm2 + w2)

)
,

we have shown that

(x, y, z) = (αju, α
j
2 (βk + v), S

βkα
j
2
Aαj (γm+ w)) ∈ (αj , βkα

j
2 , S

βkα
j
2
Aαjγm) · U0.

Finally, the uniqueness of the decomposition proves immediately that the chosen sequence is
relatively separated. �

Next, we see that we can apply the whole machinery of Theorems 3.1 and 3.2 to our shearlet
group setting if we can prove that ‖ oscU ‖L1,w(S) becomes arbitrarily small for a sufficiently small
neighborhood U of e = (1, 0, 0) ∈ S.

Theorem 4.4. Let ψ be a Schwartz function with supp ψ̂ ⊆ ([−a1,−a0] ∪ [a0, a1])× [−b, b]. Then,
for every ε > 0, there exists a sufficiently small neighborhood U of e so that

‖ oscU ‖L1,w(S) ≤ ε. (24)

Proof. By Theorem 4.2 we have that SHψ(ψ) ∈ L1,w(S). Moreover, it is easy to check that SHψ(ψ)
is continuous on S. Thus, by Lemma 3.3, it remains to show that oscU ∈ L1,w for some compact
neighborhood of e. By definition of oscU and Parseval’s identity we have that

oscU (a, s, t) = sup
(α,β,γ)∈U

∣∣〈ψ̂, ψ̂a,s,t〉 − 〈ψ̂, ψ̂(α,β,γ)(a,s,t)〉
∣∣

= sup
(α,β,γ)∈U

∣∣∣|a| 34F (ψ̂(AaST
s ·)

¯̂
ψ
)

(t)− |aα|
3
4F
(
ψ̂(AaαST

β+s
√
α ·)

¯̂
ψ
)

(γ + SβAαt)
∣∣∣ ,

where we can assume that α > 0. By Lemma 4.1, we see that for (α, β) in a sufficiently small
neighborhood of (1, 0), the function ψ̂(AaαST

β+s
√
α
·) ¯̂
ψ becomes zero except for values a contained

in two finite intervals away from zero and values s in a finite interval. Thus, it remains to show that∫
R2 oscU (a, s, t) dt ≤ C(a, s) with a finite constant C(a, s). We split the integral into three parts∫

R2

oscU (a, s, t) dt = |a|
3
4 (I1 + I2 + I3),
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where

I1 :=
∫

R2

sup
(α,β,γ)∈U

∣∣|1− α
3
4 |F

(
ψ̂(AaST

s ·)
¯̂
ψ
)

(t) dt

I2 :=
∫

R2

sup
(α,β,γ)∈U

α
3
4

∣∣F (ψ̂(AaST
s ·)

¯̂
ψ
)

(t)−F
(
ψ̂(AaST

s ·)
¯̂
ψ
)

(γ + SβAαt)
∣∣ dt

I3 :=
∫

R2

sup
(α,β,γ)∈U

α
3
4

∣∣F (ψ̂(AaST
s ·)

¯̂
ψ
)

(γ + SβAαt)−F
(
ψ̂(AaαST

β+s
√
α ·)

¯̂
ψ
)

(γ + SβAαt)
∣∣ dt.

1. Concerning I1, we see that for every ε > 0 there exists α near 1 such that |1 − α
3
4 | ≤ ε. Since

ψ̂ ∈ S, we have that ψ̂(AaST
s ·)

¯̂
ψ ∈ S so that F

(
ψ̂(AaST

s ·)
¯̂
ψ
)
∈ S for any (a, s). Consequently,

I1 ≤ εC(a, s) with a finite constant C(a, s).

2. Concerning I2, we consider

Ga,s(t) = G(t) = F
(
ψ̂(AaST

s ·)
¯̂
ψ
)

(t) ∈ S.

By Taylor expansion we obtain

|G(γ + SβAαt)−G(t)| = |∇G (t+ θ(γ + SβAαt− t)) (γ + SβAαt− t)|
≤ ‖∇G (t+ θ(SβAαt− t+ γ)) ‖ ‖SβAαt− t+ γ‖
≤ ‖∇G (t+ θ(SβAαt− t+ γ)) ‖ (‖SβAα − I‖ ‖t‖+ ‖γ‖) ,

where θ ∈ [0, 1). For any ε > 0, there exists a sufficiently small neighborhood U of e such that
‖SβAα − I‖ < ε and ‖γ‖ ≤ ε for all (α, β, γ) ∈ U . On the other hand, we have for t = (t1, t2) that

G1(t) :=
∂

∂t1
G(t) =

∂

∂t1
F
(
ψ̂(AaST

s ·)
¯̂
ψ
)

(t)

= F
(
−2πiω1ψ̂(AaST

s ·)
¯̂
ψ
)

(t) = F
(
ψ̂(AaST

s ·)∂1ψ̂
)

(t).

Since ψ ∈ S , we obtain that ∂
∂t1
G ∈ S and similarly that ∂

∂t2
G ∈ S. Thus, since ‖(G1, G2)‖ ≤

|G1|+ |G2|, we conclude that

I2 ≤ ε

∫
R2

sup
(α,β,γ)∈U

α
3
4 (|G1 (t+ θ(SβAαt− t+ γ)) |+ |G2 (t+ θ(SβAαt− t+ γ)) |) (‖t‖+ 1) dt

Now Gi ∈ S, i = 1, 2 implies for all m > 0 and sufficiently small γ that

|Gi (t+ θ(SβAαt− t+ γ)) | ≤ Ci(a, s) (1 + ‖t+ θ(SβAαt− t+ γ)‖2)−m

≤ C̃i(a, s) (1 + ‖t+ θ(SβAαt− t)‖2)−m.

To show that I2 ≤ εC(a, s), we have to prove that

sup
(α,β,0)∈U

(1 + ‖t+ θ(SβAαt− t)‖2)−1 ≤ C̃(a, s) (1 + ‖t‖2)−1.

Straightforward computation gives

‖t+ θ(SβAαt− t)‖2 = (pt1 + qβt2)2 + r2t22,

where p := 1− θ(1− α), q := θ
√
α and r := 1− θ(1−

√
α), hence it remains to show that

(1 + (pt1 + qβt2)2 + r2t22)
−1 ≤ C(1 + t21 + t22)

−1
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for all (α, β, 0) ∈ U . The function g(β) := (pt1 + qβt2)2 + r2t22 has its minimum at β = −pt1
qt2

.

Let U be chosen such that |β| ≤ β0 with some fixed sufficiently small β0. If
∣∣∣pt1qt2 ∣∣∣ ≤ β0, i.e.,

p2t21/(q
2β2

0) ≤ t22, then
1

1 + (pt1 + qβt2)2 + r2t22
≤ 1

1 + r2t22
≤ 1

min{1, r2p2/(2q2β2
0), r2/2}

1
1 + t21 + t22

.

If
∣∣∣pt1qt2 ∣∣∣ > β0 and t1, t2 have the same sign, we see that

1
1 + (pt1 + qβt2)2 + r2t22

≤ 1
1 + (pt1 − qβ0t2)2 + r2t22

.

Set y := pt1 − qβ0t2 and note that y has the same sign as t1 and t2. Then t1 = (y + qβ0t2)/p and
we have to show that

1
1 + y2 + r2t22

≤ C

1 + (y + qβ0t2)2/p2 + t22
.

Now 2yqβ0t2 ≤ y2 + q2β2
0t

2
2 so that

1 + (y + qβ0t2)2/p2 + t22 ≤ 1 + 2y2/p2 + (2q2β2
0/p

2 + 1)t22
≤ max{1, 2/p2, (1 + 2q2β2

0/p
2)/r2} (1 + y2 + r2t22).

The case
∣∣∣pt1qt2 ∣∣∣ > β0 and t1, t2 having different signs can be treated in a similar way and we are

done.

3. Concerning I3, we have that

I3 =
∫

R2

sup
(α,β,γ)∈U

α
3
4

∣∣ ∫
R2

(
ψ̂(AaST

s ω)− ψ̂(AaαST
β+s

√
α ω)

) ¯̂
ψ(ω) e−2πiω(γ+SβAαt) dω

∣∣ dt.
Using the Short Time Fourier Transform defined by

Gψf(x, ω) =
∫

R2

f(t)ψ̄(t− x)e−2πiωt dt,

this can be rewritten as

I3 =
∫

R2

sup
(α,β,γ)∈U

α
3
4

∣∣Gψ̂(AaST
s ·)−ψ̂(AaαST

β+s
√

α
·)ψ̂(0, γ + SβAαt)

∣∣ dt
and since Gψf(x, ω) = e−2πiωxGψ̂f̂(ω,−x) further as

I3 =
∫

R2

sup
(α,β,γ)∈U

α
3
4

∣∣Gψ(A−1
a S−1

s ·)−ψ(A−1
aαS

−1
β+s

√
α
·)ψ(γ + SβAαt, 0)

∣∣ dt.
By [16, p. 232], we have for ψ ∈ S and |f(x)| ≤ C(1 + ‖x‖)−s, s > 2 that

|Gψf(x, ω)| ≤ C‖f‖L∞,ms
‖ψ‖L∞,ms

(1 + ‖x‖)−s,
where ms(x) = (1 + ‖x‖)s and ‖ψ‖L∞,ms

= ess sup
x∈R2

|ψ(x)|(1 + ‖x‖)s. Thus, since ψ ∈ S,

I3 ≤ C ‖ψ‖L∞,ms
sup

(α,β,0)∈U
‖ψ(A−1

a S−1
s ·)− ψ(A−1

aαS
−1
β+s

√
α
·)‖L∞,ms

×
∫

R2

sup
(α,β,γ)∈U

(1 + ‖γ + SβAαt‖)−s dt ≤ C(a, s).

This completes the proof. �
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4.3. Embedding of Schwartz Spaces. Let S0 denote the space of Schwartz-functions with the
property that

|f̂(ω)| ≤ ω2α
1

(1 + ‖ω‖2)2α
for all α > 0.

The functions in S0 vanish of infinite order in ω1 = 0. In this subsection, we want to show that the
space S0 is contained in our coorbit shearlet spaces SCp,w. To this end, we need the following two
preliminary lemmas. The proof of the first lemma uses ideas of [19].

Lemma 4.5. For α > 1, let |f(x)| ≤ C
(1+‖x‖2)α and |ψ(x)| ≤ C

(1+‖x‖2)α . Then the shearlet transform
fulfils

|SHψf(a, s, t)| ≤ C|a|−3/4 max{1, d2}(
1 + ‖ t

max{1,d}‖2
)α−1/2

,

where d2 := (s2 + 2) max{a2, |a|}.

Proof. We restrict our attention to the case a > 0. By assumption on f and ψ we have that

|SHψf(a, s, t)| ≤ Ca−3/4

∫
R2

1
(1 + ‖x‖2)α

1
1 + ‖A−1

a S−1
s (x− t)‖2)α

dx

and since ‖A−1
a S−1

s (x− t)‖ ≥ ‖x−t‖
‖Aa‖‖Ss‖ further that

|SHψf(a, s, t)| ≤ Ca−3/4

∫
R2

1
(1 + ‖x‖2)α

1(
1 + ‖x−t‖2

‖Aa‖2‖Ss‖2

)α dx.
Using that ‖Aa‖2 = max{a, a2} and ‖Ss‖2 = ρ(STs Ss) = ρ

((
1 s
s s2 + 1

))
≤ s2 + 2 this can be

estimated as
|SHψf(a, s, t)| ≤ Ca−3/4

∫
R2

1
(1 + ‖x‖2)α

1(
1 + ‖x−t‖2

d2

)α dx.
We consider

F (t, d) :=
∫

R2

1
(1 + ‖x‖2)α

1(
1 + ‖x−t‖2

d2

)α dx.
We show that for d ≤ 1 the estimate

F (t, d) ≤ C

(1 + ‖t‖2)α−1/2
(25)

holds true. Since

F

(
t

d
,
1
d

)
=

1
d2
F (t, d),

this implies for d > 1 that

|F (t, d)| = d2

∣∣∣∣F (− td , 1d
)∣∣∣∣ ≤ d2 C

(1 + ‖ td‖2)α−1/2

and we are done.
It remains to prove (25) for d ≤ 1. For ‖t‖ < 1 we only have to show that F (t, d) is bounded

independently of d which is trivial. In the following let ‖t‖ ≥ 1. We split the integral as follows:

F (t, d) =
(∫

Ω1

+
∫

Ω2

+
∫

Ω31

+
∫

Ω32

) 1
(1 + ‖x‖2)α

1
1 + ‖x−td ‖2)α

dx = I1 + I2 + I31 + I32
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where Ω1 := {x ∈ R2 : t(x− t
2) > 0 componentwise}, Ω2 := {x ∈ R2 : t(x− t

2) ≤ 0 componentwise}
and Ω3i := {x ∈ R2 : ti(xi − ti

2 ) > 0 and tj(xj − tj
2 ) ≤ 0, j 6= i}, i = 1, 2.

Estimation of I1: In Ω1 we have that |xi| ≥ |ti|
2 and thus ‖x‖2 ≥ 1

4‖t‖
2. Consequently, we get

I1 ≤
∫

Ω1

1
(1 + 1

4‖t‖2)α
1

(1 + ‖x−td ‖2)α
dx ≤ C

1
(1 + ‖t‖2)α

∫
Ω1

1
(1 + ‖x−td ‖2)α

dx

≤ C d2 1
(1 + ‖t‖2)α

∫
1

(1 + ‖y‖2)α
dy ≤ C

1
(1 + ‖t‖2)α

.

Estimation of I2: In Ω2, it holds |xi − ti| ≥ |ti|
2 , i.e., ‖x− t‖2 ≥ ‖t‖2/4 and thus

I2 ≤
∫

Ω2

1
(1 + ‖x‖2)α

1
(1 + ‖ t

2d‖2)α
dx.

Using that

1
(1 + ‖ t

2d‖)α
=

(
1 + ‖t‖2

1 + ‖t‖2
4d2

)α
1

(1 + ‖t‖2)α
≤ C

1
(1 + ‖t‖2)α

we obtain the estimate for I2.
Estimation of I31. By assumption we have as in the previous cases that

I32 ≤
∫

R

∫
R

1(
1 + t21

4 + x2
2

)α 1(
1 +

(
x1−t1
d

)2 + t22
4d2

)α dx1dx2

=
1(

1 + t21
4

)α(1 + t22
4d2

)α ∫R

∫
R

1(
1 + x2

2

1+
t21
4

)α 1(
1 + (x1−t1)2

d2
(
1+

t22
4d2

))α dx1dx2

≤ C

(1 + t21)α(1 + t22)α
· d
√

1 +
t22
4d2

√
1 +

t21
4

∫
R

1
(1 + y2

2)α
dy2

∫
R

1
(1 + y2

1)α
dy1

≤ C

(1 + t21)α−1/2(1 + t22)α−1/2
≤ C

(1 + ‖t‖2)α−1/2
.

Analogously we can obtain the estimate for I32. This finishes the proof. �

Another estimate of the shearlet transform is given by the following lemma.

Lemma 4.6. Let supp ψ̂ ∈ ([−a1,−a0] ∪ [a0, a1]) × [−b, b], where 0 < a0 < a1 and b > 0 with
bounded ψ̂ and let f̂ fulfill

|f̂(ω)| ≤ ω2α
1

(1 + ‖ω‖2)2α
, α > 0.

Then the following estimate holds true:

|SHψf(a, s, t)| ≤ C|a|−
3
4

|a|α

(1 + a2)α
1

(1 + |s|)α
.
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Proof. Again, let a > 0. By definition of the shearlet transform (7), Parseval’s equality and (4) we
obtain

|SHψf(a, s, t)| ≤
∫

R2

|f̂(ω)||ψ̂(AaSTs ω)|a3/4dω

≤ a−3/4
(∫ a1

a0

+
∫ −a0

−a1

)∫ b

−b
|f̂(S−Ts A−1

a v)||ψ̂(v)|dv

≤ a−3/4
(∫ a1

a0

+
∫ −a0

−a1

)∫ b

−b
|f̂(S−Ts A−1

a v)|dv .

We restrict our attention to the integral

I =
∫ a1

a0

∫ b

−b

(v1a )2α

(1 + (v1a )2 + ( v2√
a
− sv1a )2)2α

dv2dv1

=
∫ a1

a0

∫ b

−b

v2α
1

(a+ v21
a + (v2 − s√

a
v1)2)2α

dv2dv1 .

The estimation for the other integral follows analogously.
For |s| ≤ 1 we have

I ≤ C
a2α

1(
a+ a2

0
a

)2α ≤ C
a2α

(1 + a2)2α
≤ C

a2α

(1 + a2)2α(1 + |s|)α
≤ C

aα

(1 + a2)α
1

(1 + |s|)α
.

In the following, let |s| > 1. Set c := s√
a
.

Case 1. For |c| ≤ 2b
a0

= C1, i.e., 1 < |s| ≤ C1
√
a, we can estimate

I ≤ C
a2α

1

(a+ a2
0
a )2α

≤ C
1

a2α(1 + a0
a2 )2α

≤ C
1
a2α

≤ C
1
aα

1
(1 + |s|)α

≤ C
aα

(1 + a2)α
1

(1 + |s|)α
.

Case 2. For |c| > C1, i.e., |s| > C1
√
a we obtain

I ≤ C
a2α

1

(a+ a2
0
a + (b− |c|a0)2)2α

= C
( a
s2

)2α 1(
a2

s2
+ a2

0
s2

+ ( b|c| − a0)2
)2α .

If a ≤ 1, then

I ≤ a2α

(1 + a2)2α
1

(1 + s2)2α
≤ C

aα

(1 + a2)α
1

(1 + |s|)α
.

Let a > 1. If a2

s2
≤ 1, i.e., a2 ≤ s2, then we obtain

I ≤ C
a2α

s2αs2α
≤ C

1
s2α

≤ 1
|s|α

1
aα

≤ C
1

(1 + |s|)α
aα

(1 + a2)α
.

If a2

s2
> 1, then a2 > s2 > 1 and we can estimate

I ≤ C
1
a2α

1(
1 + a2

0
a2 + ( b|c| − a0)2 s2

a2

)2α ≤ C
1
aα

1
|s|α

≤ C
aα

(1 + a2)α
1

(1 + |s|)α
.

This completes the proof. �

By Lemma 4.5 and 4.6 we obtain the following theorem.
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Theorem 4.7. Let ψ be a Schwartz-function with supp ψ̂ ⊆ ([−a1,−a0] ∪ [a0, a1]) × [−b, b] where
0 < a0 < a1 and b > 0. Then we have for any Schwartz-function f ∈ S0 that

|SHψf(a, s, t)| ≤ C|a|−3/4 max{1, d}(
1 + ‖ t

max{1,d}‖2
)α−1/4

|a|α

(1 + a2)α(1 + |s|)α
for all α > 1,

where d2 := (s2 + 2) max{a2, |a|} As a consequence we obtain that S0 ⊂ SCp,w for w(a, s, t) =
w(a, s) = (1 + |a|)m(1 + |s|)n, n,m > 0.

Proof. By Lemma 4.5 and 4.6 we verify with 2α instead of α that

|SHψf(a, s, t)|2 ≤ C|a|−3/4 max{1, d2}(
1 + ‖ t

max{1,d}‖2
)2α−1/2

|a|−3/4 |a|2α

(1 + a2)2α(1 + |s|)2α
,

|SHψf(a, s, t)| ≤ C|a|−3/4 max{1, d}(
1 + ‖ t

max{1,d}‖2
)α−1/4

|a|α

(1 + a2)α(1 + |s|)α
.

Finally, we conclude for sufficiently large α that∫
S
|SHψf(a, s, t)|p(1 + |a|)mp(1 + |s|)np dtds da

|a|3

≤ C

∫
R∗

∫
R

∫
R2

max{1, d}p(
1 + ‖ t

max{1,d}‖2
)p(α−1/4)

dt
|a|−

3p
4 |a|pα

(1 + a2)pα(1 + |s|)pα
(1 + |a|)mp(1 + |s|)np ds da

|a|3

≤ C

∫
R∗

∫
R

|a|p(α−
3
4
)−3 max{1, dp+2}

(1 + a2)pα(1 + |s|)pα
(1 + |a|)mp(1 + |s|)npdsda

∫
R2

1

(1 + ‖y‖2)p(α−
1
4
)
dy

< ∞

and we are done. �

4.4. Non-Linear Approximation. In Section 4.2 we established atomic decompositions of func-
tions from the shearlet coorbit spaces SCp,w by means of special discretized shearlet systems
(ψλ)λ∈Λ, Λ ⊂ S. From the computational point of view, this naturally leads us to the ques-
tion of the quality of approximating schemes in SCp,w using only a finite number of elements from
(ψλ)λ∈Λ.

In this section we will focus on the non-linear approximation scheme of best N–term approxima-
tion, i.e., of approximating functions f of SCp,w in an “optimal” way by a linear combination of
precisely N elements from (ψλ)λ∈Λ. In order to study the quality of best N–term approximation
we will prove estimates for the asymptotic behavior of the approximation error.

Let us now delve more into the specific setting we are considering here. Let U be a neighborhood
of e in S satisfying condition (24) for ε < 1. Further, let Λ ⊂ S be a relatively separated, U -dense
sequence, which exists by Proposition 4.3. Then the associated shearlet system

{ψλ = ψa,s,t : λ = (a, s, t) ∈ Λ} (26)

can be employed for atomic decompositions of elements from SCp,w, where 1 ≤ p <∞. Indeed, by
Theorems 3.1 and 3.2, for any f ∈ SCp,w, we have

f =
∑
λ∈Λ

cλψλ (27)
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with (cλ)λ∈Λ depending linearly on f , and

C1,p ‖f‖SCp,w
≤ ‖(cλ)λ∈Λ‖`p,w

≤ C2,p ‖f‖SCp,w
(28)

with constants C1,p, C2,p being independent of f . We intend to approximate functions f from the
shearlet coorbit spaces SCp,w by elements from the nonlinear manifolds Σn, n ∈ N, which consist
of all functions S ∈ SCp,w whose expansions with respect to the shearlet system (ψλ)λ∈Λ from (26)
have at most n nonzero coefficients, i.e.,

Σn :=

{
S ∈ SCp,w : S =

∑
λ∈Γ

dλψλ, Γ ⊆ Λ, #Γ ≤ n

}
.

Then we are interested in the asymptotic behavior of the error

En(f)SCp,w := inf
S∈Σn

‖f − S‖SCp,w .

Usually, the order of approximation which can be achieved depends on the regularity of the
approximated function as measured in some associated smoothness space. For instance, for nonlin-
ear wavelet approximation, the order of convergence is determined by the regularity as measured
in a specific scale of Besov spaces. For nonlinear approximation based on Gabor frames, it has
been shown in [17] that the ‘right’ smoothness spaces are given by a specific scale of modulation
spaces. An extension of these relations to systems arising from the Weyl-Heisenberg group and
α-modulation spaces has been studied in [4].

In our case it turns out that a result from [17], i.e., an estimate in one direction, carries over.
The basic ingredient in the proof of the theorem is the following lemma which has been shown in
[17], see also [8].

Lemma 4.8. Let 0 < p < q ≤ ∞. Then there exists a constant Dp > 0 independent of q such that,
for all decreasing sequences of positive numbers a = (ai)∞i=1, we have

2−1/p‖a‖`p ≤

( ∞∑
n=1

1
n

(n1/p−1/qEn,q(a))p
)1/p

≤ Dp ‖a‖`p ,

where En,q(a) := (
∑∞

i=n a
q
i )

1/q.

Now one can prove the following theorem, which provides an upper estimate for the asymptotic
behavior of En(f)SCp,w .

Theorem 4.9. Let (ψλ)λ∈Λ be a discrete shearlet system as in (26), and let 1 ≤ p < q <∞. Then
there exists a constant C = C(p, q) <∞ such that, for all f ∈ SCp,w, we have( ∞∑

n=1

1
n

(
n1/p−1/qEn(f)SCq,w

)p)1/p

≤ C‖f‖SCp,w .

Proof. Let τ : N → Λ permutate the sequence (cλwλ)λ∈Λ in (27) in a decreasing order, i.e.,
|cτ(n)wτ(n)| ≥ |cτ(n+1)wτ(n+1)| for all n ∈ N. Then we obtain

En(f)SCq,w ≤ ‖
∞∑

i=n+1

cτ(i)ψτ(i)‖SCq,w .
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Applying (28) yields

En(f)SCq,w ≤ C−1
1,q

( ∞∑
i=n+1

|cτ(i)wτ(i)|q
)1/q

= C−1
1,q En+1,q(|cτ(i)wτ(i)|) ≤ C−1

1,q En,q(|cτ(i)wτ(i)|).

Finally, by Lemma 4.8 and (28),( ∞∑
n=1

1
n

(
n1/p−1/qEn(f)SCq,w

)p)1/p

≤

( ∞∑
n=1

1
n

(
n1/p−1/q C−1

1,q En,q(|cτ(i)wτ(i)|)
)p)1/p

≤ C−1
1,qDp ‖(|cτ(i)|)∞i=1‖`p,w

≤ C−1
1,qC2,pDp ‖f‖SCp,w ,

which finishes the proof. �

5. Numerical Experiments

In Section 4, in which we have established the coorbit theory for the shearlet group, we have
shown that a suitable discretization process produces atomic decompositions and frames in scales of
shearlet coorbit spaces. This theoretical result shall be now verified in practice, i.e., we aim to derive
an atomic decomposition by means of a shearlet system (for simplicity we abstain here from doing
the same by means of a shearlet Banach frame). The basic ingredients are Proposition 4.3 providing
a construction principle for the U -dense and relatively separated grid Λ and Theorem 4.4 in which
we have shown that the essential condition, ‖ oscU ‖L1,w(S) < 1, can indeed be fulfilled. Remember,
this condition ensures that each function in the associated shearlet coorbit space has an atomic
decomposition, i.e. for each f ∈ SCp,w there exists a sequence (cλ)λ∈Λ such that f =

∑
λ∈Λ cλψλ

with ‖f‖SCp,w ∼ ‖c‖`p,w(Λ).
For sake of simplicity we consider the case p = 2 and w ≡ 1. In order to compute the shearlet de-

composition of some given function/image f we introduce an operator F via c 7→ Fc =
∑

λ∈Λ cλψλ.
Then finding the right sequence (cλ)λ∈Λ can be achieved by solving the inverse problem

f = Fc . (29)

Since a direct inversion in (29) is impossible, we suggest to minimize the following cost functional

Φ(c) = ‖f − Fc‖2
SC2

= ‖Vψ(f)− Vψ(Fc)‖2
L2(S) , (30)

where the necessary condition for a minimum of (30) is given by the normal equation

(VψF )∗VψFc = (VψF )∗Vψf , (31)

which can be solved iteratively. Since the system {ψλ}λ∈Λ is usually an overcomplete shearlet sys-
tem, one can find many different sequences c satisfying (31). A few of them have special properties
for which they are preferred, e.g., a sequence with minimal `2 norm (often referred to as the gen-
eralized solution). A suitable iteration to approach a solution of (31) is the so-called Landweber
iteration,

cm+1 = (I − β(VψF )∗VψF )cm + β(VψF )∗Vψf , (32)
with 0 < β < 2/‖VψF‖2. If c† denotes the generalized solution of (29), then iteration (32) converges
for arbitrarily chosen c0 and exact right hand side (VψF )∗Vψf towards Pker(F )c

0+c†. If, in particular,
c0 ∈ ker(F )⊥ (e.g. c0 = 0 or c0 = (VψF )∗Vψf), then the iteration converges to c†.

As we have experienced, the grid Λ has for usual configurations (images of size 256x256 pixel and
adequate choices of α, β and γ) a remarkable complexity. Therefore it is reasonable to search for
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sequences c that are sparser than the minimum `2 norm solution. This may dramatically reduce the
computational complexity for computing approximations to c. To this end, we consider a slightly
modified variational functional that ensures sparsity on c,

Φq(c) = ‖f − Fc‖2
SC2

+ 2ρ‖c‖`q , (33)

with 1 ≤ q ≤ 2. As it can be retrieved in [7], an iteration approaching the minimizer of (33) is
again given by a Landweber iteration, but now a shrinkage operation is applied in each step,

cm+1 = Sq,ρβ ((I − β(VψF )∗VψF )cm + β(VψF )∗Vψf) , (34)

where 0 < β < ‖VψF‖−2 and Sq,ρβ denotes the shrinkage operator with respect to the `q norm and
threshold ρβ (for details we refer to [7]).

As a test image for which we aim to derive a sparse atomic shearlet decomposition we choose the
eye–image in Figure 1. The basic shearlet atom is defined in the Fourier domain by ψ̂(ω1, ω2) =
φ1(ω1)φ2(ω2), where φ1 is some smooth variant of Meyer’s wavelet (for its construction see [6]) and
φ2 is the Gaussian. As the initial iterate c0 for iteration (34) we choose F ∗f , where the computation
of the coefficients SHψ(f)(a, s, t) = 〈f, ψa,s,t〉 is realized via the convolution theorem (for a detailed
discussion we refer to [21]),

SHψ(f)(a, s, ·)∧(ω) = f̂(ω)ψ̂∗a,s,0(ω) . (35)

The values of (35) for several dilations a and shear values s are visualized in Figures 2 and 3
(note that c0 is just a subset). The directional selectivity of the shearlet transform can clearly be
recognized. As the final result, we present in Figure 4 several iterates Fcm.

Figure 1. Original function/image f .
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