
On the Stability of Multisale Wavelet Methods withAppliations to Navier{Stokes EquationsKlaus B�ohmer Stephan Dahlke�June 12, 2002AbstratQuite reently, wavelet Galerkin methods have been very suessfully applied tolinear ellipti operator equations, espeially to selfadjoint and saddle point prob-lems. In fat, (adaptive) numerial wavelet shemes have been derived whih wereguaranteed to onverge for a large lass of problems inluding saddle point problemssuh as the Stokes problem. In this paper, we introdue a �rst numerial shemeto treat also more general problems suh as general ellipti and the Navier{Stokesequations. We show that applying the general onvergene theory as outlined in[5, 6, 28℄ to the wavelet setting produes a stable disretization method for a largelass of problems inluding general ellipti and Navier{Stokes equations.Keywords: Multisale methods, wavelets, saddle point problems, Stokes problem,ellipti and Navier{Stokes equations, stability, onvergene of Galerkinshemes, bordered systems.AMS subjet lassi�ation: Primary 42C40, 65N12, 65P30, seondary 65N55.1 IntrodutionIn reent years, wavelet analysis has beome a �eld of inreasing importane. The �rstappliations of wavelet methods were in image and signal proessing. During the lastyears, they have also shown to o�er some potential for the numerial treatment of partialdi�erential and integral equations, see, e.g., [1, 8, 9, 10, 11, 14℄. The advantages of waveletmethods an be desribed as follows. It turns out that a simple diagonal saling appliedto sti�ness matries relative to wavelet bases suÆes to produe uniformly bounded on-dition numbers. Moreover, for a wide lass of integral or pseudo{di�erential operators thesti�ness matrix relative to wavelet bases an be shown to be suÆiently lose to sparsematries so that eÆient sparse solvers an be applied. These are onsequenes of thefollowing fats:�The work of this author has been supported by the Deutshe Forshungsgemeinshaft (DFG) underGrant Da 360/4-1. 1



2 K. B�ohmer, S. Dahlke- Weighted norms for sequenes of wavelet expansion oeÆients are equivalent in aertain range to Sobolev norms;- for a wide lass of operators their representation in the wavelet basis is nearlydiagonal;- the vanishing moments of wavelets remove the smooth part of a funtion.So far all these potential advantages of wavelet methods have been exploited in manysettings and yield powerful stable and onvergent Galerkin shemes. The most far{reahing results were obtained for selfadjoint and saddle point problems. For these prob-lems, it has even been possible to derive optimal onvergent adaptive wavelet shemes[8, 9, 10℄.This paper is, for di�erent reasons, onentrated around the stability of disrete lin-ear operators. First of all, the wavelet shemes we study here are in the general senseonforming variational methods. So onvergene of these methods for linear problems isan immediate onsequene of Ceas Lemma: if the solution u is well approximated, hereinfvn2Sn ku� vnkL2(
) ! 0, and the stability is guaranteed, we obtain `optimal' onver-gene. These onvergene results an be extended to nonlinear problems in several steps,[2, 3, 4℄. We assume for simpliity the Hilbert spae setting still to be appliable tothe nonlinear situation, e.g., for the Navier{Stokes operator. Extensions to more generalBanah spae settings are studied in [5, 6, 25℄, see [28℄ as well. [26℄ shows, under sometehnial onditions, that stability for the nonlinear problem is guaranteed if it is orretfor the linearized operator. The additionally neessary onsisteny is granted for on-tinuous operators and their disretizations if the evaluation of all parts of the nonlinearoperators is possible in the Hilbert spae setting. For the Navier{Stokes operator and�nite element methods this has been arefully studied in, e.g. [27℄. For wavelet methodsthis is still a problem for future researh.In this paper, we are mainly interested in the question how stability of a given Galerkinsheme is preserved under perturbations. The setting an be desribed as follows. Supposethat the operator A under onsideration is of the form A = B+ C, where we assume thata stable Galerkin sheme for B exists and C denotes a ompat perturbation. We showthat the given stable disretization of B produes a stable disretization for A providedthat A is boundedly invertible. This result an be applied to many problems, e.g., thelinearized Navier{Stokes equations fall into this ategory sine they an be interpreted asompat perturbations of the Stokes problem, at least for moderate Reynolds numbers.Finally, to numerially study bifuration, enter and inertial manifolds we use the stan-dard bordered systems with a possibly noninvertable linearized operator. So the well{known stability is violated and has to be replaed by a `bordered stability'. Again thiswill be proved via a ompat perturbation argument.Numerial tests for selfadjoint and saddle point problems, e.g., the Stokes problem, withwavelet methods are doumented in [1, 10℄. To extend these results to general ellipti andsaddle point problems, e.g., the Navier{Stokes problem, is a projet for future researh.This paper is organized as follows. In Setion 2, we briey disuss the sope of problemswe shall be onerned with. Espeially, we introdue the setting of ellipti and saddle point



On the Stability of Multisale Wavelet Methods 3problems and disuss typial examples, i.e., the Stokes and the Navier{Stokes equations.Setion 3 is onerned with the de�nition of wavelets and their basi properties. InSetion 4, we explain how suitable Galerkin shemes based on wavelets an be onstrutedand disuss their stability properties. Espeially, we show that under ertain onditionsstability is preserved under ompat perturbations. This result is obtained by ombiningthe investigations developed in [28℄ and [5, 6℄ with the spei� properties of wavelets. InSetion 5, we show how these onepts an be applied to the (linearized) Navier{Stokesequations. Finally, we indiate in Setion 6 how the stability for disrete bordered systemsan be proved via a ompat perturbation argument.2 The Sope of ProblemsIn this setion, we shall briey explain the sope of problems we shall be onerned with.The goal is to derive a stable numerial sheme for problems that an be interpretedas boundedly invertible ompat perturbations of an operator equation with stable dis-retization. Espeially, we are interested in problems related with well{known saddlepoint problems. As we shall see later, the famous (linearized) Navier{Stokes equationsfall into this ategory. Therefore we �rst reall the general setting of operator equationsand disuss a typial saddle point problem, i.e., the Stokes problem. Furthermore, weintrodue and disuss the Navier{Stokes system.Suppose that H is a Hilbert spae with norm k � kH indued by the inner produt h�; �i.Let A : H �! H0 denote a linear operator into the normed dual H0 of H. We shallmainly disuss the ase that A an be written asA = B + C; (1)where B is a bounded operator, B 2 L(H;H0), and C is ompat, C 2 C(H;H0): Typialexamples for B are given by general ellipti partial di�erential equations. E.g., the Poissonequation �4u = f; in 
 � IRd (2)u = 0; on �
would play the role of B. This B = �4 is a boundedly invertible mapping of H10 (
) ontoits dual H�1(
), i.e. kBukH0 � kukH: Here `a � b' means that both quantities an beuniformly bounded by some onstant multiple of eah other. Likewise, ` <� ' indiatesinequality up to onstant fators.We shall mainly be onerned with the ase that B is indued by a saddle point problem,however we start with a short presentation of general ellipti equations. It is well{knownthat, given a Hilbert spae X, they indue a ontinuous bilinear forma : X �X ! IR:For a general ellipti operator A this a(�; �) is oerive, henea(v; v) � �kvk2X � �kvk2HX ; � > 0; for a Hilbert spae X ,! HX ,! X 0: (3)



4 K. B�ohmer, S. DahlkeFurthermore, this A = B+C is a ompat perturbation of a B, induing an ellipti bilinearform (�; �), i.e., (v; v) � �kvk2X ; � > 0; for all v 2 X: (4)Then it is known that, for an invertible A, the equationa(u; v) = hf; viX0�X for all v 2 X; (5)is uniquely solvable; here h�; �iX0�X denotes the dual pairing. In the sequel, we will onlynow and then give some hints for general ellipti operators and their oerive bilinearforms. Mainly we shall onentrate ourselves on the ase that B is indued by a saddlepoint problem. Then we are given two Hilbert spaes X and M , two ontinuous bilinearforms a : X �X ! IR; b : X �M ! IRand f 2 X 0 as well as g 2M 0. Moreover, we assume X � HX , M � HM , where HX , HMare Hilbert spaes suh thatX ,! HX ,! X 0; M ,! HM ,!M 0: (6)Then, one has to determine a pair (u; p) 2 X �M suh thata(u; v) + b(v; p) = hf; viX0�X for all v 2 X;b(u; q) = hg; qiM 0�M for all q 2M: (7)In general, we assume the bilinear form a(�; �) to be ellipti on the subspaeV := fv 2 X : b(v; q) = 0 for all q 2Mg � X;i.e., there exists a onstant � > 0 suh thata(v; v) � �kvk2X (8)holds for all v 2 V , ompare (4). To ensure that the problem (7) is uniquely solvable, wealso have to assume that X and M ful�ll the inf{sup ondition:infq2M supv2X b(v; q)kvkX kqkM � � (9)for some onstant � > 0. For details, we refer e.g. to [22℄. The following equivalentformulation will be very useful in the sequel. De�ning the operatorsA : X ! X 0; hAu; viX0�X := a(u; v); v 2 X;B :M ! X 0; hBp; viX0�X := b(v; p); v 2 X;B0 : X !M 0; hB0u; qiM 0�M := b(u; q); q 2M;the problem (7) is equivalent to �nd (u; p) 2 X �M =: H suh thatAu+Bp = f in X 0;B0u = g in M 0: (10)



On the Stability of Multisale Wavelet Methods 5If (7) is well{posed, the operator B := � A BB0 0 � (11)is boundedly invertible with respet to the usual graph norm, i.e., there exist onstantsB; CB suh that BkB(u; p)kH0 � k(u; p)kH � CBkB(u; p)kH0; (12)where k(u; p)k2H := kuk2X + kpk2M , see again [22℄ for details.We shall be onerned with an important speial ase, i.e., with the Stokes problem. Let
 be a bounded, simply onneted domain in IRd: Then, given a vetor �eld f 2 H�1(
)dand a funtion g 2 L2;0(
) := fq 2 L2(
) : R
 q(x)dx = 0g, one has to determine theveloity u 2 H10 (
)d and the pressure p 2 L2;0(
) suh that�4u+rp = f in 
; (13)�r � u = g in 
:In the mixed formulation, the problem reads as follows: �nd a pair (u; p) 2 H10 (
)d �L2;0(
) suh that a(u; v) + b(v; p) = hf; vi for all v 2 H10 (
)d;b(u; q) = hg; qi for all q 2 L2;0(
); (14)where a(u; v) := hru;rvi = dXi;j=1Z
 �ui�xj (x) �vi�xj (x)dx;b(v; q) := �hr � v; qi = � dXi=1 Z
 q(x) ��xi vi(x)dx:For further information onerning the theory and the numerial treatment of the Stokesequations, the reader is referred, e.g., to [21℄, [27℄.One of our goals is to present a stable numerial sheme for the stationary Navier-Stokesequation whih has the formG(u; p) : = 0� ���u + dPi=1 uiDiu+ grad pdiv u 1A = � f0 � in 
;u = 0 on �
; Z
 pdx = 0: (15)After multiplying with test funtions in the usual way, this problem �ts into our settingas follows, see (13), (14): �nd a pair (u; p) 2 H10 (
)d � L2;0(
) suh that�a(u; v) + d(u; u; v) + b(v; p) = hf; vi for all v 2 H10 (
)d;b(u; q) = hg; qi for all q 2 L2;0(
); (16)



6 K. B�ohmer, S. Dahlkewhere d(u; v; w) := dXi;j=1Z
 ui(Divj)wjdx: (17)For bounded 
; and d � 4; see [27℄, Lemma 1.2, Ch. II, U 1,d(u; v; w) is a bounded trilinear form on H10 (
)d �H10 (
)d �H10 (
)d:To treat (16) numerially, we employ its linearized form. We onsider for �xed u; v andsmall w d(u+ w; u+ w; v)� d(u; u; v) = d(u; w; v) + d(w; u; v) + o(w):So we obtain G0(u; p)(w; r) = 0� ���w + nPi=1(wiDiu+ uiDiw) + grad rdiv w 1A (18)and, with the a(�; �); b(�; �); d(�; �) in (16),(G0(u; p)(w; r); v; q)2 = � �a(w; v) + d(u; w; v) + d(w; u; v) + b(v; r)b(w; q) � : (19)In Setion 5, we shall derive a stable numerial sheme for the treatment of (18).3 MultiresolutionOur goal is to develop Galerkin methods for the approximate solution of Au = f for anoperator A as in (1). However, in ontrast to onventional �nite element disretizationswe will work with trial spaes that do not only exhibit the usual approximation propertiesand good loalization but in addition lead to expansions of any element in the underlyingHilbert spaes in terms of multisale or wavelet bases with ertain stability properties.To orrespond to the above range of appliations we formulate the relevant fats for thefollowing general framework. These results are essentially known (f. [13, 17℄) but for theonveniene of the reader we inlude a brief summary of the relevant fats.Let again H be a Hilbert spae (of funtions de�ned on 
, say) with inner produth�; �i. Throughout this setion orthogonality will always be understood relative to thisinner produt. Again typial examples are H = L2(
), H = Hs(
) or produts of suhspaes. Let S = fSjg1j=0 be a sequene of losed nested subspaes of H whose union isdense in H. In all ases of pratial relevane the spaes Sj are spanned by single salebases �j = f�j;k : k 2 Ijg whih are uniformly stable, i.e.,kk`2(Ij) � Xk2Ij k�j;kH (20)



On the Stability of Multisale Wavelet Methods 7uniformly in j 2 IN0. Here we denote as usual kk2̀2(Ij) =Pk2Ij jkj2.Suessively updating a urrent approximation in Sj�1 to a better one in Sj an befailitated if stable bases 	j = f j;k : k 2 Jjgfor some omplement Wj of Sj�1 in Sj are available. De�ning for onveniene 	0 := �0,W0 := S0, any vn =Pk2In k�n;k 2 Sn has then an alternative multisale representationvn = nXj=0 Xk2Jj dj;k j;kwhih orresponds to the diret sum deompositionSn = nMj=0 Wj:Of ourse, there is a ontinuum of possible hoies of suh omplements. Orthogonaldeompositions would orrespond to the lassial wavelet setting. However, orthogonalityoften interferes with loality and the atual omputation of orthonormal bases might betoo expensive. Moreover, in ertain appliations orthogonal deompositions are atuallynot best possible [17℄. The essential onstraint on the hoie of Wj is that	 = [j2IN0	jforms a Riesz-basis of H, i.e., every v 2 H has a unique expansionv = 1Xj=0 Xk2Jjhv; ~ j;ki j;k (21)suh that kvkH � 0� 1Xj=0 Xk2Jj jhv; ~ j;kij21A 12 ; v 2 H; (22)where ~	 = f ~ j;k : k 2 Jj; j 2 IN0g forms a biorthogonal systemh j;k; ~ j0;k0i = Æj;j0Æk;k0; j; j 0 2 IN0; k 2 Jj; k0 2 Jj0 (23)and is in fat also a Riesz-basis for H (f. [13℄).We explain one aspet why this is important. Let Tn denote the transformation thattakes the oeÆients dj;k in the multisale representation of vn into the oeÆients k ofthe single sale representation. It orresponds to the synthesis part of the fast wavelettransform. In fat, it is known that the Riesz basis property of 	 is equivalent to Tnbeing well onditioned, i.e., kTnk ; T�1n  = O(1); n!1; (24)



8 K. B�ohmer, S. Dahlkewhere k�k denotes the spetral norm [12, 13℄.With suh a pair of biorthogonal bases 	 and ~	 one an assoiate anonial trunationprojetors Qnv := nXj=0 Xk2Jjhv; ~ j;ki j;k; Q0nv := nXj=0 Xk2Jjhv;  j;ki ~ j;k (25)whih are obviously adjoints of eah other. Of ourse, when 	 is a Riesz-basis then theQn and hene their adjoints Q0n are uniformly bounded in H. Denoting by ~Sn the rangeof Q0n we have therefore two sequenes S and ~S of nested losed subspaes Sj and ~Sj,respetively, whose union is easily seen to be dense in H [12℄.While the Riesz-basis property of 	 implies the existene of a biorthogonal Riesz-basis~	 as well as the uniform boundedness of the projetors Qn and Q0n, the onverse is knownnot to be true in general [13℄. Additional onditions that do ensure the Riesz-basisproperty for a general Hilbert spae setting have been established in [13℄. Here we areonly interested in their speialization to the partiular ase H = L2(
). What turns outto matter is that both S and ~S should have some approximation and regularity propertieswhih an be stated in terms of the following pair of estimates. There exists some  > 0suh that the inverse estimatekvnkHs(
) <� 2ns kvnkL2(
) ; vn 2 Sn; (26)holds for s < . Moreover, there exists some m �  suh that the diret estimateinfvn2Sn kv � vnkL2(
) <� 2�sn kvkHs(
) ; v 2 Hs(
); (27)holds for s � m. Suh estimates are known to hold for every �nite element or splinespae. For instane, for pieewise linear �nite elements one has  = 3=2; m = 2.It will be onvenient to introdue the following notation. LetJ := f� = (j; k) : k 2 Jj; j 2 IN0g = 1[j=0(fjg � Jj):and de�ne j�j := j if � 2 Jj:Then the following result holds [13℄.Theorem 3.1 Suppose that 	 = f � : � 2 Jg and ~	 = f ~ � : � 2 Jg are biorthogonalolletions in L2(
) and that the assoiated sequene of projetors fQjg1j=0 is uniformlybounded. If both S and ~S satisfy (26) and (27) relative to some ; 0 > 0,  � m, 0 � m0,then kvkHs(
) �  X�2J 22j�jsjhv; ~ �ij2! 12 ; s 2 (�0; ); (28)�  X�2J 22j�jsjhv;  �ij2! 12 ; s 2 (�; 0); v 2 Hs(
):



On the Stability of Multisale Wavelet Methods 9Moreover, the projetors Qj and Q0j are uniformly bounded in Hs(
), s 2 (�0; ) ands 2 (�; 0), respetively.For more information about the onstrution of multisale bases 	; ~	 with the aboveproperties the reader is referred to [7, 16, 19℄.We are now prepared to employ these bases in a Galerkin sheme. However, beforewe disuss this topi in the next setion, let us �nish with some remarks onerning thespeial setting of saddle point problems. As saddle point problems are de�ned on produtspaes of the form X �M , we need two biorthogonal wavelet bases 	 = f � : � 2 JXgand � = f#� : � 2 JMg that form Riesz{bases for HX and HM , respetively. The seondpair of biorthogonal basis � and ~� also indues a pair of projetors in the sense of (25):Pnq := nXj=0 Xk2JMj hq; ~#j;ki#j;k; P 0nq := nXj=0 Xk2JMj hq; #j;ki~#j;k: (29)In our appliations, X and M are mainly Hilbertian Sobolev spaes on suitable domainsor manifolds 
1 � IRd; 
2 � IRd0 ; i.e.,X = H t(
1); M = Hs(
2): (30)Then, we assume that the norm equivalenes of the form (28) hold for both spaes,kvkH� (
1) �  X�2JX 22j�j� jhv; ~ �ij2!1=2 ; � 2 [�t; t℄; (31)kqkH�(
2) �  X�2JX 22j�j� jhq; ~#�ij2!1=2 ; � 2 [�s; s℄: (32)Throughout the remainder of this paper we will assume that the underlying wavelet basessatisfy either the onditions (28) or (31) and (32).4 Stable DisretizationsOur goal is to develop a suitable Galerkin sheme to approximate the solution of Au = ffor an A as in (1) whih is based on a wavelet basis as introdued in Setion 3. Thereforewe onsider subspaes of the formS� := f � : � 2 �g; � � J; (33)and projet our problem onto these spaes, i.e., the Galerkin approximation u� is de�nedby hAu�; vi = hf; vi for all v 2 S�: (34)In this paper, we shall mainly onsider the ase that S� onsists of the spaes of theunderlying multiresolution analysis, i.e., S� = Sj. Suh a method orresponds to uniform



10 K. B�ohmer, S. Dahlkemesh re�nement. The general ase will be studied in a forthoming paper. In terms ofthe projetors Q� and Q0�,Q�v :=X�2�hv; ~ �i �; Q0�v =X�2�hv;  �i ~ �; (35)the Galerkin sheme (34) may be very onveniently be written asQ0�AQ�u� = Q0�f: (36)In any ase, to obtain an appliable numerial algorithm, it is essential that the Galerkinsheme has some basi stability properties. By using again the projetors Q�; Q0� thisrequirement an be formulated askQ0�Au�kH0 � ku�kH; u� 2 S�: (37)When A is positive de�nite and selfadjoint, this is the ase for any trial spae. Moreover,in the framework of pseudo{di�erential operators, suÆient onditions have been derivedby [17℄. It turns out that injetivity of A and oerivity of the real part of the prinipalpart also imply stability. More preisely, it turns out that if� A is in the lass Sn1;0 whih is the sublass of H�ormander's lass with the propertythat j D�xD�� �(x; �) j� �;�(1 + j�j)(n�j�j); (38)� A is strongly ellipti, i.e., a Garding inequality<�0(x; �) � j�jn; � 2 IRd; (39)holds, where �0 denotes the priniple part representing an operator of order n,� A is injetive, Ker A = f0g; (40)then the resulting uniform Galerkin sheme based on the projetors Qj; Q0j will be stableand onvergent.For saddle point problems of the form (10), the trial spaes (X�;M�) � (X;M) arede�ned by a pair of index sets� := (�X ;�M) � (JX ; JM): (41)It is well{known that stability of the disretization is ensured if the Ladyshenskaja{Babuska{Brezzi (LBB) onditioninfq�2M� supv�2X� b(v�; q�)kv�kX kq�kM � � (42)is satis�ed. Quite reently, expliit onditions to hek (42) in the wavelet ontext havebeen derived in [11℄, see also [15℄. Before we an state the result, some preparations areneessary. The basi idea was to use the following well{known ondition of Fortin [20℄.



On the Stability of Multisale Wavelet Methods 11Proposition 4.1 ([20℄) The LBB ondition holds if and only if there exists an operatorQ� 2 L(X;X�) satisfyingb(v �Q�v; q�) = 0 for all v 2 X; q� 2M�; and (43)kQ�kL(X;X) <� 1; (44)independent of �.For any subset �X � X we will use the notations�X?b := fq 2M : b(v; q) = 0 for all v 2 �Xg; (45)and similar for �M � M�M?b := fv 2 X : b(v; q) = 0 for all q 2 �Mg: (46)In terms of these sets, the fundamental result from [11℄ reads as follows.Theorem 4.2 The multisale spaes X�, M� de�ned above ful�ll the LBB ondition (42)provided that one of the following equivalent onditions holds:(a) M� � (X 	X�)?b,(b) B(M�) � ~X�,() B0(X 	X�) � M 0 	 ~M�.In summary, it is by now possible to onstrut stable wavelet Galerkin shemes for a largelass of problems. One of the aims of this paper is to investigate to what extent thesestability properties are preserved under perturbations. These relationships are lari�ed inthe following theorem whih is the main result of this paper. This is essentially a speialase of a result in [6, 25℄. For our Hilbert spae setting it is given in [28℄ as well.Theorem 4.3 Let B � L(H;H0) and suppose that the biorthogonal wavelet Galerkinsheme Bj := Q0jBQj is stable. Let A := B + C with C 2 C(H;H0), the set of ompatoperators from H ! H0. ThenA�1 2 L(H0;H) =) Aj := Q0jAQj is stable:Proof. See [6, 25℄. We determine for an arbitrary u 2 H and v0 := Cu the unique exatand disrete solutions, û and ûj, of the equations Bû = v0 and Bjûj = Q0jv0 = Q0jBû. Weintrodue the notations T = B�1; Tj = B�1j Q0j. Sine Bj is assumed to be stable, theorresponding Galerkin sheme onverges, hene for any u 2 H we obtainlimj!1kB�1j Q0jCu� B�1CukH = limj!1k(T � Tj)CukH = 0:C is ompat, so we get limj!1k(T � Tj)Ck = 0: (47)



12 K. B�ohmer, S. DahlkeNow let uj 2 Sj. Beause A is boundedly invertible, we an estimatekujkH � kA�1AujkH � kA�1kkAujkH0 � kA�1kkB(I + B�1C)ujkH0� kA�1kkBkk(I + TC)ujkH: (48)Hene, we obtainkAjujkH0 = kQ0j(B + C)QjujkH0= kBj(I + B�1j Q0jCQj)ujkH0� 1=kBjk�1k(I + B�1j Q0jCQj)ujkH= 1=kBjk�1k(I + TjCQj)ujkH� 1=kBjk�1(k(I + TC)QjujkH � k(T � Tj)CQjujkH):By using the fat that A = B + C implies I + B�1C = B�1A, this redues tokAjujkH0 � 1=kBjk�1 �1=kA�1Bk � k(T � Tj)Ck� kujkH:Beause of (47) and the stability of Bj there exists a positive onstant K, independent ofj, suh that for all j � j0 the following holds:kAjujkH0 � KkujkH for all uj 2 Sj;hene Aj is stable.5 Appliations to Ellipti and Navier{Stokes Equa-tionsIn this setion, we want to explain how the fundamental Theorem 4.3 an be used toobtain a stable disretization. This is ahieved for ellipti and the Navier{Stokes equationsessentially simultaneously. We onsider the problems in their linearized form.It is well{known that any ellipti operator A indues a oerive bilinear form a(�; �).This an be split into the sum of an ellipti bilinear form (�; �) and its omplement ~(�; �)s.t. the indued operators B; C satisfy A = B + C with a ompat perturbation. Choosee.g., (u; v) := a(u; v) +mhu; vi with suÆiently large m > 0:For the Navier{Stokes equations the linearized form is stated in (18) and (19). Againthe idea is to show that this problem, for moderate Reynolds numbers or suÆiently large�, an be interpreted as a ompat perturbation of the Stokes problem (13). Thereforestable disretizations for (13) also yield stable shemes for (18). Some preparations areneessary. We want to solve the problem(G0(u; p)(w; r); v; q)2=��a(w; v)+d(u; w; v)+d(w; u; v)+b(r; v)b(w; q) �=�hf1; vihf2; qi�=F (v; q):(49)



On the Stability of Multisale Wavelet Methods 13For �xed u, the ontinuous bilinear forms d(u; �; w) and d(�; u; v) de�ne elements d(u; �; w);and d(�; u; v) in H�1(
), hene they de�ne linear ontinuous operatorsD1(v) := d(u; �; v) and D2(v) := d(�; u; v): (50)Hene we observe that (49) an be written asA(w; r) = B(w; r) + C(w; r) = F; (51)where B = � �A BB0 0 � ; C = � D1 +D2 00 0 � ; (52)and A and B are de�ned aording to (13), (14). We treat this problem by a uniformmethod, i.e., we onsider multisale spaes of the form Xj := XJXj ; JXj = f� 2 JX ; j�j �jg; Mj0 := MJMj0 ; JMj0 = f� 2 JM ; j�j � j 0g. Let Qj and Pj0 denote the assoiatedbiorthogonal projetors as de�ned in (25) and (29), respetively. Then the resultingGalerkin sheme for (51) is given by�Q0jAwj +Q0jBrj0 +Q0j(D1 +D2)wj = Q0jf1; (53)P 0j0B0wj = P 0j0f2:In this setting, the main result reads as follows, ompare [6, 25℄.Theorem 5.1 Let the multisale spaes Xj and Mj0 be hosen in suh a way that one ofthe onditions in Theorem 4.2 is satis�ed. Then the linearized Navier{Stokes operator Ain (51) represents, for suÆiently large �, a ompat perturbation of the Stokes operatorB in (52). For boundedly invertible A, in partiular for suÆiently large �, the Galerkinsheme (53) yields stable Aj.Proof. Compare [6, 25℄. We only have to show the ompat perturbation property ofthe Navier{Stokes equation. For �xed u 2 H10 (
), we havehD1v; wi = d(u; w; v) = dXi;j=1Z
 ui(Diwj)vjdx; (54)hD2v; wi = d(w; u; v) = dXi;j=1Z
wi(Diuj)vjdx:Now the embedding I : H10 (
) �! L2(
) is ontinuous and ompat and (54) showsthat D1v = D1Iv for all v 2 H10 (
):Therefore, as a produt of a ompat and a ontinuous operator, D1 = D1I is a ompatoperator. The same is orret for D2 as well. Hene the operator C in (51) is ompat.Moreover, sine B is the Stokes operator, Theorem 4.2 implies that the Galerkin sheme�Q0jAwj +Q0jBrj0 = Q0jf1;P 0j0B0wj = P 0j0f2;



14 K. B�ohmer, S. Dahlkeis stable. Furthermore, the existene of A�1, B�1 and the stability of the Bj imply thestability of the Aj by Theorem 4.3. It is well known that for large enough parameters �the operator A is always invertible. This �nishes the proof.Remark 5.2 For general ellipti operators A, Theorem 4.3 an be applied to obtain astable Galerkin disretization Aj. Similar results have also been shown in [17℄.6 Stability for Bordered SystemsTo numerially ompute bifuration senarios and later on enter and inertial manifolds,extended and, in partiular, bordered systems have been introdued by Keller and usedby many authors, see, e.g., [23, 24℄. In the mean time, the onept of bordered systems,obtained by few additional parameters and equations, see (57), is the method of hoie.Again we an, for stability arguments, restrit the disussion to linear problems, seeSetion 1. We give a short introdution to this bordering and interpret it as ompatperturbation of an invertible operator B with stable Bj: This will yield the desired stabilityresults for bordered systems.Suppose, we have the following splitting of H;H0, see [23℄,H = N �M; H0 = N 0 �M0 (55)with m{dimensional subspaes N and N 0. They approximate the eigenspaes with purelyimaginary eigenvalues of A and its dual A0, e.g., the kernel and orange of the linearizedoperator A, respetively, and losed omplements M;M0. We hoose orthogonal basesw.r.t. h�; �i, for the N ;N 0 asN = [�1; : : : ; �m℄ � H; N 0 = [�01; : : : ; �0m℄ � H0: (56)For a Fredholm operator A with index 0 we have to disretize the following equations,see [23℄: We de�ne L 2 L(H� IRm;H0 � IRm) as,L = 0BBB� A �01 ; : : : ; �0mh�; �1i 0 ; : : : ; 0... ... ...h�; �mi 0 ; : : : ; 0 1CCCA : (57)We apply L to (u; �)T 2 H�IRm as in Linear Algebra and solve, with (f; 0)T 2 H0�IRm,L�u�� := 0BBB�Au+Pmi=1 �i�0ihu; �1i...hu; �mi
1CCCA = �f0� : (58)Now we an treat equation (58) with the methods from Setion 4. We obtain as speialase of a result in [25℄ and Theorem 4.3 the following



On the Stability of Multisale Wavelet Methods 15Theorem 6.1 Under the onditions of Theorem 3.1 let A = B + C with A;B; C 2L(H;H0); C be ompat and B be boundedly invertible with stable Bj. Then the followingonditions 1., 2. are mutually equivalent and eah implies 3:1: for all f 2 H0 the equation (58) is uniquely solvable,2: L�1 2 L(H0 � IRm;H� IRm);3: the disretization Lj of L is stable:The above ondition 2. is exatly the analyti ondition whih is imposed in [23℄ toguarantee the ontat equivalene for the bifuration funtions for all hoies of splittingsin (55).Proof. We only indiate the proof for this speial ase of [6, 25℄: With the operators�0 2 L(H; IRm) and � 2 L(IRm;H0) by�0u := (hu; �ii)mi=1; and �� :=Pmi=1 �i�0i; we de�ne L := � A ��0 0 �:We write L in the formL = �B 00 IIRm�+ � C ��0 �IIRm� =: Bext + Cext:The bounded invertability of B and the stability of its disrete Bj imply immediately thatBext and its disrete Bext;j have a bounded inverse and are stable, sinek(Bext;jjSj�IRm)�1kSj�IRm Sj�IRm � k((BjjSj)�1kSj Sj + 1:This result shows that the numerial Liapunov{Shmidt methods and its generalizationsto enter and inertial manifolds yield onvergent results if wavelet disretizations areemployed.Referenes[1℄ Barinka, A., Barsh, T., Charton, P., Cohen, A., Dahlke, S., Dahmen, W., Urban,K.: Adaptive wavelet shemes for ellipti problems { Implementation and numerialexperiments. SIAM J. Sienti� Comput. 23(3), 910{939 (2001).[2℄ B�ohmer, K.: On a numerial Liapunov{Shmidt method for operator equations.Computing 51, 237{269 (1993).[3℄ B�ohmer, K.: On hybrid methods for bifuration studies for general operator equa-tions. In: Ergodi theory, Analysis, and EÆient Simulation of Dynamial Systems,Fiedler, B., (ed.). Berlin, Heidelberg, New York: Springer 2001, 73{107.[4℄ B�ohmer, K.: On numerial bifuration studies for general operator equations. In: In-ternational Conferene on Di�erential Equations 1999, volume 2, Sprekels, J., Fiedler,B., Gr�oger, K., (eds.). Singapore: World Sienti� 2000, 877{883.
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