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Abstract

The aim of this paper is to give an overview on the currentiappbns of wavelet meth-
ods to the analysis of radar data. There are two major tophesewvavelet algorithms have
already been successfully applied, namely the reconairuct continuous reflectivity densi-
ties and the analysis of discrete radar wind profiler datae first problem can be treated by
using the specific reconstruction and approximation prigreof wavelet frames whereas the
second one is treated by a suitable variant of the classiatat thresholding method. Both
topics are discussed in detail and several numerical seatdtpresented.
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1 Introduction

In recent years, wavelet analysis has become a very powedluln applied mathematics. The
first applications of wavelets were concerned with problenisiage/signal analysis/compression.
Furthermore, quite recently, wavelet algorithms have aksen applied very successfully in nu-
merical analysis, geophysics, meteorology, astrophyaicsin many other fields. Especially, it
has turned out that the specific features of wavelets canbalsdficiently used for certain prob-
lems in the context of radar signal analysis. The basic radaislem asks to gain information
about an object by analyzing waves reflected from it. Howealénough this fundamental prob-
lem is always the same for every radar application, the #dlgos that are used clearly depend on
the concrete setting and may differ dramatically. The ahoicthe appropriate method obviously
rests on the properties of the object under consideratiom{(jpbject, dense target environment
etc.) and on the parameters one wants to reconstruct (refiectensities, wind velocities etc.)
For an overview on radar problems, we refer to one of the tekb [9, 17, 22, 45, 55]. In recent
studies, it has turned out that wavelet methods are at lefisfuhfor the following two topics:

e the reconstruction of continuous reflectivity densities;
e the analysis of discrete radar wind profiler data (RWP).

The aim of this paper is to give an overview on both problent tarexplain how they may be
treated by wavelet methods.

The problem of reconstructing reflectivity densities caxéscribed as follows. Let us firstassume
that the object under consideration can be modeled as & $gogit, moving with constant velocity
towards or away from a given source. Then, the aim is to rénatshe distance and the velocity
of the object by analyzing the reflected waves. Indeed, famals point object, this goal can be
achieved by simply computing the maxima of the continuousele transform of the received
echo, see, e.g., [30] and Section 4.1 for details. Howewanany applications, one is faced with
a reflecting continuum with varying reflectivities. Such eg& environment is then modeled by
a certain reflectivity density. In this case, this refletyivilensity cannot be reconstructed by
simply transmitting one single signal, see again [30] anctiBe 4.1. Nevertheless, a complete
reconstruction is possible if &amily of signals is used. This approach was first suggested by
Narpast [40, 41] who studied the case that the transmitgguhls form an orthonormal wavelet
basis. We refer to Section 2 for the definition and the basipgnties of wavelets. However, the
requirement of full orthonormality is quite restrictive h@refore, quite recently, Rebollo—Neira,
Plastino, and Fernandez—Rubio generalized Naparst'agpiprto the case that the transmitted
family forms a frame. We refer to Subsection 2.4 for a shdrbaofuction to frames. Moreover,
some further generalizations concerning, e.g., rigorows estimates, the multivariate case and
numerical examples have also been presented in [10, 113sltuined out that especially wavelet
frames perform quite successfully. The main results ofalssproaches are presented in Section
5.

The setting of wind profiler data is quite different. In thizse, one wants to gain information
concerning the three dimensional atmospheric wind vegtas is done be sampling the reflected
radar beams at certain rates corresponding to differeghtgifollowed by the application of wily



radar signal processing devices. The whole analysis densishe following steps: coherent in-
tegration, Fourier analysis, spectral parameter estimatind, finally, the wind estimation. The
whole procedure is explained in Section 6.1. However, orie@basic problems in wind profiler
analysis is that the data may be heavily contaminated byescreiurned from ground surround-
ings, from targets like airplanes or birds or from exterraalio-frequency transmissions. Due to
the local nature of these disturbing signal componentsiaileing algorithms based on Fourier
transforms are not very appropriate. This is exactly thécteghere wavelet analysis suggests
itself since wavelets are by construction very localizedctions. Indeed, the following variant
of wavelet de-noising algorithms has already been suadéssipplied [32, 49]. The classical
wavelet de-noising methods consist of three steps. Firatlothe signal is decomposed into a
wavelet series by means of the fast wavelet transform, thesmall wavelet coefficients are ne-
glected by applying some thresholding operator (hardtboéisholding), and, finally, the signal
is reconstructed by applying the inverse wavelet transfoive refer to the Sections 2 and 3 for
details. However, in the setting of RWP, the disturbing congmts are usually much larger than
the signal one wants to analyze. Therefore the thresholapegator is applied the opposite way:
the small wavelet coefficients are kept and the large onesemjiected. The whole algorithm is
explained in Section 6.3.

This paper is organized as follows. In Section 2, we brieftaliehe basic facts on wavelet analy-
sis as far as they are needed for our purposes. The discussiers orthogonal and biorthogonal
wavelets, the continuous wavelet transform including eissed uncertainty relations, and the
concept of frames. Section 3 is devoted to statistical @dions by means of wavelet methods.
Then, in Section 4, we discuss the basic radar setting. Wseptehe wideband as well as the
narrowband approach. Moreover, we introduce a new disc@t®w band model which is de-
signed to serve as some kind of bridge between the two basidgons introduced above. Then,
in Section 5, we explain how a continuous reflectivity dgnsén be reconstructed by means of a
frame approach. We also present some error estimates imi@dif,—spaces and discuss several
numerical examples. Section 6 is devoted to the radar wiafilgr problems. After explaining
the basic setting in Subsection 6.1, we discuss the probiem®$VP signal processing in Sub-
section 6.2. In Subsection 6.3, we explain how wavelet nustoan help to improve the current
algorithms and, finally, in Subsection 6.4, we present soameamical examples.

2 Wavelet Analysis

In this section, we shall briefly recall the basic setting efrelet analysis as far as it is needed for
our purposes. First of all, in Subsection 2.1, we collectsdmets concerning the discrete wavelet
transform. Then, in Subsection 2.2, we discuss the biodhalgwavelet approach. We shall
also need some aspects of the continuous wavelet transidrerefore we sketch this concept in
Subsection 2.3. Finally, in Subsection 2.4, we discuss doanee techniques which will be one
of the basic tools in radar analysis as we shall explain iniGeé.



2.1 The Discrete Wavelet Transform

In general, a functiony is called a (mothenyvaveletf all its scaled, dilated, and integer—translated
versions ‘ _
Yin(e) = 2PY@z—k), jkeZ, (2.1)

form a (Riesz) basis af,(R). Usually, these functions are constructed by meansnofiireso-
lution analysisintroduced by Mallat [35]:

Definition 2.1 A sequencg[V;};cz of closed subspaces @f;,(R) is called amultiresolution
analysis (M.R.A.of Ly(R) if

L CViaC Vo CVip Clg (2.2)
UV = L®) 2.3)
j=-—00
NV = {0k (2.4)
j=-—00
fOreVy = [f(2)€ Vs (2.5)
fOH)evy <= f(-—-keW forall ke Z. (2.6)

Moreover, we assume that there exists a funcgian V4 such that

Vo :=spap(- — k), k € Z} (2.7)
and thatyp hasstable integer translateisg.,

Al ~ 11D~ e ol = B[ - (2.8)

kcZ
The functiony is called thegeneratoof the multiresolution analysis.

(In this paper, & ~ b means that both quantities can be uniformly bounded by scomstant
multiple of each other. Likewise , < ’ will always indicate inequality up to constant factors).
The properties (2.2), (2.5), (2.7), and (2.8) immediateiply thaty is refinable i.e., it satisfies a

two—scale relation
p(z) =Y app(2z — k), (2.9)
keZ

with the maska = {a;}rcz € ¢2(Z). Because the union of the spacgg;};cz is dense in
Ly (R), it is easy to see that the construction of a wavelet basigce=ito finding a function
whose translates span a complement spég®f V; in Vi,

Vi=Vo® W,  Wo=spaqy(-—k) |k € Z}. (2.10)

Indeed, if we define '
Wi ={f() € L2(R) | f(277+) € Wy}, (2.11)
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it follows from (2.3), (2.4) and (2.5) that
Ly(R) = ®F2_, W; (2.12)

so that ‘ ‘
Pin(x) = 20124 (2 — k), jkeZ (2.13)

forms a wavelet basis di;(R).

Obviously, (2.5) and (2.7) imply that the waveletan be found by means of a functional equation
of the form
P(x) =) bpp(2w — k), (2.14)
kcZ
where the sequende:= {b; }1cz has to be judiciously chosen; see, e.g., [6, 14, 39] for Hetai

The construction outlined above is quite general. In mampjiegtions, it is convenient to impose
some more conditions, i.e., to require that functions ofeéht scales are orthogonal with respect
to the usualls—inner product, i.e.,

!

(P27 - —k),p(2 - —K))y =0, if j#j. (2.15)

This can be achieved if the translatesyofot only span an (algebraic) complement but the or-
thogonal complement,

Vo L Wy, Wy =spady(- — k) | k € Z}. (2.16)

The resulting functions are sometimes callee—waveletsThe basic properties of refinable func-
tions and (pre-) wavelets can be summarized as follows:

e Reproduction of Polynomials. I is contained in
Ci(R) :={g|g € C"(R)and supp compac},

then every monomiat®, « < r has an expansion of the form

¢ = Z cro(x — k). (2.17)
kEZ

e Oscillations. If the generatas is contained inCj(R), then the associated wavelet
has vanishing moments up to ordei.e.,

/ Y (z)dr =0 forall 0<a<r. (2.18)
R

e Approximation. Ify € Cj(R) and f is contained in the usudl,—Sobolev spacé/”(R),
then the following Jackson-type inequality holds:

inf — < 97T - 2.19
[nf 1f =9gll.m) < |flu (2.19)



(For further information concerning Sobolev as well as pthection spaces, the reader is referred
to [1]). In practice, it is clearly desirable to work with anthonormalwavelet basis. This can
be realized as follows. Given dg—stable generator in the sense of (2.8), one may define anothe
generatorp by @

2 s

¢(¢) : 5y 0(E 1 2R ) (2.20)
and it can be checked directly that the translateg afe orthonormal and span the same sgace
(Clearly, » = F(y) denotes thd.,—Fourier transform of). The generatos is also refinable,

$(x) =Y arp(2x — k)  {ak}rez € £2(2), (2.21)

keZ

and it can be shown that the function

P(z) =D (—=DFar (22 — k) (2.22)

kEZ

is an orthonormal wavelet with the same regularity properdis the original generatpr However,
this approach has a serious disadvantage. If the generasazompactly supported, this property
will in general not carry over to the resulting wavelet siitogets lost during the orthonormaliza-
tion procedure (2.20). Therefore the compact support wily doe preserved if we can dispense
with the orthonormalization procedure, i.e., if the trams$ ofy are already orthonormal. This
observation was the starting point for the investigatioins Daubechies [13, 14] who constructed
afamily ¢V, N € N of generators with the following properties.

Theorem 2.1 There exists a constart > 0 and a family¢” of generators satisfying” ¢
CPN(R), suppgy”™ = [0,2N — 1], and

N>

GNC = k) =bok, V(@)= D apd™ (22 — k). (2.23)

k=N1

Obviously, (2.23) and (2.22) imply that the associated Jevg" is also compactly supported
with the same regularity properties @S .

Given such an orthonormal wavelet basis, any funcfian V; has two equivalent representations,
the single scale representationith respect to the functions; . (z) := 27/2¢(2/z — k) and the
multiscale representatiowhich is based on the functiods x, 1 m, k,m € Z,0 <1 < 7,91 m =
2j/21/1(2jx—m). From the coefficients of in the single scale representation, the coefficients in the
multiscale representation can easily be obtained by soneeddifiltering, and vice versa. Indeed,

given '
F=> Xoi
keZ
and using the refinement equation (2.21) and the functianateon (2.22), it turns out that
f= Z 271/2(2 T2 X) i1 + Z 271/2(2 bk—2m )i 1m- (2.24)

leZ keZ meZ keZ



From (2.24) we observe that the coefficient sequexicé = {\."'},cz which describes the
information corresponding t&;_; can be obtained by applying the low—pass filtleinduced by
ato),

NE=HN, N =)o Va N, (2.25)

keZ

The wavelet spacé/;_; describes the detail information added¥tp ;. From (2.24), we can
conclude that this information can be obtained by applyirghigh—pass filteD induced byb to
M

dTh=DN, T =272 by, (2.26)

keZ

By iterating this decomposition method, we obtain a pyraahgbrithm, the so—callefhst wavelet
transform

H H H
AL A2

)\] -3 0000000000000
o

N

=1 =2
A reconstruction algorithm can be obtained in a similar ilash Indeed, a straightforward com-

putation shows

Y N = % SO N, D bianc) s

leZ l€EZ keZ nez
so that ‘ _ '
N =278 a g N 272 by e (2.27)
keZ nez

Similar decomposition and reconstruction schemes alsi fxithe pre—wavelet case.

2.2 Biorthogonal Bases

Given an orthonormal wavelet basis, the basic calcula@wasisually quite simple. For instance,
the wavelet expansion of a functighe Lo(R) can be computed as

= fihbie  $in(z) =222z — k). (2.28)

J,kEZL

However, requiring smoothness and orthonormality is guastrictive, and consequently, as we
have already seen above, the resulting wavelets are usuallgompactly supported. It is one
of the advantages of the pre-wavelet setting that the consgugoport property of the generator
can be preserved. Moreover, since we have to deal with weaketitions, the pre-wavelet ap-
proach provides us with much more flexibility. Thereforejegi a generatop, many different
families of pre-wavelets adapted to a specific applicatem fee constructed. Nevertheless, since
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orthonormality is lost, one is still interested in findingtable alternatives which in some sense
provide a compromise between both concepts. This can berpetl by using théiorthogonal
approach. For a given wavelet baéis; .. j, k& € Z}, one is interested in finding a second system

(ks j,k € Z} satisfying

Wik (s Pjr e () = 81,300, G55, K € 2 (2:29)
Then all the computations are as simple as in the orthonacesa, i.e.,
F=> Fimin= D (Frthpw ) (2.30)
JkEZ 'k €Z

To construct such a biorthogonal system, one negdsequences of approximation spagts}jcz
and{Vj};cz. As for the orthonormal case, one has to find bases for ceatg@braic complement
spacedV, andW, satisfying the biorthogonality conditions

Vo LWo, Vo LWy, VooW,=W, VooW,="V. (2.31)
This is quite easy if the two generatassandp form adual pair,
(0(-), o(- = k)) = do - (2.32)

Indeed, then two biorthogonal waveletsand+ can be constructed as

P(x) =D (~D)Fdigp2e —k),  P@) =Y (=1)fa1_1p(2z — k) (2.33)

keZ keZ
where
p(z) =Y appz —k),  ¢(z) = dpp(25 — k). (2.39)
keZ keZ

Therefore, given g@rimal generatorp, one has to find a smooth and compactly suppodiea
generatorp satisfying (2.32) which is much less restrictive than thth@normal setting. Elegant
constructions can be found, e.g., in [8]. GeneralizatianBigher dimensions also exist [7]. The
basic properties of wavelets and refinable functions (appration, oscillation etc.) carry over to
the biorthogonal setting in the usual way.

For further information on wavelet analysis, the readeeismred to one of the excellent textbooks
on wavelets which have appeared quite recently [6, 14, 2%39

2.3 Continuous Wavelet Transform

There exists a quite different approach to wavelet analysigh is based on group theory and
which yields the so—calledontinuous wavelet transformSeveral aspects of radar analysis are
closely related with this concept. Hence, we have to dissas®e of the basic facts. Continuous
wavelet transforms are based on square integrable repaéieas of specific groups. In general, a



unitary irreducible representati@hof a groupG in a Hilbert spacéH is calledsquare integrable
if there exists a vectap in H such that

/ (i, Ua)) 2 dulg) < oo, (2.35)
G

wheredy, denotes the invariant Haar measure’anA vector satisfying (2.35) is callealdmissible
If 4 is admissible, then the mapping

Ty : H — Lo(G,dp)
(2.36)
fo= (LUlg)y)

is well-defined, see [24] for details. The 1-D continuous &e@wtransform is performed by means
of the so-calledffine groupG 4 given by

Ga :{(a,b)]|(a,b) € R* a # 0} (2.37)
with group law
(a,b) o (a', V') = (aad',ab’ +b) (2.38)
and (left) invariant Haar measure
dy = d“;”’ (2.39)
a
G 4 possesses a square integrable representatibp(R) given by
_1,(x—D
uan)fe) = a5 (2 (2.40
and every vectop € Ly(R) with
7 2
/ |¢|(§|)| dp < oo (2.41)
R
is admissible, see [25] for details. For suclp,ahecontinuous wavelet transform
_ z—b
(Wy f)(a,b) = (f,U(a,b)i)) = / f(@)la ™2y ( - ) dx (2.42)
R

is well-defined. Moreover, the wavelet transfof#n, is a multiple of an isometry whose inverse
is given by the adjoint wavelet transform

P =Wy WoPem) 0= oo [ [ waran o2y () G @49
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see, e.g., [14, 30, 33] for details. The transform (2.42pimatimes called emathematical micro-
scopesince the signaf is analyzed by shifting the microscogeaccording to the different values
of b and zooming in by changing the parameier

Another important example we shall be concerned with is dnecus\Weyl-Heisenberg group
Gwa = {(w,b,7)|bw eR, T € C, |7| =1} (2.44)
with group law
(w,b,7) 0 (W, b, 7') = (w+w, b+ b, 77—/, (2.45)

The Weyl-Heisenberg group possesses a unitary irredueiptesentatior/ in Ly(R) which is
given byU (w, b, 7) f(z) = Te~™“b/2¢7 f (1 — b). It can be checked thaf is square integrable
and that every functiony in L?(R) is admissible, see [25] for details. If we ignore the toral
component of the group representatigni.e., if we define

U(w,b) f(x) := " f(z — b), (2.46)

then definition (2.36) leads us to thkendowed Fourier transform

(Gof)(w,b) = / F(@)(z — b)e—™" dz (2.47)
R

The setting of square integrable group representatioriessly related with uncertainty principles
as we shall now explain. Let= (g1, ...,g,) be an element of/. Furthermore, lef be a vector
belonging taoH. With respect to the representatitdrwe defineobservation operatorgr so-called
infinitesimal operators) by

[Algi) f1(z) == == [U(g) f] (=) : (2.48)

g=e

wheree denotes the unit element ¢f. Let A = A(g;) : D(A) — H be some observation
operator wher@®(A) C H denotes the domain of. The following definitions are very helpful in
the context of uncertainty principles. We define the norpealiexpectation ofi with respect to
h € D(A) by

() = A1) (2.49)
il
and the variance ofl with respect tdh € D(A) by
AR(A) i= pn((A = pn(4))?) = pn(A%) = pn(A)? . (2.50)

The following theorem holds for self-adjoint and non-contimg operators and establishes a very
general uncertainty framework, see [49] for details.
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Theorem 2.2 Assume thatd and B are non-commuting and self-adjoint operators and let the
commutator be given b, B] = AB — BA = iC. Then for allh € D([A, B]) the following
uncertainty relation

pn(C)? < A (A% (B?) (2.51)

holds. One has equality i{2.51)if and only if there exists a parameteE R with
(A—itB)h =0 or equivalently (A% +t*B*)h = —tCh . (2.52)
Proof: At first, we computg A — itB)*(A — itB) = A? + tC + t2B2. This holds for alt € R.
Hence, for allh € D([A, B]), with ||h]| = 1, we have
0 < [|(A = itB)h|* = un(A®) + tun(C) + t*pn(B?) (2.53)

which is a real and nonnegative parabola.i€onsequently, the condition

_(ml©) ) n(A?)
b= (2uh(32)> pin(B?) =0 (259

is fulfilled. This proves inequality (2.51). One has equailit (2.51) if there exists & € R with
D = 0 (aroot of second order). This is equivalent to the eigemalwblem(A — itB)h = 0 or
to (A —itB)*(A —itB)h = 0. O

2.4 Frames

In the previous sections, we were concerned with functistesys that form some kind of (or-
thonormal) basis foLy(R). This is clearly very convenient, however, for technicalsens, this
requirement is sometimes too restrictive in radar apptiogt We refer to Section 5 for further
information. Therefore we shall now discuss a weaker canagyich is given by the frame ap-
proach. Then every function iz (R) can be written in terms of the frame elements, but the
expansions may contain some redundancy.

In general, a systenih,, } mez Of functions is called drameif there exist constantsl and B,
0 < A < B < oo, such that

AP |3 ,my) < D (E hm)|> < BIF|Z, gy (2.55)
meZ

The numbersfl,B are calledframe bounds Given a frame{h,, },cz, one defines thérame
operatorT as

T(F) = "> (F, hmp)hm. (2.56)
meZ

For later use, let us recall the following fundamental te@omwhich was proved in [16].

Theorem 2.3 Let{h,, }mecz be a frame inLy(R). Then the following holds.

12



i) T'isinvertible andB 17 <71 < A !
iy {h"}ez, K™ := T~ 'h,, is a frame with boundsi—!', B~', called thedual frameof
{hm}mEZ-
i) Every F' € Ly(R) can be written as
F =Y (F,N" )by =D (F hy)h™. (2.57)
meZ meZ
Furthermore, we need a result concerning the Fourier tamsbf frames.

Lemma 2.1 Let {h,, } mez be a frame and le{h™},,cz denote the dual frame. Then the set
{hm }mez also constitutes a frame and the dual frame is definethh§ = ﬁhm.

3 Statistical Curve Estimation Using Wavelets

In Section 2.1 we discussed techniques to expfdsg means of a wavelet basis. Such a wavelet
expansion is a special kind of orthogonal series estimbhalike traditional Fourier bases, wavelet
bases offer a degree of localization in space as well as ifregqeency domain. This enables us to
develop simple function estimates that respond effegtitetiscontinuities and spatially varying
degrees of oscillations in a signal, even when the observatie contaminated by noise.

In this section, we consider the problem of nonparametgoassion estimation of a functighby
wavelet methods. Thegression moddk given by

Yi=f(X)+&, i=1,....,n , (3.1)

where¢; are i.i.d., E(&;) = 0 and X; are equidistant points in the intervidl, 1] : X; = i/n.
The effect of nonlinear smoothing will become visible in oadar application. The nonlinearity,
introduced through thresholding of wavelet coefficientgrgntees smoothness adaptivity of the
estimators.

3.1 Threshold Wavelet Estimator

A naturallinear estimatorof f can be constructed by estimating projection f)¢f onV;, and is
defined as

. Jo .

fo=Piuf =Y MNéic+ D> Tk, (3.2)
k J=n k

with empirical coefficients\, 7 given by

» 1 n y 1 n
)\i = ZYiquk(Xi) and ’yi = ZYiT/)jk(Xi) . (3.3)
i=1 i=1

13



This choice ofX,i and»‘y,z is motivated by the fact that (3.3) are ‘almost’ unbiasedhestiors for
largen. We are interested in the worst case performance of our astiraver a variety of function
spaces, for further details see [18, 19]:

R(fn, F) = sup E|fo — fII%, . (3.4)
feF
For our purpose we choose as function spaces under corigdetiae so-called Besov spaces

which can be introduced as follows.

The modulus of smoothness (f,t),,,w) Of a functionf € L,(R), 0 < p < oo, is defined by

wr(f7 t)Lp(R) = s:“'lft ||A7;L(f7 ')HLP(R)a t>0,

with A} ther-th difference with step. Fora > 0and0 < ¢, p < oo, theBesowspaceB (L, (R))
is defined as the space of all functiofi$or which

1/q

Ywp(f, qdt/t , 0<qg<o0,

|f|Ba (Lp(R)) = { (fo r( Dyt ) 1 (3.5
sup;>o t~ “wr (f, ) Ly(R)» q =00

is finite withr := [a] + 1. Then, (3.5) is a (quasi-)semi-norm B¢ (L,(R)). If we add| f| ., (r)
to (3.5), we obtain a (quasi-)norm faty' (L, (R)).

Remark 3.1 It is well-known that fop = ¢ = 2 Sobolev and Besov spaces coincide,
H*(R) = B5(L2(R), (3.6)

see agairf1] for details.

In our setting the spaces of interest are defined by

Fp (M) :={f € By(Lp(R)) : [IflBg(z,m)) <M}, (3.7)

wherea andp = ¢ are known parameters. Moreover, as in [18] we extend thaite the
non-linear setting. Among all non-linear estimators, weade a very special one: theincated
co-ordinatewise hard threshold wavelet estimaidvich is given by

Z Nk + Z > 0T )i » (3.8)

Jj=i k

where ‘ _ .
O3 t) =7 - Ul > ), t=KC(n™'?, (3.9)
andC(j) has to be appropriately chosen, see Theorem 3.1 below faitdet
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3.2 Error Bounds

This section is concerned with the behavior of (3.8), foadgtsee [18]. To keep the notation at a
reasonable level, we introduce the following variables

o = a-1/p+1/p,
§ = min(a/2a+1),¢/(1+2a—2/p)) and
e = ap—(p'—p)/2.

The notation2/(™ ~ ¢(n) means tha2’(™ is chosen to satisfy the inequalitie&™ < g(n) <
97(n+1)

Theorem 3.1 Letp’ > pV 1, — 1/p > 0 and suppose that belongs to
Fp (M, T) ={f € Fy(M): suppf C [-T,T]}.
If C(j) = /4, there exist constant§ = C(«, p, M) and K, such that if
;o 1-26
o)~ (n(logn)pppl{ﬁz(’}>

. 6/
20(n) ~ (n(logn)_l{ei(’})/

and K > K, then

C (log ) =</ @7V =08 e>0
! max(p’/2— op'
sup B f — [ < C(logny™=@/210) (len) ™o g (3.10)
JEFZ(M,T) logn ap’
Cl== €<O0.

For comprehensive remarks and a proof of Theorem 3.1 we tiedereader to [18]. However,
as is well known in practice, for many applications the obatons can no longer be assumed to
come from a stationary error. A more generalized model basedtime series setting with locally
stationary errors was discussed in [47]. Then, for the pase 2 one obtains the ‘classical’ rate
for the Lo-risk by exactly the same treatment of the empirical coefits as in the white noise
case. This rate is attained for the optimal threshold (nowknin practice, however) whereas a
data-driven threshold that comes quite close is, e.g.

tik = 0K\ 210g(HZy) , (3.11)

whereZ,, = {(j,k) : 2/ < Cn'~¢} for somee > 0, e.g.e < 1/3.

4 Basic Radar Setting

This section is concerned with the introduction and disomssf basic radar models. We derive
two models, the wideband and narrowband model. In radaakf@ocessing one important ques-
tion is how to choose the optimal waveform. Theoreticalys guestion is related to the choice
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of the analyzing wave function. In Section 4.3, we show thaté is a notable relation with un-
certainty principles. Moreover, it is known that the narbamd approach is the most suitable one
for many applications. For that reason and with regard taweteorological radar application we
show in Section 4.4 how one can discretize the narrowbanambédter on this discretized model
will be the basis for meteorological radar signal processin

4.1 Wideband Model

Suppose we want to find the location and velocity of an obgath as an airplane. One way to
achieve this is to send out an electromagnetic wave in theetitin of the object and observe the
echo that is reflected to the source. As we shall now explatongparison between the outgoing
signal and its echo allows an approximate determinatiomefdistanceR of the object and the
radial velocityv along the line-of-sight. This is the problem of radar in itegnelementary form.
For a thorough treatment, we refer to the classical booksook@nd Bernfeld [9], Rihaczek [45]
and Woodward [55]. The wavelet-based analysis has bedsmi@aitby Naparst [40, 41]. In this
paper, our major reference will always be the book of Kai8ét.[

To explain the basic radar setting, let us first assume tleablijiect under consideration can be
described as a single point. The outgoing signal is modededraal-valued function of time, i.e.,
h : R — R, representing the voltage fed into a transmitting antefiha.antenna transmitgt)
into an electromagnetic wave and beams it into the desiredtthn. We assume that the returning
echo, also a full electromagnetic wave, is converted by émeesdevice to a real functiofi(t),
which again represents a voltage.

The objective is to predict the trajectory of the point objdtat time¢ = 0 the object is located
at Ry and if it is moving with speed, then its trajectory it given by

R(t) = Ry + vt. (4.1)

Consequently, the task is to determiRg andv from f. To this end, we proceed as follows.
According to (4.1), at time, the moving point object is at a positidey + vt, i.e., at this instant it
reflects a signal which was sent out at time

B Ry + vt

t ;
C

where we have simply used the fact that electromagnetic svanegpagate with the speed of light
c~ 3 x 10® m/sec. In other words, the object reflects the signal

Ry + Ut>

c

s(t) = ah (t -

whereaq is a factor which describes the reflectivity of the objectis®ignal then produces an echo
which is time—delayed byR, + vt)/c,

f<t+R0;|—vt> _ s(t) = ah (t_Ro+vt>’

c
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or what is the same thing

() e () (53)- )

Consequently, by introducing the new coordinates

2
80=c+v, To = RO, (4.2)
CcC— U C— U
we obtain the basic relation
£(t) = ah (t_”’). 4.3)
S0

The whole situation is visualized in Figure 1 below. We sexg the incident wave is scaled by the
factor s, this is nothing else but the well-known Doppler effect. iHfere the new coordinates
sg andry are sometimes calledoppler coordinates All material objects move with speeds less
thanc, hencesy > 0 always. Ifv > 0, i.e., the object is moving away, thgiis a stretched version
of 4. Similarly, whenv < 0, the reflected signal is a compressed version.oThe value ofa
clearly depends on the amount of amplification performedhenetcho. In the sequel, we shall
always assume that= 351/2, so thatf has the same energy Asi.e., || f||?> = ||h/|?>. From (4.2),
it is clear thatv and R can be obtained fromy andr, i.e,

_ S0 — 1 CTQ

Ry = . 4.4
30—{—10’ 07 s+ 1 (4.4)

Therefore, to compute and Ry, it is sufficient to determiney andry. This is done by considering
the whole family of scaled and translated version:of

t —
{hs,;:5>0,7€R},  hy, =5 2 (%) . (4.5)

We regardh ; as a test signal which is compared wijthi.e., a given returry is matched with
hs -+ by taking inner product,

fls,7) = /_Z F(t)s~12h (t - T) dt. (4.6)

S

f(s,7) is called thewvideband cross—ambiguity functiaf f. If we compare (4.6) with (2.42), we
see thatf is nothing else but the continuous wavelet transform of gdoeived echg’. Now (4.3)
clearly implies that

f(s,7) = (hsrr hsg,me) = U(s, T)h,U(s0, T0)R) = R(s,T,s0,70) - 4.7)

Thereproducing kerneR is thewideband self-ambiguity functiaf . By the Schwartz inequal-
ity we have that )
(s, )| < s, Mo moll = IR, (4.8)

with equality ifs = sg, 7 = 79. Thus, all we have to do is to compute the maxima of the coatiau
wavelet transform of the received echo!
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However, this approach may fail for various reasons. Thec#flg object may not be rigid, with
different parts having different velocities (consider autd). Or, there may be many reflecting
objects, each with its own range and velocity. We will modesach situations by assuming that
there is aistribution of reflectors, described byraflectivity densityD (s, 7). Then the total echo

is given by:
£(t) _// D(r.8)|s|- 1/2h< )deT (4.9)
R\{0}

Consequently, the task is to reconstruct the denBity, s). This is theinverse problento be
solved: knowingh and f, find D. To treat this problem, let us first remark that formula (4.9)
can be reinterpreted in the context of wavelet analysiseddda comparison of (2.43) with (4.9)
yields the well-known and basic identity which links widedaadar echoes to wavelet analysis,
see e.g. [20, 41, 40]: the ectfois identical with the inverse wavelet transform of the skadc
reflectivity distributionD where the transmitted signalplays the role of the analyzing wavelet.

This suggests to recové? by computing the wavelet transform of the ecfio

D(r,s) = Cih[(wh £ 5)]. (4.10)

However, the null spac4’ of an inverse wavelet transform is non trivial. Hence by phiscedure
one can only recover the component Bfwhich lies in the orthogonal complement &f or
equivalently one can recover the componenfoin the range of the wavelet transfori#i;,. To
our knowledge, there exists no physical principle that goaes thab is in fact contained in the
range ofl¥;,, so that (4.10) only describes one part of the desired densiiherefore the general
solution reads as follows.

Theorem 4.1 The most general solutioR (s, 7) in Ly(dsd7/s?) is given by
D(SuT) = f(S,T) —i_‘D(SuT)L )

whereD(s, )" is any function ing(W;)*, i.e.,
dsd
//R(S,T, s0,70)D (s, 7))t ZQT =0.

Inspired by these problems, Naparst [40, 41] was the firstvaine suggested not to transmit
just one signal but afamily of signals. In his fundamental work, Naparst primarily $tadthe
case that the transmitted signals form an orthonormal bastsvever, this assumption is very
restrictive in practice. Therefore, quite recently, Ré&beleira, Platino and Fernandez—Rubio
generalized Naparst's approach to the case of transmétingme of signals, which is a much
weaker restriction, see [44]. Further results includingreestimates and generalizations to the
multivariate case can also be found in [10, 11]. We shallidisc¢hese ideas in Section 5.
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4.2 Narrowband Model

The wideband model, which describes echoes for arbitrgnyass, can be simplified for most
real-life situations. The commonly used narrowband agpration deals with signals of the form

h(t) = e™'n(t)

where the carrier frequency. is assumed to be much larger then the comparatively narrdsh
frequencies of the modulation functign

Furthermore, most objects of interest in radar travel wigpeed much smaller than light. Thus
lv|/c << 1and

;2o (4.11)

C

Now we have to treat the positive and negative frequenciesseparately

ip(w) == Nw)xp,00) (@),  NR(W) = H(wW)X(00,0](w)- (4.12)

Removing the carrier frequeney, from both, the signah and the echq, and neglecting time
independent scale factors leads to the standard narrowbhadel for the echg of a single moving
object

F(t) = c{np(t = r)e™ + na(t = r)et |,

where¢ = 2w.v/c, see e.g. the classical textbooks [45, 51] and [30] for tetdihe variables
(1, ¢) are called themarrowband Doppler coordinates

Consequently, the narrowband model for the echo produceirbflectivity densityD y (¢, )
is given by

7(t) = /R /R [np(t = 7)™ + ng(t - 1)} Dyp(g.7)dgdr . (413)

We may decompose the spabgR) as

Ly(R) = Ly p(R) @ Lo r(R) (4.14)

where
Lyp(R) = {f € Lz(R)|suppf C [0,0), i.e, fp = [}, (4.15)
Lyr(R) = {f€LR), | fr=f} (4.16)

Then the goal is clearly to reconstruct the dendity 5 (¢4, 7) from the received echoes. It turns
out that a suitable reconstruction formula can indeed baeabbr provided that the families of
outgoing signals form frames in the spadesp(R) and L, z(R), respectively, see Subsection
5.4 for detalils.
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The ambiguity function in the narrowband regime can forrtedaas follows. As in the wide-
band case, a general echo is modeled by assuming a diginlaftreflectors, now described as a
function of the delay and Doppler shifts

7(t) = / / Uy, (1) D (o 7)dbdr | (4.17)

where¥,, - (t) = e'¥(t—7). Equation (4.17) also poses an inverse problem: gjydimd D y 5.
Just as wavelet analysis was used to analyze and to solveideband inverse problem, so can
time-frequency analysis be used to do the same for the neammdvproblem. This can be seen by
recalling the windowed Fourier transform pfwith respect to the window functiow’:

fg,7) = / FO)U(t — 1)e Pt | (4.18)

Indeed, by comparing (4.17) and (4.18) we can state a veodidbheorem 4.1 for the narrowband
case.

Theorem 4.2 The most general solutioP y 5 (¢, 7) in Ly (d¢dr) is given by

Dnp(¢,7) = f(¢,7) + Dnp(g, 7)*" |

where Dy (¢, 7)* is any function in the orthogonal complement of the rangehefwindowed
Fourier transform, i.e.,

//R(QZS?Tu b0, 70)DnB(p, T) dpdr = 0.

A reconstruction formula oDy g is presented in Subsection 5.4.

4.3 Localization and Radar Uncertainty Principles

As explained in the Sections 4.1 and 4.2, we can relate thebaitd model to the wavelet trans-
form and the narrowband model to the windowed Fourier tansf The fundamental fact is that
from the group theoretical point of view, see Section 2.8ralis no essential difference between
the wideband and the narrowband treatment. This can be geffylun order to extend our radar
models, e.g. to space-tinR*, cf. [30]. But a more important concern is that based on tkerth

of groups we have for both, the wideband and the narrowbartehn@ uniform setting to establish
uncertainty principles, see Theorem 2.2.

To expose the relevance of uncertainty relations in radadetimy we can elaborate on ‘radar
imaging’, i.e., recognition and identification of movingjetts. In this field one has to focus on
localization properties of the analyzing wave function.[3hthis problem was analyzed in the
narrowband framework. As a main result it turned out thatapigmal wave function in terms of
pulsewidth and bandwidth has to minimize a so-called ‘naloand uncertainty principle’. This
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principle coincides with the well-known Heisenberg unaety relation, which corresponds to

Theorem 2.2 applied to the Weyl-Heisenberg group. Thisgstteorward coherence enables us to
compute ‘wideband uncertainty relations’. We only havexohange the underlying group, i.e.,

we have to switch to wideband Doppler coordinatesr) introduced in (4.2) which correspond

to the affine group, see (2.37), and we have to apply Theor2m 2.

In general, by the fact that Theorem 2.2 does not depend ospibeal choice of the group it
establishes a very general radar uncertainty frameworke@e have derived a minimizing wave
function ~ with respect to the radar uncertainty, we know that the spwading generalized self-
ambiguity function, compare with (4.7),

R(g.9") = (U(9)h,U(g")h)
has fast decay in the parameter plane, e.g. time — Dopplér glzme. This corresponds to high

resolution properties which is a main goal in radar devicggie

As already stated, the narrowband uncertainty principle edensively studied in [3]. For com-
pleteness we give a brief sketch for the wideband unceytairiciple. Let the underlying group
be the affine group

Ga:{(s,7)|(s,7) € R® s #0} withgrouplaw (2.38)

and letH = Ls(R). Then, by (2.40) and (2.48) we can derive the observationabqe

Ah(e) = 5 Uls, )] oot rmty = —h(2)/2 ~ 2 () (4.19)
Ah(e) = U)o ooy = () (4.20)

By a multiplication withi we obtain self-adjoint operators, i.el, := iA, andA, := iA,. The
commutator is given byA,, A;] = —iA,. Applying Theorem 2.2, we can express the searched
uncertainty relation as

pn(Ar) < 4Ai2z(AS)Ai2z(AT) J

see inequality (2.51). Finally, we have to compute the vagaerms explicitly
AR (A7) = K113 = ni(Ar)  and  AR(A) = [lzh/|15 — [[Al15/4 — pi(As) -

For comprehensive discussions and computations of unagriarinciples we refer the reader to
[12, 49].

4.4 Discrete Narrowband Model

The analysis of many practical applications, e.g. in metegical radar data processing, is limited
by the available bandwidth. In those cases one is not ablectunstruct the reflectivity density
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completely. However, to compute the radial velocity one darive the Doppler frequency of the
reflected echg’ along the beam direction by estimating the first moment inRberier power
spectrum.

The radar devices sample the backscattered electromagiggials discretely in time. Hence, it is
of importance to describe how to discretize the continyogslen echof to obtain a discrete time

series. A basic assumption in this setting is that our refiectensity is now a function depending
ong, T and timet. Furthermore, to create time series corresponding tordifteheights we assume
that our transmitted signalis a pulse train, i.e. a sum &7 time shifted pulses

2N _1

h(t) =e™n(t),  with n(t)= Y u(t—kAT), (4.21)
k=0

wherey is a single pulse, e.g. a characteristic function of anwaterhich is contained if), AT].
Consequently, we can extend the narrowband model (4.13) to

1) = /R /R {np(t = 7)o~ 4 na(t - 7)) Dyp(t, ¢, 7)dgr

2N 1 2N 1

= /R/R{Z,U‘P(tkATT)eld)t+ ZMR(tkATT)e+i¢t}DNB(t,¢,T)d¢dT
k=0 k=0

2N 1
= > /R{NP(t — kAT — 7)Dyg(t, -, 7)"(t) + pr(t — kAT — 7)Dnp(t, -, 7)" (=) }dT
k=0

2N

1
_ /R (pp(t — KAT — 1)Dp(t,7) + pn(t — EAT — 7)D(t, 7)}dr
k=0

2N 1
= Y {up* Dp(t,-)(t = KAT) + pg « Dr(t,-)(t — KAT)}
k=0

whereDp(t,7) = Dng(t,-,7)"(t) andDg(t,7) = Dnp(t, -, 7)"(—t). Now, we want to sample

the complex-valued functiorf such that we obtain measurements at certain heights. Let the
sample frequency be given By At and let us choose a numb&f such thatAT = M - At,

see Figure 1. Hence, we obtain values @t the discrete grid

to+m-At+n- AT with m=1,...,Mandn=0,...,2Y —1,
where the sample sequence is given by
flim,n]=f(to+m -At+n-AT).
To obtain a time series for height= ¢ - my, - At/2 we have to fixn = my,

fon=fnln] = fImp,n] = f(mp - At +n-AT),
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Height

single object

ot 4T Time

Figure 1: Left: single point model. Right: sampling schem#hwespect to time and height.

assuming thaty = 0. Thus, we obtain for every height a time series of ler@fth We remark that
the radar device measures real-valued voltages only. Treeyfien expressed in terms of circular
functions

r(t) = a(t) cos(wct +w(t)) =R [f(t)eith] (4.22)

where f(¢) is the complex envelopey(t) the phase and(t) the amplitude of the received nar-
rowband signal. It can be assumed tliatan be expressed by

f(t) = [r(t) +iHr(t)] e ™ = I(t) +iQ(t) (4.23)

whereH denotes the Hilbert transform, see [34] for details. Howeabe Hilbert transform is not

easily implemented in real systems. Instead, the real aadiimary part of the complex envelope
f are determined using a quadrature demodulator. Moreoydpwspass filtering we obtain a

modified description of the discretized echo

I(t) = 2[f () cos(wet)] o and Q) = 2[ (1) sin(wet)] - (4.24)

where® denotes the low-pass filter function. Note, that this metisaghsier implemented either
analog or digitally. Finally, this leads to the classicatatimn of discrete wind profiler radar data
at heighth

fuln] = I[n) +iQn] . (4.25)

5 Analysis of Continuous Reflectivity Densities

In Section 4, we have already discussed the basic radargeitthas turned out that a dense target
environment is described by a certain reflectivity denditis, 7). We have also seen that this
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density cannot be reconstructed by simply transmitting gue signal. Nevertheless, in the next
sections we shall show that a complete reconstruction wilplesf we transmit a certain family of
signals.

5.1 Basic Reconstruction Formulas in the Wideband Regime

In this subsection, we shall derive a basic reconstructtom@la for the wideband setting which
guarantees that a given reflectivity density can indeed tensgructed, provided that the set of
outgoing signals forms a frame, compare with Subsection 2.4

Theorem 5.1 Let {h,, } mez be a frame of outgoing signals i, (R) and let f,,, denote the cor-
responding echoes produced by a reflectivity denBity, s),
> deT (5.1)

0= [ e 05
R\{0}

Let us assume that the following conditions are satisfied

D(r )l 21 (1) € 1B, DES)w) € ), D))o € Laldo).

(5.2)
ThenD(r, s) can be reconstructed as follows
D(r,s) = ;Z/O —lf’\(W)h;(\;)(wHSP/Qeidew
’ (271—)2 —00 1 n S
meZ
T > /oo lJ?(W)h;(j)(fu)|«<>‘|1/26”°’dw (5.3)
(27r)2 meZ 0 i S ’

where{h™},,cz denotes the dual frame éf,, },.cz.

Proof: A detailed proof can be found in [10], therefore we only sketre basic ideas. We first
observe that

5172 () ) = o2 ). 5.4)

Therefore, applying Fourier transforms to (5.1) and iftarging the order of integration yields

frm(w) = //R\{O} 7,8 / 15|/, , ( > it g, d5dT dsdT

_ / D, 9) (@) hm (sw) |5 ~3/2ds.
R\{0}

Hence, by employing the substitution= sw, we obtain

o —

fnlw) = / D( ) (@)him(0)| 2] do
R\{0} w

w

- (5("‘)7 ')7hm(')>7 (5.5)
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whereD(w, o) is defined by

——

D(w,0) = D(, =) (w)lw|/2|o] */2. (5.6)

From (5.5), we observe that the quantitigs(w) can be interpreted as the coefficients/f, -)
with respect to the s€t,, } »cz. However, from Lemma 2.1 we know that this set also consstute
a frame with reciprocal framéz)m = ﬁhm. Therefore, by using the identity

1
1= m§€jz<f, m)h, (5.7)
we may reconstrucb (w, o) as
Bw,o) = == ful@)im(o). (5.8)
(271—) meZ

From (5.8), we can now also reconstruct the dengity, s). By using the definition (5.6) we
obtain

——

ag _
D(, 2)(w) me IR
mGZ
which yields
D(:,s)(w me el hm (=) (w)]s[/2. (5.9)
mEZ

Now the result follows by applying the one—dimensional iseeFourier transform to both sides
of (5.9)

D(rs) = & /R D 5) (W)™ duw
- ﬁz [ Aol Ol e

/\

- TR / ) () ()]

meZ

271- — Z/ _fm )|S|1/2 W

O
From the mathematical point of view, Theorem 5.1 is cleaalys$actory. However, the applicabil-
ity of this method to real-life problems is diminished by faet that the underlying frame usually
containsinfinitely many elements. Clearly, in practice, only a finite numberaife elements can
be transmitted. Hence we are faced with the problem of chgosppropriate collections. Fur-
thermore, it is clearly desirable to have some informationcerning the resulting approximation
properties for different choices of frames.
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5.2 Error Bounds in the Wideband Regime

The derivation of the error bounds rests on a Jackson typeadstfor the frame{l?f\n}mez. Let
us assume that this set of functions allows an ordering bgxrseits/; C Z, s.t. a Jackson type
estimate of the form

1 N~ _
llg — ) D (g )T, my S 27 |9l m) (5.10)
mely

holds. HereH“ again denotes the Sobolev space of okder

Such estimates are known for a variety of functions, e.gotrometric polynomials and hierar-
chical finite elements. In the context of wavelet analysis tequirement is met by orthogonal or
biorthogonal wavelets, compare with (2.19). If (5.10) iBdjghe following result in the weighted
Ly—spacely(R?, dTlng%) holds.

Theorem 5.2 Suppose that for some fixath Jackson—type estimate of the fofBnl0)holds and
that the condition B
G(a,w) = |D(w, -)|%IQ(R) < oo (5.11)

is satisfied. Then, the following error estimate is valid:

2

// (1,5) @2 Z /fm ) (sw) |w||s]3/ %€ duw dT|dr3 < 2_2‘]O‘/ |w|G (o, w)dw.
R

(5.12)
If a is an integer, the functiofi¥(«, w) can be estimated in terms of the denditys follows:

/\

S Sl [ D) D))o o (5.13)
w

B<a

Proof: In our setting, the Jackson—type estimate (5.10) appli@d:tof)(w, -) reads as follows:

1D(w me @) S 271D, )3 gy (5.14)
mEI

Hence, by using (5.6) and substituting= sw we obtain

——

C9Ja o _
2 ¥oG0w) 2 D6 D@l ol - 5 3 fu@hn (@)l (5:15)
mEIJ
2
/\ ds
- / D(-3) ——me (el ool 2
R mGIJ
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Therefore multiplying both sides of (5.15) By|, integrating with respect ta and applying
Plancherel’s Theorem for another time yields

2
2 [ ol ooz [ [ D3 —&%‘f @ (s)lls?2] do (.10

2

_277// (7,5) @ Z / Fn (@) hon (sw)|w]| s/ 2™ dw dTIdT3

For the proof of (5.13), we refer to [10].
O

Now let us consider the special case that the frafhgs},,cz and{h™ },,cz consist of the inverse
Fourier transforms of the elements of a biorthogonal wa\mssis, i.e.,

hin = by = F "0 ™ = R"IR) = 2m)F Ly, (5.17)
where the functiong; ; ands); ;. satisfy

("/}j k> "/}j’ k’> ],3’519 k' - (5.18)

We may e.g. use the compactly supported wavelet basis aotesir by Daubechies [14] or the
biorthogonal wavelet basis developed by Cohen, DaubechiesFeauveau [8]. Then we do not
employ all functions in the resulting frame, but only thogeta a given refinement level. The
resulting error estimate reads as follows.

Corollary 5.1 LetN —1 denote the degree of polynomial exactness of the multirgsplanalysis
{V;};ez associated with the dual wavelg¢t Suppose that for some fixed< N the condition
(5.11)holds. Then, the following error estimate is valid:

2

d
/ / (1,s) 22 Z/fm (sw)|w||s|>/ "™ dw dT| r3 < 2_2‘](’/R|w|G(a,w)dw.

(5.19)
Proof: Classical wavelet analysis provides us with the Jackspe-&gtimate
lg— Y @ viikli,m < 2219l m), (5.20)
k€Z,j<J
see, e.g., [15] and Section 2 for details. Now the resulovadl from Theorem 5.1. O

Remark 5.1 The polynomial exactness is closely related with the regylaf the wavelet basis,
see[14] for detalils.
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Figure 2: Representation dfi/(-,\s) (w) andD/(-,\s) (w)|s|~3/? on the discrete gri5.00, 15.00] x
[0.85,1.00].
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Figure 3: The simulated echosfm}mez for the Haar frame (left-hand side) and for the
Daubechies-5-frame (right-hand side). The higher scakesat displayed.

5.3 Numerical Experiments in the Wideband Regime

In this section, we want to demonstrate the applicabilitpwf reconstruction formulas and the
error estimates presented above. The application of oorythe real-life data is still in its elabo-
ration. Nevertheless, to test the algorithm, we proceedlmsis. We fix in advance an (artificial)
densityD in range Doppler coordinates and a suitable frdiag },,,cz, compute the correspond-
ing echos and apply the reconstruction procedure to thésese&ince in this case the density is
known, this approach allows some meaningful comparisons.

Primary, we fix a densityD which fits into the setting and a fram{@.,,, } ,cz. As an manageable
example we choosP as ' .
D(1,s) := em"oe_Td/Ql[_Sl,sz](s) ,

wherel_, ,,j represents the characteristic function of the closedvatér-si, s3] andwy de-
scribes a shift in Fourier domain. In the sequel, we chogse= 0.90 andsy, = 0.95. The
assumption of Theorem 5.1 dn are satisfied. The outgoing signal has to be a frame. However,
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Figure 4: Partial reconstructions based on simulated egfitbsrespect to the Haar frame. The
shown images correspond to the reconstructed densitie$ fer—3, -2, —1,0,1,2,3,4 and6
(from top left to bottom right).

since we also want to check the error estimate in TheoremaSsiraightforward choice for the
frame is

() = hon(jy (8) 1= F 7l (t)

Where]-'*lq/;j,,C is the inverse Fourier transform of some dilated and tréedlaavelet, see formula
(5.17). In our simulations we used the Haar basis, the Dduikeevavelets of order two, compare
[14], and biorthogonal wavelets as constructed in [8], eetipely.

Based on the underlying density we may generate families of echf$,, }.cz which represent
the backscattered families of the transmitted frag, },cz. Numerically we have to truncate
the evaluation of the echos at some indgxX). The numerical implementations start at resolution
level jnin = —3 and end ag,.x = 6. At the first approximation level,i, = —3 we use the
echos produced by translates of the corresponding genduaittion . The resulting echos are
visualized in Figure 3.

Now we are ready to apply the reconstruction formula state@iieorem 5.1. To examine the
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Figure 5: Partial reconstructions based on simulated esfibgespect to the Bior2.8 frame. The
shown images correspond to the reconstructed densitie$ fer—3, -2, —1,0,1,2,3,4 and6
(from top left to bottom right).
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Figure 6: The weighted.,-error. The left-hand side shows the numerically evaluatedr and
the right-hand side the linear least square fit in the lolgyawit scale.

30



quality of the reconstruction we compute the left hand siidéhe error estimate of Theorem 5.2.
Theorem 5.2 predicts an exponential decay of the error réltecanstants depending on the frame
regularity. And indeed, we observe that the weighfgeerror decreases in the predicted way as
the frame regularity increases. To show successively tlessdts, we start by presenting a scale-
wise reconstruction, see Figures 4 and 5. It turns out tlesldorithm converges for all simulated
cases. Following Theorem 5.2 we study the error dependinth@rscale/ and on the frame
regularity «, respectively. From Figure 6, left image, we observe thatetitor indeed decreases
exponentially. From the logarithmic plot, right image, wancestimate the parameteras the
slope of the linear least square fit, compare with Figure 6 dédéice the validity of the proposed
wavelet based reconstruction algorithm and the given estimate. Therefore the first numerical
results confirm our theory.

5.4 Basic Reconstruction Formulas in the Narrowband Regime
Similar to the wideband approach, the goal in this sectiateiarly to reconstruct the narrowband
density functionD (¢, 7) from the received echoes. It turns out that a suitable reaaisn

formula can indeed be derived, provided that the familiesutfjoing signals form frames in the
spaced., p(R) and Ly r(R), respectively.

Theorem 5.3 Let{h, }mez, {9m }mez be sets of outgoing signals i, »(R) and Ly z(R), re-
spectively. Let us furthermore assume that, } ,,cz, {gm }mez form frames in these spaces, and
let {h""} ez and{g"™ },cz denote the corresponding dual frames. The echodé.qf,.cz are
denoted byfp,,, the echoes ofg,, } mcz are denoted by ,,,. Let us assume that the reflectivity
densityD x5 (¢, 7) satisfies the following conditions

hn(t = 7)Dyp(,7) € Li(dgdr), Dyp(,7)(w) € Ly(dw). (5.21)
ThenD y (¢, ) can be reconstructed as follows

DNB(¢,T) = %Z/pr,m(t)hm(t—T)ewtdt
meZ

1 m !
—i-% TEZ/R]PR,m(—t)g (=t — 7)e"dt (5.22)

Proof: We proceed by following the lines of the proof of Theorem 2.21i1]. Using (4.13) yields

Frntt) = [ [ T h(t =)D, g
= /R B (t — ) ( /R e—i¢tDNB(¢,T)d¢> dr
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/R hon(t — 7Y D g () (t)dr
/ hun(T) D i (= 7) (1) dr
R

—~

= (b (), (DnB(E; ) P) L. (R)s

where - .
DNB(tJT) = DNB('vt_T)(t)' (523)

Consequently, by using the reciprocal frafi#é” },,,cz and exploiting the fundamental reconstruc-
tion formula (2.57), we obtain

(Dnat.m)p = Y ((DNBE )P, hm())ry@yh™(7)
meZ
= > fem®P"™(7),
meZ
and therefore .
(Dnp(>T) )P =Y frm()R™(t - 7). (5.24)
meZ

A similar calculation yields

(Dnp(t,T))r = Z((5NB(t,'))R,gm(')>L2(R)gm(7)
meZ
= Y Famt)g" ()
meZ
where o
Dnp(t,7) := Dyp(-,t — 7)(—t). (5.25)

DnsCD) )R =S frm()g™(t - 1) (5.26)
meZ

so that .

(D)) =Y frm(—t)g™(~t — 1) (5.27)

meZ
and
Dyp(>7)(®) = (Dne(hm) )&+ Dre(7)(E)p
= > fem®E"(E=1)+ > frm(—)g"(—t = 7).
meZ meZ
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Now the result follows by applying the inverse Fourier tifans
1 - idt
Dnp(¢,7) = 5 | Dnp(,7)(t)e™dt
T JR
1 :
- = _ ipt
DY [ Ot - ) as

+% > LfR,m(—t)gm(—t—T)€i¢tdt-

meZ

6 Analysis of Discrete Radar Wind Profiler Data

This section is concerned with the determination of theldienensional atmospheric wind vector
field on the basis of real radar wind profiler (RWP) measurémeBbue to the nature of those
instruments we are not able to apply the established retmtisih formulas from the wideband
and narrowband regime, respectively. However, there ishen@aspect where wavelets play a
important role. To discuss the difficulties in practical an@pplications and to demonstrate the
benefit of wavelets we proceed as follows: First, we brieflsod®e some characteristics of radar
wind profilers, secondly, we explain the specific problemprifiler radar signal processing, and
thirdly, we present a wavelet based method to improve thgrpeessing of those radar data. The
wavelet preprocessing uses a multiscale approach as maglai Section 2.1 and the statistical
techniques outlined in Section 3.

6.1 Radar Wind Profilers

The RWP is a special application of Doppler radar technolagg is now increasingly used to
routinely probe the vertical profile of the mean horizontahavin the earth’s atmosphere. The
data are mainly used for weather forecasting and envirotaharonitoring. Most currently used
RWP’s employ the so-called ‘Doppler beam swinging’ methbd$) for wind determination.
The range of applications for these systems is certainlyemilden it is mentioned here, but this
is beyond the scope of this paper. More details about the fusgherent radar technology and in
particular wind profilers in meteorology can be found in s textbooks [17, 22] and in several
review papers, e.g. [46].

For RWP's, the Doppler shift and therefore the radial vejoof the scatterers is determined using
different beam directions. For wind determination, theeead course at least three linear indepen-
dent beam directions and some assumptions concerning titefigld required to transform the
measured ‘line-of-sight’ radial velocities into the winector. This principle will be briefly shown
for a five beam system as depicted in Figure 7. We assume thatitid fieldo with components
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Figure 7: Beam configuration of a typical DBS radar wind peofil

(u,v,w) in a Cartesian coordinate system in the vicinity of the rachar be written as a linear
Taylor series expansion in the horizontal coordinates

17($7y7 Z) = 6(x07y072) + Vhﬁ(x7y72)|zoyy0 ’ AF? (61)

where(zg, yo,0) denotes the location of the transmitter/receiver. If trddadavelocity measured
in the ‘line-of-sight’ of a radar beam described by unit direnal vectori is written as

vy =717, (6.2)

then, we get for the differences of the radial winds of the fwhlique beams at heiglt

vp(z) —vw(z) = 2up(z)sin(a) + 22—:z cos(a) tan(«)
vpN(2) —vrs(2) = 2vg(z)sin(a) + 22—1:z cos(a) tan(a) ,
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whereuy(z) denotes the horizontal West-East wind component at height(z) denotes the
horizontal North-South wind component at heighty denotes the zenith distance of the oblique
beams and the subscripts denote East, West, North and $esjplectively. It is immediately clear
that one additional assumption is required to determinétbezontal) wind componen{sig, vg),
namely:

ow  OJw

dr  dy
In meteorological language, the horizontal shear of théoarwind must vanish to retrieve the
horizontal wind without errors. This condition is not alvgagiven, however, it is usually correct
over a longer time interval. Therefore, DBS RWP’s can onlyubed to determine the averaged
wind.

Here and henceforth we will only be concerned with the deirgaition of the radial velocity along
one beam. This is the main focus of signal processing for RWStrictly speaking, signal pro-
cessing includes all operations that are performed on tteived voltage signal at the antenna
output, including the analog operations employed befoi@ édnversion, that is signal amplifi-
cation, frequency down-conversion and filtering. Howewes,will only deal with digital signal
processing (after A/D conversion), cp. Figure 8, which Hees purpose to extract the desired
atmospheric information from the received voltage signal.

RWP'’s transmit a series of short electromagnetic pulsesh(eae separated by a tindel’) in a
fixed beam direction and sample the backscattered signeiveetby the antenna to determine
the Doppler shift. For a single pulse, the sampling in tinleved the determination of the radial
distance of the measurement using the well-known propaapeed of the radar wave (rang-
ing). The maximum distance for unambiguously determinfrggrheasurement distance is clearly
determined by the pulse separatidf’, namelyd,,,, = cAT'/2, itis called the maximum unam-
biguous range. It has to be set sufficiently high to prevemgezaliasing problems, that is arrival
of backscattering signals from the first pulse after thesmaission of the next pulse.

The bandwidthB of a transmitted pulse of duratia¥t is typically much largerB = C - 1/6t =
100...1000 kHz, for some constant’ > 0) than the Doppler shift for atmospheric scatterers
(fa < 500 Hz), which prevents a precise measurement of the Dopplérfetin a single pulse.
For that reason a time series is generated for each and ewegg gate by sampling a whole series
of transmit pulses. The Doppler frequency is then deterchfram the slowly changing phase of
the received signals, see [4], using a quadrature demadwad is further used to determine the
velocity component of ‘the atmosphere’ projected onto tearb direction fp = 2v,/)). The
sampling is usually done in the process of A/D conversiorhefreceived signal and the sampling
rate for the discrete time series (4.25) at each range gatedeurse determined by the pulse
repetition periodAT.

The main goals of radar signal processing as summarized.|raf@:

e to provide accurate, unbiased estimates of the charaateris the desired atmospheric
echoes;

e to estimate the confidence/accuracy of the measurement;
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‘ Range-gated and digitized received Signal ‘

T

‘ Coherent Integration (Time-Domain Averaging) ‘

T

| Fourier Analysis (Spectral Averaging) |

T

| Spectral Parameter Estimation (Moments) |

T
\ Wind Estimation \

Figure 8: The Fig. shows the flow diagram of "classical’ diggignal processing.

e to mitigate effects of interfering signals;
¢ to reduce the data rate.

As outlined in Section 4.4, the complex envelope determined quadrature demodulation can
be written as

fnt) = 1(t) +iQ(1)

see formula (4.25) and see [34]. The sigfiaforms for atmospheric scattering a complex Gaus-
sian random process in time [54], with sample points for gaahsmitted radar pulse. Such a
process is fully described by 3 parameters, namely

e Signal power;
e Mean frequency (shift);
e Spectral width.

If S(w) denotes the power spectrum associated with the randomsgsreagnal then the funda-
mental parameters are the power P,

P= [ S,

the mean Doppler shife,
1
Q= P /wS(w)dw,

and the velocity variance’?:
1
wW? = 5 /(w —0)2S(w)dw .
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Figure 9: The Fig. shows the final result of the measuremetit the 482 MHz RWP at Lin-
denberg (Germany) on the 30th November and 01st Decemb®&r 9% wind barbs are color
coded according to the wind speed. Note the effects of tregtent ground clutter around 1.5 km
and 3 km height. The gap in the data was caused by this detailestigation as the radar was
programmed to store time series data for about 30 minutdseicast beam only, thus no wind
computations were possible for that period of time.

The goal of radar signal processing is consequently justgtimation of these 3 basic parameters
and it therefore suffices to estimate the power spectralityeftise so-called Doppler spectrum)
of the given signal. The generally used procedure emplaysatst Fourier transform and has the
advantage of being non-parametric, i.e. no specific formhefspectrum is assumed. This is of
advantage when the above mentioned assumptions are nikedilfiowever, the 3 base parameters
are still uniquely defined, for details see [53].

Radar signal processing ends with the estimation of the mtsyef the Doppler spectrum and
further data processing is then performed to finally deteemihe wind and other meteorologi-
cal parameters using measurements from all radar beamEjgee 9 and 10. To compute the
Doppler frequency we thus use the discrete Fourier tramsédrf;, which is in detail given below.
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Figure 10: The Fig. shows the final result of the measureméhttie 482 MHz RWP at Linden-
berg (Germany) on the 14th October 2001. The wind barbs doe coded according to the wind
speed. The distinct maxima in wind speed after sunset bet@weand 3 km height are caused
by dense bird migration, that could not be eliminated by theliad processing, even when the
statistical averaging method proposed in [38] was used.

6.2 Problems in RWP Signal Processing

The typically implemented radar signal processing flow inFR§\is visualized in Figure 8. Digital

signal processing starts with the determination of the dempnvelope of the received signal
which yields the in- and quadrature phase components (4% sampling rate is determined
by the pulse repetition perio@f. To reduce the data rate for further processing, hardwaderad
circuits perform a so-called coherent integration, addingypically ten to hundred) complex
samples together. Mathematically, this operation can bg as a filtering, followed by an under-

sampling at arate of - T'
n+1)L

| (b0
faln) =7 > fulk).

k=nL

The coherently averaged sampjgsare then used to estimate the Periodogram (the Doppler spec-
trum) using the discrete windowed Fourier transform, s¢e [5

1 phiy —_ s 2mkn
Py (k) = N Z g(n)fu(n)e 7~
n=0
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A number/ (typically some ten) of individual Doppler spectra is thendherently averaged to
reduce the noise variance of the Periodogram, thus impgavie detectability of the signal, see
[50]

h+L/

T(k):%zpn(k)
n=h

Finally, the noise level is estimated with the method prepom [26] and the moments of the
maximum signal in the spectrum is computed over the rangeenthe signal is above the noise
level. This effectively avoids any unwanted noise contidhu to the estimated moments and is
equivalent with subtracting the noise level before degwvime moments, compare with [37, 48].

The problem with this type of signal processing is the uniegl assumption, that the signal
consists of only two parts:

y=fate, (6.3)

where f, is produced by the (Gaussian) atmospheric scattering gsogeds is some noise of
different sources, mainly thermal electronic noise andrgosoise. This is certainly not true.
Especially at UHF, the desired atmospheric signal itsedftisn the result of two distinct scattering
processes, namely scattering at inhomogeneities of thactefe index (Bragg scattering) and
scattering at particles like droplets or ice crystals (Rmyl scattering), see for instance [21, 23,
22,42, 43] . So, even the desired atmospheric signal may diffeeent characteristics. But, as
the experience shows, the most serious problems are cayskd following contributions to the
signal:
y:fa+fg+fi+fr+57 (6.4)

wheref, is ground clutter, i.e. echoes returned from the groundbsuting the site, which emerge
from antenna side-lobeg; is intermittent clutter, i.e. echoes returned from unwargeggets like
airplanes or birds from both, the antennas main lobe anddledabes, and, is radio frequency
interference which can emerge from external radio-frequeransmissions within the passband
of the receiver (matched filter) or it can be generated iadérmue to imperfections of the radar
hardware. An additional complication lies in the observedt fthat bothf; and f, are generally
not Gaussian.

6.3 Improved RWP Signal Processing by Wavelet Techniques

Recently, much work has been and continues to be done toogefreljuency domain processing
algorithms. The purpose of all these methods is to selectriie atmospheric signal even in the
presence of severe contamination and perform moment ggimanly with them. Unfortunately,
practical success has been limited, mostly because theagiemeof the Doppler spectrum was not
optimal:

e The use of coherent integration ‘pre-filters’ the time sedad my cause unnecessary alias-
ing of airplane echoes into the frequency band of interestinktance.

e The non-Gaussian characteristics of transient signal coens (airplanes, birds) may ren-
der the DFT-based technique for spectral estimation useles

39



In the following, we will therefore concentrate on the apability of nonlinear wavelet filtering to
‘clean’ the time series before employing the DFT. The maasoms for the particular effectiveness
of wavelet analysis are the facts that contamination ajgpesen instationary or transient and with
a priori unknown scale structure, that one can use a greiatyarf wavelet filters, and at least that
the fast wavelet transform has a computationally compfekiat is lesser than or equal to the fast
Fourier transform.

For our purpose, we assume that the Gaussian model desbaotieshe atmospheric scattering
component and the ground clutter signal sufficiently welle Transient nature of intermittent clut-
ter returns can be sufficiently well described by the simpbeleh given by [2]. A more detailed,
exemplary look into the raw data (coherently integrated Ti@e series) of Gate 11 and 17 and
the resulting power spectra, see Figure 11, reveals olyithet advanced signal processing for
RWP is necessary to increase the accuracy of wind vectonsetwtion: The time series at Gate
11 shows the typical signature of a ground clutter signal pmmment, which corresponds to the
narrow spike centered around zero (Doppler shift) in theltieg power spectrum. Additionally,
the time series at Gate 17 shows a strong transient compioniet last quarter.

Nonlinear wavelet filtering starts by applying the multiscsetting as in Section 2. For our pur-
pose we assume that the measured complex-valued sigrah be interpreted as the projection
on a subspacgj,. The estimation of the projection is given by (3.2) with dméénts as in (3.3).
In comparison with ‘classical’ nonlinear wavelet de-nogsivereversethe roles of the noise part
¢ andf in the regression model (3.1), i.e., we assume that the aimeois componenf, belongs
to £ and we interpret the oscillating clutter components asitieasf. Hence, the goal is to detect
the clutter instead of the atmospheric echo. Once we haeetéeltthe clutter component, we only
have to eliminate it from the signd},.

Consequently, to adapt the nonlinear wavelet filtering stegur problem we have to redefine the
selection procedure for the coefficients as follows
nh(xat) =T — Hh(xat) : (65)

Then, by (6.5) we perform the necessary filtering step by filnecated hard threshold wavelet
estimator (3.8). The common hard thresholding used foraiginng and the new definition are
displayed Figure 12. The threshold definition (6.5) can ls#l\yeaxpressed by

u, \u| <t
nh(uat):{ 0 ||U,||>t >

wheret is a adequate threshold. To appraise the estimator it is kiiost we measure the expected
loss or the risk, see Section 3,

sup  BlIf; I
feF(M.T)

However, in our application we are interested in the siamati < p < 2 andp’ = 2. By the
assumptiony > 1/p we obtain that

e:g(2a+1)—1>1/2.
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Figure 11: The left part shows the ‘stacked spectrum’ plet,the Doppler spectra for each range
gate, for the radar dwell at 08:53:38 UTC on Decenilfér1999. The right figures give a detailed
look into the raw data (I/Q-time series) and the Doppler spec for the gate 17 (whose data
will be wavelet processed). The black arrows indicate thienesed first moment (i.e. the radial
velocity).

Thus, for a positive constaidf, we have the following asymptotic behavior for the risk fiioic,
see inequality (3.10),

sup  E|fi — fI13 < C (logn) i1 noass
JEFH(M,T)

(6.6)

Remark 6.1 For the special case = 2 we know thatFs* coincides with a ball inH®, see[27]
and (3.6)

For a numerical implementation one has to determine theesgaland j,. In accordance to
Theorem 3.1 and our specific setting we have «/(2« + 1), i.e.,

. 2— # . 2pa
271(n) ~ (n(logn) Pp) 2t and 2900 ~ BNt ,
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m|6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
72" |3 4 4 4 5 5 6 6 6 7 7 7 8 8 8
2" |4 5 6 6 7 8 8 9 10 10 11 12 12 13 14

Table 1. A Table of suitable resolution levelsandj, for a special choice gf anda, (p = 1, «
close tol).

Figure 12: This Figure shows hard (left) and inverse haresimolding (right) for = 1.

see Table 1 for suitable resolution levglsandyjy. The choice of can be implemented by applying
the rule (3.11). Finally, the computation of the waveletfioents can be done by using the fast
wavelet algorithm as described in Section 2.

6.4 Numerical Examples

In this section, we want to demonstrate the performance oimmdified nonlinear wavelet filter-
ing. This is done with both, simulated and real data. For s&ebenderstanding we particularize
Figure 8 to see where we have inserted the wavelet filteragg Sto clarify our procedure a more
substantiated algorithm flow diagram is shown in Figure 13.

Additionally one may use histogram informations. The tastmn displays the empirical distribu-
tion of the coefficients\,, andfyi. In particular, if the signal was contaminated by an airplanho
the main part of observations is concentrated in a smalhheidiood around zero. If there is no
airplane echo the coefficients are exponentially disteédusee Figure 14.

To observe how this algorithm works we start by simulating@ @asy test sample. Using the
statistical-stochastic approach of [56] to generate ifeiseries, we first generate an atmospheric
signal with Gaussian characteristic in the frequency damale choose the Doppler frequency of
the atmospheric signal close to zero to force the separptmrlem. Now we add a noise variable
and a ground clutter peak, which is generated by a narrow Seaus The order of the ground
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Range-gated and digitized received
Signal
1 Fix the wavelet and max. wavelet
Coherent Integration (Time-Domajn decomposition scale
Averaging) 7
I Decomposition of Quadrature- and
Wavelet Tool (Removing cIutter)‘ In-phase
v ]
Fourier Analysis (Spectral Threshold determination and local
Averaging) thresholding
v ]
Spectral Parameter Estimation Reconstruction of the desired
(MoTents) atmospheric signal component
\ Wind Estimation

Figure 13: Left: The flow diagram extended by the wavelet.t&ibht. The wavelet algorithm
flow diagram.

Figure 14: This Figure shows typical histograms of the wetvebefficients (see text). The upper
histogram represents an in-phase series without an agr@eino and the lower histogram repre-
sents an in-phase series with an airplane reflection.

clutter amplitude is much higher than the Doppler frequemtplitude. Because the algorithm
removes the ground clutter completely, the reconstrudgathkconsists only of the atmospheric
part (and some noise). This demonstrates impressively iffezethce of the nonlinear wavelet
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Quadrature-phase / Approximation sequence at level 4 Quadrature-phase / wavelet resolution at level 1
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Figure 15: Decomposition\{ and#,;), reconstruction and Fourier power spectrum of gate 17
(top) and gate 11 (below). The black curves in the power speaepresentations display the
decontaminated spectra. Clearly to recognize are thegiftes of moment estimations, see the
computed first moment before (gray arrow) and after (blaodv@rthe filtering step.
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Figure 16: Top left: Simulated Fourier-power-spectrumhvgtrong ground clutter influence and
with an atmospheric signal overlapping the ground clutézdp Lower left: 1/Q time series derived

from the simulated Fourier-power-spectrum using the [56thad. Lower right: I/Q time series

after applying the nonlinear wavelet filter. Top right: Réisg Fourier-power-spectrum based on
the reconstructed (filtered) signal.

filtering method compared to Fourier methods and digitatritig: The spectra of clutter and
atmospheric signal can overlap as much as they want, ndesshee can still separate the two
components. The different amplitude of both signals alltvesdiscrimination by thresholding.

For intermittent clutter, one of the distinct advantagesvafelet based techniques is certainly
the ability to describe a transient signal with only a few elav coefficients. This is caused by
the finite support of the wavelet basis. It is the localizimgperties of wavelets, that makes the
wavelet transform especially suited for filtering of tramgisignals.

To expose how the routine is acting on measured RWP timessagego back to the presented
‘real life’ problem (example Figure 11). We use this exantpldemonstrate the robustness of the
method. The problem was that the signal at gate 17 was caoméideni by intermittent clutter (air-
craft echo) and the signal at gate 11 by persistent grounittcllWsing standard signal processing,
the spectra were significantly biased and thus the momentagin and finally the wind vector
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reconstruction. Figure 15 shows exemplarily how wavelegsholding was realized in decompo-
sition sequences; and~y;;, of gate 11 and 17. The dotted lines correspond to the thréshd
can be observed that in both cases the clutter componergsean removed completely.
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