
An Outline of Adaptive Wavelet Galerkin Methodsfor Tikhonov Regularization of Inverse Paraboli
ProblemsStephan Dahlke�Philipps{Universit�at MarburgFa
hberei
h Mathematik und InformatikHans Meerwein Strasse, Lahnberge35032 MarburgGermanyPeter Maa� yUniversit�at BremenZentrum f�ur Te
hnomathematikPostfa
h 33044028334 BremenGermanyAbstra
tIn this paper, we dis
uss some ideas how adaptive wavelet s
hemes 
an beapplied to the treatment of 
ertain inverse problems. The 
lassi
al Tikhonov{Phillips regularization produ
es a numeri
al s
heme whi
h 
onsists of an inner andan outer iteration. In its normal form, the inner iteration 
an be interpreted as aboundedly invertible operator equation whi
h 
an be handled very eÆ
iently byusing a stable wavelet basis. This general framework is illustrated by an appli
ationto the inverse heat equation.Key Words: Inverse paraboli
 problems, Tikhonov regularization, wavelet bases,adaptive re�nements.AMS Subje
t 
lassi�
ation: 42C40, 65J20, 65N12, 65N30, 65M32�The work of this author has been partially supported by Deuts
he Fors
hungsgemeins
haft, GrantDa 360/4{1.yPartially supported by the Bundesministerium f�ur Bildung, Wissens
haft, Fors
hung und Te
hnolo-gie under grant number BMBF-03-MSM1HB. 1



1 Introdu
tionDue to its theoreti
al 
hallenges and its pra
ti
al importan
e for many industrial appli-
ations the theory of regularization methods for inverse problems has gained in
reasinginterest in the mathemati
al 
ommunity over the last two de
ades. Ex
ellent introdu
-tions to this �eld 
an be found e.g. in [12, 14, 16℄. In this arti
le we aim at presenting aframework for adaptive Tikhonov regularization and its realization by adaptive waveletmethods for paraboli
 di�erential equations. Moreover, in order to highlight the mainideas we will only 
onsider inverse problems with a linear or an aÆne linear operator,e.g., parameter estimation problems for heat transfer equations. Hen
e we 
onsider a
ompa
t operator A between Hilbert spa
es X and Y and a 
orresponding operatorequation Ax = y ; (1.1)where x is the sear
hed for fun
tion and y denotes perfe
t data, however we assume thatonly some observed data yÆ with a known error bound jjy � yÆjj � Æ is given.Tikhonov{Phillips regularization of su
h an ill{posed problem is a
hieved by repla
ingthe linear equation (1.1) by the minimization problem�nd xÆ� 2 X whi
h minimizesT�(x) = kAx� yÆ k2Y + � kxk2X : (1.2)The idea of Tikhonov{Phillips regularization (1.2) is to 
ontrol the in
uen
e of the dataerror in the regularized solution xÆ� by adding a penalty term. The unique minimizer of(1.2) is given as the unique solution of the regularized normal equation(A�A + � I)xÆ� = A�yÆ : (1.3)Early results on the 
onvergen
e of Tikhonov regularization methods were usuallyentirely based in fun
tion spa
es, the additional in
uen
e of an appropriate dis
retiza-tion of the operator was hardly mentioned. For some ex
eptions see, e.g., [19, 20, 21℄.However, any numeri
al s
heme for solving inverse problems by Tikhonov regularizationdepends on at least two parameters (regularization parameter �, a parameter determin-ing the dis
retization of the operator) and a stopping rule. Chara
terizing a numeri
als
heme for operator equations as adaptive usually refers to a nonlinear dependen
e ofthese ingredients on the given data yÆ. In this sense, any a posteriori stopping rule leadsto an adaptive s
heme. In this paper, we address adaptive s
hemes in a stronger sense:we analyze methods where the regularization parameter and the dis
retization spa
esdepend on the unknown solution and are 
hosen adaptively during the solution pro
e-dure without using a priori information. More pre
isely, we will 
onsider the followingframework for Tikhonov regularization:� given data: A; yÆ; Æ; 0 < q < 1; �0;� outer iteration for determining the regularization parameter: 
hoose iteratively�n = qn�0, for ea
h �n determine a 
riti
al level of approximation � = �(�n; Æ; yÆ)2



for the solution. This parameter has to be 
hosen, su
h that the over all s
hemerealizes optimal 
onvergen
e rates;� inner iteration for determining the minimizer xÆ�;�� of (1.3): xÆ�;�� will be deter-mined by suitable wavelet Galerkin approximations of the forward operator A�A,these wavelet approximations will be 
hosen adaptively by using lo
al a posteriorierror estimates and an appropriate re�nement strategy.The paper is organized as follows. Se
tion 2 
ontains the des
ription of a model problem,whi
h des
ribes a parameter estimation problem for a heat equation. Se
tion 3 dealswith the approximation requirements of the outer iteration and the resulting adaptiveapproximation levels � = �(�; Æ; yÆ). Finally Se
tion 4 analyzes how to 
onstru
t anadaptive wavelet Galerkin method whi
h realizes the required levels of approximation.2 A Model ProblemIn this paper, we just aim at outlining a general approa
h for adaptive Tikhohonovregularization via wavelet dis
retizations. Hen
e we will not present any numeri
alresults. However, in order to fo
us our ideas we will introdu
e a simple model problem,whi
h serves as motivation for the subsequent se
tions. We do not present any newresults in this se
tion, to the 
ontrary the 
ontent is rather 
lassi
al and elementary,see, e.g., [23, 25℄. Sin
e we want to merge results from inverse problems and waveletanalysis, whi
h have developed some 
on
i
ting notations and whi
h sometimes evengive di�erent meanings to the same expressions, we would like to introdu
e some basi

on
epts in detail.We 
onsider inverse heat problems, the underlying di�erential equation is hen
e givenby ut = divf�rugon x 2 
, t 2 [0; T ℄, where 
 � IR2 denotes a region with pie
ewise smooth boundary� = �
.The 
onstru
tion of wavelet Galerkin methods and their 
onvergen
e properties haveonly re
ently been analyzed su

essfully, these results will be des
ribed in Se
tion 4.The inverse problems we 
onsider will di�er in terms of the given and/or the measureddata: initial data � = u(�; 0); boundary data a(x; t) = u(x; t) for x 2 �, t 2 [0; T ℄;observation at a �xed time instant g(x) = u(x; T ), observation on an interior regionb(x; t) = u(x; t) for x 2 ~
 � 
, t 2 [0; T ℄.Let us �rst 
onsider the standard inverse heat problem:given data: a; g ; sear
hed for quantity: � :For this model problem the forward operator A = A(�) is de�ned as follows: For a �xeda let L denote the solution operator of the paraboli
 problemut = divf�rug for x 2 
3



with initial data � and boundary values a, i.e.,L(�)(x; t) = u(x; t) for x 2 
; t 2 [0; T ℄ :Then A(�)(x) = L(�)(x; T ) ; (2.1)whi
h leads to the formal des
ription of the operator equation for the inverse problemA(�) = g :In order to allow the modelling of measurement error, A is 
onsidered as a mapping fromL2(
) �! L2(
).For non-zero boundary data a, the operator A is nonlinear. However, introdu
ingu# and g# = u#(�; T ), where u# denotes the solution with zero initial and non-zeroboundary data, i.e.,ut = divf�rug for x 2 
 ; u(�; 0) = 0 ; a(x; t) = u(x; t) for x 2 �; t 2 [0; T ℄ ;leads to an aÆne de
omposition A(�) = ~A�+ g# ;where ~A is the linear operator, whi
h solvesut = divf�rug for x 2 
 ; u(�; 0) = � ; 0 = u(x; t) for x 2 �; t 2 [0; T ℄ ;and restri
ts the solution to its values at time T . Hen
e by 
ombining the originallymeasured data g with the parti
ular solution g# via~g = g � g#leads to a linear inverse problem ~A� = ~g.A similar aÆne de
omposition also holds for the inverse problem posed bygiven data: b; sear
hed for quantities: (�; a) :In all these 
ases in
luding many variations, we are �nally lead to 
onsider an exponen-tially ill-posed linear operator equation.3 A Framework for Adaptive Tikhonov Regulariza-tionWe 
onsider Tikhonov regularization for solving a linear operator equation (1.1), i.e., we
onsider xÆ� = (A�A+ �I)�1A�yÆ ; (3.1)4



where ky � yÆk � Æ and A is a 
ompa
t operator between Hilbert spa
es X; YA : X ! Y :Now let us in
orporate an adaptive Galerkin dis
retization of (A�A+ �I) in (3.1). I.e.,we �x an approximation toleran
e � and 
onstru
t an index set �� su
h that the 
orre-sponding approximate solution xÆ�;�� satis�es a guaranteed error estimatejjxÆ� � xÆ�;��jj � 
onst. �p� : (3.2)An adaptive s
heme, whi
h realizes this 
ondition will be des
ribed in Se
tion 4.The 
hoi
e of � and � determines the approximation properties of xÆ�;��. So far wehave dis
ussed the solution of (1.2) for a �xed value of �. Let us now dis
uss how todetermine a suitable value of �. We will 
hoose � a

ording to a dis
repan
y prin
ipleof the form (or some modi�
ation thereof)kAxÆ�;�� � yÆk = �Æ + ��; (3.3)where � > 1 and � suÆ
iently large, for a pre
ise statement see Theorem 3.1. This stilldes
ribes an idealized situation: in pra
ti
e one never aims at solving (3.3) pre
isely,one rather 
hooses � from a sequen
e of test parameters and determines �N 2 f�n =qn�0j n = 0; 1; 2; :::g, for a �xed 0 < q < 1 by requiringkAxÆ�N ;�� � yÆk � �Æ + ��; (3.4)kAxÆ�n;�� � yÆk > �Æ + �� for n < N : (3.5)Hen
e the overall algorithm for 
omputing xÆ�;�� requires to solve (N + 1) operatorequations of type (3.1).Of 
ourse the number of iterationsN is a priori unknown. Thus an eÆ
ient pro
edurefor obtaining sparse approximations of (A�A+�I) in 
onne
tion with a reliable strategyfor sele
ting the approximation level � will greatly redu
e the numeri
al 
ost of thealgorithm. Our main obje
tive in this se
tion is to determine an approximation level�(Æ; �) su
h that xÆ�;�� exhibits optimal 
onvergen
e rates. Note that the approximationlevel �(Æ; �) may 
hange with � during the sear
h pro
ess for the optimal regularizationparameter �N . This will later be used to 
hoose 
oarser approximations for larger valuesof �.As usual we assume that the generalized solution x+ lies in the range of (A�A)�, thatis, x+ = (A�A)�v; kvk � % : (3.6)Moreover we restri
t ourselves to smoothness assumptions of the order0 < � � 12 ;5



sin
e higher order regularity of x+ does not further improve the 
onvergen
e rate ofkxÆ�;�� � x+k . This is 
onsistent with the theory of a posteriori parameter sele
tionfor 
lassi
al Tikhonov regularization sin
e { even when using the exa
t operator A {applying a dis
repan
y fun
tional of type (3.3) limits optimal 
onvergen
e rates to therange 0 < � � 1=2. To avoid unne
essary notation we furthermore assume thatrange (A) = Y; kyÆk > Æ; kAk � 1 : (3.7)The starting for this investigation is a basi
 estimate whi
h reveals the three error
ontributions in estimating kxÆ�;�� �x+k. This result is a small adaptation of previouslypublished standard estimates, see, e.g.,[19, 21℄.Lemma 3.1 Let x+ be the generalized solution of Ax = y and let xÆ�;�� be de�ned by thedis
retized version of (3.1). Assume that ky � yÆk � Æ and that x+ obeys (3.6). Then,kxÆ�;�� � x+k � Æ2p� + �kx+kp� + ��
�;�(v)where 
2�;�(v) =Xn�0� �1���2�n(�2n + �) hv; uni�2 � f(1� �)1����%g2 :In 
onne
tion with the modi�ed dis
repan
y prin
iple (3.4) this result gives an optimal
onvergen
e rate.Theorem 3.1 If � = O(Æp�q), with 0 < p; q; p + q = 1; and if � is 
hosen by themodi�ed dis
repan
y prin
iple (3.4) with � > 2=q; � > 9jjx+jj=4q, thenkxÆ�;�� � x+k = O(Æ2�=(2�+1)) :The above theorem shows that we 
an e.g. 
hoose p = q = 1=2 and still obtainoptimal 
onvergen
e rates. Su
h a 
hoi
e is preferable for large values of � whi
h is the
ase in the beginning of our iterative sear
h for the optimal regularization parameter.Optimal 
onvergen
e rates 
annot be a
hieved in general if p+ q < 1.4 Wavelet Galerkin Methods for Operator Equa-tionsIn re
ent years, mu
h e�ort has been spent to design eÆ
ient numeri
al s
hemes basedon wavelets. The most far-rea
hing results were obtained for operator equations of theform Au = f; (4.1)where A : H ! H 0 is a linear operator from a Hilbert spa
e H into its normed dual H 0.In our appli
ations, H will typi
ally be a Sobolev spa
e H t on some domain 
 � IRd oron a 
losed manifold. We assume that A is boundedly invertible so thatkAvkH0 � kvkH ; v 2 H (4.2)6



holds. This setting �ts perfe
tly to the normal equation (3.1) arising in the inner itera-tion, i.e., to the problem xÆ� = (A�A+ �I)�1A�yÆ ; (4.3)sin
e, as already stated above, A = (A�A+ �I) is boundedly invertible on L2(
).Before we dis
uss later on the spe
i�
 problems arising in the numeri
al treatmentof (4.3), let us brie
y re
all the basi
 numeri
al 
on
epts. We are espe
ially interestedin adaptive s
hemes, and we shall fo
us on numeri
al algorithms based on wavelets, i.e.,the basis fun
tions are taken from a family 	 = f �; � 2 J g satisfying the followingfundamental assumptions:� 	 indu
es norm equivalen
es for a whole s
ale of Sobolev spa
es,kP�2J d� �kHs � (P�2J 22j�jsjd�j2)1=2; s0 � s � s1;�  � possesses the 
an
ellation property jhv;  �ij <� 2�j�jmjvjHm(supp �);� the wavelets are lo
al in the sense that diam(supp �) � 2�j�j; � 2 J :Nowadays, several 
onstru
tions of bases satisfying these assumptions are available [4,7, 8, 9℄. Our goal is to develop a suitable Galerkin s
heme to approximate the solutionof (4.3). Therefore we 
onsider subspa
es of the formS� := f � : � 2 �g; � � J; (4.4)and proje
t our problem onto these spa
es, i.e., the Galerkin approximation u� is de�nedby hAu�; vi = hf; vi ; v 2 S�: (4.5)In an adaptive s
heme, the goal is always to �nd a possibly small set � � J su
h thatthe a
tual error is below some given toleran
e. In prin
iple, su
h a s
heme 
onsists ofthe following three steps:� 
ompute the 
urrent Galerkin approximation u�;� estimate the error ku� u�k in some suitable norm;� add wavelets if ne
essary whi
h yields a new index set �̂:For the se
ond step, one 
learly needs an a posteriori error estimator sin
e the exa
tsolution u is unknown, and for the third step one has to develop a suitable re�nementstrategy so that the whole algorithm 
onverges. In the wavelet setting, an error estima-tor 
an be easily 
onstru
ted by employing assumption (4.2), norm equivalen
es, andGalerkin orthogonality, i.e.,ku� u�kHt � kA(u� u�)kH�t � kf �Au�kH�t (4.6)= kr�kH�t � 0�XJn� 2�2tj�jjhr�;  �ij21A1=2 :7



In our example for the inverse heat problem we have A : L2(
) ! L2(
), i.e. t =0. From (4.6), we observe that the 
urrent error 
an be estimated by 
omputing thewavelet 
oeÆ
ients of the residual r� = f �Au�: Intuitively, the residual weights �� :=2�tj�jjhr�;  �ij serve as lo
al error indi
ators. Therefore a suitable re�nement strategy
an be derived by adding those wavelets whi
h produ
e large entries in the expansion ofthe residual, i.e., we de�ne the new index set �̂ in su
h a way that0� X�2�̂n� 2�2tj�jjhr�;  �ij21A1=2 � �0� X�2Jn� 2�2tj�jjhr�;  �ij21A1=2 (4.7)for some suitable parameter �. However, this strategy is not dire
tly numeri
ally realiz-able sin
e 
at
hing the bulk of the residual requires knowing all its wavelet 
oeÆ
ients.Nevertheless, in [6℄, it was shown that a judi
ious variant of this idea exploiting the
an
ellation property of wavelets indeed leads to an implementable and 
onvergent al-gorithm, i.e., given a toleran
e �, the adaptive s
heme produ
es a �nal index set ~�� su
hthat ku� u~��k � � (4.8)by using only information on the given data. Moreover, in [5℄, subtle generalizationshave been derived whi
h yield asymptoti
ally optimal s
hemes in the sense that (withina 
ertain range) the 
onvergen
e rate of best N{term approximation is a
hieved at a
omputational expense whi
h stays proportional to the number N = j��j of degrees offreedom. Furthermore, in [1℄, a �rst eÆ
ient numeri
al realization is do
umented.As already stated above, we suggest to use this strategy for the numeri
al treatmentof the basi
 problem (4.3), xÆ� = (A�A+ �I)�1A�yÆ : (4.9)Clearly this problem �ts perfe
tly into the framework des
ribed above. However, asexplained in detail in [5, 6℄, the design of an implementable re�nement strategy requiressome 
ompressibility properties of the underlying operator. For the spe
ial operators
onsidered here, this issue will be further analyzed in the near future. Moreover, foran eÆ
ient implementation, the problem remains how to 
ompute the entries of theasso
iated sti�ness matrix(A�)�;�0 := hA �0;  �i = hA �0 ; A �i+ �h �0;  �i (4.10)and of the right{hand side (A�yÆ)� = hyÆ; A �i: (4.11)Fortunately, the adjoint operator A� is not needed, but nevertheless the task is nontrivialsin
e the operatorA is indu
ed by the forward problem (2.1), i.e., it is given as a paraboli
equation. We intend to solve this problem with another fully adaptive s
heme as we shallnow explain. Following the basi
 investigations in [2, 3℄, we treat our paraboli
 equationas an abstra
t Cau
hy problemu0(t) + Bu(t) = 0; t 2 (0; T ℄; (4.12)u(0) = u0:8



Usually, this problem is treated by the method of lines. Dis
retization in spa
e �rstleads to a blo
k system of ordinary di�erential equations. However, as already outlinedin [2, 3℄, for an adaptive approa
h the other dis
retization sequen
e, �rst time then spa
e,whi
h is 
lassi
ally known as themethod of Rothe [24℄ seems to be preferable. Then (4.12)is viewed as an ordinary di�erential equation in some suitable Hilbert spa
e whi
h, dueto stability reasons, is solved by an impli
it s
heme with time-step 
ontrol. Then, in ea
hstep, a 
ertain ellipti
 subproblem has to be solved. However, sin
e these subproblemsare boundedly invertible in the sense of (4.2), they 
an again be eÆ
iently dis
retizedby employing the well{known adaptive wavelet algorithm. Clearly, the 
onvergen
e andeÆ
ien
y of this strategy has to be analyzed in detail. This will be performed in thenear future.Referen
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