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1 IntrodutionDue to its theoretial hallenges and its pratial importane for many industrial appli-ations the theory of regularization methods for inverse problems has gained inreasinginterest in the mathematial ommunity over the last two deades. Exellent introdu-tions to this �eld an be found e.g. in [12, 14, 16℄. In this artile we aim at presenting aframework for adaptive Tikhonov regularization and its realization by adaptive waveletmethods for paraboli di�erential equations. Moreover, in order to highlight the mainideas we will only onsider inverse problems with a linear or an aÆne linear operator,e.g., parameter estimation problems for heat transfer equations. Hene we onsider aompat operator A between Hilbert spaes X and Y and a orresponding operatorequation Ax = y ; (1.1)where x is the searhed for funtion and y denotes perfet data, however we assume thatonly some observed data yÆ with a known error bound jjy � yÆjj � Æ is given.Tikhonov{Phillips regularization of suh an ill{posed problem is ahieved by replaingthe linear equation (1.1) by the minimization problem�nd xÆ� 2 X whih minimizesT�(x) = kAx� yÆ k2Y + � kxk2X : (1.2)The idea of Tikhonov{Phillips regularization (1.2) is to ontrol the inuene of the dataerror in the regularized solution xÆ� by adding a penalty term. The unique minimizer of(1.2) is given as the unique solution of the regularized normal equation(A�A + � I)xÆ� = A�yÆ : (1.3)Early results on the onvergene of Tikhonov regularization methods were usuallyentirely based in funtion spaes, the additional inuene of an appropriate disretiza-tion of the operator was hardly mentioned. For some exeptions see, e.g., [19, 20, 21℄.However, any numerial sheme for solving inverse problems by Tikhonov regularizationdepends on at least two parameters (regularization parameter �, a parameter determin-ing the disretization of the operator) and a stopping rule. Charaterizing a numerialsheme for operator equations as adaptive usually refers to a nonlinear dependene ofthese ingredients on the given data yÆ. In this sense, any a posteriori stopping rule leadsto an adaptive sheme. In this paper, we address adaptive shemes in a stronger sense:we analyze methods where the regularization parameter and the disretization spaesdepend on the unknown solution and are hosen adaptively during the solution proe-dure without using a priori information. More preisely, we will onsider the followingframework for Tikhonov regularization:� given data: A; yÆ; Æ; 0 < q < 1; �0;� outer iteration for determining the regularization parameter: hoose iteratively�n = qn�0, for eah �n determine a ritial level of approximation � = �(�n; Æ; yÆ)2



for the solution. This parameter has to be hosen, suh that the over all shemerealizes optimal onvergene rates;� inner iteration for determining the minimizer xÆ�;�� of (1.3): xÆ�;�� will be deter-mined by suitable wavelet Galerkin approximations of the forward operator A�A,these wavelet approximations will be hosen adaptively by using loal a posteriorierror estimates and an appropriate re�nement strategy.The paper is organized as follows. Setion 2 ontains the desription of a model problem,whih desribes a parameter estimation problem for a heat equation. Setion 3 dealswith the approximation requirements of the outer iteration and the resulting adaptiveapproximation levels � = �(�; Æ; yÆ). Finally Setion 4 analyzes how to onstrut anadaptive wavelet Galerkin method whih realizes the required levels of approximation.2 A Model ProblemIn this paper, we just aim at outlining a general approah for adaptive Tikhohonovregularization via wavelet disretizations. Hene we will not present any numerialresults. However, in order to fous our ideas we will introdue a simple model problem,whih serves as motivation for the subsequent setions. We do not present any newresults in this setion, to the ontrary the ontent is rather lassial and elementary,see, e.g., [23, 25℄. Sine we want to merge results from inverse problems and waveletanalysis, whih have developed some oniting notations and whih sometimes evengive di�erent meanings to the same expressions, we would like to introdue some basionepts in detail.We onsider inverse heat problems, the underlying di�erential equation is hene givenby ut = divf�rugon x 2 
, t 2 [0; T ℄, where 
 � IR2 denotes a region with pieewise smooth boundary� = �
.The onstrution of wavelet Galerkin methods and their onvergene properties haveonly reently been analyzed suessfully, these results will be desribed in Setion 4.The inverse problems we onsider will di�er in terms of the given and/or the measureddata: initial data � = u(�; 0); boundary data a(x; t) = u(x; t) for x 2 �, t 2 [0; T ℄;observation at a �xed time instant g(x) = u(x; T ), observation on an interior regionb(x; t) = u(x; t) for x 2 ~
 � 
, t 2 [0; T ℄.Let us �rst onsider the standard inverse heat problem:given data: a; g ; searhed for quantity: � :For this model problem the forward operator A = A(�) is de�ned as follows: For a �xeda let L denote the solution operator of the paraboli problemut = divf�rug for x 2 
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with initial data � and boundary values a, i.e.,L(�)(x; t) = u(x; t) for x 2 
; t 2 [0; T ℄ :Then A(�)(x) = L(�)(x; T ) ; (2.1)whih leads to the formal desription of the operator equation for the inverse problemA(�) = g :In order to allow the modelling of measurement error, A is onsidered as a mapping fromL2(
) �! L2(
).For non-zero boundary data a, the operator A is nonlinear. However, introduingu# and g# = u#(�; T ), where u# denotes the solution with zero initial and non-zeroboundary data, i.e.,ut = divf�rug for x 2 
 ; u(�; 0) = 0 ; a(x; t) = u(x; t) for x 2 �; t 2 [0; T ℄ ;leads to an aÆne deomposition A(�) = ~A�+ g# ;where ~A is the linear operator, whih solvesut = divf�rug for x 2 
 ; u(�; 0) = � ; 0 = u(x; t) for x 2 �; t 2 [0; T ℄ ;and restrits the solution to its values at time T . Hene by ombining the originallymeasured data g with the partiular solution g# via~g = g � g#leads to a linear inverse problem ~A� = ~g.A similar aÆne deomposition also holds for the inverse problem posed bygiven data: b; searhed for quantities: (�; a) :In all these ases inluding many variations, we are �nally lead to onsider an exponen-tially ill-posed linear operator equation.3 A Framework for Adaptive Tikhonov Regulariza-tionWe onsider Tikhonov regularization for solving a linear operator equation (1.1), i.e., weonsider xÆ� = (A�A+ �I)�1A�yÆ ; (3.1)4



where ky � yÆk � Æ and A is a ompat operator between Hilbert spaes X; YA : X ! Y :Now let us inorporate an adaptive Galerkin disretization of (A�A+ �I) in (3.1). I.e.,we �x an approximation tolerane � and onstrut an index set �� suh that the orre-sponding approximate solution xÆ�;�� satis�es a guaranteed error estimatejjxÆ� � xÆ�;��jj � onst. �p� : (3.2)An adaptive sheme, whih realizes this ondition will be desribed in Setion 4.The hoie of � and � determines the approximation properties of xÆ�;��. So far wehave disussed the solution of (1.2) for a �xed value of �. Let us now disuss how todetermine a suitable value of �. We will hoose � aording to a disrepany prinipleof the form (or some modi�ation thereof)kAxÆ�;�� � yÆk = �Æ + ��; (3.3)where � > 1 and � suÆiently large, for a preise statement see Theorem 3.1. This stilldesribes an idealized situation: in pratie one never aims at solving (3.3) preisely,one rather hooses � from a sequene of test parameters and determines �N 2 f�n =qn�0j n = 0; 1; 2; :::g, for a �xed 0 < q < 1 by requiringkAxÆ�N ;�� � yÆk � �Æ + ��; (3.4)kAxÆ�n;�� � yÆk > �Æ + �� for n < N : (3.5)Hene the overall algorithm for omputing xÆ�;�� requires to solve (N + 1) operatorequations of type (3.1).Of ourse the number of iterationsN is a priori unknown. Thus an eÆient proedurefor obtaining sparse approximations of (A�A+�I) in onnetion with a reliable strategyfor seleting the approximation level � will greatly redue the numerial ost of thealgorithm. Our main objetive in this setion is to determine an approximation level�(Æ; �) suh that xÆ�;�� exhibits optimal onvergene rates. Note that the approximationlevel �(Æ; �) may hange with � during the searh proess for the optimal regularizationparameter �N . This will later be used to hoose oarser approximations for larger valuesof �.As usual we assume that the generalized solution x+ lies in the range of (A�A)�, thatis, x+ = (A�A)�v; kvk � % : (3.6)Moreover we restrit ourselves to smoothness assumptions of the order0 < � � 12 ;5



sine higher order regularity of x+ does not further improve the onvergene rate ofkxÆ�;�� � x+k . This is onsistent with the theory of a posteriori parameter seletionfor lassial Tikhonov regularization sine { even when using the exat operator A {applying a disrepany funtional of type (3.3) limits optimal onvergene rates to therange 0 < � � 1=2. To avoid unneessary notation we furthermore assume thatrange (A) = Y; kyÆk > Æ; kAk � 1 : (3.7)The starting for this investigation is a basi estimate whih reveals the three errorontributions in estimating kxÆ�;�� �x+k. This result is a small adaptation of previouslypublished standard estimates, see, e.g.,[19, 21℄.Lemma 3.1 Let x+ be the generalized solution of Ax = y and let xÆ�;�� be de�ned by thedisretized version of (3.1). Assume that ky � yÆk � Æ and that x+ obeys (3.6). Then,kxÆ�;�� � x+k � Æ2p� + �kx+kp� + ���;�(v)where 2�;�(v) =Xn�0� �1���2�n(�2n + �) hv; uni�2 � f(1� �)1����%g2 :In onnetion with the modi�ed disrepany priniple (3.4) this result gives an optimalonvergene rate.Theorem 3.1 If � = O(Æp�q), with 0 < p; q; p + q = 1; and if � is hosen by themodi�ed disrepany priniple (3.4) with � > 2=q; � > 9jjx+jj=4q, thenkxÆ�;�� � x+k = O(Æ2�=(2�+1)) :The above theorem shows that we an e.g. hoose p = q = 1=2 and still obtainoptimal onvergene rates. Suh a hoie is preferable for large values of � whih is thease in the beginning of our iterative searh for the optimal regularization parameter.Optimal onvergene rates annot be ahieved in general if p+ q < 1.4 Wavelet Galerkin Methods for Operator Equa-tionsIn reent years, muh e�ort has been spent to design eÆient numerial shemes basedon wavelets. The most far-reahing results were obtained for operator equations of theform Au = f; (4.1)where A : H ! H 0 is a linear operator from a Hilbert spae H into its normed dual H 0.In our appliations, H will typially be a Sobolev spae H t on some domain 
 � IRd oron a losed manifold. We assume that A is boundedly invertible so thatkAvkH0 � kvkH ; v 2 H (4.2)6



holds. This setting �ts perfetly to the normal equation (3.1) arising in the inner itera-tion, i.e., to the problem xÆ� = (A�A+ �I)�1A�yÆ ; (4.3)sine, as already stated above, A = (A�A+ �I) is boundedly invertible on L2(
).Before we disuss later on the spei� problems arising in the numerial treatmentof (4.3), let us briey reall the basi numerial onepts. We are espeially interestedin adaptive shemes, and we shall fous on numerial algorithms based on wavelets, i.e.,the basis funtions are taken from a family 	 = f �; � 2 J g satisfying the followingfundamental assumptions:� 	 indues norm equivalenes for a whole sale of Sobolev spaes,kP�2J d� �kHs � (P�2J 22j�jsjd�j2)1=2; s0 � s � s1;�  � possesses the anellation property jhv;  �ij <� 2�j�jmjvjHm(supp �);� the wavelets are loal in the sense that diam(supp �) � 2�j�j; � 2 J :Nowadays, several onstrutions of bases satisfying these assumptions are available [4,7, 8, 9℄. Our goal is to develop a suitable Galerkin sheme to approximate the solutionof (4.3). Therefore we onsider subspaes of the formS� := f � : � 2 �g; � � J; (4.4)and projet our problem onto these spaes, i.e., the Galerkin approximation u� is de�nedby hAu�; vi = hf; vi ; v 2 S�: (4.5)In an adaptive sheme, the goal is always to �nd a possibly small set � � J suh thatthe atual error is below some given tolerane. In priniple, suh a sheme onsists ofthe following three steps:� ompute the urrent Galerkin approximation u�;� estimate the error ku� u�k in some suitable norm;� add wavelets if neessary whih yields a new index set �̂:For the seond step, one learly needs an a posteriori error estimator sine the exatsolution u is unknown, and for the third step one has to develop a suitable re�nementstrategy so that the whole algorithm onverges. In the wavelet setting, an error estima-tor an be easily onstruted by employing assumption (4.2), norm equivalenes, andGalerkin orthogonality, i.e.,ku� u�kHt � kA(u� u�)kH�t � kf �Au�kH�t (4.6)= kr�kH�t � 0�XJn� 2�2tj�jjhr�;  �ij21A1=2 :7



In our example for the inverse heat problem we have A : L2(
) ! L2(
), i.e. t =0. From (4.6), we observe that the urrent error an be estimated by omputing thewavelet oeÆients of the residual r� = f �Au�: Intuitively, the residual weights �� :=2�tj�jjhr�;  �ij serve as loal error indiators. Therefore a suitable re�nement strategyan be derived by adding those wavelets whih produe large entries in the expansion ofthe residual, i.e., we de�ne the new index set �̂ in suh a way that0� X�2�̂n� 2�2tj�jjhr�;  �ij21A1=2 � �0� X�2Jn� 2�2tj�jjhr�;  �ij21A1=2 (4.7)for some suitable parameter �. However, this strategy is not diretly numerially realiz-able sine athing the bulk of the residual requires knowing all its wavelet oeÆients.Nevertheless, in [6℄, it was shown that a judiious variant of this idea exploiting theanellation property of wavelets indeed leads to an implementable and onvergent al-gorithm, i.e., given a tolerane �, the adaptive sheme produes a �nal index set ~�� suhthat ku� u~��k � � (4.8)by using only information on the given data. Moreover, in [5℄, subtle generalizationshave been derived whih yield asymptotially optimal shemes in the sense that (withina ertain range) the onvergene rate of best N{term approximation is ahieved at aomputational expense whih stays proportional to the number N = j��j of degrees offreedom. Furthermore, in [1℄, a �rst eÆient numerial realization is doumented.As already stated above, we suggest to use this strategy for the numerial treatmentof the basi problem (4.3), xÆ� = (A�A+ �I)�1A�yÆ : (4.9)Clearly this problem �ts perfetly into the framework desribed above. However, asexplained in detail in [5, 6℄, the design of an implementable re�nement strategy requiressome ompressibility properties of the underlying operator. For the speial operatorsonsidered here, this issue will be further analyzed in the near future. Moreover, foran eÆient implementation, the problem remains how to ompute the entries of theassoiated sti�ness matrix(A�)�;�0 := hA �0;  �i = hA �0 ; A �i+ �h �0;  �i (4.10)and of the right{hand side (A�yÆ)� = hyÆ; A �i: (4.11)Fortunately, the adjoint operator A� is not needed, but nevertheless the task is nontrivialsine the operatorA is indued by the forward problem (2.1), i.e., it is given as a paraboliequation. We intend to solve this problem with another fully adaptive sheme as we shallnow explain. Following the basi investigations in [2, 3℄, we treat our paraboli equationas an abstrat Cauhy problemu0(t) + Bu(t) = 0; t 2 (0; T ℄; (4.12)u(0) = u0:8
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