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Abstract

The aim of this paper is to give an overview on the current applications of wavelet meth-
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already been successfully applied, namely the reconstruction of continuous reflectivity densi-
ties and the analysis of discrete radar wind profiler data. The first problem can be treated by
using the specific reconstruction and approximation properties of wavelet frames whereas the
second one is treated by a suitable variant of the classical wavelet thresholding method. Both
topics are discussed in detail and several numerical results are presented.
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1 Introduction

In recent years, wavelet analysis has become a very powerfultool in applied mathematics. The
first applications of wavelets were concerned with problemsin image/signal analysis/compression.
Furthermore, quite recently, wavelet algorithms have alsobeen applied very successfully in nu-
merical analysis, geophysics, meteorology, astrophysicsand in many other fields. Especially, it
has turned out that the specific features of wavelets can alsobe efficiently used for certain prob-
lems in the context of radar signal analysis. The basic radarproblem asks to gain information
about an object by analyzing waves reflected from it. However, although this fundamental prob-
lem is always the same for every radar application, the algorithms that are used clearly depend on
the concrete setting and may differ dramatically. The choice of the appropriate method obviously
rests on the properties of the object under consideration (point object, dense target environment
etc.) and on the parameters one wants to reconstruct (reflectivity densities, wind velocities etc.)
For an overview on radar problems, we refer to one of the textbooks [9, 17, 22, 45, 55]. In recent
studies, it has turned out that wavelet methods are at least helpful for the following two topics:� the reconstruction of continuous reflectivity densities;� the analysis of discrete radar wind profiler data (RWP).

The aim of this paper is to give an overview on both problems and to explain how they may be
treated by wavelet methods.

The problem of reconstructing reflectivity densities can bedescribed as follows. Let us first assume
that the object under consideration can be modeled as a single point, moving with constant velocity
towards or away from a given source. Then, the aim is to reconstruct the distance and the velocity
of the object by analyzing the reflected waves. Indeed, for a simple point object, this goal can be
achieved by simply computing the maxima of the continuous wavelet transform of the received
echo, see, e.g., [30] and Section 4.1 for details. However, in many applications, one is faced with
a reflecting continuum with varying reflectivities. Such a target environment is then modeled by
a certain reflectivity density. In this case, this reflectivity density cannot be reconstructed by
simply transmitting one single signal, see again [30] and Section 4.1. Nevertheless, a complete
reconstruction is possible if afamily of signals is used. This approach was first suggested by
Narpast [40, 41] who studied the case that the transmitted signals form an orthonormal wavelet
basis. We refer to Section 2 for the definition and the basic properties of wavelets. However, the
requirement of full orthonormality is quite restrictive. Therefore, quite recently, Rebollo–Neira,
Plastino, and Fernandez–Rubio generalized Naparst’s approach to the case that the transmitted
family forms a frame. We refer to Subsection 2.4 for a short introduction to frames. Moreover,
some further generalizations concerning, e.g., rigorous error estimates, the multivariate case and
numerical examples have also been presented in [10, 11]. It has turned out that especially wavelet
frames perform quite successfully. The main results of these approaches are presented in Section
5.

The setting of wind profiler data is quite different. In this case, one wants to gain information
concerning the three dimensional atmospheric wind vector.This is done be sampling the reflected
radar beams at certain rates corresponding to different heights, followed by the application of wily
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radar signal processing devices. The whole analysis consists of the following steps: coherent in-
tegration, Fourier analysis, spectral parameter estimation, and, finally, the wind estimation. The
whole procedure is explained in Section 6.1. However, one ofthe basic problems in wind profiler
analysis is that the data may be heavily contaminated by echoes returned from ground surround-
ings, from targets like airplanes or birds or from external radio-frequency transmissions. Due to
the local nature of these disturbing signal components, de-noising algorithms based on Fourier
transforms are not very appropriate. This is exactly the topic where wavelet analysis suggests
itself since wavelets are by construction very localized functions. Indeed, the following variant
of wavelet de-noising algorithms has already been successfully applied [32, 49]. The classical
wavelet de-noising methods consist of three steps. First ofall, the signal is decomposed into a
wavelet series by means of the fast wavelet transform, then the small wavelet coefficients are ne-
glected by applying some thresholding operator (hard/softthresholding), and, finally, the signal
is reconstructed by applying the inverse wavelet transform. We refer to the Sections 2 and 3 for
details. However, in the setting of RWP, the disturbing components are usually much larger than
the signal one wants to analyze. Therefore the thresholdingoperator is applied the opposite way:
the small wavelet coefficients are kept and the large ones areneglected. The whole algorithm is
explained in Section 6.3.

This paper is organized as follows. In Section 2, we briefly recall the basic facts on wavelet analy-
sis as far as they are needed for our purposes. The discussioncovers orthogonal and biorthogonal
wavelets, the continuous wavelet transform including associated uncertainty relations, and the
concept of frames. Section 3 is devoted to statistical estimations by means of wavelet methods.
Then, in Section 4, we discuss the basic radar setting. We present the wideband as well as the
narrowband approach. Moreover, we introduce a new discretenarrow band model which is de-
signed to serve as some kind of bridge between the two basic problems introduced above. Then,
in Section 5, we explain how a continuous reflectivity density can be reconstructed by means of a
frame approach. We also present some error estimates in weightedL2–spaces and discuss several
numerical examples. Section 6 is devoted to the radar wind profiler problems. After explaining
the basic setting in Subsection 6.1, we discuss the problemsin RWP signal processing in Sub-
section 6.2. In Subsection 6.3, we explain how wavelet methods can help to improve the current
algorithms and, finally, in Subsection 6.4, we present some numerical examples.

2 Wavelet Analysis

In this section, we shall briefly recall the basic setting of wavelet analysis as far as it is needed for
our purposes. First of all, in Subsection 2.1, we collect some facts concerning the discrete wavelet
transform. Then, in Subsection 2.2, we discuss the biorthogonal wavelet approach. We shall
also need some aspects of the continuous wavelet transform.Therefore we sketch this concept in
Subsection 2.3. Finally, in Subsection 2.4, we discuss someframe techniques which will be one
of the basic tools in radar analysis as we shall explain in Section 5.
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2.1 The Discrete Wavelet Transform

In general, a function is called a (mother)waveletif all its scaled, dilated, and integer–translated
versions  j;k(x) := 2j=2 (2jx� k); j; k 2 Z; (2.1)

form a (Riesz) basis ofL2(R). Usually, these functions are constructed by means of amultireso-
lution analysisintroduced by Mallat [35]:

Definition 2.1 A sequencefVjgj2Z of closed subspaces ofL2(R) is called amultiresolution
analysis (M.R.A.)ofL2(R) if: : : � Vj�1 � Vj � Vj+1 � : : : ; (2.2)1[j=�1Vj = L2(R); (2.3)1\j=�1Vj = f0g; (2.4)f(�) 2 Vj () f(2�) 2 Vj+1; (2.5)f(�) 2 V0 () f(� � k) 2 V0 for all k 2 Z: (2.6)

Moreover, we assume that there exists a function' 2 V0 such thatV0 := spanf'(� � k); k 2 Zg (2.7)

and that' hasstable integer translates,i.e.,jj�jj`2 � jjXk2Z�k '(� � k)jjL2 : (2.8)

The function' is called thegeneratorof the multiresolution analysis.

(In this paper, ‘a � b’ means that both quantities can be uniformly bounded by someconstant
multiple of each other. Likewise , ‘<� ’ will always indicate inequality up to constant factors).
The properties (2.2), (2.5), (2.7), and (2.8) immediately imply that' is refinable, i.e., it satisfies a
two–scale relation '(x) =Xk2Z ak'(2x� k); (2.9)

with the maska = fakgk2Z 2 `2(Z): Because the union of the spacesfVjgj2Z is dense inL2(R), it is easy to see that the construction of a wavelet basis reduces to finding a function
whose translates span a complement spaceW0 of V0 in V1,V1 = V0 �W0; W0 = spanf (� � k) j k 2 Zg: (2.10)

Indeed, if we define Wj := ff(�) 2 L2(R) j f(2�j�) 2W0g; (2.11)
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it follows from (2.3), (2.4) and (2.5) thatL2(R) = �1j=�1Wj ; (2.12)

so that  j;k(x) = 2j=2 (2jx� k); j; k 2 Z (2.13)

forms a wavelet basis ofL2(R):
Obviously, (2.5) and (2.7) imply that the wavelet can be found by means of a functional equation
of the form  (x) =Xk2Z bk'(2x� k); (2.14)

where the sequenceb := fbkgk2Z has to be judiciously chosen; see, e.g., [6, 14, 39] for details.

The construction outlined above is quite general. In many applications, it is convenient to impose
some more conditions, i.e., to require that functions on different scales are orthogonal with respect
to the usualL2–inner product, i.e.,h (2j � �k);  (2j0 � �k0)i = 0; if j 6= j0: (2.15)

This can be achieved if the translates of not only span an (algebraic) complement but the or-
thogonal complement, V0 ?W0; W0 = spanf (� � k) j k 2 Zg: (2.16)

The resulting functions are sometimes calledpre–wavelets. The basic properties of refinable func-
tions and (pre-) wavelets can be summarized as follows:� Reproduction of Polynomials. If' is contained inCr0(R) := fg j g 2 Cr(R) and suppg compactg ;

then every monomialx�; � � r has an expansion of the formx� =Xk2Z �k'(x� k): (2.17)� Oscillations. If the generator' is contained inCr0(R), then the associated wavelet 
has vanishing moments up to orderr, i.e.,ZR x� (x)dx = 0 for all 0 � � � r: (2.18)� Approximation. If' 2 Cr0(R) andf is contained in the usualL2–Sobolev spaceHr(R),
then the following Jackson-type inequality holds:infg2Vj kf � gkL2(R) <� 2�jrjf jHr : (2.19)
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(For further information concerning Sobolev as well as other function spaces, the reader is referred
to [1]). In practice, it is clearly desirable to work with anorthonormalwavelet basis. This can
be realized as follows. Given aǹ2–stable generator in the sense of (2.8), one may define another
generator� by �̂(�) := '̂(�)(Pk2Z j'̂(� + 2�k)j2)1=2 ; (2.20)

and it can be checked directly that the translates of� are orthonormal and span the same spaceV0.
(Clearly,'̂ = F(') denotes theL2–Fourier transform of'). The generator� is also refinable,�(x) =Xk2Z âk�(2x� k) fâkgk2Z 2 `2(Z); (2.21)

and it can be shown that the function (x) =Xk2Z(�1)kâ1�k�(2x� k) (2.22)

is an orthonormal wavelet with the same regularity properties as the original generator'. However,
this approach has a serious disadvantage. If the generator' is compactly supported, this property
will in general not carry over to the resulting wavelet sinceit gets lost during the orthonormaliza-
tion procedure (2.20). Therefore the compact support will only be preserved if we can dispense
with the orthonormalization procedure, i.e., if the translates of' are already orthonormal. This
observation was the starting point for the investigations of I. Daubechies [13, 14] who constructed
a family�N ; N 2 N of generators with the following properties.

Theorem 2.1 There exists a constant� > 0 and a family�N of generators satisfying�N 2C�N(R); supp�N = [0; 2N � 1℄; andh�N (�); �N (� � k)i = Æ0;k; �N (x) = N2Xk=N1 ak�N (2x� k): (2.23)

Obviously, (2.23) and (2.22) imply that the associated wavelet  N is also compactly supported
with the same regularity properties as�N :
Given such an orthonormal wavelet basis, any functionf 2 Vj has two equivalent representations,
the single scale representationwith respect to the functions�j;k(x) := 2j=2�(2jx � k) and the
multiscale representationwhich is based on the functions�0;k;  l;m; k;m 2 Z; 0 � l < j;  l;m =2j=2 (2jx�m): From the coefficients off in the single scale representation, the coefficients in the
multiscale representation can easily be obtained by some kind of filtering, and vice versa. Indeed,
given f =Xk2Z�jk�j;k
and using the refinement equation (2.21) and the functional equation (2.22), it turns out thatf =Xl2Z 2�1=2(Xk2Zak�2l�jk)�j�1;l + Xm2Z 2�1=2(Xk2Z bk�2m�jk) j�1;m: (2.24)
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From (2.24) we observe that the coefficient sequence�j�1 = f�j�1k gk2Z which describes the
information corresponding toVj�1 can be obtained by applying the low–pass filterH induced bya to �j, �j�1 = H�j; �j�1l =Xk2Z 2�1=2ak�2l�jk: (2.25)

The wavelet spaceWj�1 describes the detail information added toVj�1. From (2.24), we can
conclude that this information can be obtained by applying the high–pass filterD induced byb to�j: j�1 = D�j ; j�1l = 2�1=2Xk2Z bk�2l�jk: (2.26)

By iterating this decomposition method, we obtain a pyramidalgorithm, the so–calledfast wavelet
transform:�j -������R

HD �j�1j�1
-������R

H D �j�2j�2
-������R

HD �j�3j�3
a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a

A reconstruction algorithm can be obtained in a similar fashion. Indeed, a straightforward com-
putation shows Xl2Z �jl�j;l = 1p2Xl2Z(Xk2Z al�2k�j�1k +Xn2Z bl�2nj�1n )�j;l
so that �jl = 2�1=2Xk2Zal�2k�j�1k + 2�1=2Xn2Z bl�2nj�1n : (2.27)

Similar decomposition and reconstruction schemes also exist for the pre–wavelet case.

2.2 Biorthogonal Bases

Given an orthonormal wavelet basis, the basic calculationsare usually quite simple. For instance,
the wavelet expansion of a functionf 2 L2(R) can be computed asf = Xj;k2Zhf;  j;ki j;k;  j;k(x) = 2j=2 (2jx� k): (2.28)

However, requiring smoothness and orthonormality is quiterestrictive, and consequently, as we
have already seen above, the resulting wavelets are usuallynot compactly supported. It is one
of the advantages of the pre-wavelet setting that the compact support property of the generator
can be preserved. Moreover, since we have to deal with weakerconditions, the pre-wavelet ap-
proach provides us with much more flexibility. Therefore, given a generator', many different
families of pre-wavelets adapted to a specific application can be constructed. Nevertheless, since
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orthonormality is lost, one is still interested in finding suitable alternatives which in some sense
provide a compromise between both concepts. This can be performed by using thebiorthogonal
approach. For a given wavelet basisf j;k j; k 2 Zg; one is interested in finding a second systemf ~ j;k; j; k 2 Zg satisfyingh j;k(�); ~ j0;k0(�)i = Æj;j0Æk;k0; j; j0; k; k0 2 Z: (2.29)

Then all the computations are as simple as in the orthonormalcase, i.e.,f = Xj;k2Zhf; ~ j;ki j;k = Xj0;k02Zhf;  j0;k0i ~ j0;k0 : (2.30)

To construct such a biorthogonal system, one needstwosequences of approximation spacesfVjgj2Z
andf ~Vjgj2Z. As for the orthonormal case, one has to find bases for certainalgebraic complement
spacesW0 and ~W0 satisfying the biorthogonality conditionsV0 ? ~W0; ~V0 ?W0; V0 �W0 = V1; ~V0 � ~W0 = ~V0: (2.31)

This is quite easy if the two generators' and ~' form adual pair,h'(�); ~'(� � k)i = Æ0;k: (2.32)

Indeed, then two biorthogonal wavelets and ~ can be constructed as (x) =Xk2Z(�1)kd1�k'(2x � k); ~ (x) =Xk2Z(�1)ka1�k ~'(2x� k) (2.33)

where '(x) =Xk2Zak'(2x � k); ~'(x) =Xk2Zdk ~'(2x� k): (2.34)

Therefore, given aprimal generator', one has to find a smooth and compactly supporteddual
generator~' satisfying (2.32) which is much less restrictive than the orthonormal setting. Elegant
constructions can be found, e.g., in [8]. Generalizations to higher dimensions also exist [7]. The
basic properties of wavelets and refinable functions (approximation, oscillation etc.) carry over to
the biorthogonal setting in the usual way.

For further information on wavelet analysis, the reader is referred to one of the excellent textbooks
on wavelets which have appeared quite recently [6, 14, 29, 39, 52].

2.3 Continuous Wavelet Transform

There exists a quite different approach to wavelet analysiswhich is based on group theory and
which yields the so–calledcontinuous wavelet transform. Several aspects of radar analysis are
closely related with this concept. Hence, we have to discusssome of the basic facts. Continuous
wavelet transforms are based on square integrable representations of specific groups. In general, a
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unitary irreducible representationU of a groupG in a Hilbert spaceH is calledsquare integrable
if there exists a vector in H such thatZG jh ;U(g) ij2 d�(g) <1 ; (2.35)

whered� denotes the invariant Haar measure onG. A vector satisfying (2.35) is calledadmissible.
If  is admissible, then the mappingT : H ! L2(G; d�)

(2.36)f 7! hf;U(g) i
is well-defined, see [24] for details. The 1-D continuous wavelet transform is performed by means
of the so-calledaffine groupGA given byGA : f(a; b) j (a; b) 2 R2; a 6= 0g (2.37)

with group law (a; b) Æ (a0; b0) = (aa0; ab0 + b) (2.38)

and (left) invariant Haar measure d� = da dba2 : (2.39)GA possesses a square integrable representation inL2(R) given byU(a; b)f(x) := jaj� 12 f �x� ba � ; (2.40)

and every vector 2 L2(R) with ZR j ̂(�)j2j�j d� <1 (2.41)

is admissible, see [25] for details. For such a , thecontinuous wavelet transform(W f)(a; b) := hf;U(a; b) i = ZR f(x)jaj�1=2 �x� ba � dx (2.42)

is well-defined. Moreover, the wavelet transformW is a multiple of an isometry whose inverse
is given by the adjoint wavelet transformF (x) =W � (W F (a; b)) (x) = 1C ZR ZRnf0g(W F )(a; b) jaj�1=2 �x� ba � daa2 db; (2.43)
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see, e.g., [14, 30, 33] for details. The transform (2.42) is sometimes called amathematical micro-
scopesince the signalf is analyzed by shifting the microscope according to the different values
of b and zooming in by changing the parametera.

Another important example we shall be concerned with is the famousWeyl–Heisenberg groupGWH := f(!; b; �) j b; ! 2 R; � 2 C; j� j = 1g (2.44)

with group law (!; b; �) Æ (!0; b0; � 0) = (! + !0; b+ b0; �� 0ei(!b0�!0b)=2): (2.45)

The Weyl–Heisenberg group possesses a unitary irreduciblerepresentation~U in L2(R) which is
given by ~U(!; b; �)f(x) = �e�i!b=2ei!xf(x � b): It can be checked that~U is square integrable
and that every function in L2(R) is admissible, see [25] for details. If we ignore the toral
component of the group representation~U , i.e., if we defineU(!; b)f(x) := ei!xf(x� b); (2.46)

then definition (2.36) leads us to thewindowed Fourier transform(G f)(!; b) := ZR f(x) (x� b)e�i!x dx : (2.47)

The setting of square integrable group representations is closely related with uncertainty principles
as we shall now explain. Letg = (g1; : : : ; gr) be an element ofG. Furthermore, letf be a vector
belonging toH. With respect to the representationU we defineobservation operators(or so-called
infinitesimal operators) by [A(gi)f ℄ (x) := ��gi [U(g)f ℄ (x)????g=e ; (2.48)

wheree denotes the unit element ofG. Let A = A(gi) : D(A) ! H be some observation
operator whereD(A) � H denotes the domain ofA. The following definitions are very helpful in
the context of uncertainty principles. We define the normalized expectation ofA with respect toh 2 D(A) by �h(A) := hAh; hikhk (2.49)

and the variance ofA with respect toh 2 D(A) by�2h(A) := �h((A� �h(A))2) = �h(A2)� �h(A)2 : (2.50)

The following theorem holds for self-adjoint and non-commuting operators and establishes a very
general uncertainty framework, see [49] for details.
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Theorem 2.2 Assume thatA andB are non-commuting and self-adjoint operators and let the
commutator be given by[A;B℄ = AB � BA = iC. Then for allh 2 D([A;B℄) the following
uncertainty relation �h(C)2 � 4�h(A2)�h(B2) (2.51)

holds. One has equality in(2.51)if and only if there exists a parametert 2 R with(A� itB)h = 0 or equivalently (A2 + t2B2)h = �tCh : (2.52)

Proof: At first, we compute(A� itB)�(A� itB) = A2 + tC + t2B2. This holds for allt 2 R.
Hence, for allh 2 D([A;B℄), with khk = 1, we have0 � k(A� itB)hk2 = �h(A2) + t�h(C) + t2�h(B2) ; (2.53)

which is a real and nonnegative parabola int. Consequently, the conditionD = � �h(C)2�h(B2)�2 � �h(A2)�h(B2) � 0 (2.54)

is fulfilled. This proves inequality (2.51). One has equality in (2.51) if there exists at 2 R withD = 0 (a root of second order). This is equivalent to the eigenvalue problem(A� itB)h = 0 or
to (A� itB)�(A� itB)h = 0: �
2.4 Frames

In the previous sections, we were concerned with function systems that form some kind of (or-
thonormal) basis forL2(R). This is clearly very convenient, however, for technical reasons, this
requirement is sometimes too restrictive in radar applications. We refer to Section 5 for further
information. Therefore we shall now discuss a weaker concept which is given by the frame ap-
proach. Then every function inL2(R) can be written in terms of the frame elements, but the
expansions may contain some redundancy.

In general, a systemfhmgm2Z of functions is called aframe if there exist constants~A and ~B,0 < ~A � ~B <1, such that~AkFk2L2(R) � Xm2Z jhF; hmij2 � ~BkFk2L2(R): (2.55)

The numbers~A; ~B are calledframe bounds. Given a framefhmgm2Z, one defines theframe
operatorT as T (F ) := Xm2ZhF; hmihm: (2.56)

For later use, let us recall the following fundamental theorem which was proved in [16].

Theorem 2.3 Letfhmgm2Z be a frame inL2(R). Then the following holds.
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i) T is invertible and~B�1I � T�1 � ~A�1I:
ii) fhmgm2Z; hm := T�1hm is a frame with bounds~A�1; ~B�1, called thedual frameoffhmgm2Z.

iii) Every F 2 L2(R) can be written asF = Xm2ZhF; hmihm = Xm2ZhF; hmihm: (2.57)

Furthermore, we need a result concerning the Fourier transform of frames.

Lemma 2.1 Let fhmgm2Z be a frame and letfhmgm2Z denote the dual frame. Then the setfĥmgm2Z also constitutes a frame and the dual frame is defined by(ĥ)m = 1(2�)hm.

3 Statistical Curve Estimation Using Wavelets

In Section 2.1 we discussed techniques to expressf by means of a wavelet basis. Such a wavelet
expansion is a special kind of orthogonal series estimator.Unlike traditional Fourier bases, wavelet
bases offer a degree of localization in space as well as in thefrequency domain. This enables us to
develop simple function estimates that respond effectively to discontinuities and spatially varying
degrees of oscillations in a signal, even when the observation are contaminated by noise.

In this section, we consider the problem of nonparametric regression estimation of a functionf by
wavelet methods. Theregression modelis given byYi = f(Xi) + �i ; i = 1; : : : ; n ; (3.1)

where�i are i.i.d.,E(�i) = 0 andXi are equidistant points in the interval[0; 1℄ : Xi = i=n.
The effect of nonlinear smoothing will become visible in ourradar application. The nonlinearity,
introduced through thresholding of wavelet coefficients, guarantees smoothness adaptivity of the
estimators.

3.1 Threshold Wavelet Estimator

A naturallinear estimatorof f can be constructed by estimating projection thePj0f onVj0 and is
defined as fn = �Pj0f =Xk ��j1k �j1k + j0Xj=j1Xk �jk jk ; (3.2)

with empirical coefficients�jk, jk given by��jk = 1n nXi=1 Yi�jk(Xi) and �jk = 1n nXi=1 Yi jk(Xi) : (3.3)
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This choice of��jk and�jk is motivated by the fact that (3.3) are ‘almost’ unbiased estimators for
largen. We are interested in the worst case performance of our estimator over a variety of function
spaces, for further details see [18, 19]:R(fn;F) = supf2F Ekfn � fkp0p0 : (3.4)

For our purpose we choose as function spaces under consideration the so-called Besov spaces
which can be introduced as follows.

The modulus of smoothness!r(f; t)Lp(R) of a functionf 2 Lp(R), 0 < p � 1, is defined by!r(f; t)Lp(R) := supjhj�t k�rh(f; �)kLp(R); t > 0;
with�rh ther-th difference with steph. For� > 0 and0 < q; p � 1, theBesovspaceB�q (Lp(R))
is defined as the space of all functionsf for whichjf jB�q (Lp(R)) := ( �R10 [t��!r(f; t)Lp(R)℄qdt=t�1=q ; 0 < q <1;supt�0 t��!r(f; t)Lp(R); q =1 ; (3.5)

is finite withr := [�℄+1. Then, (3.5) is a (quasi-)semi-norm forB�q (Lp(R)). If we addkfkLp(R)
to (3.5), we obtain a (quasi-)norm forB�q (Lp(R)).
Remark 3.1 It is well-known that forp = q = 2 Sobolev and Besov spaces coincide,H�(R) = B�2 (L2(R); (3.6)

see again[1] for details.

In our setting the spaces of interest are defined byF�p (M) := ff 2 B�p (Lp(R)) : kfkB�p (Lp(R)) �Mg ; (3.7)

where� and p = q are known parameters. Moreover, as in [18] we extend the linear to the
non-linear setting. Among all non-linear estimators, we choose a very special one: thetruncated
co-ordinatewise hard threshold wavelet estimatorwhich is given byf�n =Xk ��j1k �j1k + j0Xj=j1Xk �h(�jk; t) jk ; (3.8)

where �h(�jk; t) = �jk � 1fj�jkj > tg; t = KC(j)n�1=2 ; (3.9)

andC(j) has to be appropriately chosen, see Theorem 3.1 below for details.
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3.2 Error Bounds

This section is concerned with the behavior of (3.8), for details see [18]. To keep the notation at a
reasonable level, we introduce the following variables�0 = �� 1=p+ 1=p0 ;Æ = min ��=(2� + 1); �0=(1 + 2�� 2=p)� and� = �p� (p0 � p)=2 :
The notation2j(n) ' g(n) means that2j(n) is chosen to satisfy the inequalities2j(n) � g(n) �2j(n+1).
Theorem 3.1 Letp0 � p _ 1, �� 1=p > 0 and suppose thatf belongs toF�p (M;T ) = ff 2 F�p (M) : suppf � [�T; T ℄g :
If C(j) = pj, there exist constantsC = C(�; p;M) andK0 such that if2j1(n) ' �n (log n) p0�pp 1f��0g�1�2Æ2j0(n) ' �n (log n)�1f��0g�Æ=�0
andK � K0, thensupf2F�p (M;T )Ekf�n � fkp0p0 � 8>>><>>>: C (log n)(1��=�p)Æp0 n�Æp0 " > 0C (log n)max(p0=2�1;0) � log nn �Æp0 " = 0C � log nn �Æp0 " < 0 : (3.10)

For comprehensive remarks and a proof of Theorem 3.1 we referthe reader to [18]. However,
as is well known in practice, for many applications the observations can no longer be assumed to
come from a stationary error. A more generalized model basedon a time series setting with locally
stationary errors was discussed in [47]. Then, for the casep0 = 2 one obtains the ‘classical’ rate
for theL2-risk by exactly the same treatment of the empirical coefficients as in the white noise
case. This rate is attained for the optimal threshold (not known in practice, however) whereas a
data-driven threshold that comes quite close is, e.g.tjk = ��jkp2 log(℄In) ; (3.11)

whereIn = f(j; k) : 2j � Cn1�"g for some" > 0, e.g." � 1=3.

4 Basic Radar Setting

This section is concerned with the introduction and discussion of basic radar models. We derive
two models, the wideband and narrowband model. In radar signal processing one important ques-
tion is how to choose the optimal waveform. Theoretically, this question is related to the choice
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of the analyzing wave function. In Section 4.3, we show that there is a notable relation with un-
certainty principles. Moreover, it is known that the narrowband approach is the most suitable one
for many applications. For that reason and with regard to ourmeteorological radar application we
show in Section 4.4 how one can discretize the narrowband model. Later on this discretized model
will be the basis for meteorological radar signal processing.

4.1 Wideband Model

Suppose we want to find the location and velocity of an object,such as an airplane. One way to
achieve this is to send out an electromagnetic wave in the direction of the object and observe the
echo that is reflected to the source. As we shall now explain, acomparison between the outgoing
signal and its echo allows an approximate determination of the distanceR of the object and the
radial velocityv along the line-of-sight. This is the problem of radar in its most elementary form.
For a thorough treatment, we refer to the classical books of Cook and Bernfeld [9], Rihaczek [45]
and Woodward [55]. The wavelet–based analysis has been initiated by Naparst [40, 41]. In this
paper, our major reference will always be the book of Kaiser [30].

To explain the basic radar setting, let us first assume that the object under consideration can be
described as a single point. The outgoing signal is modeled as a real-valued function of time, i.e.,h : R �! R, representing the voltage fed into a transmitting antenna.The antenna transmitsh(t)
into an electromagnetic wave and beams it into the desired direction. We assume that the returning
echo, also a full electromagnetic wave, is converted by the same device to a real functionf(t),
which again represents a voltage.

The objective is to predict the trajectory of the point object. If at time t = 0 the object is located
atR0 and if it is moving with speedv, then its trajectory it given byR(t) = R0 + vt: (4.1)

Consequently, the task is to determineR0 andv from f . To this end, we proceed as follows.
According to (4.1), at timet, the moving point object is at a positionR0 + vt, i.e., at this instant it
reflects a signal which was sent out at timet� R0 + vt ;
where we have simply used the fact that electromagnetic waves propagate with the speed of light � 3� 108 m/sec. In other words, the object reflects the signals(t) = ah�t� R0 + vt � ;
wherea is a factor which describes the reflectivity of the object. This signal then produces an echo
which is time–delayed by(R0 + vt)=,f �t+ R0 + vt � = s(t) = ah�t� R0 + vt � ;
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or what is the same thingf �t+ R0 � = ah��t� R0 ��� v+ v�� R0 � :
Consequently, by introducing the new coordinatess0 = + v� v ; �0 = 2R0� v ; (4.2)

we obtain the basic relation f(t) = ah� t� �0s0 � : (4.3)

The whole situation is visualized in Figure 1 below. We see that the incident wave is scaled by the
factors0, this is nothing else but the well–known Doppler effect. Therefore the new coordinatess0 and�0 are sometimes calledDoppler coordinates. All material objects move with speeds less
than, hences0 > 0 always. Ifv > 0, i.e., the object is moving away, thenf is a stretched version
of  . Similarly, whenv < 0, the reflected signal is a compressed version ofh. The value ofa
clearly depends on the amount of amplification performed on the echo. In the sequel, we shall
always assume thata = s�1=20 ; so thatf has the same energy ash, i.e.,kfk2 = khk2. From (4.2),
it is clear thatv andR0 can be obtained froms0 and�0, i.e,v = s0 � 1s0 + 1; R0 = �0s0 + 1 : (4.4)

Therefore, to computev andR0, it is sufficient to determines0 and�0. This is done by considering
the whole family of scaled and translated versions ofh:fhs;� : s > 0; � 2 Rg; hs;� = s�1=2h� t� �s � : (4.5)

We regardhs;� as a test signal which is compared withf , i.e., a given returnf is matched withhs;� by taking inner product,~f(s; �) = Z 1�1 f(t)s�1=2h� t� �s � dt: (4.6)~f(s; �) is called thewideband cross–ambiguity functionof f . If we compare (4.6) with (2.42), we
see that~f is nothing else but the continuous wavelet transform of the received echof . Now (4.3)
clearly implies that~f(s; �) = hhs;� ; hs0;�0i = hU(s; �)h;U(s0; �0)hi = R(s; �; s0; �0) : (4.7)

Thereproducing kernelR is thewideband self–ambiguity functionof h. By the Schwartz inequal-
ity we have that j ~f(s; �)j � khs;�kkhs0 ;�0k = khk2; (4.8)

with equality ifs = s0; � = �0. Thus, all we have to do is to compute the maxima of the continuous
wavelet transform of the received echo!
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However, this approach may fail for various reasons. The reflecting object may not be rigid, with
different parts having different velocities (consider a cloud). Or, there may be many reflecting
objects, each with its own range and velocity. We will model all such situations by assuming that
there is adistributionof reflectors, described by areflectivity densityD(s; �). Then the total echo
is given by: f(t) = ZR ZRnf0gD(�; s)jsj�1=2h� t� �s � dsd�s2 : (4.9)

Consequently, the task is to reconstruct the densityD(�; s). This is theinverse problemto be
solved: knowingh andf , find D. To treat this problem, let us first remark that formula (4.9)
can be reinterpreted in the context of wavelet analysis. Indeed, a comparison of (2.43) with (4.9)
yields the well–known and basic identity which links wideband radar echoes to wavelet analysis,
see e.g. [20, 41, 40]: the echof is identical with the inverse wavelet transform of the searched
reflectivity distributionD where the transmitted signalh plays the role of the analyzing wavelet.

This suggests to recoverD by computing the wavelet transform of the echof :D(�; s) := 1Ch [(Whf)(�; s)℄: (4.10)

However, the null spaceN of an inverse wavelet transform is non trivial. Hence by thisprocedure
one can only recover the component ofD which lies in the orthogonal complement ofN or
equivalently one can recover the component ofD in the range of the wavelet transformWh. To
our knowledge, there exists no physical principle that guarantees thatD is in fact contained in the
range ofWh, so that (4.10) only describes one part of the desired density D. Therefore the general
solution reads as follows.

Theorem 4.1 The most general solutionD(s; �) in L2(dsd�=s2) is given byD(s; �) = ~f(s; �) +D(s; �)? ;
whereD(s; �)? is any function inrg(Wh)?, i.e.,Z Z R(s; �; s0; �0)D(s; �)?dsd�s2 = 0:
Inspired by these problems, Naparst [40, 41] was the first onewho suggested not to transmit
just onesignal but afamily of signals. In his fundamental work, Naparst primarily studied the
case that the transmitted signals form an orthonormal basis. However, this assumption is very
restrictive in practice. Therefore, quite recently, Rebollo–Neira, Platino and Fernandez–Rubio
generalized Naparst’s approach to the case of transmittinga frameof signals, which is a much
weaker restriction, see [44]. Further results including error estimates and generalizations to the
multivariate case can also be found in [10, 11]. We shall discuss these ideas in Section 5.
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4.2 Narrowband Model

The wideband model, which describes echoes for arbitrary signalsh, can be simplified for most
real–life situations. The commonly used narrowband approximation deals with signals of the formh(t) = e�i!t�(t) ;
where the carrier frequency! is assumed to be much larger then the comparatively narrowbanded
frequencies of the modulation function�.

Furthermore, most objects of interest in radar travel with aspeed much smaller than light. Thusjvj= << 1 and � � 2R0 : (4.11)

Now we have to treat the positive and negative frequencies of� separately�̂P (!) := �̂(!)�[0;1)(!); �̂R(!) := �̂(!)�(�1;0℄(!): (4.12)

Removing the carrier frequency! from both, the signal� and the echof , and neglecting time
independent scale factors leads to the standard narrowbandmodel for the echof of a single moving
object f(t) = n�P (t� �)e�i�t + �R(t� �)e+i�to ;
where� = 2!v=, see e.g. the classical textbooks [45, 51] and [30] for details. The variables(�; �) are called thenarrowband Doppler coordinates.

Consequently, the narrowband model for the echo produced bya reflectivity densityDNB(�; �)
is given by f(t) = ZR ZR n�P (t� �)e�i�t + �R(t� �)e+i�toDNB(�; �)d�d� : (4.13)

We may decompose the spaceL2(R) asL2(R) ' L2;P (R)� L2;R(R) (4.14)

where L2;P (R) := ff 2 L2(R) j suppf̂ � [0;1); i.e.; f̂P = f̂g; (4.15)L2;R(R) := ff 2 L2(R); j f̂R = f̂g: (4.16)

Then the goal is clearly to reconstruct the densityDNB(�; �) from the received echoes. It turns
out that a suitable reconstruction formula can indeed be derived, provided that the families of
outgoing signals form frames in the spacesL2;P (R) andL2;R(R), respectively, see Subsection
5.4 for details.
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The ambiguity function in the narrowband regime can formulated as follows. As in the wide-
band case, a general echo is modeled by assuming a distribution of reflectors, now described as a
function of the delay and Doppler shiftsf(t) = Z Z 	�;� (t)DNB(�; �)d�d� ; (4.17)

where	�;� (t) = ei�t	(t��). Equation (4.17) also poses an inverse problem: givenf , findDNB .
Just as wavelet analysis was used to analyze and to solve the wideband inverse problem, so can
time-frequency analysis be used to do the same for the narrowband problem. This can be seen by
recalling the windowed Fourier transform off with respect to the window function	:~f(�; �) = Z f(t) �	(t� �)e�i�tdt : (4.18)

Indeed, by comparing (4.17) and (4.18) we can state a versionof Theorem 4.1 for the narrowband
case.

Theorem 4.2 The most general solutionDNB(�; �) in L2(d�d�) is given byDNB(�; �) = ~f(�; �) +DNB(�; �)? ;
whereDNB(�; �)? is any function in the orthogonal complement of the range of the windowed
Fourier transform, i.e., Z Z R(�; �; �0; �0)DNB(�; �)?d�d� = 0:
A reconstruction formula ofDNB is presented in Subsection 5.4.

4.3 Localization and Radar Uncertainty Principles

As explained in the Sections 4.1 and 4.2, we can relate the wideband model to the wavelet trans-
form and the narrowband model to the windowed Fourier transform. The fundamental fact is that
from the group theoretical point of view, see Section 2.3, there is no essential difference between
the wideband and the narrowband treatment. This can be very useful in order to extend our radar
models, e.g. to space-timeR4, cf. [30]. But a more important concern is that based on the theory
of groups we have for both, the wideband and the narrowband model, a uniform setting to establish
uncertainty principles, see Theorem 2.2.

To expose the relevance of uncertainty relations in radar modeling we can elaborate on ‘radar
imaging’, i.e., recognition and identification of moving objects. In this field one has to focus on
localization properties of the analyzing wave function. In[3] this problem was analyzed in the
narrowband framework. As a main result it turned out that theoptimal wave function in terms of
pulsewidth and bandwidth has to minimize a so-called ‘narrowband uncertainty principle’. This
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principle coincides with the well-known Heisenberg uncertainty relation, which corresponds to
Theorem 2.2 applied to the Weyl-Heisenberg group. This straightforward coherence enables us to
compute ‘wideband uncertainty relations’. We only have to exchange the underlying group, i.e.,
we have to switch to wideband Doppler coordinates(s; �) introduced in (4.2) which correspond
to the affine group, see (2.37), and we have to apply Theorem 2.2.

In general, by the fact that Theorem 2.2 does not depend on thespecial choice of the group it
establishes a very general radar uncertainty framework. Once we have derived a minimizing wave
functionh with respect to the radar uncertainty, we know that the corresponding generalized self-
ambiguity function, compare with (4.7),R(g; g0) = 
U(g)h;U(g0)h� ;
has fast decay in the parameter plane, e.g. time – Doppler scale plane. This corresponds to high
resolution properties which is a main goal in radar device design.

As already stated, the narrowband uncertainty principle was extensively studied in [3]. For com-
pleteness we give a brief sketch for the wideband uncertainty principle. Let the underlying group
be the affine groupGA : f(s; �)j(s; �) 2 R2; s 6= 0g with group law (2:38)
and letH = L2(R). Then, by (2.40) and (2.48) we can derive the observation operators~Ash(x) = ��sU(s; �)h(x)j(s=1;�=0) = �h(x)=2 � xh0(x) (4.19)~A�h(x) = ��� U(s; �)h(x)j(s=1;�=0) = �h0(x) : (4.20)

By a multiplication withi we obtain self-adjoint operators, i.e.As := i ~As andA� := i ~A� . The
commutator is given by[As; A� ℄ = �iA� . Applying Theorem 2.2, we can express the searched
uncertainty relation as �h(A� ) � 4�2h(As)�2h(A� ) ;
see inequality (2.51). Finally, we have to compute the variance terms explicitly�2h(A� ) = kh0k22 � �2h(A� ) and �2h(As) = kxh0k22 � khk22=4� �2h(As) :
For comprehensive discussions and computations of uncertainty principles we refer the reader to
[12, 49].

4.4 Discrete Narrowband Model

The analysis of many practical applications, e.g. in meteorological radar data processing, is limited
by the available bandwidth. In those cases one is not able to reconstruct the reflectivity density
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completely. However, to compute the radial velocity one canderive the Doppler frequency of the
reflected echof along the beam direction by estimating the first moment in theFourier power
spectrum.

The radar devices sample the backscattered electromagnetic signals discretely in time. Hence, it is
of importance to describe how to discretize the continuously given echof to obtain a discrete time
series. A basic assumption in this setting is that our reflectivity density is now a function depending
on�, � and timet. Furthermore, to create time series corresponding to different heights we assume
that our transmitted signalh is a pulse train, i.e. a sum of�T time shifted pulsesh(t) = eiwt�(t) ; with �(t) = 2N�1Xk=0 �(t� k�T ) ; (4.21)

where� is a single pulse, e.g. a characteristic function of an interval which is contained in[0;�T ℄.
Consequently, we can extend the narrowband model (4.13) tof(t) = ZR ZR n�P (t� �)e�i�t + �R(t� �)e+i�toDNB(t; �; �)d�d�= ZR ZR8<:2N�1Xk=0 �P (t� k�T � �)e�i�t + 2N�1Xk=0 �R(t� k�T � �)e+i�t9=;DNB(t; �; �)d�d�= 2N�1Xk=0 ZRf�P (t� k�T � �)DNB(t; �; �)^(t) + �R(t� k�T � �)DNB(t; �; �)^(�t)gd�= 2N�1Xk=0 ZRf�P (t� k�T � �)DP (t; �) + �R(t� k�T � �)DR(t; �)gd�= 2N�1Xk=0 f�P �DP (t; �)(t � k�T ) + �R �DR(t; �)(t � k�T )g ;
whereDP (t; �) = DNB(t; �; �)^(t) andDR(t; �) = DNB(t; �; �)^(�t). Now, we want to sample
the complex-valued functionf such that we obtain measurements at certain heights. Let the
sample frequency be given by1=�t and let us choose a numberM such that�T = M � �t,
see Figure 1. Hence, we obtain values off at the discrete gridt0 +m ��t+ n ��T with m = 1; : : : ;M and n = 0; : : : ; 2N � 1 ;
where the sample sequence is given byf [m;n℄ = f(t0 +m ��t+ n ��T ) :
To obtain a time series for heighth =  �mh ��t=2 we have to fixm = mhfh = fh [n℄ = f [mh; n℄ = f(mh ��t+ n ��T ) ;
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Figure 1: Left: single point model. Right: sampling scheme with respect to time and height.

assuming thatt0 = 0. Thus, we obtain for every height a time series of length2N . We remark that
the radar device measures real-valued voltages only. They are often expressed in terms of circular
functions r(t) = a(t) os(!t+ !(t)) = < �f(t)ei!t� (4.22)

wheref(t) is the complex envelope,!(t) the phase anda(t) the amplitude of the received nar-
rowband signal. It can be assumed thatf can be expressed byf(t) = [r(t) + iHr(t)℄ e�i!t = I(t) + iQ(t) ; (4.23)

whereH denotes the Hilbert transform, see [34] for details. However, the Hilbert transform is not
easily implemented in real systems. Instead, the real and imaginary part of the complex envelopef are determined using a quadrature demodulator. Moreover, by low-pass filtering we obtain a
modified description of the discretized echo~I(t) = 2 [f(t) os(!t)℄� and ~Q(t) = 2 [f(t) sin(!t)℄� ; (4.24)

where� denotes the low-pass filter function. Note, that this methodis easier implemented either
analog or digitally. Finally, this leads to the classical notation of discrete wind profiler radar data
at heighth ~fh[n℄ = ~I [n℄ + i ~Q[n℄ : (4.25)

5 Analysis of Continuous Reflectivity Densities

In Section 4, we have already discussed the basic radar setting. It has turned out that a dense target
environment is described by a certain reflectivity densityD(s; �): We have also seen that this

23



density cannot be reconstructed by simply transmitting just one signal. Nevertheless, in the next
sections we shall show that a complete reconstruction is possible if we transmit a certain family of
signals.

5.1 Basic Reconstruction Formulas in the Wideband Regime

In this subsection, we shall derive a basic reconstruction formula for the wideband setting which
guarantees that a given reflectivity density can indeed be reconstructed, provided that the set of
outgoing signals forms a frame, compare with Subsection 2.4.

Theorem 5.1 Let fhmgm2Z be a frame of outgoing signals inL2(R) and letfm denote the cor-
responding echoes produced by a reflectivity densityD(�; s),fm(t) = ZR ZRnf0gD(�; s)jsj�1=2hm� t� �s � dsd�s2 : (5.1)

Let us assume that the following conditions are satisfiedD(�; s)jsj�1=2hm� t� �s � 2 L1(dsdtd�s2 );\D(�; s)(!) 2 L1(d!);\D(�; �)(!)j�j�3=2 2 L2(d�):
(5.2)

ThenD(�; s) can be reconstructed as followsD(�; s) = 1(2�)2 Xm2Z Z 0�1�1if 0m(!)\hm( �s)(!)jsj1=2ei�!d!+ 1(2�)2 Xm2Z Z 10 1i f 0m(!)\hm( �s)(!)jsj1=2ei�!d!; (5.3)

wherefhmgm2Z denotes the dual frame offhmgm2Z.

Proof: A detailed proof can be found in [10], therefore we only sketch the basic ideas. We first
observe that jsj�1=2 \hm� � � �s �(!) = jsj1=2e�i!� ĥm(!s): (5.4)

Therefore, applying Fourier transforms to (5.1) and interchanging the order of integration yieldsf̂m(!) = ZR ZRnf0gD(�; s)ZR jsj�1=2hm� t� �s � e�i!tdtdsd�s2= ZRnf0g\D(�; s)(!)ĥm(s!)jsj�3=2ds:
Hence, by employing the substitution� = s!, we obtainf̂m(!) = ZRnf0g \D(�; �! )(!)ĥm(�)j�! j�3=2j!j�1d�= h eD(!; �); ĥm(�)i; (5.5)
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where eD(!; �) is defined by eD(!; �) := \D(�; �! )(!)j!j1=2j�j�3=2: (5.6)

From (5.5), we observe that the quantitiesf̂m(!) can be interpreted as the coefficients ofeD(!; �)
with respect to the setfĥmgm2Z: However, from Lemma 2.1 we know that this set also constitutes
a frame with reciprocal frame(ĥ)m = 1(2�)hm. Therefore, by using the identityf = 1(2�) Xm2Zhf; ĥmihm; (5.7)

we may reconstructeD(!; �) aseD(!; �) = 1(2�) Xm2Z f̂m(!)hm(�): (5.8)

From (5.8), we can now also reconstruct the densityD(�; s). By using the definition (5.6) we
obtain \D(�; �! )(!) = 1(2�) Xm2Z f̂m(!)hm(�)j�j3=2j!j�1=2
which yields \D(�; s)(!) = 1(2�) Xm2Z f̂m(!)j!j\hm( �s)(!)jsj1=2: (5.9)

Now the result follows by applying the one–dimensional inverse Fourier transform to both sides
of (5.9) D(�; s) = 1(2�) ZR\D(�; s)(!)ei�!d!= 1(2�)2 Xm2ZZR f̂m(!)j!j\hm( �s)(!)jsj1=2ei�!d!= 1(2�)2 Xm2ZZ 0�1�1i f 0m(!)\hm( �s)(!)jsj1=2ei�!d!+ 1(2�)2 Xm2ZZ 10 1if 0m(!)\hm( �s)jsj1=2ei�!d!: �
From the mathematical point of view, Theorem 5.1 is clearly satisfactory. However, the applicabil-
ity of this method to real–life problems is diminished by thefact that the underlying frame usually
containsinfinitely many elements. Clearly, in practice, only a finite number of frame elements can
be transmitted. Hence we are faced with the problem of choosing appropriate collections. Fur-
thermore, it is clearly desirable to have some information concerning the resulting approximation
properties for different choices of frames.
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5.2 Error Bounds in the Wideband Regime

The derivation of the error bounds rests on a Jackson type estimate for the framefhmgm2Z. Let
us assume that this set of functions allows an ordering by index setsIJ � Z, s.t. a Jackson type
estimate of the formkg � 1(2�) Xm2IJhg; ĥmihmk2L2(R) <� 2�2J� jgj2H�(R) (5.10)

holds. HereH� again denotes the Sobolev space of order�.

Such estimates are known for a variety of functions, e.g. trigonometric polynomials and hierar-
chical finite elements. In the context of wavelet analysis, this requirement is met by orthogonal or
biorthogonal wavelets, compare with (2.19). If (5.10) is valid, the following result in the weightedL2–spaceL2(R2; d� dsjsj3 ) holds.

Theorem 5.2 Suppose that for some fixed� a Jackson–type estimate of the form(5.10)holds and
that the condition G(�; !) := j eD(!; �)j2H�(R) <1 (5.11)

is satisfied. Then, the following error estimate is valid:ZR ZR ������D(�; s)� 1(2�)2 Xm2IJ ZRf̂m(!)ĥm(s!)j!jjsj3=2ei�!d!������2 d� dsjsj3 <� 2�2J� ZR j!jG(�; !)d!:
(5.12)

If � is an integer, the functionG(�; !) can be estimated in terms of the densityD as follows:G(�; !) <� X��� j!j1+2��2� ZR j \( ��� ���D)(�; �! )(!)�3=2�� j2d�: (5.13)

Proof: In our setting, the Jackson–type estimate (5.10) applied tog = eD(!; �) reads as follows:k eD(!; �) � 1(2�) Xm2IJ f̂m(!)ĥm(�)k2L2(R) <� 2�2J�j eD(!; �)j2H�(R); (5.14)

Hence, by using (5.6) and substituting� = s! we obtain2�2J�G(�; !) >� k\D(�; �! )(!)j!j1=2j�j�3=2 � 1(2�) Xm2IJ f̂m(!)ĥm(�)kL2(d�) (5.15)= ZR ������\D(�; s)(!)� 1(2�) Xm2IJ f̂m(!)ĥm(s!)j!jjsj3=2������2 j!jj!j�2 dsjsj3 :
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Therefore multiplying both sides of (5.15) byj!j, integrating with respect to! and applying
Plancherel’s Theorem for another time yields2�2J� ZR j!jG(�; !)d!>�ZR ZR ������\D(�; s)(!)� 1(2�) Xm2IJ f̂m(!)ĥm(s!)j!jjsj3=2������2 d! dsjsj3 (5.16)= 2�ZR ZR ������D(�; s)� 1(2�)2 Xm2IJ ZR f̂m(!)ĥm(s!)j!jjsj3=2ei�!d!������2 d� dsjsj3 :
For the proof of (5.13), we refer to [10]. �
Now let us consider the special case that the framesfhmgm2Z andfhmgm2Z consist of the inverse
Fourier transforms of the elements of a biorthogonal wavelet basis, i.e.,hm = hm(j;k) = F�1 j;k; hm = hm(j;k) = (2�)F�1 ~ j;k; (5.17)

where the functions j;k and ~ j;k satisfyh j;k; ~ j0;k0i = Æj;j0Æk;k0 : (5.18)

We may e.g. use the compactly supported wavelet basis constructed by Daubechies [14] or the
biorthogonal wavelet basis developed by Cohen, Daubechies, and Feauveau [8]. Then we do not
employ all functions in the resulting frame, but only those up to a given refinement levelJ . The
resulting error estimate reads as follows.

Corollary 5.1 LetN�1 denote the degree of polynomial exactness of the multiresolution analysisf ~Vjgj2Z associated with the dual wavelet~ . Suppose that for some fixed� < N the condition
(5.11)holds. Then, the following error estimate is valid:ZR ZR ������D(�; s)� 1(2�)2 Xj�J ZRf̂m(!)ĥm(s!)j!jjsj3=2ei�!d!������2 d� dsjsj3 <� 2�2J� ZR j!jG(�; !)d!:

(5.19)

Proof: Classical wavelet analysis provides us with the Jackson–type estimatekg � Xk2Z;j�Jhg;  j;ki ~ j;kk2L2(R) <� 2�2�J jgj2H�(R); (5.20)

see, e.g., [15] and Section 2 for details. Now the result follows from Theorem 5.1. �
Remark 5.1 The polynomial exactness is closely related with the regularity of the wavelet basis,
see[14] for details.
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Figure 2: Representation of\D(�; s)(!) and\D(�; s)(!)jsj�3=2 on the discrete grid[5:00; 15:00℄ �[0:85; 1:00℄.

Figure 3: The simulated echosff̂mgm2Z for the Haar frame (left-hand side) and for the
Daubechies-5-frame (right-hand side). The higher scales are not displayed.

5.3 Numerical Experiments in the Wideband Regime

In this section, we want to demonstrate the applicability ofour reconstruction formulas and the
error estimates presented above. The application of our theory to real-life data is still in its elabo-
ration. Nevertheless, to test the algorithm, we proceed as follows. We fix in advance an (artificial)
densityD in range Doppler coordinates and a suitable framefhmgm2Z, compute the correspond-
ing echos and apply the reconstruction procedure to these echos. Since in this case the density is
known, this approach allows some meaningful comparisons.

Primary, we fix a densityD which fits into the setting and a framefhmgm2Z. As an manageable
example we chooseD as D(�; s) := ei�!0e��2=21[�s1;s2℄(s) ;
where1[�s1;s2℄ represents the characteristic function of the closed interval [�s1; s2℄ and!0 de-
scribes a shift in Fourier domain. In the sequel, we chooses1 = 0:90 and s2 = 0:95. The
assumption of Theorem 5.1 onD are satisfied. The outgoing signal has to be a frame. However,
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Figure 4: Partial reconstructions based on simulated echoswith respect to the Haar frame. The
shown images correspond to the reconstructed densities forJ = �3;�2;�1; 0; 1; 2; 3; 4 and6
(from top left to bottom right).

since we also want to check the error estimate in Theorem 5.1,a straightforward choice for the
frame is hm(t) = hm(j;k)(t) := F�1 j;k(t) ;
whereF�1 j;k is the inverse Fourier transform of some dilated and translated wavelet, see formula
(5.17). In our simulations we used the Haar basis, the Daubechies wavelets of order two, compare
[14], and biorthogonal wavelets as constructed in [8], respectively.

Based on the underlying densityD we may generate families of echosffmgm2Z which represent
the backscattered families of the transmitted framefhmgm2Z. Numerically we have to truncate
the evaluation of the echos at some index(j; k). The numerical implementations start at resolution
level jmin = �3 and end atjmax = 6. At the first approximation leveljmin = �3 we use the
echos produced by translates of the corresponding generator function'. The resulting echos are
visualized in Figure 3.

Now we are ready to apply the reconstruction formula stated in Theorem 5.1. To examine the
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Figure 5: Partial reconstructions based on simulated echoswith respect to the Bior2.8 frame. The
shown images correspond to the reconstructed densities forJ = �3;�2;�1; 0; 1; 2; 3; 4 and6
(from top left to bottom right).
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quality of the reconstruction we compute the left hand side of the error estimate of Theorem 5.2.
Theorem 5.2 predicts an exponential decay of the error rate with constants depending on the frame
regularity. And indeed, we observe that the weightedL2-error decreases in the predicted way as
the frame regularity increases. To show successively theseresults, we start by presenting a scale-
wise reconstruction, see Figures 4 and 5. It turns out that the algorithm converges for all simulated
cases. Following Theorem 5.2 we study the error depending onthe scaleJ and on the frame
regularity�, respectively. From Figure 6, left image, we observe that the error indeed decreases
exponentially. From the logarithmic plot, right image, we can estimate the parameter� as the
slope of the linear least square fit, compare with Figure 6. Wededuce the validity of the proposed
wavelet based reconstruction algorithm and the given errorestimate. Therefore the first numerical
results confirm our theory.

5.4 Basic Reconstruction Formulas in the Narrowband Regime

Similar to the wideband approach, the goal in this section isclearly to reconstruct the narrowband
density functionDNB(�; �) from the received echoes. It turns out that a suitable reconstruction
formula can indeed be derived, provided that the families ofoutgoing signals form frames in the
spacesL2;P (R) andL2;R(R), respectively.

Theorem 5.3 Let fhmgm2Z; fgmgm2Z be sets of outgoing signals inL2;P (R) andL2;R(R), re-
spectively. Let us furthermore assume thatfhmgm2Z; fgmgm2Z form frames in these spaces, and
let fhmgm2Z andfgmgm2Z denote the corresponding dual frames. The echoes offhmgm2Z are
denoted byfP;m, the echoes offgmgm2Z are denoted byfR;m. Let us assume that the reflectivity
densityDNB(�; �) satisfies the following conditionshm(t� �)DNB(�; �) 2 L1(d�d�); \DNB(�; �)(!) 2 L1(d!): (5.21)

ThenDNB(�; �) can be reconstructed as followsDNB(�; �) = 12� Xm2Z ZR fP;m(t)hm(t� �)ei�tdt+ 12� Xm2ZZR fR;m(�t)gm(�t� �)ei�tdt : (5.22)

Proof: We proceed by following the lines of the proof of Theorem 2.2 in [11]. Using (4.13) yieldsfP;m(t) = ZR ZR e�i�thm(t� �)DNB(�; �)d�d�= ZR hm(t� �)�ZR e�i�tDNB(�; �)d�� d�
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= ZR hm(t� �) \DNB(�; �)(t)d�= ZR hm(�) \DNB(�; t� �)(t)d�= hhm(�); (℄DNB(t; �))P iL2(R);
where ℄DNB(t; �) := \DNB(�; t� �)(t): (5.23)

Consequently, by using the reciprocal framefhmgm2Z and exploiting the fundamental reconstruc-
tion formula (2.57), we obtain(℄DNB(t; �))P = Xm2Zh(℄DNB(t; �))P ; hm(�)iL2(R)hm(�)= Xm2Z fP;m(t)hm(�);
and therefore ( \DNB(�; �)(t))P = Xm2Z fP;m(t)hm(t� �): (5.24)

A similar calculation yields(DNB(t; �))R = Xm2Zh(DNB(t; �))R; gm(�)iL2(R)gm(�)= Xm2Z fR;m(t)gm(�)
where DNB(t; �) := \DNB(�; t� �)(�t): (5.25)

Consequently, we obtain( \DNB(�; �)(�t))R = Xm2Z fR;m(t)gm(t� �) (5.26)

so that ( \DNB(�; �)(t))R = Xm2Z fR;m(�t)gm(�t� �) (5.27)

and \DNB(�; �)(t) = ( \DNB(�; �)(t))R + \DNB(�; �)(t)P= Xm2Z fP;m(t)hm(t� �) + Xm2Z fR;m(�t)gm(�t� �):
32



Now the result follows by applying the inverse Fourier transformDNB(�; �) = 12� ZR \DNB(�; �)(t)ei�tdt= 12� Xm2ZZR fP;m(t)hm(t� �)ei�tdt+ 12� Xm2Z ZR fR;m(�t)gm(�t� �)ei�tdt: �
6 Analysis of Discrete Radar Wind Profiler Data

This section is concerned with the determination of the three dimensional atmospheric wind vector
field on the basis of real radar wind profiler (RWP) measurements. Due to the nature of those
instruments we are not able to apply the established reconstruction formulas from the wideband
and narrowband regime, respectively. However, there is another aspect where wavelets play a
important role. To discuss the difficulties in practical radar applications and to demonstrate the
benefit of wavelets we proceed as follows: First, we briefly describe some characteristics of radar
wind profilers, secondly, we explain the specific problems inprofiler radar signal processing, and
thirdly, we present a wavelet based method to improve the preprocessing of those radar data. The
wavelet preprocessing uses a multiscale approach as explained in Section 2.1 and the statistical
techniques outlined in Section 3.

6.1 Radar Wind Profilers

The RWP is a special application of Doppler radar technologyand is now increasingly used to
routinely probe the vertical profile of the mean horizontal wind in the earth’s atmosphere. The
data are mainly used for weather forecasting and environmental monitoring. Most currently used
RWP’s employ the so-called ‘Doppler beam swinging’ method (DBS) for wind determination.
The range of applications for these systems is certainly wider then it is mentioned here, but this
is beyond the scope of this paper. More details about the use of coherent radar technology and in
particular wind profilers in meteorology can be found in standard textbooks [17, 22] and in several
review papers, e.g. [46].

For RWP’s, the Doppler shift and therefore the radial velocity of the scatterers is determined using
different beam directions. For wind determination, there are of course at least three linear indepen-
dent beam directions and some assumptions concerning the wind field required to transform the
measured ‘line-of-sight’ radial velocities into the wind vector. This principle will be briefly shown
for a five beam system as depicted in Figure 7. We assume that the wind field~v with components
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Figure 7: Beam configuration of a typical DBS radar wind profiler(u; v; w) in a Cartesian coordinate system in the vicinity of the radarcan be written as a linear
Taylor series expansion in the horizontal coordinates~v(x; y; z) := ~v(x0; y0; z) +rh~v(x; y; z)jx0;y0 ��~r ; (6.1)

where(x0; y0; 0) denotes the location of the transmitter/receiver. If the radial velocity measured
in the ‘line-of-sight’ of a radar beam described by unit directional vector~n is written asvr = ~v � ~n ; (6.2)

then, we get for the differences of the radial winds of the four oblique beams at heightzvrE(z) � vrW (z) = 2u0(z) sin(�) + 2�w�x z os(�) tan(�)vrN (z)� vrS(z) = 2v0(z) sin(�) + 2�w�y z os(�) tan(�) ;
34



whereu0(z) denotes the horizontal West-East wind component at heightz, v0(z) denotes the
horizontal North-South wind component at heightz, � denotes the zenith distance of the oblique
beams and the subscripts denote East, West, North and South,respectively. It is immediately clear
that one additional assumption is required to determine the(horizontal) wind components(u0; v0),
namely: �w�x = �w�y = 0:
In meteorological language, the horizontal shear of the vertical wind must vanish to retrieve the
horizontal wind without errors. This condition is not always given, however, it is usually correct
over a longer time interval. Therefore, DBS RWP’s can only beused to determine the averaged
wind.

Here and henceforth we will only be concerned with the determination of the radial velocity along
one beam. This is the main focus of signal processing for RWP’s. Strictly speaking, signal pro-
cessing includes all operations that are performed on the received voltage signal at the antenna
output, including the analog operations employed before A/D conversion, that is signal amplifi-
cation, frequency down-conversion and filtering. However,we will only deal with digital signal
processing (after A/D conversion), cp. Figure 8, which has the purpose to extract the desired
atmospheric information from the received voltage signal.

RWP’s transmit a series of short electromagnetic pulses (each one separated by a time�T ) in a
fixed beam direction and sample the backscattered signal received by the antenna to determine
the Doppler shift. For a single pulse, the sampling in time allows the determination of the radial
distance of the measurement using the well-known propagation speed of the radar wave (rang-
ing). The maximum distance for unambiguously determining the measurement distance is clearly
determined by the pulse separation�T , namelydmax = �T=2, it is called the maximum unam-
biguous range. It has to be set sufficiently high to prevent range aliasing problems, that is arrival
of backscattering signals from the first pulse after the transmission of the next pulse.

The bandwidthB of a transmitted pulse of durationÆt is typically much larger (B = C � 1=Æt �100:::1000 kHz, for some constantC > 0) than the Doppler shift for atmospheric scatterers
(fd < 500 Hz), which prevents a precise measurement of the Doppler shift from a single pulse.
For that reason a time series is generated for each and every range gate by sampling a whole series
of transmit pulses. The Doppler frequency is then determined from the slowly changing phase of
the received signals, see [4], using a quadrature demodulator and is further used to determine the
velocity component of ‘the atmosphere’ projected onto the beam direction (fD = 2vr=�). The
sampling is usually done in the process of A/D conversion of the received signal and the sampling
rate for the discrete time series (4.25) at each range gate isof course determined by the pulse
repetition period�T .

The main goals of radar signal processing as summarized in [31] are:� to provide accurate, unbiased estimates of the characteristics of the desired atmospheric
echoes;� to estimate the confidence/accuracy of the measurement;
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Figure 8: The Fig. shows the flow diagram of ’classical’ digital signal processing.� to mitigate effects of interfering signals;� to reduce the data rate.

As outlined in Section 4.4, the complex envelope determinedby a quadrature demodulation can
be written as ~fh(t) = ~I(t) + i ~Q(t) ;
see formula (4.25) and see [34]. The signal~fh forms for atmospheric scattering a complex Gaus-
sian random process in time [54], with sample points for eachtransmitted radar pulse. Such a
process is fully described by 3 parameters, namely� Signal power;� Mean frequency (shift);� Spectral width.

If S(!) denotes the power spectrum associated with the random process signal then the funda-
mental parameters are the power P, P = Z S(!)d! ;
the mean Doppler shift
, 
 = 1P Z !S(!)d! ;
and the velocity varianceW 2: W 2 = 1P Z (! � 
)2S(!)d! :
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Figure 9: The Fig. shows the final result of the measurement with the 482 MHz RWP at Lin-
denberg (Germany) on the 30th November and 01st December 1999. The wind barbs are color
coded according to the wind speed. Note the effects of the persistent ground clutter around 1.5 km
and 3 km height. The gap in the data was caused by this detailedinvestigation as the radar was
programmed to store time series data for about 30 minutes in the East beam only, thus no wind
computations were possible for that period of time.

The goal of radar signal processing is consequently just theestimation of these 3 basic parameters
and it therefore suffices to estimate the power spectral density (the so-called Doppler spectrum)
of the given signal. The generally used procedure employs the fast Fourier transform and has the
advantage of being non-parametric, i.e. no specific form of the spectrum is assumed. This is of
advantage when the above mentioned assumptions are not fulfilled, however, the 3 base parameters
are still uniquely defined, for details see [53].

Radar signal processing ends with the estimation of the moments of the Doppler spectrum and
further data processing is then performed to finally determine the wind and other meteorologi-
cal parameters using measurements from all radar beams, seeFigure 9 and 10. To compute the
Doppler frequency we thus use the discrete Fourier transform of ~fh which is in detail given below.
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Figure 10: The Fig. shows the final result of the measurement with the 482 MHz RWP at Linden-
berg (Germany) on the 14th October 2001. The wind barbs are color coded according to the wind
speed. The distinct maxima in wind speed after sunset between 1 and 3 km height are caused
by dense bird migration, that could not be eliminated by the applied processing, even when the
statistical averaging method proposed in [38] was used.

6.2 Problems in RWP Signal Processing

The typically implemented radar signal processing flow in RWP’s is visualized in Figure 8. Digital
signal processing starts with the determination of the complex envelope of the received signal
which yields the in- and quadrature phase components (4.25). The sampling rate is determined
by the pulse repetition periodT . To reduce the data rate for further processing, hardware adder
circuits perform a so-called coherent integration, addingL (typically ten to hundred) complex
samples together. Mathematically, this operation can be seen as a filtering, followed by an under-
sampling at a rate ofL � T fh(n) = 1L (n+1)LXk=nL ~fh(k) :
The coherently averaged samples�fh are then used to estimate the Periodogram (the Doppler spec-
trum) using the discrete windowed Fourier transform, see [5]Ph(k) = 1N ����N�1Xn=0 g(n)fh(n)e�j 2�knN ����2 :
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A numberL0 (typically some ten) of individual Doppler spectra is then incoherently averaged to
reduce the noise variance of the Periodogram, thus improving the detectability of the signal, see
[50] Ph(k) = 1L0 h+L0Xn=h Pn(k) :
Finally, the noise level is estimated with the method proposed in [26] and the moments of the
maximum signal in the spectrum is computed over the range where the signal is above the noise
level. This effectively avoids any unwanted noise contribution to the estimated moments and is
equivalent with subtracting the noise level before deriving the moments, compare with [37, 48].

The problem with this type of signal processing is the underlying assumption, that the signal
consists of only two parts: y = fa + " ; (6.3)

wherefa is produced by the (Gaussian) atmospheric scattering process and" is some noise of
different sources, mainly thermal electronic noise and cosmic noise. This is certainly not true.
Especially at UHF, the desired atmospheric signal itself isoften the result of two distinct scattering
processes, namely scattering at inhomogeneities of the refractive index (Bragg scattering) and
scattering at particles like droplets or ice crystals (Rayleigh scattering), see for instance [21, 23,
22, 42, 43] . So, even the desired atmospheric signal may havedifferent characteristics. But, as
the experience shows, the most serious problems are caused by the following contributions to the
signal: y = fa + fg + fi + fr + " ; (6.4)

wherefg is ground clutter, i.e. echoes returned from the ground surrounding the site, which emerge
from antenna side-lobes,fi is intermittent clutter, i.e. echoes returned from unwanted targets like
airplanes or birds from both, the antennas main lobe and the side-lobes, andfr is radio frequency
interference which can emerge from external radio-frequency transmissions within the passband
of the receiver (matched filter) or it can be generated internally due to imperfections of the radar
hardware. An additional complication lies in the observed fact, that bothfi andfr are generally
not Gaussian.

6.3 Improved RWP Signal Processing by Wavelet Techniques

Recently, much work has been and continues to be done to develop frequency domain processing
algorithms. The purpose of all these methods is to select the‘true’ atmospheric signal even in the
presence of severe contamination and perform moment estimation only with them. Unfortunately,
practical success has been limited, mostly because the generation of the Doppler spectrum was not
optimal:� The use of coherent integration ‘pre-filters’ the time series and my cause unnecessary alias-

ing of airplane echoes into the frequency band of interest, for instance.� The non-Gaussian characteristics of transient signal components (airplanes, birds) may ren-
der the DFT-based technique for spectral estimation useless.
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In the following, we will therefore concentrate on the applicability of nonlinear wavelet filtering to
‘clean’ the time series before employing the DFT. The main reasons for the particular effectiveness
of wavelet analysis are the facts that contamination appears often instationary or transient and with
a priori unknown scale structure, that one can use a great variety of wavelet filters, and at least that
the fast wavelet transform has a computationally complexity that is lesser than or equal to the fast
Fourier transform.

For our purpose, we assume that the Gaussian model describesboth, the atmospheric scattering
component and the ground clutter signal sufficiently well. The transient nature of intermittent clut-
ter returns can be sufficiently well described by the simple model given by [2]. A more detailed,
exemplary look into the raw data (coherently integrated I/Q-Time series) of Gate 11 and 17 and
the resulting power spectra, see Figure 11, reveals obviously that advanced signal processing for
RWP is necessary to increase the accuracy of wind vector reconstruction: The time series at Gate
11 shows the typical signature of a ground clutter signal component, which corresponds to the
narrow spike centered around zero (Doppler shift) in the resulting power spectrum. Additionally,
the time series at Gate 17 shows a strong transient componentin the last quarter.

Nonlinear wavelet filtering starts by applying the multiscale setting as in Section 2. For our pur-
pose we assume that the measured complex-valued signal~fh can be interpreted as the projection
on a subspaceVj0 . The estimation of the projection is given by (3.2) with coefficients as in (3.3).
In comparison with ‘classical’ nonlinear wavelet de-noising wereversethe roles of the noise part� andf in the regression model (3.1), i.e., we assume that the atmospheric componentfa belongs
to � and we interpret the oscillating clutter components as the signalf . Hence, the goal is to detect
the clutter instead of the atmospheric echo. Once we have detected the clutter component, we only
have to eliminate it from the signal~fh.

Consequently, to adapt the nonlinear wavelet filtering stepto our problem we have to redefine the
selection procedure for the coefficients as follows�h(x; t) = x� �h(x; t) : (6.5)

Then, by (6.5) we perform the necessary filtering step by the truncated hard threshold wavelet
estimator (3.8). The common hard thresholding used for de-noising and the new definition are
displayed Figure 12. The threshold definition (6.5) can be easily expressed by�h(u; t) = � u; juj < t0; juj � t ;
wheret is a adequate threshold. To appraise the estimator it is known that we measure the expected
loss or the risk, see Section 3, supf2F�p (M;T )Ekf�n � fkp0p0 :
However, in our application we are interested in the situation 1 � p � 2 andp0 = 2. By the
assumption� > 1=p we obtain that� = p2 (2�+ 1)� 1 > 1=2 :
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Figure 11: The left part shows the ‘stacked spectrum’ plot, i.e. the Doppler spectra for each range
gate, for the radar dwell at 08:53:38 UTC on December1st, 1999. The right figures give a detailed
look into the raw data (I/Q-time series) and the Doppler spectrum for the gate 17 (whose data
will be wavelet processed). The black arrows indicate the estimated first moment (i.e. the radial
velocity).

Thus, for a positive constantC, we have the following asymptotic behavior for the risk function,
see inequality (3.10), supf2F�p (M;T )Ekf�n � fk22 � C (log n) 2�p2�+1 n �2�2�+1 : (6.6)

Remark 6.1 For the special casep = 2 we know thatF�2 coincides with a ball inH�, see[27]
and (3.6).

For a numerical implementation one has to determine the scales j1 and j0. In accordance to
Theorem 3.1 and our specific setting we haveÆ = �=(2� + 1), i.e.,2j1(n) ' �n(log n) 2�pp � 12�+1 and 2j0(n) ' n 2p�(2�+1)(p(2�+1)�2) ;
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m 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20j1(2m) 3 4 4 4 5 5 6 6 6 7 7 7 8 8 8j0(2m) 4 5 6 6 7 8 8 9 10 10 11 12 12 13 14

Table 1: A Table of suitable resolution levelsj1 andj0 for a special choice ofp and�, (p = 1, �
close to1).
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Figure 12: This Figure shows hard (left) and inverse hard thresholding (right) fort = 1.

see Table 1 for suitable resolution levelsj1 andj0. The choice oft can be implemented by applying
the rule (3.11). Finally, the computation of the wavelet coefficients can be done by using the fast
wavelet algorithm as described in Section 2.

6.4 Numerical Examples

In this section, we want to demonstrate the performance of our modified nonlinear wavelet filter-
ing. This is done with both, simulated and real data. For a better understanding we particularize
Figure 8 to see where we have inserted the wavelet filtering step. To clarify our procedure a more
substantiated algorithm flow diagram is shown in Figure 13.

Additionally one may use histogram informations. The histogram displays the empirical distribu-
tion of the coefficients��k and�jk. In particular, if the signal was contaminated by an airplane echo
the main part of observations is concentrated in a small neighborhood around zero. If there is no
airplane echo the coefficients are exponentially distributed, see Figure 14.

To observe how this algorithm works we start by simulating one easy test sample. Using the
statistical-stochastic approach of [56] to generate I/Q-time series, we first generate an atmospheric
signal with Gaussian characteristic in the frequency domain. We choose the Doppler frequency of
the atmospheric signal close to zero to force the separationproblem. Now we add a noise variable
and a ground clutter peak, which is generated by a narrow Gaussian. The order of the ground
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Figure 13: Left: The flow diagram extended by the wavelet tool. Right: The wavelet algorithm
flow diagram.
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Figure 14: This Figure shows typical histograms of the wavelet coefficients (see text). The upper
histogram represents an in-phase series without an airplane echo and the lower histogram repre-
sents an in-phase series with an airplane reflection.

clutter amplitude is much higher than the Doppler frequencyamplitude. Because the algorithm
removes the ground clutter completely, the reconstructed signal consists only of the atmospheric
part (and some noise). This demonstrates impressively the difference of the nonlinear wavelet
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Figure 15: Decomposition (��k and �1k), reconstruction and Fourier power spectrum of gate 17
(top) and gate 11 (below). The black curves in the power spectra representations display the
decontaminated spectra. Clearly to recognize are the differences of moment estimations, see the
computed first moment before (gray arrow) and after (black arrow) the filtering step.
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Figure 16: Top left: Simulated Fourier-power-spectrum with strong ground clutter influence and
with an atmospheric signal overlapping the ground clutter peak. Lower left: I/Q time series derived
from the simulated Fourier-power-spectrum using the [56] method. Lower right: I/Q time series
after applying the nonlinear wavelet filter. Top right: Resulting Fourier-power-spectrum based on
the reconstructed (filtered) signal.

filtering method compared to Fourier methods and digital filtering: The spectra of clutter and
atmospheric signal can overlap as much as they want, nonetheless we can still separate the two
components. The different amplitude of both signals allowsthe discrimination by thresholding.

For intermittent clutter, one of the distinct advantages ofwavelet based techniques is certainly
the ability to describe a transient signal with only a few wavelet coefficients. This is caused by
the finite support of the wavelet basis. It is the localizing properties of wavelets, that makes the
wavelet transform especially suited for filtering of transient signals.

To expose how the routine is acting on measured RWP time series we go back to the presented
‘real life’ problem (example Figure 11). We use this exampleto demonstrate the robustness of the
method. The problem was that the signal at gate 17 was contaminated by intermittent clutter (air-
craft echo) and the signal at gate 11 by persistent ground clutter. Using standard signal processing,
the spectra were significantly biased and thus the moment estimation and finally the wind vector
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reconstruction. Figure 15 shows exemplarily how wavelet thresholding was realized in decompo-
sition sequences��k and�1k of gate 11 and 17. The dotted lines correspond to the thresholds. It
can be observed that in both cases the clutter components have been removed completely.
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