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Abstract

Quite recently, wavelet Galerkin methods have been very successfully applied to
linear elliptic operator equations, especially to selfadjoint and saddle point prob-
lems. In fact, (adaptive) numerical wavelet schemes have been derived which were
guaranteed to converge for a large class of problems including saddle point problems
such as the Stokes problem. In this paper, we introduce a first numerical scheme
to treat also more general problems such as general elliptic and the Navier—Stokes
equations. We show that applying the general convergence theory as outlined in
[5, 6, 28] to the wavelet setting produces a stable discretization method for a large
class of problems including general elliptic and Navier—Stokes equations.
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1 Introduction

In recent years, wavelet analysis has become a field of increasing importance. The first
applications of wavelet methods were in image and signal processing. During the last
years, they have also shown to offer some potential for the numerical treatment of partial
differential and integral equations, see, e.g., [1, 8, 9, 10, 11, 14]. The advantages of wavelet
methods can be described as follows. It turns out that a simple diagonal scaling applied
to stiffness matrices relative to wavelet bases suffices to produce uniformly bounded con-
dition numbers. Moreover, for a wide class of integral or pseudo—differential operators the
stiffness matrix relative to wavelet bases can be shown to be sufficiently close to sparse
matrices so that efficient sparse solvers can be applied. These are consequences of the
following facts:
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- Weighted norms for sequences of wavelet expansion coefficients are equivalent in a
certain range to Sobolev norms;

- for a wide class of operators their representation in the wavelet basis is nearly
diagonal;

- the vanishing moments of wavelets remove the smooth part of a function.

So far all these potential advantages of wavelet methods have been exploited in many
settings and yield powerful stable and convergent Galerkin schemes. The most far—
reaching results were obtained for selfadjoint and saddle point problems. For these prob-
lems, it has even been possible to derive optimal convergent adaptive wavelet schemes
[8, 9, 10].

This paper is, for different reasons, concentrated around the stability of discrete lin-
ear operators. First of all, the wavelet schemes we study here are in the general sense
conforming variational methods. So convergence of these methods for linear problems is
an immediate consequence of Ceas Lemma: if the solution u is well approximated, here
infy, es, [[u = vnll,0) = 0, and the stability is guaranteed, we obtain ‘optimal’ conver-
gence. These convergence results can be extended to nonlinear problems in several steps,
[2, 3, 4]. We assume for simplicity the Hilbert space setting still to be applicable to
the nonlinear situation, e.g., for the Navier-Stokes operator. Extensions to more general
Banach space settings are studied in [5, 6, 25|, see [28] as well. [26] shows, under some
technical conditions, that stability for the nonlinear problem is guaranteed if it is correct
for the linearized operator. The additionally necessary consistency is granted for con-
tinuous operators and their discretizations if the evaluation of all parts of the nonlinear
operators is possible in the Hilbert space setting. For the Navier—Stokes operator and
finite element methods this has been carefully studied in, e.g. [27]. For wavelet methods
this is still a problem for future research.

In this paper, we are mainly interested in the question how stability of a given Galerkin
scheme is preserved under perturbations. The setting can be described as follows. Suppose
that the operator A under consideration is of the form A = B+ C, where we assume that
a stable Galerkin scheme for B exists and C denotes a compact perturbation. We show
that the given stable discretization of B produces a stable discretization for A provided
that A is boundedly invertible. This result can be applied to many problems, e.g., the
linearized Navier—Stokes equations fall into this category since they can be interpreted as
compact perturbations of the Stokes problem, at least for moderate Reynolds numbers.

Finally, to numerically study bifurcation, center and inertial manifolds we use the stan-
dard bordered systems with a possibly noninvertable linearized operator. So the well-
known stability is violated and has to be replaced by a ‘bordered stability’. Again this
will be proved via a compact perturbation argument.

Numerical tests for selfadjoint and saddle point problems, e.g., the Stokes problem, with
wavelet methods are documented in [1, 10]. To extend these results to general elliptic and
saddle point problems, e.g., the Navier—Stokes problem, is a project for future research.

This paper is organized as follows. In Section 2, we briefly discuss the scope of problems
we shall be concerned with. Especially, we introduce the setting of elliptic and saddle point
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problems and discuss typical examples, i.e., the Stokes and the Navier—Stokes equations.
Section 3 is concerned with the definition of wavelets and their basic properties. In
Section 4, we explain how suitable Galerkin schemes based on wavelets can be constructed
and discuss their stability properties. Especially, we show that under certain conditions
stability is preserved under compact perturbations. This result is obtained by combining
the investigations developed in [28] and [5, 6] with the specific properties of wavelets. In
Section 5, we show how these concepts can be applied to the (linearized) Navier—Stokes
equations. Finally, we indicate in Section 6 how the stability for discrete bordered systems
can be proved via a compact perturbation argument.

2 The Scope of Problems

In this section, we shall briefly explain the scope of problems we shall be concerned with.
The goal is to derive a stable numerical scheme for problems that can be interpreted
as boundedly invertible compact perturbations of an operator equation with stable dis-
cretization. Especially, we are interested in problems related with well-known saddle
point problems. As we shall see later, the famous (linearized) Navier-Stokes equations
fall into this category. Therefore we first recall the general setting of operator equations
and discuss a typical saddle point problem, i.e., the Stokes problem. Furthermore, we
introduce and discuss the Navier—Stokes system.

Suppose that H is a Hilbert space with norm || - ||3 induced by the inner product (-, ).
Let A : H — H' denote a linear operator into the normed dual H' of H. We shall
mainly discuss the case that A can be written as

A=B+C, (1)

where B is a bounded operator, B € L(H,H'), and C is compact, C € C(H,H'). Typical
examples for B are given by general elliptic partial differential equations. E.g., the Poisson
equation

~Au = f, inQcC R (2)
u = 0, on 0f)

would play the role of B. This B = —A is a boundedly invertible mapping of H}(£2) onto
its dual H=1(Q), i.e. ||Bull3 ~ ||ull3. Here ‘a ~ b” means that both quantities can be
uniformly bounded by some constant multiple of each other. Likewise, * < ’ indicates
inequality up to constant factors.

We shall mainly be concerned with the case that B is induced by a saddle point problem,
however we start with a short presentation of general elliptic equations. It is well-known
that, given a Hilbert space X, they induce a continuous bilinear form

a: X xX = IR
For a general elliptic operator A this a(-,-) is coercive, hence

a(v,v) > al|v]|% = Bllvll3,., @ >0, for a Hilbert space X — Hx < X', (3)
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Furthermore, this A = B+C is a compact perturbation of a B3, inducing an elliptic bilinear
form ¢(-, ), i.e.,
c(v,v) > aljv|%, a >0, for all v € X. (4)

Then it is known that, for an invertible A, the equation
a(u,v) = (f,v)xrxx for all v € X, (5)

is uniquely solvable; here (-,-)x/«x denotes the dual pairing. In the sequel, we will only
now and then give some hints for general elliptic operators and their coercive bilinear
forms. Mainly we shall concentrate ourselves on the case that B is induced by a saddle
point problem. Then we are given two Hilbert spaces X and M, two continuous bilinear

forms
a: X xX — IR, b: X XM — IR

and f € X' as well as g € M'. Moreover, we assume X C Hy, M C Hy;, where Hx, Hy,
are Hilbert spaces such that

X — Hyxy — X', M < Hy — M'. (6)
Then, one has to determine a pair (u,p) € X x M such that

a(u,v) +b(v,p) = {(f,v)xxx forallve X,
b(u, q) = (9, @)mrxn forall g € M.

(7)

In general, we assume the bilinear form a(-,-) to be elliptic on the subspace
Vi={veX:bv,q=0forallge M} C X,

i.e., there exists a constant v > 0 such that

a(v,v) > allv|% (8)

holds for all v € V', compare (4). To ensure that the problem (7) is uniquely solvable, we
also have to assume that X and M fulfill the inf-sup condition:

inf sup b(v, 9) > 9)

9eM yex |lvllx gl —

for some constant 5 > 0. For details, we refer e.g. to [22]. The following equivalent
formulation will be very useful in the sequel. Defining the operators

A: X - X', (Au,v)xivx = a(u,v), veEX,
B:M — X', (Bp,v)xxx = bv,p), veEX,
B : X - M, (Bu,Q)yrxym = bu,q), q€ M,

the problem (7) is equivalent to find (u,p) € X x M =: H such that

Au+Bp = [ in X',

B'u = ¢ in M. (10)
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If (7) is well-posed, the operator

B::(é‘, 13) (11)

is boundedly invertible with respect to the usual graph norm, i.e., there exist constants
¢, Ci such that

csl|B(u, p)|le < [[(u, p)ll < Csl|B(u, p)|l, (12)
where ||(u, p)||3, := ||ull%x + ||pll3;, see again [22] for details.

We shall be concerned with an important special case, i.e., with the Stokes problem. Let
Q be a bounded, simply connected domain in IR%. Then, given a vector field f € H~1(Q)4
and a function g € Lyo(Q) := {q € Ly(Q) : [, q(x)dz = 0}, one has to determine the
velocity u € H}(2)® and the pressure p € Ly (£2) such that

—Au+Vp = [ inQQ, (13)
—V-.u = g in (L

In the mized formulation, the problem reads as follows: find a pair (u,p) € H{(2)¢ x
L o(§2) such that

a(u,v) + blv,p) = (f,v) forallve H}Q)?,

b(u, q) = (9,9 for all ¢ € Ly(€2), (14)

where

aul avl
a(u,v) = (Vu,Vv) Z/a% 83:] z)dz,

b(v,q) = —(V-v,q) Z/ dx.

For further information concerning the theory and the numerical treatment of the Stokes
equations, the reader is referred, e.g., to [21], [27].

One of our goals is to present a stable numerical scheme for the stationary Navier-Stokes
equation which has the form

d
div u
v = 0 on 09, /pda:zO. (15)
Q

After multiplying with test functions in the usual way, this problem fits into our setting
as follows, see (13), (14): find a pair (u,p) € H§ (Q)? x Lyy(Q) such that

va(u,v) + d(u,u,v)+bv,p) = (f,v) forallve H}(Q)Y,

b(u, q) = (9,q9) forall g€ Lyo(Q), (16)
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where

d(u,v,w) = Z /Qui(Divj)wjda;. (17)

ij=1
For bounded 2, and d < 4, see [27], Lemma 1.2, Ch. II, U 1,
d(u,v,w) is a bounded trilinear form on H}(Q)* x Hg(Q)* x Hy(Q)%.

To treat (16) numerically, we employ its linearized form. We consider for fixed u,v and
small w

d(u+w,u+w,v) —d(u,u,v) = du,w,v)+ dw,u,v) + o(w).
So we obtain

—vAw + > (w;Diu + u;D;w) + grad r
i1

G'(u,p)(w,r) = (18)
div w
and, with the a(-,-),b(:,),d(-,-) in (16),
(@ () w.r), )y = (P Al T ) g

In Section 5, we shall derive a stable numerical scheme for the treatment of (18).

3 Multiresolution

Our goal is to develop Galerkin methods for the approximate solution of Au = f for an
operator A as in (1). However, in contrast to conventional finite element discretizations
we will work with trial spaces that do not only exhibit the usual approximation properties
and good localization but in addition lead to expansions of any element in the underlying
Hilbert spaces in terms of multiscale or wavelet bases with certain stability properties.
To correspond to the above range of applications we formulate the relevant facts for the
following general framework. These results are essentially known (cf. [13, 17]) but for the
convenience of the reader we include a brief summary of the relevant facts.

Let again A be a Hilbert space (of functions defined on 2, say) with inner product
(-,-). Throughout this section orthogonality will always be understood relative to this
inner product. Again typical examples are H = Ly(Q2), H = H*(2) or products of such
spaces. Let § = {Sj}}?io be a sequence of closed nested subspaces of H whose union is
dense in H. In all cases of practical relevance the spaces S; are spanned by single scale
bases ®; = {p;r : k € I;} which are uniformly stable, i.e.,

lelloyy ~ (1D cxdin (20)

kEIj U
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uniformly in j € INy. Here we denote as usual ||c||§2(lj) = D ker, lowl®.
Successively updating a current approximation in S;_; to a better one in S; can be
facilitated if stable bases

\Ifj = {Zb],k . k € J]}
for some complement W; of S;_; in S; are available. Defining for convenience W, := @,
Wy := Sy, any v, = Zkgn Ck®nk € Sy has then an alternative multiscale representation

0 =3 dis

j=0 keJ;

which corresponds to the direct sum decomposition

Sn == é Wj.
j=0

Of course, there is a continuum of possible choices of such complements. Orthogonal
decompositions would correspond to the classical wavelet setting. However, orthogonality
often interferes with locality and the actual computation of orthonormal bases might be
too expensive. Moreover, in certain applications orthogonal decompositions are actually
not best possible [17]. The essential constraint on the choice of W is that

v=J v,
j€INg

forms a Riesz-basis of H, i.e., every v € ‘H has a unique expansion

u= D (0, i)tk (21)

j=0 keJ;

such that

2

vl ~ | DD o) P) . veH, (22)

§=0 keJ;
where U = {1/33',19 k€ Jj,j € INy} forms a biorthogonal system
(Dies Vjrwe) = O1,500kpe, Go3 € Mo, k€5, K € Jj (23)

and is in fact also a Riesz-basis for H (cf. [13]).

We explain one aspect why this is important. Let T, denote the transformation that
takes the coefficients d;; in the multiscale representation of v, into the coefficients ¢, of
the single scale representation. It corresponds to the synthesis part of the fast wavelet
transform. In fact, it is known that the Riesz basis property of ¥ is equivalent to T,
being well conditioned, i.e.,

1Tl [T = O1), n— oo, (24)
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where [|-|| denotes the spectral norm [12, 13].
With such a pair of biorthogonal bases W and W one can associate canonical truncation

projectors
Quv —ZZ 0, )i Qv —ZZ ERIS LI (25)

j=0 keJ; j=0 keJ;

which are obviously adjoints of each other. Of course, when W is a Riesz-basis then the
Q). and hence their adjoints @)}, are uniformly bounded in . Denoting by S, the range
of @, we have therefore two sequences S and S of nested closed subspaces S; and S'j,
respectively, whose union is easily seen to be dense in H [12].

While the Riesz-basis property of ¥ implies the existence of a biorthogonal Riesz-basis
U as well as the uniform boundedness of the projectors (), and ()}, the converse is known
not to be true in general [13]. Additional conditions that do ensure the Riesz-basis
property for a general Hilbert space setting have been established in [13]. Here we are
only interested in their specialization to the particular case H = L,(€2). What turns out
to matter is that both S and S should have some approximation and regularity properties
which can be stated in terms of the following pair of estimates. There exists some v > 0
such that the inverse estimate

[on| Hs(Q) s 2” ||Un||L2(Q)= Un € S, (26)

holds for s < 7. Moreover, there exists some m > ~ such that the direct estimate

< 27 [oll ey, v € HYQ), (27)

Y

Uiggn v — Un||L2(Q)

holds for s < m. Such estimates are known to hold for every finite element or spline
space. For instance, for piecewise linear finite elements one has v = 3/2, m = 2.
It will be convenient to introduce the following notation. Let

o0

Ji={A=(0k) : ke JjjelNo}=J{i} x 7).

=0
and define
IAl:==7 if Ae Jj.
Then the following result holds [13].

Theorem 3.1 Suppose that U = {1y : A € J} and ¥ = {4y : A\ € J} are biorthogonal
collections in Ly(Q2) and that the associated sequence of projectors {Q;}32, is uniformly

bounded. If both S and S satisfy (26) and (27) relative to some y,~' >0, v < m, 7' < m’,
then

N

[0/l sy~ (ZQz'ASI@,J)A)IQ) , s€(=77), (28)

AeJ

(222'“|<v,1/u>|2) sE(-ny), veH ().

AeJ
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Moreover, the projectors Q; and Q' are uniformly bounded in H*(Q2), s € (—7',7) and
s € (—v,7'), respectively.

For more information about the construction of multiscale bases ¥, U with the above
properties the reader is referred to [7, 16, 19].

We are now prepared to employ these bases in a Galerkin scheme. However, before
we discuss this topic in the next section, let us finish with some remarks concerning the
special setting of saddle point problems. As saddle point problems are defined on product
spaces of the form X x M, we need two biorthogonal wavelet bases ¥ = {4 : A € J*}
and © = {9, : p € JM} that form Riesz—bases for Hy and H)y, respectively. The second
pair of biorthogonal basis © and © also induces a pair of projectors in the sense of (25):

P.q = Z Z <q,1§j,k>19j,k, P,'Lq = Z Z <q719j,k>1§j,k- (29)

Jj=0 keJJM Jj=0 kEJ]M

In our applications, X and M are mainly Hilbertian Sobolev spaces on suitable domains
or manifolds Q; C R?, Q, C R?, i.e.,

X =H'(Q), M=H(Q). (30)

Then, we assume that the norm equivalences of the form (28) hold for both spaces,

1/2
||U||HT(91) ~ (Z 22/\|T|<7}7"/~))\>|2> ) TE [_tat]a (31)

AeJX
1/2
gl e,y ~ (Z 22“C|<q,19u>|2> , CE€[=s,s] (32)
reJX

Throughout the remainder of this paper we will assume that the underlying wavelet bases
satisfy either the conditions (28) or (31) and (32).

4 Stable Discretizations

Our goal is to develop a suitable Galerkin scheme to approximate the solution of Au = f
for an A as in (1) which is based on a wavelet basis as introduced in Section 3. Therefore
we consider subspaces of the form

Sy :={y: A e A}, ACJ, (33)

and project our problem onto these spaces, i.e., the Galerkin approximation u, is defined
by
(Aup,v) = (f,v) for all v € Sy. (34)

In this paper, we shall mainly consider the case that S, consists of the spaces of the
underlying multiresolution analysis, i.e., Sy = S;. Such a method corresponds to uniform
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mesh refinement. The general case will be studied in a forthcoming paper. In terms of
the projectors Q) and @,

Qav =Y (v, ha)tx,  Qyv=> (v, ), (39)

AEA AEA

the Galerkin scheme (34) may be very conveniently be written as

QuAQnur = Q) f- (36)

In any case, to obtain an applicable numerical algorithm, it is essential that the Galerkin
scheme has some basic stability properties. By using again the projectors @, ' this
requirement can be formulated as

|QhAunllzr ~ luallx, up € Sh. (37)

When A is positive definite and selfadjoint, this is the case for any trial space. Moreover,
in the framework of pseudo—differential operators, sufficient conditions have been derived
by [17]. It turns out that injectivity of A and coercivity of the real part of the principal
part also imply stability. More precisely, it turns out that if

e Ais in the class ST which is the subclass of Hérmander’s class with the property
that
| DIDgo(2,€) |< cap(L+ D™, (38)

o A is strongly elliptic, i.e., a Garding inequality
Roo(z, &) > cle]", €€ R, (39)
holds, where oy denotes the principle part representing an operator of order n,

e A is injective,

Ker A = {0}, (40)

then the resulting uniform Galerkin scheme based on the projectors @;, @} will be stable
and convergent.

For saddle point problems of the form (10), the trial spaces (Xy, My) C (X, M) are
defined by a pair of index sets

A= (Ax, Ay) C (J*, TM). (41)

It is well-known that stability of the discretization is ensured if the Ladyshenskaja—
Babuska—Brezzi (LBB) condition

. b('U)nq/\)
inf sup —m—m"—— >
INEMA y e Xy vallx llaalla

(42)

is satisfied. Quite recently, explicit conditions to check (42) in the wavelet context have
been derived in [11], see also [15]. Before we can state the result, some preparations are
necessary. The basic idea was to use the following well-known condition of Fortin [20].
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Proposition 4.1 ([20]) The LBB condition holds if and only if there exists an operator
Qr € L(X, X)) satisfying

b(v—Qav,qn) = 0 forallve X, qn € My, and (43)
[Qallcxxy <1 (44)

independent of A.

For any subset X C X we will use the notations

Xb={geM:b,q)=0 forallve X}, (45)
and similar for M C M

M* :={veX:bl,q) =0 forall ge M}. (46)
In terms of these sets, the fundamental result from [11] reads as follows.

Theorem 4.2 The multiscale spaces Xy, My defined above fulfill the LBB condition (42)
provided that one of the following equivalent conditions holds:

(a) My C (X & X))b,
(b) B(M,) C Xy,
(¢c) B(X © X)) C M ©M,.

In summary, it is by now possible to construct stable wavelet Galerkin schemes for a large
class of problems. One of the aims of this paper is to investigate to what extent these
stability properties are preserved under perturbations. These relationships are clarified in
the following theorem which is the main result of this paper. This is essentially a special
case of a result in [6, 25]. For our Hilbert space setting it is given in [28] as well.

Theorem 4.3 Let B C L(H,H') and suppose that the biorthogonal wavelet Galerkin
scheme B; = Q:BQ); is stable. Let A := B+ C with C € C(H,H'), the set of compact
operators from H — H'. Then

A e L(H, H) = A;:=Q}AQ; is stable.

Proof. See [6, 25]. We determine for an arbitrary v € A and v' := Cu the unique exact
and discrete solutions, @ and iy, of the equations Bi = v" and Bji; = Q%' = Q' Bi. We
introduce the notations 7' = B, T; = BJ-_IQ;-. Since B; is assumed to be stable, the
corresponding Galerkin scheme converges, hence for any v € H we obtain

lim ||B;'QCu — B 'Cully = lim ||(T — T})Cul|5 = 0.
j—o0 j—o0

C is compact, so we get
lim ||(T"—T;)C|| = 0. (47)
j—o0
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Now let u; € S;. Because A is boundedly invertible, we can estimate

A7 Awgllz < AT Aw; e < MBI+ B~C)uyll
A BT + TC)usl 2. (48)

lujlln <
<

Hence, we obtain

[ Ajujllae = Q5B + C)Qjujllw
1B;(I + B, ' Q5CQ; )u;l5

> 1/IBI I + B, QiCQy) s
= YIBI U + T,Qy)us
> NIB 7 I+ TC)Quslln — (T = T)CQqus ).

By using the fact that A = B+ C implies I + B~'C = B !A, this reduces to
1A ullae > 1B (L/IAT B = (T = T3)CI[) Nl

Because of (47) and the stability of B; there exists a positive constant K, independent of
j, such that for all j > jo the following holds:

[Ajuillze > Klluglly for all u; €5j,

hence A; is stable. O

5 Applications to Elliptic and Navier—Stokes Equa-
tions

In this section, we want to explain how the fundamental Theorem 4.3 can be used to
obtain a stable discretization. This is achieved for elliptic and the Navier—Stokes equations
essentially simultaneously. We consider the problems in their linearized form.

It is well-known that any elliptic operator A induces a coercive bilinear form af(-,-).
This can be split into the sum of an elliptic bilinear form ¢(-,-) and its complement ¢(-, -)
s.t. the induced operators B, C satisfy A = B + C with a compact perturbation. Choose
e.g.,

c(u,v) := a(u,v) + m(u,v) with sufficiently large m > 0.

For the Navier-Stokes equations the linearized form is stated in (18) and (19). Again
the idea is to show that this problem, for moderate Reynolds numbers or sufficiently large
v, can be interpreted as a compact perturbation of the Stokes problem (13). Therefore
stable discretizations for (13) also yield stable schemes for (18). Some preparations are
necessary. We want to solve the problem

, _((va(w,v)+d(u, w,v)+d(w,u,v)+b(r,v)\_ ((fu,v)\
(G'(u,p)(w, ), v, q)2—< b(w, q) >_<<f2, q)) =F(v,q).(49)
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For fixed u, the continuous bilinear forms d(u, -, w) and d(+, u, v) define elements d(u, -, w),
and d(-,u,v) in H 1(Q), hence they define linear continuous operators

D, (v) :=d(u,-,v) and Dy(v):=d(-,u,v). (50)
Hence we observe that (49) can be written as
A(w,r) = B(w,r) +C(w,r) = F, (51)
where
~ (vA B _( Di+Dy 0

and A and B are defined according to (13), (14). We treat this problem by a uniform
method, i.e., we consider multiscale spaces of the form X := XJ]_X, JE={reJ¥ ]\ <

gty My = My, Jit = {p € JY, |u] < j'}. Let Q; and Py denote the associated
J

biorthogonal projectors as defined in (25) and (29), respectively. Then the resulting

Galerkin scheme for (51) is given by

VQ;-AIU]' + Q;‘Brj’ + Q}(D1 + Dy)w; = Q;'fl; (53)
PiB'w; = Pj .

In this setting, the main result reads as follows, compare [6, 25].

Theorem 5.1 Let the multiscale spaces X; and Mj be chosen in such a way that one of
the conditions in Theorem 4.2 is satisfied. Then the linearized Navier—Stokes operator A
in (51) represents, for sufficiently large v, a compact perturbation of the Stokes operator
B in (52). For boundedly invertible A, in particular for sufficiently large v, the Galerkin
scheme (53) yields stable A,;.

Proof. Compare [6, 25]. We only have to show the compact perturbation property of
the Navier-Stokes equation. For fixed u € H}(€2), we have

(Dyv,wy = d(u,w,v)= Z/Qui(Diwj)vjdx, (54)

ij=1

(Dyv,w)y = d(w,u,v)= Z/Qwi(Din)Ujde-

ij=1

Now the embedding I : H}(Q) — Ly(f2) is continuous and compact and (54) shows
that
Dyv = DIv forall ve Hj(Q).

Therefore, as a product of a compact and a continuous operator, Dy = D11 is a compact
operator. The same is correct for Dy as well. Hence the operator C in (51) is compact.
Moreover, since B is the Stokes operator, Theorem 4.2 implies that the Galerkin scheme

vQiAw; + QBry = Q}f1,
.P]{/B,'U)j = .P]{/fQ,
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is stable. Furthermore, the existence of A ™!, B~! and the stability of the B; imply the
stability of the A; by Theorem 4.3. It is well known that for large enough parameters v
the operator A is always invertible. This finishes the proof. O

Remark 5.2 For general elliptic operators A, Theorem 4.3 can be applied to obtain a
stable Galerkin discretization A;. Similar results have also been shown in [17].

6 Stability for Bordered Systems

To numerically compute bifurcation scenarios and later on center and inertial manifolds,
extended and, in particular, bordered systems have been introduced by Keller and used
by many authors, see, e.g., [23, 24]. In the mean time, the concept of bordered systems,
obtained by few additional parameters and equations, see (57), is the method of choice.
Again we can, for stability arguments, restrict the discussion to linear problems, see
Section 1. We give a short introduction to this bordering and interpret it as compact
perturbation of an invertible operator B with stable B;. This will yield the desired stability
results for bordered systems.
Suppose, we have the following splitting of H,H', see [23],

H=NoeM, H=N oM (55)

with m-—dimensional subspaces A' and N'. They approximate the eigenspaces with purely
imaginary eigenvalues of A and its dual A’, e.g., the kernel and corange of the linearized
operator A, respectively, and closed complements M, M’. We choose orthogonal bases
w.r.t. (-,-), for the N, N" as

N=[, ... & CH, N =10,....00]CH. (56)

For a Fredholm operator A with index 0 we have to discretize the following equations,
see [23]: We define L € L(H x R™, H' x IR™) as,

A 0y ..., 0,
L <.,:51> 0 8 )
(n) 0 L. 0
We apply L to (u, )’ € H xIR™ as in Linear Algebra and solve, with (f,0)" € H'xR™,
Au+ 3" a0
I (Z) _ <U,E§1> _ (g) . (58)
(u, &m)

Now we can treat equation (58) with the methods from Section 4. We obtain as special
case of a result in [25] and Theorem 4.3 the following
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Theorem 6.1 Under the conditions of Theorem 3.1 let A = B+ C with A,B,C €
L(H,H'), C be compact and B be boundedly invertible with stable B;. Then the following
conditions 1., 2. are mutually equivalent and each implies 3:

1. forall feH the equation (58) is uniquely solvable,
2. L'eL(H x R™H x R™),
3. the discretization L; of L is stable.

The above condition 2. is exactly the analytic condition which is imposed in [23] to
guarantee the contact equivalence for the bifurcation functions for all choices of splittings
in (55).

Proof. We only indicate the proof for this special case of [6, 25]: With the operators
= e L(H,IR™) and © € L(IR™,H') by

Eui=((u, &)™, and Oa:=Y" i, we define L:= (2 9).

We write L in the form

B 0 C ©
L - (O ]Rm> + (El _IRm> - Bea:t+cea:t-

The bounded invertability of B and the stability of its discrete B; imply immediately that
Bey: and its discrete By ; have a bounded inverse and are stable, since

||(Bemt,j|Sj><lRm)71||S]—><IRmeSj><lRm < ||((Bj|sj)71||sjesj + 1.

This result shows that the numerical Liapunov-Schmidt methods and its generalizations
to center and inertial manifolds yield convergent results if wavelet discretizations are
employed.
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