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Abstract. In this paper we are concerned with the continuous shearlet transform in arbitrary
space dimensions where the shear operation is of Toeplitz type. In particular, we focus on the
construction of associated shearlet coorbit spaces and on atomic decompositions and Banach frames
for these spaces.

1. Introduction

One of the most important tasks in modern applied analysis is the analysis and synthesis of
signals. To this end, usually the first step is to decompose the signal with respect to suitable
building blocks which are well–suited for the specific application and allow a fast and efficient
extraction of the relevant information. In this context, one particular problem which is currently in
the center of interest is the analysis of directional information. In recent studies, several approaches
have been suggested such as ridgelets [1], curvelets [2], contourlets [7], shearlets [14] and many
others. For a general approach see also [13]. Among all these approaches, the shearlet transform
stands out because it is related to group theory, i.e., this transform can be derived from a square-
integrable representation π : S→ U(L2(R2)) of a certain group S, the so-called shearlet group, see
[3]. Therefore, in the context of the shearlet transform, all the powerful tools of group representation
theory can be exploited.

So far, the shearlet transform and associated analysis and synthesis algorithms are well developed
for problems in R2. Quite recently, a first generalization to higher dimensions was given in [5].
This generalization is very close to the two–dimensional approach which is based on translations,
anisotropic dilations and specific shear matrices. It has been shown that the associated integral
transform originates from a square-integrable representation of a group, the full n-variate shearlet
group. Moreover, a very useful link to the important coorbit space theory developed by Feichtinger
and Gröchenig [8, 9, 10] has been established, see [4], and the potential to detect singularities has
been demonstrated, see [5].

A different shearlet transform for arbitrary space dimensions was established in [6]. This ap-
proach deviates from [5] mainly by the choice of the shear component. Instead of the block form
used in [5], the authors of [6] deal with a suitable subgroup of Toeplitz matrices of the group of
upper triangular matrices. Moreover, in contrary to the anisotropic (parabolic) dilation employed
in [5], the dilation operation used in [6] is isotropic. Nevertheless, similar to [5], it could be shown
that the associated integral transform stems from a square-integrable group representation of a
specific group. Moreover, it was demonstrated that the established Toeplitz shearlet transform has
the potential to detect singularities. The goal of this paper is to develop for the Toeplitz shearlet
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transform the associated coorbit space theory including atomic decompositions and Banach frames
for them.

Organization of the remaining paper: We review in Section 2 the Toeplitz shearlet transform
and admissibility conditions established in [6]. In Section 3 we present our main results: Toeplitz
shearlet coorbit spaces and associated atomic decompositions and Banach frames.

2. The Toeplitz Shearlet Transform

The so-called Toeplitz shearlet transform on L2(Rd) uses upper triangular Toeplitz matrices as
shear matrices. For d = 2 this coincides with the usual shearlet transform. For a ∈ R∗ := R \ {0}
and s ∈ Rd−1, we set

Aa :=

a . . . 0
...

. . .
...

0 . . . a

 = aId and Ss :=



1 s1 s2 . . . sd−1

0 1 s1 s2
...

...
. . . . . . . . .

...
...

. . . 1 s1

0 . . . . . . 0 1

 .

The upper triangular Toeplitz matrix Ss will play the role of the shear matrix used in the ordinary
shearlet transform. Note that the inverse of an upper triangular Toeplitz matrix is again an upper
triangular Toeplitz matrix. The set R∗ × Rd−1 × Rd endowed with the operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, [STs′S
T
s ]1, t+AaSst

′) ,

where the bracket operation [·]1 extracts the last d − 1 elements of the first column, is a locally
compact group S. We call this group Toeplitz shearlet group. The left and right Haar measures on
S are given by

dµl(a, s, t) =
1

|a|d+1
da ds dt and dµr(a, s, t) =

1
|a|

da ds dt.

In the following, we will apply only the left Haar measure and use the abbreviation dµ = dµl. For
f ∈ L2(Rd), we define the mapping π : S→ U(L2(Rd)) from S into the group U(L2(Rd)) of unitary
operators on L2(Rd) by

(π(a, s, t)f)(x) := fa,s,t(x) =: |a|−d/2f(A−1
a S−1

s (x− t)). (1)

This mapping π is a unitary representation of S, i.e., a homomorphism π from S into the group
of unitary operators U(H) on H which is continuous with respect to the strong operator topology.
The Fourier transform of fa,s,t is given by

(π̂(a, s, t)f̂)(ω) = |a|−d/2
(
f(A−1

a S−1
s (· − t)

)∧ (ω)

= |a|−d/2| det(A−1
a S−1

s )|−1f̂(STs A
T
a ω)e−2πi〈t,ω〉 (2)

= |a|d/2f̂(STs A
T
a ω)e−2πi〈t,ω〉.

A function ψ ∈ L2(Rd) is admissible if and only if it fulfills the admissibility condition

0 < Cψ :=
∫

Rd

|ψ̂(ω)|2

|ω1|d
dω <∞. (3)

Then, for any f ∈ L2(Rd), the following equality holds true:∫
S
|〈f, ψa,s,t〉|2 dµ(a, s, t) = Cψ ‖f‖2L2(Rd) . (4)
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In particular, the unitary representation π is irreducible and hence square integrable.
We call the transform SH : L2(Rd)→ L2(S) defined by

SHf (a, s, t) := 〈f, ψa,s,t〉 = 〈f, |a|−d/2ψ(A−1
a S−1

s (· − t))〉 = f ∗ ψ∗a,s,0(t), (5)

where ψ∗a,s,t(x) := ψa,s,t(−x), Toeplitz shearlet transform. It was shown in [6] that the Toeplitz
shearlet transform at hyperplane singularities has similar decay properties as the usual shearlet
transform.

3. Toeplitz Shearlet Coorbit Theory

Within this section we establish the coorbit space theory for the Toeplitz shearlet group and
its associated square integrable representation (1). We mainly follow the lines of [5]. For further
details on coorbit space theory, the reader is referred to [8, 9, 10, 11, 12].

3.1. Toeplitz Shearlet Coorbit Spaces. Let w be real-valued, continuous, submultiplicative
weight on S, i.e., w(gh) ≤ w(g)w(h) for all g, h ∈ S. Furthermore, we assume that the weight
function w satisfies all the coorbit-theory conditions as stated in [12, Section 2.2]. A function
contained in

Aw := {ψ ∈ L2(Rd) : SHψ(ψ) = 〈ψ, π(·)ψ〉 ∈ L1,w(S)}.
of is called an analyzing vector. We want to show that Aw contains shearlets that are compactly
supported in Fourier domain. To this end, we need the following auxiliary lemma on the support
of ψ̂.

Lemma 3.1. Let a1 > a0 ≥ α > 0 and b = (b1, . . . , bd−1)T be a vector with positive components.
Suppose that supp ψ̂ ⊆ ([−a1,−a0]∪ [a0, a1])×Qb where Qb := [−b1, b1]× · · · × [−bd−1, bd−1]. Then
ψ̂ψ̂a,s,0 6≡ 0 implies a ∈

[
−a1
a0
,−a0

a1

]
∪
[
a0
a1
, a1
a0

]
and si ∈ [−ci, ci] for alle i = 1, . . . , d− 1, where

ci :=
bi
a0

(
1 +

a1

a0

)
+

1
a0

i∑
j=2

bj−1|si−j+1|.

In other words: If a 6∈
[
−a1
a0
,−a0

a1

]
∪
[
a0
a1
, a1
a0

]
or si 6∈ [−ci, ci] for one i ∈ {1, . . . , d− 1} then

ψ̂ψ̂a,s,0 ≡ 0.

Proof. First we take a look at the case a > 0. By (2) the following conditions are necessary for
ψ̂ψ̂a,s,0 6≡ 0:

(i) a0 ≤ ω1 ≤ a1 and a0 ≤ aω1 ≤ a1

or
−a1 ≤ ω1 ≤ −a0 and −a1 ≤ aω1 ≤ −a0,

(ii) −bi ≤ ωi+1 ≤ bi and −bi ≤ a(ωi+1 +
∑i

j=1 ωjsi−j+1) ≤ bi for all i = 1, . . . , d− 1.

Let us first discuss the case a0 ≤ ω1 ≤ a1. The second condition in (i) implies
a0

ω1
≤ a ≤ a1

ω1
.

Therefore, together with the first condition in (i) we get
a0

a1
≤ a ≤ a1

a0
,
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hence

a ∈
[
a0

a1
,
a1

a0

]
.

The second condition in (ii) is equivalent to

−bi
a
≤ ωi+1 + ω1si +

i∑
j=2

ωjsi−j+1 ≤
bi
a
,

resp.

−bi
a
− ωi+1 −

i∑
j=2

ωjsi−j+1 ≤ ω1si ≤
bi
a
− ωi+1 −

i∑
j=2

ωjsi−j+1.

The interval becomes largest for a = a0
a1

so that

−bia1

a0
− ωi+1 −

i∑
j=2

ωjsi−j+1 ≤ ω1si ≤
bia1

a0
− ωi+1 −

i∑
j=2

ωjsi−j+1, (6)

and therefore

− 1
ω1

bia1

a0
+ ωi+1 +

i∑
j=2

ωjsi−j+1

 ≤ si ≤ 1
ω1

bia1

a0
− ωi+1 −

i∑
j=2

ωjsi−j+1

 .

The first condition in (ii) is −bi ≤ ωi+1 ≤ bi. On the left hand side the interval becomes largest
for ωi+1 = bi and ωj = sgn(si−j+1)bj−1 and on the right hand side for ωi+1 = −bi and ωj =
−sgn(si−j+1)bj−1, i.e.,

− 1
ω1

bia1

a0
+ bi +

i∑
j=2

bj−1|si−j+1|

 ≤ si ≤ 1
ω1

bia1

a0
+ bi +

i∑
j=2

bj−1|si−j+1|

 . (7)

Finally, we replace ω1 with its smallest value a0

−

 bi
a0

(
a1

a0
+ 1
)

+
1
a0

i∑
j=2

bj−1|si−j+1|

 ≤ si ≤ bi
a0

(
a1

a0
+ 1
)

+
1
a0

i∑
j=2

bj−1|si−j+1|︸ ︷︷ ︸
=:ci

.

Similarly, the result can be shown for the other cases. Regarding the case a < 0 we additionally
get

a ∈
[
−a1

a0
,−a0

a1

]
.

�

Based on this Lemma we can prove the required property of SHψ(ψ) by following exactly the lines
in [5].

Theorem 3.2. Let ψ be a Schwartz function such that supp ψ̂ ⊆ ([−a1,−a0]∪ [a0, a1])×Qb. Then
we have that SHψ(ψ) ∈ L1,w(S), i.e.,

‖〈ψ, π(·)ψ〉‖L1,w(S) =
∫

S
|SHψ(ψ)(a, s, t)|w(a, s, t) dµ(a, s, t) <∞.
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For an analyzing vector ψ we now consider the space

H1,w := {f ∈ L2(Rd) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)}, (8)

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dual H∼1,w, the space of all continuous conjugate-
linear functionals onH1,w. The spacesH1,w andH∼1,w are π-invariant Banach spaces with continuous
embeddingH1,w ↪→ H ↪→ H∼1,w. Then the inner product on L2(Rd)×L2(Rd) extends to a sesquilinear
form on H∼1,w×H1,w. Therefore for ψ ∈ H1,w and f ∈ H∼1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼1,w×H1,w

are well-defined.
Let now m be a w-moderate weight on S which means that m(xyz) ≤ w(x)m(y)w(z) for all

x, y, z ∈ S. For 1 ≤ p ≤ ∞, let

Lp,m(S) := {F measurable : Fm ∈ Lp(S)}.
We are interested in the following Banach spaces which are called shearlet coorbit spaces

SCp,m := {f ∈ H∼1,w : SHψ(f) ∈ Lp,m(S)}, ‖f‖SCp,m := ‖SHψf‖Lp,m(S). (9)

Note that the definition of SCp,m is independent of the analyzing vector ψ and of the weight w, see
[8, Theorem 4.2]. In applications, one may start with some sub-multiplicative weight m and use
the symmetric weight w(g) := m#(g) := m(g) + m(g−1)∆(g) for the definition of Aw. Obviously,
we have that such m is w-moderate.

In the remaining parts of this paper, we will restrict ourselves to weights w that only depend on
a and s, but not on the translation parameter t, i.e., w = w(a, s).

3.2. Toeplitz Shearlet Banach Frames. The Feichtinger-Gröchenig theory provides us with a
machinery to construct atomic decompositions and Banach frames for our shearlet coorbit spaces
SCp,w. In a first step, we have to determine, for a compact neighborhood U of e ∈ S with non-
void interior, so-called U–dense sets. A (countable) family X = ((a, s, t)λ)λ∈Λ in S is said to be
U -dense if ∪λ∈Λ(a, s, t)λU = S, and separated if for some compact neighborhood Q of e we have
(ai, si, ti)Q∩ (aj , sj , tj)Q = ∅, i 6= j, and relatively separated if X is a finite union of separated sets.

Lemma 3.3. Let U be a neighborhood of the identity e = (1, 0, 0) in S, and let α > 1 and β, γ > 0
be defined such that [

α
1
d
−1, α

1
d

)
×
[
−β

2
,
β

2

)d−1

×
[
−γ

2
,
γ

2

)d
⊆ U. (10)

Then the sequence {
(εαj , βk, SβkAαjγn) : j ∈ Z, k ∈ Zd−1, n ∈ Zd, ε ∈ {−1, 1}

}
(11)

is U-dense and relatively separated.

Proof. Set

U0 :=
[
α

1
d
−1, α

1
d

)
×
[
−β

2
,
β

2

)d−1

×
[
−γ

2
,
γ

2

)d
.

It is sufficient to prove that the sequence (11) is U0-dense.
For this, fix any (x, y, z) ∈ S. In the following we assume that x ∈ R+ in which case we have to

set ε = 1. If x < 0, the same arguments apply while choosing ε = −1. We have that

(αj , βk, SβkAαjγn) ◦ U0 =
{

(αju, [STv S
T
βk]1, SβkAαjγn+ SβkAαj$) : (u, v,$) ∈ U0

}
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We have to prove that there are unique j ∈ Z, k ∈ Zd−1 and n ∈ Zd such that

(x, y, z) = (αju, [STv S
T
βk]1, SβkAαj (γn+$)) (12)

for some (u, v,$) ∈ U0.
For given x ∈ R∗ there exists a unique integer j ∈ [logα x − 1

d , logα x + 1 − 1
d) and for this j a

unique u ∈ [α
1
d
−1, α

1
d ) such that x = αju. For given y ∈ Rd−1, we have

y = [STv S
T
βk]1

= v + βk1


1
v1

v2
...

vd−2

+ βk2


0
1
v1
...

vd−3

+ · · ·+ βkd−1


0
...
0
1

 .

Starting with y1 = v1 + βk1 we see that v1 ∈ [−β
2 ,

β
2 ), k1 ∈ Z are uniquely determined. In general

we have

yi − β
i−1∑
j=1

kjvi−j = vi + βki

such that vi ∈ [−β
2 ,

β
2 ) and ki ∈ Z are uniquely determined by y1, . . . , yi.

Finally, we consider z = SβkAαj (γn+$) or z̃ := A−1
αj
S−1
βk z = γn+$. Clearly there exists unique

$i ∈ [−γ
2 ,

γ
2 ) and ni ∈ Z such that miγ +$i = z̃i, i = 1, . . . , d− 1. �

Next we define the U–oscillation as

oscψ,U (a, s, t) := sup
u∈U
|SHψ(ψ)(u ◦ (a, s, t))− SHψ(ψ)(a, s, t)|. (13)

Then, the following decomposition theorem, which was proved in a general setting in [8, 9, 10,
11, 12], says that discretizing the representation by means of an U -dense set produces an atomic
decomposition for SCp,m.

Theorem 3.4. Assume that the irreducible, unitary representation π is w-integrable and let ψ ∈
L2(Rd) which fulfills

M〈ψ, π(a, s, t)〉 := sup
u∈(a,s,t)U

|〈ψ, π(u)ψ〉| ∈ L1,w(S) (14)

be given. Choose a neighborhood U of e so small that

‖ oscψ,U ‖L1,w(S) < 1. (15)

Then for any U -dense and relatively separated set X = ((a, s, t)λ)λ∈Λ the space SCp,m has the
following atomic decomposition: If f ∈ SCp,m, then

f =
∑
λ∈Λ

cλ(f)π((a, s, t)λ)ψ (16)

where the sequence of coefficients depends linearly on f and satisfies

‖(cλ(f))λ∈Λ‖`p,m ≤ C‖f‖SCp,m (17)

with a constant C depending only on ψ and with `p,w being defined by

`p,m := {c = (cλ)λ∈Λ : ‖c‖`p,m := ‖cm‖`p <∞},
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where m = (m((a, s, t)λ))λ∈Λ. Conversely, if (cλ(f))λ∈Λ ∈ `p,m, then f =
∑

λ∈Λ cλπ((a, s, t)λ)ψ is
in SCp,m and

‖f‖SCp,m ≤ C ′‖(cλ(f))λ∈Λ‖`p,m . (18)

Given such an atomic decomposition, the problem arises under which conditions a function f is
completely determined by its moments 〈f, π((a, s, t)λ)ψ〉 and how f can be reconstructed from these
moments. This is answered by the following theorem which establishes the existence of Banach
frames.

Theorem 3.5. Impose the same assumptions as in Theorem 3.4. Choose a neighborhood U of e
such that

‖ oscψ,U ‖L1,w(S) < 1/‖SHψ(ψ)‖L1,w(S). (19)

Then, for every U -dense and relatively separated family X = ((a, s, t)λ)λ∈Λ in S the set {π((a, s, t)λ)ψ :
λ ∈ Λ} is a Banach frame for SHp,m. This means that

i) f ∈ SCp,m if and only if (〈f, π((a, s, t)λ)ψ〉H∼1,w×H1,w)λ∈Λ ∈ `p,w;
ii) there exist two constants 0 < D ≤ D′ <∞ such that

D ‖f‖SCp,m ≤ ‖(〈f, π((a, s, t)λ)ψ〉H∼1,w×H1,w)λ∈Λ‖`p,m ≤ D′ ‖f‖SCp,m ; (20)

iii) there exists a bounded, linear reconstruction operator S from `p,m to SCp,m such that

S
(

(〈f, ψ((a, s, t)λ)ψ〉H∼1,w×H1,w)λ∈Λ

)
= f.

To apply the whole machinery of Theorems 3.4 and 3.5 to our Toeplitz shearlet group setting
it remains as in [5] to prove that ‖ oscψ,U ‖L1,w(S) becomes arbitrarily small for a sufficiently small
neighborhood U of e.

Theorem 3.6. Let ψ be a function contained in the Schwartz space S with supp ψ̂ ⊆ ([−a1,−a0]∪
[a0, a1])×Qb. Then, for every ε > 0, there exists a sufficiently small neighborhood U of e so that

‖ oscψ,U ‖L1,w(S) ≤ ε. (21)

Proof. By Theorem 3.2 we have that SHψ(ψ) ∈ L1,w(S). Moreover, it is easy to check that SHψ(ψ)
is continuous on S. It remains to show that oscψ,U ∈ L1,w(S) for some compact neighborhood of e.
By definition of oscψ,U and Parseval’s identity we have that

oscψ,U (a, s, t) = sup
(α,β,γ)∈U

|〈ψ̂, ψ̂a,s,t〉 − 〈ψ̂, ψ̂(α,β,γ)(a,s,t)〉|

= sup
(α,β,γ)∈U

∣∣∣|a| d2F(ψ̂(AaSTs ·)ψ̂)(t)− |aα|
d
2F(ψ̂(Aaα ST[STs STβ ]1︸ ︷︷ ︸

=STs S
T
β

·)ψ̂)(γ + SβAαt)
∣∣∣.

From Lemma 3.1 we can conclude that for α, β in a sufficient small neighborhood of (1, 0d−1) both
summands become zero except for a in two finite intervals away from zero and s in a finite interval.
Thus, it remains to show that

∫
Rd oscψ,U (a, s, t)dt ≤ C(a, s) with some finite constant C(a, s). We

split the integral into three parts∫
Rd

oscψ,U (a, s, t)dt ≤ |a|
d
2 (I1 + I2 + I3),
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where

I1 :=
∫

Rd
sup

(α,β,γ)∈U

∣∣∣|1− α d
2 |F

(
ψ̂(AaSTs ·)ψ̂

)
(t)
∣∣∣ dt,

I2 :=
∫

Rd
sup

(α,β,γ)∈U
α
d
2

∣∣∣F(ψ̂(AaSTs ·)ψ̂)(t)−F(ψ̂(AaSTs ·)ψ̂)(γ + SβAαt)
∣∣∣ dt,

I3 :=
∫

Rd
sup

(α,β,γ)∈U
α
d
2

∣∣∣F(ψ̂(AaSTs ·)ψ̂)(γ + SβAαt)−F(ψ̂(AaαSTs S
T
β ·)ψ̂)(γ + SβAαt)

∣∣∣ dt.
The integrals I1 and I3 can be handled in the same way as in [5]. Only for I2 the proof has to be
modified. We consider

Ga,s(t) = G(t) = F(ψ̂(AaSTs ·)ψ̂)(t) ∈ S.
By Taylor expansion we obtain

|G(γ + SβAαt)−G(t)| = |∇G(t+ θ(γ + SβAαt− t))T (γ + SβAαt− t)|
≤ ‖∇G(t+ θ(γ + SβAαt− t))T ‖2‖γ + SβAαt− t‖2
≤ ‖∇G(t+ θ(γ + SβAαt− t))T ‖2(‖SβAα − I‖2‖t‖2 + ‖γ‖2)

where θ ∈ [0, 1). For any ε > 0, there exists a sufficiently small neighborhood U of e such that
‖SβAα − I‖2 ≤ ε and ‖γ‖2 ≤ ε for all (α, β, γ) ∈ U . Thus, since ‖∇G‖2 ≤ ‖∇G‖1, we conclude
that

I2 ≤
∫

Rd
sup

(α,β,γ)∈U
α
d
2

 d∑
j=1

|Gj(t+ θ(SβAαt− t+ γ))|

 (‖t‖2 + 1)dt,

where Gj(t) := ∂
∂tj
G. Now Gj ∈ S, j = 1, . . . , d implies for all r > 0 and sufficiently small γ that

|Gj(t+ θ(SβAαt− t+ γ))| ≤ Cj(a, s)(1 + ‖t+ θ(SβAαt− t+ γ)‖22)−r

≤ C̃j(a, s)(1 + ‖t+ θ(SβAαt− t)‖22)−r.

To show that I2 ≤ C(a, s), it is sufficient to prove that

sup
(α,β,0d)∈U

(1 + ‖t+ θ(SβAαt− t)‖22)−1 ≤ C̃(1 + ‖t‖22)−1,

resp., that
C0 + C1‖t‖22 ≤ 1 + ‖t+ θ(SβAαt− t)‖22

for some C0, C1 > 0 and for all (α, β, 0n) ∈ U . Now

‖t+ θ(SβAαt− t)‖22 = ‖(I − θ(I − αSβ))t‖22 = ‖Tα,βt‖22
with

Tα,β :=


1− θ(1− α) θαβ1 · · · θαβd−1

. . . . . .
...

. . . θαβ1

0 1− θ(1− α)

 .
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Since θ ∈ [0, 1) and α is in the neighborhood of 1 we have that 1− θ(1− α) > 0 so that Tα,β is an
invertible upper triangular Toeplitz matrix. Now we get

‖Tα,βt‖22 ≥
1

‖T−1
α,β‖22

‖t‖22.

We set p := 1 − θ(1 − α) and q := θα. With recursively defined b0 := 1
p and bi := − q

p(β1bi−1 +
β2bi−2 + · · ·+ βib0) for i = 1, . . . , d− 1 we obtain

T−1
α,β =


b0 b1 · · · bd−1

. . . . . .
...

. . . b1
0 b0


and consequently

‖T−1
α,β‖2 ≤

√
d‖T−1

α,β‖∞ =
√
d
d−1∑
j=0

|bj |.

Let U be chosen such that |βi| ≤ β̃ for all i = 1, . . . , n − 1 with some fixed sufficiently small β̃.
Using the fact that (1 + x)d = 1 + x+ x(1 + x) + x(1 + x)2 + · · ·+ x(1 + x)d−1 we get recursively
that

|b0| =
1
p
,

|b1| ≤
q

p
β̃ · 1

p
=

q

p2
β̃,

|b2| ≤
q

p
β̃ ·
(

1
p

+
q

p
β̃ · 1

p

)
=

q

p2
β̃ ·
(

1 +
q

p
β̃

)
,

|b3| ≤
q

p
β̃ ·
(
q

p2
β̃ ·
(

1 +
q

p
β̃

)
+
q

p
β̃ · 1

p
+

1
p

)
=

q

p2
β̃ ·
(

1 +
q

p
β̃ +

q

p
β̃

(
1 +

q

p
β̃

))
=

q

p2
β̃ ·
(

1 +
q

p
β̃

)2

,

...

|bi| ≤
q

p2
β̃ ·
(

1 +
q

p
β̃

)i−1

.

Hence, we obtain

d−1∑
j=0

|bj | ≤
1
p

(
1 +

q

p
β̃ +

q

p
β̃(1 +

q

p
β̃) +

q

p
β̃(1 +

q

p
β̃)2 + · · ·+ q

p
β̃(1 +

q

p
β̃)d−2

)

=
1
p

(
1 +

q

p
β̃

)d−1

such that

‖T−1
α,β‖2 ≤

√
d

p

(
1 +

q

p
β̃

)d−1

,
1

‖T−1

α,β̃
‖2
≥ p
√
d
(

1 + q
p β̃
)d−1

.
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Since q
p < 1, we get with a fixed δ, 0 < δ < 1 and α ∈ [1− δ, 1 + δ] that

1
‖T−1

α,β‖2
≥ 1− δ
√
d
(

1 + β̃
)d−1

=: C1.

Hence 1 + ‖t+ θ(SβAαt− t)‖22 ≥ 1 + 1
‖T−1
α,β‖2
‖t‖22 ≥ 1 + C1‖t‖22 and we are done.

�
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[11] H. G. Feichtinger and K. Gröchenig, Non–orthogonal wavelet and Gabor expansions and group representations,
in: Wavelets and Their Applications, M.B. Ruskai et.al. (eds.), Jones and Bartlett, Boston, 1992, 353–376.
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