
On the Stability of Multis
ale Wavelet Methods withAppli
ations to Navier{Stokes EquationsKlaus B�ohmer Stephan Dahlke�June 12, 2002Abstra
tQuite re
ently, wavelet Galerkin methods have been very su

essfully applied tolinear ellipti
 operator equations, espe
ially to selfadjoint and saddle point prob-lems. In fa
t, (adaptive) numeri
al wavelet s
hemes have been derived whi
h wereguaranteed to 
onverge for a large 
lass of problems in
luding saddle point problemssu
h as the Stokes problem. In this paper, we introdu
e a �rst numeri
al s
hemeto treat also more general problems su
h as general ellipti
 and the Navier{Stokesequations. We show that applying the general 
onvergen
e theory as outlined in[5, 6, 28℄ to the wavelet setting produ
es a stable dis
retization method for a large
lass of problems in
luding general ellipti
 and Navier{Stokes equations.Keywords: Multis
ale methods, wavelets, saddle point problems, Stokes problem,ellipti
 and Navier{Stokes equations, stability, 
onvergen
e of Galerkins
hemes, bordered systems.AMS subje
t 
lassi�
ation: Primary 42C40, 65N12, 65P30, se
ondary 65N55.1 Introdu
tionIn re
ent years, wavelet analysis has be
ome a �eld of in
reasing importan
e. The �rstappli
ations of wavelet methods were in image and signal pro
essing. During the lastyears, they have also shown to o�er some potential for the numeri
al treatment of partialdi�erential and integral equations, see, e.g., [1, 8, 9, 10, 11, 14℄. The advantages of waveletmethods 
an be des
ribed as follows. It turns out that a simple diagonal s
aling appliedto sti�ness matri
es relative to wavelet bases suÆ
es to produ
e uniformly bounded 
on-dition numbers. Moreover, for a wide 
lass of integral or pseudo{di�erential operators thesti�ness matrix relative to wavelet bases 
an be shown to be suÆ
iently 
lose to sparsematri
es so that eÆ
ient sparse solvers 
an be applied. These are 
onsequen
es of thefollowing fa
ts:�The work of this author has been supported by the Deuts
he Fors
hungsgemeins
haft (DFG) underGrant Da 360/4-1. 1



2 K. B�ohmer, S. Dahlke- Weighted norms for sequen
es of wavelet expansion 
oeÆ
ients are equivalent in a
ertain range to Sobolev norms;- for a wide 
lass of operators their representation in the wavelet basis is nearlydiagonal;- the vanishing moments of wavelets remove the smooth part of a fun
tion.So far all these potential advantages of wavelet methods have been exploited in manysettings and yield powerful stable and 
onvergent Galerkin s
hemes. The most far{rea
hing results were obtained for selfadjoint and saddle point problems. For these prob-lems, it has even been possible to derive optimal 
onvergent adaptive wavelet s
hemes[8, 9, 10℄.This paper is, for di�erent reasons, 
on
entrated around the stability of dis
rete lin-ear operators. First of all, the wavelet s
hemes we study here are in the general sense
onforming variational methods. So 
onvergen
e of these methods for linear problems isan immediate 
onsequen
e of Ceas Lemma: if the solution u is well approximated, hereinfvn2Sn ku� vnkL2(
) ! 0, and the stability is guaranteed, we obtain `optimal' 
onver-gen
e. These 
onvergen
e results 
an be extended to nonlinear problems in several steps,[2, 3, 4℄. We assume for simpli
ity the Hilbert spa
e setting still to be appli
able tothe nonlinear situation, e.g., for the Navier{Stokes operator. Extensions to more generalBana
h spa
e settings are studied in [5, 6, 25℄, see [28℄ as well. [26℄ shows, under somete
hni
al 
onditions, that stability for the nonlinear problem is guaranteed if it is 
orre
tfor the linearized operator. The additionally ne
essary 
onsisten
y is granted for 
on-tinuous operators and their dis
retizations if the evaluation of all parts of the nonlinearoperators is possible in the Hilbert spa
e setting. For the Navier{Stokes operator and�nite element methods this has been 
arefully studied in, e.g. [27℄. For wavelet methodsthis is still a problem for future resear
h.In this paper, we are mainly interested in the question how stability of a given Galerkins
heme is preserved under perturbations. The setting 
an be des
ribed as follows. Supposethat the operator A under 
onsideration is of the form A = B+ C, where we assume thata stable Galerkin s
heme for B exists and C denotes a 
ompa
t perturbation. We showthat the given stable dis
retization of B produ
es a stable dis
retization for A providedthat A is boundedly invertible. This result 
an be applied to many problems, e.g., thelinearized Navier{Stokes equations fall into this 
ategory sin
e they 
an be interpreted as
ompa
t perturbations of the Stokes problem, at least for moderate Reynolds numbers.Finally, to numeri
ally study bifur
ation, 
enter and inertial manifolds we use the stan-dard bordered systems with a possibly noninvertable linearized operator. So the well{known stability is violated and has to be repla
ed by a `bordered stability'. Again thiswill be proved via a 
ompa
t perturbation argument.Numeri
al tests for selfadjoint and saddle point problems, e.g., the Stokes problem, withwavelet methods are do
umented in [1, 10℄. To extend these results to general ellipti
 andsaddle point problems, e.g., the Navier{Stokes problem, is a proje
t for future resear
h.This paper is organized as follows. In Se
tion 2, we brie
y dis
uss the s
ope of problemswe shall be 
on
erned with. Espe
ially, we introdu
e the setting of ellipti
 and saddle point



On the Stability of Multis
ale Wavelet Methods 3problems and dis
uss typi
al examples, i.e., the Stokes and the Navier{Stokes equations.Se
tion 3 is 
on
erned with the de�nition of wavelets and their basi
 properties. InSe
tion 4, we explain how suitable Galerkin s
hemes based on wavelets 
an be 
onstru
tedand dis
uss their stability properties. Espe
ially, we show that under 
ertain 
onditionsstability is preserved under 
ompa
t perturbations. This result is obtained by 
ombiningthe investigations developed in [28℄ and [5, 6℄ with the spe
i�
 properties of wavelets. InSe
tion 5, we show how these 
on
epts 
an be applied to the (linearized) Navier{Stokesequations. Finally, we indi
ate in Se
tion 6 how the stability for dis
rete bordered systems
an be proved via a 
ompa
t perturbation argument.2 The S
ope of ProblemsIn this se
tion, we shall brie
y explain the s
ope of problems we shall be 
on
erned with.The goal is to derive a stable numeri
al s
heme for problems that 
an be interpretedas boundedly invertible 
ompa
t perturbations of an operator equation with stable dis-
retization. Espe
ially, we are interested in problems related with well{known saddlepoint problems. As we shall see later, the famous (linearized) Navier{Stokes equationsfall into this 
ategory. Therefore we �rst re
all the general setting of operator equationsand dis
uss a typi
al saddle point problem, i.e., the Stokes problem. Furthermore, weintrodu
e and dis
uss the Navier{Stokes system.Suppose that H is a Hilbert spa
e with norm k � kH indu
ed by the inner produ
t h�; �i.Let A : H �! H0 denote a linear operator into the normed dual H0 of H. We shallmainly dis
uss the 
ase that A 
an be written asA = B + C; (1)where B is a bounded operator, B 2 L(H;H0), and C is 
ompa
t, C 2 C(H;H0): Typi
alexamples for B are given by general ellipti
 partial di�erential equations. E.g., the Poissonequation �4u = f; in 
 � IRd (2)u = 0; on �
would play the role of B. This B = �4 is a boundedly invertible mapping of H10 (
) ontoits dual H�1(
), i.e. kBukH0 � kukH: Here `a � b' means that both quantities 
an beuniformly bounded by some 
onstant multiple of ea
h other. Likewise, ` <� ' indi
atesinequality up to 
onstant fa
tors.We shall mainly be 
on
erned with the 
ase that B is indu
ed by a saddle point problem,however we start with a short presentation of general ellipti
 equations. It is well{knownthat, given a Hilbert spa
e X, they indu
e a 
ontinuous bilinear forma : X �X ! IR:For a general ellipti
 operator A this a(�; �) is 
oer
ive, hen
ea(v; v) � �kvk2X � �kvk2HX ; � > 0; for a Hilbert spa
e X ,! HX ,! X 0: (3)



4 K. B�ohmer, S. DahlkeFurthermore, this A = B+C is a 
ompa
t perturbation of a B, indu
ing an ellipti
 bilinearform 
(�; �), i.e., 
(v; v) � �kvk2X ; � > 0; for all v 2 X: (4)Then it is known that, for an invertible A, the equationa(u; v) = hf; viX0�X for all v 2 X; (5)is uniquely solvable; here h�; �iX0�X denotes the dual pairing. In the sequel, we will onlynow and then give some hints for general ellipti
 operators and their 
oer
ive bilinearforms. Mainly we shall 
on
entrate ourselves on the 
ase that B is indu
ed by a saddlepoint problem. Then we are given two Hilbert spa
es X and M , two 
ontinuous bilinearforms a : X �X ! IR; b : X �M ! IRand f 2 X 0 as well as g 2M 0. Moreover, we assume X � HX , M � HM , where HX , HMare Hilbert spa
es su
h thatX ,! HX ,! X 0; M ,! HM ,!M 0: (6)Then, one has to determine a pair (u; p) 2 X �M su
h thata(u; v) + b(v; p) = hf; viX0�X for all v 2 X;b(u; q) = hg; qiM 0�M for all q 2M: (7)In general, we assume the bilinear form a(�; �) to be ellipti
 on the subspa
eV := fv 2 X : b(v; q) = 0 for all q 2Mg � X;i.e., there exists a 
onstant � > 0 su
h thata(v; v) � �kvk2X (8)holds for all v 2 V , 
ompare (4). To ensure that the problem (7) is uniquely solvable, wealso have to assume that X and M ful�ll the inf{sup 
ondition:infq2M supv2X b(v; q)kvkX kqkM � � (9)for some 
onstant � > 0. For details, we refer e.g. to [22℄. The following equivalentformulation will be very useful in the sequel. De�ning the operatorsA : X ! X 0; hAu; viX0�X := a(u; v); v 2 X;B :M ! X 0; hBp; viX0�X := b(v; p); v 2 X;B0 : X !M 0; hB0u; qiM 0�M := b(u; q); q 2M;the problem (7) is equivalent to �nd (u; p) 2 X �M =: H su
h thatAu+Bp = f in X 0;B0u = g in M 0: (10)



On the Stability of Multis
ale Wavelet Methods 5If (7) is well{posed, the operator B := � A BB0 0 � (11)is boundedly invertible with respe
t to the usual graph norm, i.e., there exist 
onstants
B; CB su
h that 
BkB(u; p)kH0 � k(u; p)kH � CBkB(u; p)kH0; (12)where k(u; p)k2H := kuk2X + kpk2M , see again [22℄ for details.We shall be 
on
erned with an important spe
ial 
ase, i.e., with the Stokes problem. Let
 be a bounded, simply 
onne
ted domain in IRd: Then, given a ve
tor �eld f 2 H�1(
)dand a fun
tion g 2 L2;0(
) := fq 2 L2(
) : R
 q(x)dx = 0g, one has to determine thevelo
ity u 2 H10 (
)d and the pressure p 2 L2;0(
) su
h that�4u+rp = f in 
; (13)�r � u = g in 
:In the mixed formulation, the problem reads as follows: �nd a pair (u; p) 2 H10 (
)d �L2;0(
) su
h that a(u; v) + b(v; p) = hf; vi for all v 2 H10 (
)d;b(u; q) = hg; qi for all q 2 L2;0(
); (14)where a(u; v) := hru;rvi = dXi;j=1Z
 �ui�xj (x) �vi�xj (x)dx;b(v; q) := �hr � v; qi = � dXi=1 Z
 q(x) ��xi vi(x)dx:For further information 
on
erning the theory and the numeri
al treatment of the Stokesequations, the reader is referred, e.g., to [21℄, [27℄.One of our goals is to present a stable numeri
al s
heme for the stationary Navier-Stokesequation whi
h has the formG(u; p) : = 0� ���u + dPi=1 uiDiu+ grad pdiv u 1A = � f0 � in 
;u = 0 on �
; Z
 pdx = 0: (15)After multiplying with test fun
tions in the usual way, this problem �ts into our settingas follows, see (13), (14): �nd a pair (u; p) 2 H10 (
)d � L2;0(
) su
h that�a(u; v) + d(u; u; v) + b(v; p) = hf; vi for all v 2 H10 (
)d;b(u; q) = hg; qi for all q 2 L2;0(
); (16)



6 K. B�ohmer, S. Dahlkewhere d(u; v; w) := dXi;j=1Z
 ui(Divj)wjdx: (17)For bounded 
; and d � 4; see [27℄, Lemma 1.2, Ch. II, U 1,d(u; v; w) is a bounded trilinear form on H10 (
)d �H10 (
)d �H10 (
)d:To treat (16) numeri
ally, we employ its linearized form. We 
onsider for �xed u; v andsmall w d(u+ w; u+ w; v)� d(u; u; v) = d(u; w; v) + d(w; u; v) + o(w):So we obtain G0(u; p)(w; r) = 0� ���w + nPi=1(wiDiu+ uiDiw) + grad rdiv w 1A (18)and, with the a(�; �); b(�; �); d(�; �) in (16),(G0(u; p)(w; r); v; q)2 = � �a(w; v) + d(u; w; v) + d(w; u; v) + b(v; r)b(w; q) � : (19)In Se
tion 5, we shall derive a stable numeri
al s
heme for the treatment of (18).3 MultiresolutionOur goal is to develop Galerkin methods for the approximate solution of Au = f for anoperator A as in (1). However, in 
ontrast to 
onventional �nite element dis
retizationswe will work with trial spa
es that do not only exhibit the usual approximation propertiesand good lo
alization but in addition lead to expansions of any element in the underlyingHilbert spa
es in terms of multis
ale or wavelet bases with 
ertain stability properties.To 
orrespond to the above range of appli
ations we formulate the relevant fa
ts for thefollowing general framework. These results are essentially known (
f. [13, 17℄) but for the
onvenien
e of the reader we in
lude a brief summary of the relevant fa
ts.Let again H be a Hilbert spa
e (of fun
tions de�ned on 
, say) with inner produ
th�; �i. Throughout this se
tion orthogonality will always be understood relative to thisinner produ
t. Again typi
al examples are H = L2(
), H = Hs(
) or produ
ts of su
hspa
es. Let S = fSjg1j=0 be a sequen
e of 
losed nested subspa
es of H whose union isdense in H. In all 
ases of pra
ti
al relevan
e the spa
es Sj are spanned by single s
alebases �j = f�j;k : k 2 Ijg whi
h are uniformly stable, i.e.,k
k`2(Ij) � 





Xk2Ij 
k�j;k





H (20)
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ale Wavelet Methods 7uniformly in j 2 IN0. Here we denote as usual k
k2̀2(Ij) =Pk2Ij j
kj2.Su

essively updating a 
urrent approximation in Sj�1 to a better one in Sj 
an befa
ilitated if stable bases 	j = f j;k : k 2 Jjgfor some 
omplement Wj of Sj�1 in Sj are available. De�ning for 
onvenien
e 	0 := �0,W0 := S0, any vn =Pk2In 
k�n;k 2 Sn has then an alternative multis
ale representationvn = nXj=0 Xk2Jj dj;k j;kwhi
h 
orresponds to the dire
t sum de
ompositionSn = nMj=0 Wj:Of 
ourse, there is a 
ontinuum of possible 
hoi
es of su
h 
omplements. Orthogonalde
ompositions would 
orrespond to the 
lassi
al wavelet setting. However, orthogonalityoften interferes with lo
ality and the a
tual 
omputation of orthonormal bases might betoo expensive. Moreover, in 
ertain appli
ations orthogonal de
ompositions are a
tuallynot best possible [17℄. The essential 
onstraint on the 
hoi
e of Wj is that	 = [j2IN0	jforms a Riesz-basis of H, i.e., every v 2 H has a unique expansionv = 1Xj=0 Xk2Jjhv; ~ j;ki j;k (21)su
h that kvkH � 0� 1Xj=0 Xk2Jj jhv; ~ j;kij21A 12 ; v 2 H; (22)where ~	 = f ~ j;k : k 2 Jj; j 2 IN0g forms a biorthogonal systemh j;k; ~ j0;k0i = Æj;j0Æk;k0; j; j 0 2 IN0; k 2 Jj; k0 2 Jj0 (23)and is in fa
t also a Riesz-basis for H (
f. [13℄).We explain one aspe
t why this is important. Let Tn denote the transformation thattakes the 
oeÆ
ients dj;k in the multis
ale representation of vn into the 
oeÆ
ients 
k ofthe single s
ale representation. It 
orresponds to the synthesis part of the fast wavelettransform. In fa
t, it is known that the Riesz basis property of 	 is equivalent to Tnbeing well 
onditioned, i.e., kTnk ; 

T�1n 

 = O(1); n!1; (24)



8 K. B�ohmer, S. Dahlkewhere k�k denotes the spe
tral norm [12, 13℄.With su
h a pair of biorthogonal bases 	 and ~	 one 
an asso
iate 
anoni
al trun
ationproje
tors Qnv := nXj=0 Xk2Jjhv; ~ j;ki j;k; Q0nv := nXj=0 Xk2Jjhv;  j;ki ~ j;k (25)whi
h are obviously adjoints of ea
h other. Of 
ourse, when 	 is a Riesz-basis then theQn and hen
e their adjoints Q0n are uniformly bounded in H. Denoting by ~Sn the rangeof Q0n we have therefore two sequen
es S and ~S of nested 
losed subspa
es Sj and ~Sj,respe
tively, whose union is easily seen to be dense in H [12℄.While the Riesz-basis property of 	 implies the existen
e of a biorthogonal Riesz-basis~	 as well as the uniform boundedness of the proje
tors Qn and Q0n, the 
onverse is knownnot to be true in general [13℄. Additional 
onditions that do ensure the Riesz-basisproperty for a general Hilbert spa
e setting have been established in [13℄. Here we areonly interested in their spe
ialization to the parti
ular 
ase H = L2(
). What turns outto matter is that both S and ~S should have some approximation and regularity propertieswhi
h 
an be stated in terms of the following pair of estimates. There exists some 
 > 0su
h that the inverse estimatekvnkHs(
) <� 2ns kvnkL2(
) ; vn 2 Sn; (26)holds for s < 
. Moreover, there exists some m � 
 su
h that the dire
t estimateinfvn2Sn kv � vnkL2(
) <� 2�sn kvkHs(
) ; v 2 Hs(
); (27)holds for s � m. Su
h estimates are known to hold for every �nite element or splinespa
e. For instan
e, for pie
ewise linear �nite elements one has 
 = 3=2; m = 2.It will be 
onvenient to introdu
e the following notation. LetJ := f� = (j; k) : k 2 Jj; j 2 IN0g = 1[j=0(fjg � Jj):and de�ne j�j := j if � 2 Jj:Then the following result holds [13℄.Theorem 3.1 Suppose that 	 = f � : � 2 Jg and ~	 = f ~ � : � 2 Jg are biorthogonal
olle
tions in L2(
) and that the asso
iated sequen
e of proje
tors fQjg1j=0 is uniformlybounded. If both S and ~S satisfy (26) and (27) relative to some 
; 
0 > 0, 
 � m, 
0 � m0,then kvkHs(
) �  X�2J 22j�jsjhv; ~ �ij2! 12 ; s 2 (�
0; 
); (28)�  X�2J 22j�jsjhv;  �ij2! 12 ; s 2 (�
; 
0); v 2 Hs(
):
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ale Wavelet Methods 9Moreover, the proje
tors Qj and Q0j are uniformly bounded in Hs(
), s 2 (�
0; 
) ands 2 (�
; 
0), respe
tively.For more information about the 
onstru
tion of multis
ale bases 	; ~	 with the aboveproperties the reader is referred to [7, 16, 19℄.We are now prepared to employ these bases in a Galerkin s
heme. However, beforewe dis
uss this topi
 in the next se
tion, let us �nish with some remarks 
on
erning thespe
ial setting of saddle point problems. As saddle point problems are de�ned on produ
tspa
es of the form X �M , we need two biorthogonal wavelet bases 	 = f � : � 2 JXgand � = f#� : � 2 JMg that form Riesz{bases for HX and HM , respe
tively. The se
ondpair of biorthogonal basis � and ~� also indu
es a pair of proje
tors in the sense of (25):Pnq := nXj=0 Xk2JMj hq; ~#j;ki#j;k; P 0nq := nXj=0 Xk2JMj hq; #j;ki~#j;k: (29)In our appli
ations, X and M are mainly Hilbertian Sobolev spa
es on suitable domainsor manifolds 
1 � IRd; 
2 � IRd0 ; i.e.,X = H t(
1); M = Hs(
2): (30)Then, we assume that the norm equivalen
es of the form (28) hold for both spa
es,kvkH� (
1) �  X�2JX 22j�j� jhv; ~ �ij2!1=2 ; � 2 [�t; t℄; (31)kqkH�(
2) �  X�2JX 22j�j� jhq; ~#�ij2!1=2 ; � 2 [�s; s℄: (32)Throughout the remainder of this paper we will assume that the underlying wavelet basessatisfy either the 
onditions (28) or (31) and (32).4 Stable Dis
retizationsOur goal is to develop a suitable Galerkin s
heme to approximate the solution of Au = ffor an A as in (1) whi
h is based on a wavelet basis as introdu
ed in Se
tion 3. Thereforewe 
onsider subspa
es of the formS� := f � : � 2 �g; � � J; (33)and proje
t our problem onto these spa
es, i.e., the Galerkin approximation u� is de�nedby hAu�; vi = hf; vi for all v 2 S�: (34)In this paper, we shall mainly 
onsider the 
ase that S� 
onsists of the spa
es of theunderlying multiresolution analysis, i.e., S� = Sj. Su
h a method 
orresponds to uniform



10 K. B�ohmer, S. Dahlkemesh re�nement. The general 
ase will be studied in a forth
oming paper. In terms ofthe proje
tors Q� and Q0�,Q�v :=X�2�hv; ~ �i �; Q0�v =X�2�hv;  �i ~ �; (35)the Galerkin s
heme (34) may be very 
onveniently be written asQ0�AQ�u� = Q0�f: (36)In any 
ase, to obtain an appli
able numeri
al algorithm, it is essential that the Galerkins
heme has some basi
 stability properties. By using again the proje
tors Q�; Q0� thisrequirement 
an be formulated askQ0�Au�kH0 � ku�kH; u� 2 S�: (37)When A is positive de�nite and selfadjoint, this is the 
ase for any trial spa
e. Moreover,in the framework of pseudo{di�erential operators, suÆ
ient 
onditions have been derivedby [17℄. It turns out that inje
tivity of A and 
oer
ivity of the real part of the prin
ipalpart also imply stability. More pre
isely, it turns out that if� A is in the 
lass Sn1;0 whi
h is the sub
lass of H�ormander's 
lass with the propertythat j D�xD�� �(x; �) j� 
�;�(1 + j�j)(n�j�j); (38)� A is strongly ellipti
, i.e., a Garding inequality<�0(x; �) � 
j�jn; � 2 IRd; (39)holds, where �0 denotes the prin
iple part representing an operator of order n,� A is inje
tive, Ker A = f0g; (40)then the resulting uniform Galerkin s
heme based on the proje
tors Qj; Q0j will be stableand 
onvergent.For saddle point problems of the form (10), the trial spa
es (X�;M�) � (X;M) arede�ned by a pair of index sets� := (�X ;�M) � (JX ; JM): (41)It is well{known that stability of the dis
retization is ensured if the Ladyshenskaja{Babuska{Brezzi (LBB) 
onditioninfq�2M� supv�2X� b(v�; q�)kv�kX kq�kM � � (42)is satis�ed. Quite re
ently, expli
it 
onditions to 
he
k (42) in the wavelet 
ontext havebeen derived in [11℄, see also [15℄. Before we 
an state the result, some preparations arene
essary. The basi
 idea was to use the following well{known 
ondition of Fortin [20℄.



On the Stability of Multis
ale Wavelet Methods 11Proposition 4.1 ([20℄) The LBB 
ondition holds if and only if there exists an operatorQ� 2 L(X;X�) satisfyingb(v �Q�v; q�) = 0 for all v 2 X; q� 2M�; and (43)kQ�kL(X;X) <� 1; (44)independent of �.For any subset �X � X we will use the notations�X?b := fq 2M : b(v; q) = 0 for all v 2 �Xg; (45)and similar for �M � M�M?b := fv 2 X : b(v; q) = 0 for all q 2 �Mg: (46)In terms of these sets, the fundamental result from [11℄ reads as follows.Theorem 4.2 The multis
ale spa
es X�, M� de�ned above ful�ll the LBB 
ondition (42)provided that one of the following equivalent 
onditions holds:(a) M� � (X 	X�)?b,(b) B(M�) � ~X�,(
) B0(X 	X�) � M 0 	 ~M�.In summary, it is by now possible to 
onstru
t stable wavelet Galerkin s
hemes for a large
lass of problems. One of the aims of this paper is to investigate to what extent thesestability properties are preserved under perturbations. These relationships are 
lari�ed inthe following theorem whi
h is the main result of this paper. This is essentially a spe
ial
ase of a result in [6, 25℄. For our Hilbert spa
e setting it is given in [28℄ as well.Theorem 4.3 Let B � L(H;H0) and suppose that the biorthogonal wavelet Galerkins
heme Bj := Q0jBQj is stable. Let A := B + C with C 2 C(H;H0), the set of 
ompa
toperators from H ! H0. ThenA�1 2 L(H0;H) =) Aj := Q0jAQj is stable:Proof. See [6, 25℄. We determine for an arbitrary u 2 H and v0 := Cu the unique exa
tand dis
rete solutions, û and ûj, of the equations Bû = v0 and Bjûj = Q0jv0 = Q0jBû. Weintrodu
e the notations T = B�1; Tj = B�1j Q0j. Sin
e Bj is assumed to be stable, the
orresponding Galerkin s
heme 
onverges, hen
e for any u 2 H we obtainlimj!1kB�1j Q0jCu� B�1CukH = limj!1k(T � Tj)CukH = 0:C is 
ompa
t, so we get limj!1k(T � Tj)Ck = 0: (47)
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ause A is boundedly invertible, we 
an estimatekujkH � kA�1AujkH � kA�1kkAujkH0 � kA�1kkB(I + B�1C)ujkH0� kA�1kkBkk(I + TC)ujkH: (48)Hen
e, we obtainkAjujkH0 = kQ0j(B + C)QjujkH0= kBj(I + B�1j Q0jCQj)ujkH0� 1=kBjk�1k(I + B�1j Q0jCQj)ujkH= 1=kBjk�1k(I + TjCQj)ujkH� 1=kBjk�1(k(I + TC)QjujkH � k(T � Tj)CQjujkH):By using the fa
t that A = B + C implies I + B�1C = B�1A, this redu
es tokAjujkH0 � 1=kBjk�1 �1=kA�1Bk � k(T � Tj)Ck� kujkH:Be
ause of (47) and the stability of Bj there exists a positive 
onstant K, independent ofj, su
h that for all j � j0 the following holds:kAjujkH0 � KkujkH for all uj 2 Sj;hen
e Aj is stable.5 Appli
ations to Ellipti
 and Navier{Stokes Equa-tionsIn this se
tion, we want to explain how the fundamental Theorem 4.3 
an be used toobtain a stable dis
retization. This is a
hieved for ellipti
 and the Navier{Stokes equationsessentially simultaneously. We 
onsider the problems in their linearized form.It is well{known that any ellipti
 operator A indu
es a 
oer
ive bilinear form a(�; �).This 
an be split into the sum of an ellipti
 bilinear form 
(�; �) and its 
omplement ~
(�; �)s.t. the indu
ed operators B; C satisfy A = B + C with a 
ompa
t perturbation. Choosee.g., 
(u; v) := a(u; v) +mhu; vi with suÆ
iently large m > 0:For the Navier{Stokes equations the linearized form is stated in (18) and (19). Againthe idea is to show that this problem, for moderate Reynolds numbers or suÆ
iently large�, 
an be interpreted as a 
ompa
t perturbation of the Stokes problem (13). Thereforestable dis
retizations for (13) also yield stable s
hemes for (18). Some preparations arene
essary. We want to solve the problem(G0(u; p)(w; r); v; q)2=��a(w; v)+d(u; w; v)+d(w; u; v)+b(r; v)b(w; q) �=�hf1; vihf2; qi�=F (v; q):(49)
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ale Wavelet Methods 13For �xed u, the 
ontinuous bilinear forms d(u; �; w) and d(�; u; v) de�ne elements d(u; �; w);and d(�; u; v) in H�1(
), hen
e they de�ne linear 
ontinuous operatorsD1(v) := d(u; �; v) and D2(v) := d(�; u; v): (50)Hen
e we observe that (49) 
an be written asA(w; r) = B(w; r) + C(w; r) = F; (51)where B = � �A BB0 0 � ; C = � D1 +D2 00 0 � ; (52)and A and B are de�ned a

ording to (13), (14). We treat this problem by a uniformmethod, i.e., we 
onsider multis
ale spa
es of the form Xj := XJXj ; JXj = f� 2 JX ; j�j �jg; Mj0 := MJMj0 ; JMj0 = f� 2 JM ; j�j � j 0g. Let Qj and Pj0 denote the asso
iatedbiorthogonal proje
tors as de�ned in (25) and (29), respe
tively. Then the resultingGalerkin s
heme for (51) is given by�Q0jAwj +Q0jBrj0 +Q0j(D1 +D2)wj = Q0jf1; (53)P 0j0B0wj = P 0j0f2:In this setting, the main result reads as follows, 
ompare [6, 25℄.Theorem 5.1 Let the multis
ale spa
es Xj and Mj0 be 
hosen in su
h a way that one ofthe 
onditions in Theorem 4.2 is satis�ed. Then the linearized Navier{Stokes operator Ain (51) represents, for suÆ
iently large �, a 
ompa
t perturbation of the Stokes operatorB in (52). For boundedly invertible A, in parti
ular for suÆ
iently large �, the Galerkins
heme (53) yields stable Aj.Proof. Compare [6, 25℄. We only have to show the 
ompa
t perturbation property ofthe Navier{Stokes equation. For �xed u 2 H10 (
), we havehD1v; wi = d(u; w; v) = dXi;j=1Z
 ui(Diwj)vjdx; (54)hD2v; wi = d(w; u; v) = dXi;j=1Z
wi(Diuj)vjdx:Now the embedding I : H10 (
) �! L2(
) is 
ontinuous and 
ompa
t and (54) showsthat D1v = D1Iv for all v 2 H10 (
):Therefore, as a produ
t of a 
ompa
t and a 
ontinuous operator, D1 = D1I is a 
ompa
toperator. The same is 
orre
t for D2 as well. Hen
e the operator C in (51) is 
ompa
t.Moreover, sin
e B is the Stokes operator, Theorem 4.2 implies that the Galerkin s
heme�Q0jAwj +Q0jBrj0 = Q0jf1;P 0j0B0wj = P 0j0f2;



14 K. B�ohmer, S. Dahlkeis stable. Furthermore, the existen
e of A�1, B�1 and the stability of the Bj imply thestability of the Aj by Theorem 4.3. It is well known that for large enough parameters �the operator A is always invertible. This �nishes the proof.Remark 5.2 For general ellipti
 operators A, Theorem 4.3 
an be applied to obtain astable Galerkin dis
retization Aj. Similar results have also been shown in [17℄.6 Stability for Bordered SystemsTo numeri
ally 
ompute bifur
ation s
enarios and later on 
enter and inertial manifolds,extended and, in parti
ular, bordered systems have been introdu
ed by Keller and usedby many authors, see, e.g., [23, 24℄. In the mean time, the 
on
ept of bordered systems,obtained by few additional parameters and equations, see (57), is the method of 
hoi
e.Again we 
an, for stability arguments, restri
t the dis
ussion to linear problems, seeSe
tion 1. We give a short introdu
tion to this bordering and interpret it as 
ompa
tperturbation of an invertible operator B with stable Bj: This will yield the desired stabilityresults for bordered systems.Suppose, we have the following splitting of H;H0, see [23℄,H = N �M; H0 = N 0 �M0 (55)with m{dimensional subspa
es N and N 0. They approximate the eigenspa
es with purelyimaginary eigenvalues of A and its dual A0, e.g., the kernel and 
orange of the linearizedoperator A, respe
tively, and 
losed 
omplements M;M0. We 
hoose orthogonal basesw.r.t. h�; �i, for the N ;N 0 asN = [�1; : : : ; �m℄ � H; N 0 = [�01; : : : ; �0m℄ � H0: (56)For a Fredholm operator A with index 0 we have to dis
retize the following equations,see [23℄: We de�ne L 2 L(H� IRm;H0 � IRm) as,L = 0BBB� A �01 ; : : : ; �0mh�; �1i 0 ; : : : ; 0... ... ...h�; �mi 0 ; : : : ; 0 1CCCA : (57)We apply L to (u; �)T 2 H�IRm as in Linear Algebra and solve, with (f; 0)T 2 H0�IRm,L�u�� := 0BBB�Au+Pmi=1 �i�0ihu; �1i...hu; �mi
1CCCA = �f0� : (58)Now we 
an treat equation (58) with the methods from Se
tion 4. We obtain as spe
ial
ase of a result in [25℄ and Theorem 4.3 the following
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ale Wavelet Methods 15Theorem 6.1 Under the 
onditions of Theorem 3.1 let A = B + C with A;B; C 2L(H;H0); C be 
ompa
t and B be boundedly invertible with stable Bj. Then the following
onditions 1., 2. are mutually equivalent and ea
h implies 3:1: for all f 2 H0 the equation (58) is uniquely solvable,2: L�1 2 L(H0 � IRm;H� IRm);3: the dis
retization Lj of L is stable:The above 
ondition 2. is exa
tly the analyti
 
ondition whi
h is imposed in [23℄ toguarantee the 
onta
t equivalen
e for the bifur
ation fun
tions for all 
hoi
es of splittingsin (55).Proof. We only indi
ate the proof for this spe
ial 
ase of [6, 25℄: With the operators�0 2 L(H; IRm) and � 2 L(IRm;H0) by�0u := (hu; �ii)mi=1; and �� :=Pmi=1 �i�0i; we de�ne L := � A ��0 0 �:We write L in the formL = �B 00 IIRm�+ � C ��0 �IIRm� =: Bext + Cext:The bounded invertability of B and the stability of its dis
rete Bj imply immediately thatBext and its dis
rete Bext;j have a bounded inverse and are stable, sin
ek(Bext;jjSj�IRm)�1kSj�IRm Sj�IRm � k((BjjSj)�1kSj Sj + 1:This result shows that the numeri
al Liapunov{S
hmidt methods and its generalizationsto 
enter and inertial manifolds yield 
onvergent results if wavelet dis
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