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Abstract. This papers examines structural properties of the recently developed shearlet coorbit
spaces in higher dimensions. We prove embedding theorems for subspaces of shearlet coorbit spaces
resembling shearlets on the cone in three dimensions into Besov spaces. The results are based on
general atomic decompositions of Besov spaces. Furthermore, we establish trace results for these
subspaces with respect to the coordinate planes. It turns out that in many cases these traces are
contained in lower dimensional shearlet coorbit spaces.

1. Introduction

This paper is concerned with the investigation of structural properties of shearlet coorbit spaces.
In recent years it has turned out that shearlets have the potential to retrieve directional information
so that they became interesting for many applications, see [13, 16, 18]. Moreover, quite surpris-
ingly, the shearlet transform has the outstanding property to stem from a square integrable group
representation [2]. This remarkable fact provides the opportunity to design associated canonical
smoothness spaces by applying the general coorbit theory derived by Feichtinger and Gröchenig
[6, 7, 8, 11]. Indeed, in [3, 4] the above relationships have been clarified and new smoothness spaces,
the so-called shearlet coorbit spaces, have been established. In particular, it has been shown that
all the conditions needed in the context of the coorbit space theory to obtain atomic decompositions
and Banach frames can satisfied by the shearlet setting.

However, once these abstract smoothness space are established some natural questions arise. Of
course one would like to know how these spaces look like and how they are related to other known
classical smoothness spaces such as Besov or Triebel-Lizorkin spaces. Moreover, one would like to
understand the structure of these new spaces. That is, it would be desirable to know how these
new scales of shearlet coorbit spaces behave under embeddings, trace and interpolation operations.

For the two-dimensional case, first results in this direction have been obtained in [5]. In [5] it has
been shown that shearlet coorbit spaces of function on R2 can be embedded into Besov spaces and
that the traces on the real axes are also contained in Besov spaces. Moreover, a first embedding
result of Sobolev type has been established. The present paper can be interpreted as a continuation
of this work in the sense that we study similar questions in the three-dimensional setting. We will
prove that as in the two-dimensional case there exist embedding results for subspaces of shearlet
coorbit spaces resembling shearlets on the cone. However, the trace spaces turn out to be much
more involved. In the higher dimensional case it cannot be expected that all the trace spaces
are again contained in Besov spaces since the shear parameter plays a much more important role.
Indeed, we will see that certain traces of shearlet coorbit spaces are again shearlet coorbit spaces!
To establish these results new techniques become necessary since linear combinations of the traces of
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analyzing shearlets might not be again admissible shearlets. To overcome this difficulty we decided
to use the more general concept of coorbit molecules developed by Gröchenig and Piotrowski in
[12]. Their concept of molecules provides more flexibility than atomic decompositions. It turns out
that specific linear combinations of traces of shearlets can be interpreted as coorbit molecules for
lower dimensional shearlet coorbit spaces.

Organization of the paper: In Section 2 we review the basic setting of the shearlet transform
and the associated coorbit space theory as it is needed for our purposes. Then, in Section 3 we
provide the concepts of atomic decompositions for Besov spaces and molecular decompositions for
shearlet coorbit spaces. The main results are contained in Section 4, where we use the machinery
explained in the previous sections to prove various trace results. Finally, in Section 5 we establish
three-dimensional embedding results of shearlet coorbit spaces into Besov spaces.

In the remaining paper, we use the notation f . g for the relation f ≤ C g with some generic
constant C ≥ 0, and the notation ‘∼’ stands for equivalence up to constants which are independent
of the involved parameters.

2. Shearlets on Rd

In this section, we recall basic results about the shearlet group on Rd, d ≥ 2, its square integrable
representations and shearlet coorbit spaces from [4]. While [4] deals only with band-limited shear-
lets, we will see that also compactly supported shearlets can serve as so-called analyzing vectors
for shearlet coorbit spaces.

2.1. Shearlet Group and Shearlet Transform. For a ∈ R∗ := R \ {0} and s ∈ Rd−1, let

Aa :=

(
a 0T

d−1

0d−1 sgn (a)|a|
1
d Id−1

)
and Ss :=

(
1 sT

0d−1 Id−1

)
be the parabolic scaling matrix and the shear matrix, respectively, where sgn (a) denotes the sign
of a. The (full) shearlet group S is defined to be the set R∗ × Rd−1 × Rd endowed with the group
operation

(a, s, t) (a′, s′, t′) = (aa′, s+ |a|1−1/ds′, t+ SsAat
′).

A left-invariant and right-invariant Haar measure of S is given by

µS,l =
da

|a|d+1
ds dt and µS,r =

da

|a|
ds dt,

respectively, and the modular function of S by ∆(a, s, t) = 1/|a|d. In the following, we use the
left-invariant Haar measure µS = µS,l.

Recall that a unitary representation of a locally compact group G on a Hilbert space H is a
homomorphism π : G → U(H) from G into the group of unitary operators U(H) on H which
is continuous with respect to the strong operator topology. For the shearlet group the mapping
π : S→ U(L2(Rd)) defined by

π(a, s, t)ψ(x) := |detAa|−
1
2ψ(A−1a S−1s (x− t)) (1)

is a unitary representation of S. The representation (1) is also square integrable, i.e., it is irreducible
and there exists a nontrivial admissible function ψ ∈ L2(S) fulfilling the admissibility condition∫

S
|〈f, π(a, s, t)ψ〉|2 dµ(a, s, t) <∞.
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Let the Fourier transform be defined by

Ff(ω) = f̂(ω) :=

∫
R2

f(x)e−2πi〈ω,x〉 dx.

Then straightforward computation yields

ψ̂a,s,t(ω) = |a|1−
1
2d e−2πitωψ̂

(
AT
aS

T
s ω
)
. (2)

More precisely it turns out that ψ ∈ L2(S) is admissible if and only if

Cψ :=

∫
Rd

|ψ̂(ω)|2

|ω1|d
dω <∞. (3)

A function ψ ∈ L2(Rd) fulfilling the admissibility condition (3) is called an admissible shearlet and
the transform SHψ : L2(Rd)→ L2(S) defined by

SHψf(a, s, t) := 〈f, π(a, s, t)ψ〉, (4)

continuous shearlet transform. It is known that there exist both bandlimited and compactly sup-
ported shearlets, see [2, 5, 15, 17].

2.2. Shearlet Coorbit Spaces. Let w be real-valued, continuous, submultiplicative weight on S,
i.e., w(gh) ≤ w(g)w(h) for all g, h ∈ S. Furthermore, we assume that the weight function w satisfies
all the coorbit-theory conditions as stated in [11, Section 2.2]. A function contained in

Aw := {ψ ∈ L2(Rd) : SHψ(ψ) = 〈ψ, π(·)ψ〉 ∈ L1,w(S)}.
of is called an analyzing vector. For an analyzing vector ψ we can consider the space

H1,w := {f ∈ L2(Rd) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)}, (5)

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dual H∼1,w, the space of all continuous conjugate-
linear functionals onH1,w. The spacesH1,w andH∼1,w are π-invariant Banach spaces with continuous

embeddingH1,w ↪→ H ↪→ H∼1,w. Then the inner product on L2(Rd)×L2(Rd) extends to a sesquilinear
form on H∼1,w×H1,w. Therefore for ψ ∈ H1,w and f ∈ H∼1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼1,w×H1,w

are well-defined.
Let m be a w-moderate weight on S which means that m(xyz) ≤ w(x)m(y)w(z) for all x, y, z ∈ S.

For 1 ≤ p ≤ ∞, let
Lp,m(S) := {F measurable : Fm ∈ Lp(S)}.

We are interested in the following Banach spaces which are called shearlet coorbit spaces

SCp,m := {f ∈ H∼1,w : SHψ(f) ∈ Lp,m(S)}, ‖f‖SCp,m := ‖SHψf‖Lp,m(S). (6)

Note that the definition of SCp,m is independent of the analyzing vector ψ and of the weight w, see
[6, Theorem 4.2]. In applications, one may start with some sub-multiplicative weight m and use
the symmetric weight w(g) = m#(g) := m(g) + m(g−1)∆(g) for the definition of Aw. Obviously,
we have that such m is w-moderate.

To construct Banach frames in coorbit spaces, the following better subset Bw of Aw has to be
non-empty:

Bw := {ψ ∈ L2(Rd) : SHψ(ψ) ∈ WL(C0, L1,w)},
where WL(C0, L1,w) is the Wiener-Amalgam space

WL(C0, L1,w) := {F : ‖(LxχQ)F‖∞ ∈ L1,w}, ‖(LxχQ)F‖∞ = sup
y∈xQ

|F (y)|
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and Q is a relatively compact neighborhood of the identity element e in S, see [11]. Note that
in general Bw is defined with respect to the right version WR(C0, L1,w) := {F : ‖(RxχQ)F‖∞ =
supy∈Qx−1 |F (y)| ∈ L1,w} of the Wiener-Amalgam space. Regarding that SHψ(ψ)(g) = SHψψ(g−1)

and assuming that Q = Q−1 both definitions of Bw coincide. We want to show that Bw contains
shearlets with compact support. To this end, we need the following lemma.

Lemma 2.1. Let y > 0, c > 0, δ > 0 and d ∈ [−δ, δ]. Then, for r > 2 and f(x) := 1
(c+y|x+d|)r , the

following estimates hold true∫
R
f(x) dx .

δ

cr
+

1

y
and

∫
R
|x|f(x) dx .

δ2

cr
+

1

y2
.

Proof. For |x| ≤ 2δ we see that f(x) ≤ 1
cr and for |x| > 2δ we obtain with |x + d| ≥ |x|

2 that

f(x) ≤ 1
(c+ y

2
|x|)r . Hence, we have

∫ ∞
0

f(x) dx ≤
∫ 2δ

−2δ

1

cr
dx+ 2

∫ ∞
δ

1

(c+ y
2x)r

dx ≤ 4δ

cr
+ 2

∫ ∞
0

1

(c+ y
2x)r

dx

≤ 4δ

cr
+

4

y
C <∞, r > 1.

The second integral can be estimated as∫ ∞
−∞
|x|f(x) dx ≤

∫ 2δ

−2δ

|x|
cr
dx+ 2

∫ ∞
0

x

(c+ y
2x)r

dx

≤ (4δ)2

cr
+

(
8

y2

)∫ ∞
0

t

(c+ t)r
dt

≤ (4δ)2

cr
+

(
8

y2

)
C <∞, r > 2.

�

By the following theorem, there exist compactly supported functions ψ ∈ L2(Rd) which are
contained in Bw for certain weights w.

Theorem 2.2. Let ψ(x) ∈ L2(Rd) fulfill suppψ ∈ QD, where QD := [−D,D]d. Suppose that the
weight function satisfies w(a, s, t) = w(a) ≤ |a|−ρ1 + |a|ρ2 for ρ1, ρ2 ≥ 0 and that

|ψ̂(ω1, ω2)| .
|ω1|n

(1 + |ω1|)r
d∏

k=2

1

(1 + |ωk|)r
(7)

for sufficiently large n and r. Then we have that ψ ∈ Bw.

Proof. To keep technicalities at a reasonable level, we restrict ourselves to the case w ≡ 1. Let

Q = Q−1 ⊂ [α
1
d
−1, α

1
d ]× [−σ, σ]d−1 × [−τ, τ ]d, where α > 1, σ, τ > 0. In the following, we restrict

our attention to group elements of S with a > 0. The other case can be deduced in a similar way.
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Let (aq, sq, tq) ∈ Q and

(a′, s′, t′) := (a, s, t)(aq, sq, tq) =

aaq, s+ a1−
1
d sq,


t1 + atq,1 + a

1
d (s1tq,2 + · · ·+ sd−1tq,d)

t2 + a
1
d tq,2

...

td + a
1
d tq,d


 .

(8)
We are interested in

G(a, s, t) := sup
(aq ,sq ,tq)∈Q

|SHψψ(a′, s′, t′)|.

With the support property of ψ and

ψa′,s′,t′(x) := π(a′, s′, t′)ψ(x) = (a′)−1+
1
2dψ


(a′)−1((x1 − t′1)− s1(x2 − t′2)− . . .− sd−1(xd − t′d))

(a′)−
1
d (x2 − t′2)

...

(a′)−
1
d (xd − t′d))


we obtain that SHψψ(a′, s′, t′) = 〈ψ,ψa′,s′,t′〉 6= 0 implies (x1, . . . , xd)

T ∈ [−D,D]d and

−D ≤ (a′)−
1
d (xj − t′j) ≤ D, j = 2, . . . , d, (9)

−a′D ≤ x1 − t′1 −
d∑
j=2

s′j−1(xj − t′j) ≤ a′D. (10)

With (8) it follows from (9) that

xj − a
1
d tq,j − (aaq)

1
dD ≤ tj ≤ xj − a

1
d tq,j + (aaq)

1
dD, j = 2, . . . , d, (11)

and from (10) that

x1 −
d∑
j=2

s′j−1(xj − t′j)− a′D ≤ t′1 ≤ x1 −
d∑
j=2

s′j−1(xj − t′j) + a′D

and with r := x1 −
∑d

j=2(sj−1 + a1−
1
d sq,j−1)(xj − (tj + a

1
d tq,j))− atq,1 − a

1
d
∑d

j=2 sj−1tq,j further

r − aaqD ≤ t1 ≤ r + aaqD.

Since Q ⊂ [α
1
d
−1, α

1
d ]× [−σ, σ]d−1 × [−τ, τ ]d we obtain from (11) that

−C(1 + a
1
d ) ≤ tj ≤ C(1 + a

1
d ) j = 2, . . . , d, C := max{D,Dα

1
d + τ}. (12)
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For estimating t1 we need an estimate for r:

r = x1 −
d∑
j=2

(sj−1 + a1−
1
d sq,j−1)(xj − (tj + a

1
d tq,j))− atq,1 − a

1
d

d∑
j=2

sj−1tq,j

= x1 − atq,1 −

 d∑
j=2

sj−1xj − sj−1tj + a1−
1
d sq,j−1xj − a1−

1
d sq,j−1tj − a1−

1
d sq,j−1a

1
d tq,j


≤ D + τa+ σD(d− 1)a1−

1
d + σ(d− 1)Ca1−

1
d + σ(d− 1)Ca+ στ(d− 1)a+

d∑
j=2

|sj−1|(D + C + Ca
1
d )

= Pd(a
1
d ) +

 d∑
j=2

|sj−1|

P1(a
1
d )

where Pk ∈ Πk are polynomials with nonnegative coefficients depending on α, σ, τ and D. Similarly
we conclude

r ≥ −Pd(a
1
d )−

 d∑
j=2

|sj−1|

P1(a
1
d ).

To keep the notation simple we use Pd for Pd(a
1
d ) + aaqD again (just pointing to the degree of the

polynomial) such that

−Pd(a
1
d )−

 d∑
j=2

|sj−1|

P1(a
1
d ) ≤ t1 ≤ Pd(a

1
d ) +

 d∑
j=2

|sj−1|

P1(a
1
d ). (13)

With Plancherel’s equality and the decay property of ψ̂ (7) we obtain

|SHψψ(a, s, t)| = |〈ψ,ψa,s,t〉| = |〈ψ̂, ψ̂a,s,t〉| =

∣∣∣∣∫
Rd
ψ̂(ω)ψ̂a,s,t(ω)dω

∣∣∣∣
≤
∫
Rd
|ψ̂(ω)|a1−

1
2d

∣∣∣∣∣∣∣∣∣ψ̂


aω1

a
1
d (s1ω1 + ω2)

...

a
1
d (sd−1ω1 + ωd)


∣∣∣∣∣∣∣∣∣ dω

≤ Ca1−
1
2d

∫
Rd

|ω1|n

(1 + |ω1|)r

×
d∏

k=2

1

(1 + |ωk|)r
|aω1|n

(1 + |aω1|)r
d∏

k=2

1

(1 + a
1
d |ω1sk−1 + ωk|)r

dω

≤ Ca1−
1
2d

+n

∫
Rd

|ω1|n

(1 + |ω1|)r
|ω1|n

(1 + |aω1|)r

×
d∏

k=2

(∫
R

1

(1 + |ωk|)r
1

(1 + a
1
d |ω1sk−1 + ωk|)r

dωk

)
dω1.

The inner integrals can be estimated using [5, Lemma 3.1], which results in

|SHψψ(a, s, t)| ≤ C J(a, s)
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where

J(a, s) = a1−
1
2d

+n

∫
R

|ω1|n

(1 + |ω1|)r
|ω1|n

(1 + |aω1|)r
d∏

k=2

(
1

a
1
d (1 + |ω1sk−1|)r

+
1

(1 + a
1
d |ω1sk−1|)r

)
dω1

= 2a1−
1
2d

+n

∫ ∞
0

ωn1
(1 + ω1)r

ωn1
(1 + aω1)r

d∏
k=2

(
1

a
1
d (1 + ω1|sk−1|)r

+
1

(1 + a
1
dω1|sk−1|)r

)
dω1.

Hence, we obtain for G(a, s, t) that |G(a, s, t)| ≤ C J(a′, s′). To conclude that G ∈ L1,w we have to
show that the following integral is finite:

I :=

∫
S
|G(a, s, t)|dt ds da

|a|d+1
.

Since |G(a, s, t)| is zero, except the tj are in the intervals given by (12) and (13), we have that

I .
∫ ∞
0

∫
Rd−1

(
Pd(a

1
d ) +

 d∑
j=2

|sj−1|

P1(a
1
d )
)
(1 + a

1
d )d−1J(a′, s′)ds

da

ad+1

.
∫ ∞
0

∫
Rd−1

(P2d−1(a
1
d ) +

 d∑
j=2

|sj−1|

Pd(a
1
d ))(aaq)

n+1− 1
2d

∫ ∞
0

ω2n
1

(1 + ω1)r(1 + aaqω1)r

×
d∏

k=2

(
1

(aaq)
1
d (1 + ω1|sk−1 + a1−

1
d sq,k−1|)r

+
1

(1 + (aaq)
1
dω1|sk−1 + a1−

1
d sq,k−1|)r

)
dω1ds

da

ad+1

.
∫ ∞
0

∫ ∞
0

an−
1
2d
−d ω2n

1

(1 + ω1)r(1 + aaqω1)r

×
∫
Rd−1

[
d∏

k=2

(
1

(aaq)
1
d (1 + ω1|sk−1 + a1−

1
d sq,k−1|)r

+
1

(1 + (aaq)
1
dω1|sk−1 + a1−

1
d sq,k−1|)r

)]

×

P2d−1(a
1
d ) +

 d∑
j=2

|sj−1|

Pd(a
1
d )

 ds da dω1.

We consider the inner integral I? given by

I? :=

∫
Rd−1

P2d−1(a
1
d ) +

 d∑
j=2

|sj−1|

Pd(a
1
d )


×

[
d∏

k=2

(
1

(aaq)
1
d (1 + ω1|sk−1 + a1−

1
d sq,k−1|)r

+
1

(1 + (aaq)
1
dω1|sk−1 + a1−

1
d sq,k−1|)r

)]
ds.

Setting

A1(x) :=
1

(aaq)
1
d (1 + ω1|x+ a1−

1
dxq|)r

and A2(x) :=
1

(1 + (aaq)
1
dω1|x+ a1−

1
dxq|)r

,

we obtain with the symmetry in s and Lemma 2.1 the following estimates∫ ∞
−∞

A1(x) +A2(x)dx . a−
1
d

(
a1−

1
dσ +

1

ω1

)
+ a1−

1
dσ +

1

ω1a
1
d
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and

∫ ∞
−∞
|x|(A1(x) +A2(x))dx . a−

1
d

((
a1−

1
dσ
)2

+

(
1

ω1

)2
)

+
(
a1−

1
dσ
)2

+

(
1

ω1a
1
d

)2

.

We can rewrite I? in the following way

I? =

∫
Rd−1

P2d−1(a
1
d ) +

 d∑
j=2

|sj−1|

Pd(a
1
d )

[ d∏
k=2

(A1(sk−1) +A2(sk−1))

]
ds

= P2d−1(a
1
d )

∫
Rd−1

d∏
k=2

(A1(sk−1) +A2(sk−1)) ds

+ Pd(a
1
d )

∫
Rd−1

 d∑
j=2

|sj−1|

 d∏
k=2

(A1(sk−1) +A2(sk−1)) ds

= P2d−1(a
1
d )

d∏
k=2

∫ ∞
−∞

(A1(sk−1) +A2(sk−1)) dsk−1

+ Pd(a
1
d )

d∑
j=2

∫ ∞
−∞
|sj−1|(A1(sj−1) +A2(sj−1)) dsj−1

d∏
k=2
k 6=j

∫ ∞
−∞

(A1(sk−1) +A2(sk−1)) dsk−1.

Together with the above estimates we obtain

I? . P2d−1(a
1
d )

(
a−

1
d

(
a1−

1
dσ +

1

ω1

)
+ a1−

1
dσ +

1

ω1a
1
d

)d−1

+ Pd(a
1
d )

(
a−

1
d

(
a1−

1
dσ +

1

ω1

)
+ a1−

1
dσ +

1

ω1a
1
d

)d−2
(d− 1)

×

a− 1
d

((
a1−

1
dσ
)2

+

(
1

ω1

)2
)

+
(
a1−

1
dσ
)2

+

(
1

ω1a
1
d

)2


. P2d−1(a
1
d )

(
a1−

2
dσ + a1−

1
dσ +

2

ω1a
1
d

)d−1

+ Pd(a
1
d )

(
a1−

2
dσ + a1−

1
dσ +

2

ω1a
1
d

)d−2(
a2−

3
dσ2 +

1

ω2
1a

1
d

+ a2−
2
dσ2 +

1

ω2
1a

2
d

)
.
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We then have for I that

I .
∫ ∞
0

∫ ∞
0

an−
1
2d
−d ω2n

1

(1 + ω1)r(1 + aaqω1)r

P2d−1(a
1
d )

(
a1−

2
dσ + a1−

1
dσ +

2

ω1a
1
d

)d−1

+ Pd(a
1
d )

(
a1−

2
dσ + a1−

1
dσ +

2

ω1a
1
d

)d−2(
a2−

3
dσ2 +

1

ω2
1a

1
d

+ a2−
2
dσ2 +

1

ω2
1a

2
d

) da dω1

.
∫ ∞
0

ω2n
1

(1 + ω1)r

∫ ∞
0

an−
1
2d
−d 1

( 1
aq

+ aω1)r

P2d−1(a
1
d )

(
a1−

2
dσ + a1−

1
dσ +

2

ω1a
1
d

)d−1

+ Pd(a
1
d )

(
a1−

2
dσ + a1−

1
dσ +

2

ω1a
1
d

)d−2(
a2−

3
dσ2 +

1

ω2
1a

1
d

+ a2−
2
dσ2 +

1

ω2
1a

2
d

) da dω1

.
∫ ∞
0

ω2n
1

(1 + ω1)r

∫ ∞
0

an−
1
2d
−d 1

( 1
aq

+ aω1)r

(
P2d−1(a

1
d )a−

d−1
d

(
a1−

1
dσ + aσ +

2

ω1

)d−1
+ Pd(a

1
d )a−1

(
a1−

1
dσ + aσ +

2

ω1

)d−2(
a2−

1
dσ2 +

a
1
d

ω2
1

+ a2σ2 +
1

ω2
1

))
da dω1

and since (x+ y)d ≤ (x+ 1)d(y + 1)2 further

.
∫ ∞
0

ω2n
1

(1 + ω1)r

∫ ∞
0

an−
1
2d
−d 1

( 1
aq

+ aω1)r

(
P2d−1(a

1
d )a−

d−1
d Pd2−d(a

1
d )Pd−1(ω

−1
1 )

+ Pd(a
1
d )a−1Pd2−2d(a

1
d )Pd−2(ω

−1
1 )

(
P2d(a

1
d ) + (1 + a

1
d )

1

ω2
1

))
da dω1

.
∫ ∞
0

ω2n
1

(1 + ω1)r
Pd−1(ω

−1
1 )

∫ ∞
0

an−
1
2d
−d− d−1

d
1

( 1
aq

+ aω1)r
Pd2+d−1(a

1
d ) da dω1

+

∫ ∞
0

ω2n
1

(1 + ω1)r
Pd−2(ω

−1
1 )

∫ ∞
0

an−
1
2d
−d−1 1

( 1
aq

+ aω1)r
Pd2+d(a

1
d ) da dω1

+

∫ ∞
0

ω2n−2
1

(1 + ω1)r
Pd−2(ω

−1
1 )

∫ ∞
0

an−
1
2d
−d−1 1

( 1
aq

+ aω1)r
Pd2−d+1(a

1
d ) da dω1.

Substituting b := aω1 with db = ω1da we finally get

.
∫ ∞
0

ω2n−1
1

(1 + ω1)r
Pd−1(ω

−1
1 )

∫ ∞
0

(
b

ω1

)n− 1
2d
−d− d−1

d 1

( 1
aq

+ b)r
Pd2+d−1

((
b

ω1

) 1
d

)
db dω1

+

∫ ∞
0

ω2n−1
1

(1 + ω1)r
Pd−2(ω

−1
1 )

∫ ∞
0

(
b

ω1

)n− 1
2d
−d−1 1

( 1
aq

+ b)r
Pd2+d

((
b

ω1

) 1
d

)
db dω1

+

∫ ∞
0

ω2n−3
1

(1 + ω1)r
Pd−2(ω

−1
1 )

∫ ∞
0

(
b

ω1

)n− 1
2d
−d−1 1

( 1
aq

+ b)r
Pd2−d+1

((
b

ω1

) 1
d

)
db dω1
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.
∫ ∞
0

ω
n− 1

2d
+d

1

(1 + ω1)r
Pd−1(ω

−1
1 )

∫ ∞
0

bn+
1
2d
−d−1

( 1
aq

+ b)r
Pd2+d−1

((
b

ω1

) 1
d

)
db dω1

+

∫ ∞
0

ω
n+d+ 1

2d
1

(1 + ω1)r
Pd−2(ω

−1
1 )

∫ ∞
0

bn−
1
2d
−d−1

( 1
aq

+ b1)r
Pd2+d

((
b

ω1

) 1
d

)
db dω1

+

∫ ∞
0

ω
n−2+d+ 1

2d
1

(1 + ω1)r
Pd−2(ω

−1
1 )

∫ ∞
0

bn−
1
2d
−d−1

( 1
aq

+ b)r
Pd2−d+1

((
b

ω1

) 1
d

)
db dω1.

Since Pk ∈ Πk are polynomials we see that the integrals are finite for sufficiently large n ≥ f1(d)
and r ≥ f2(n, d). �

A (countable) family X = {gi = (ai, si, ti) : i ∈ I} in S is said to be U -dense if
⋃
i∈I giU = S,

and separated if for some compact neighborhood Q of e we have giQ∩ gjQ = ∅, i 6= j, and relatively
separated if X is a finite union of separated sets. Let α > 1 and β, τ > 0 be defined such that
[1/α, α)× [−β, β)d−1 ×Qτ ⊂ U. Then it was shown in [4] that for a neighborhood

U ⊇ [α
1
d
−1, α

1
d )× [−β

2
,
β

2
)d−1 × [−τ

2
,
τ

2
)d, α > 1, β, τ > 0 (14)

of the identity, the set

X :=
{

(εα−j , βα−j(1−
1
d
)k, S

βα−j(1−
1
d
)k
Aα−jτ l) : j ∈ Z, k ∈ Zd−1, l ∈ Zd, ε ∈ {−1, 1}

}
(15)

is U -dense and relatively separated. The following theorem collects results about the existence of
atomic decompositions and Banach frames from [3, 6].

Theorem 2.3. Let 1 ≤ p ≤ ∞ and ψ ∈ Bw, ψ 6= 0. Then there exists a (sufficiently small)
neighborhood U of e so that for any U -dense and relatively separated set X = {gi = (ai, si, ti) : i ∈
I} the set {π(gi)ψ)} provides an atomic decomposition and a Banach frame for SCp,m:
Atomic Decompositions: If f ∈ SCp,m, then

f =
∑
i∈I

ci(f)π(gi)ψ, (16)

where the sequence of coefficients depends linearly on f and satisfies

‖(ci(f))i∈I‖`p,m . ‖f‖SCp,m (17)

with `p,m being defined by

`p,m := {c = (ci)i∈I : ‖c‖`p,m := ‖cm‖`p <∞},
where m = (m(gi))i∈I . Conversely, if (ci(f))i∈I ∈ `p,m, then f =

∑
i∈I ciπ(gi)ψ is in SCp,m and

‖f‖SCp,m . ‖(ci(f))i∈I‖`p,m . (18)

Banach Frames: The set {π(gi)ψ : i ∈ I} is a Banach frame for SCp,m which means that

i)
‖f‖SCp,m ∼ ‖(〈f, π(gi)ψ〉H∼1,w×H1,w)i∈I‖`p,m , (19)

ii) there exists a bounded, linear reconstruction operator R from `p,m to SCp,m such that

R
(

(〈f, ψ(gi)ψ〉H∼1,w×H1,w)i∈I

)
= f.
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3. Characterization of Coorbit Spaces and Besov Spaces

In the next section, we will show that traces of shearlet coorbit spaces onto certain hyperplanes
are contained in Besov spaces or again in shearlet coorbit spaces. The proof of these trace theorems
will heavily rely on the characterization

• of Besov spaces via atomic decompositions,
• of coorbit spaces via expansions of molecules.

The following subsections provide the results which will be necessary for our analysis.

3.1. Atoms in Besov Spaces. We start by the characterization of homogeneous Besov spaces
Bσ
p,q from [9], see also [14, 20]. For inhomogeneous Besov spaces we refer to [19]. For α > 1, D > 1

and K ∈ N0, a K times differentiable function φ on Rd is called a K-atom if the following two
conditions are fulfilled:

A1) suppφ ⊂ DQj,l(Rd) for some l ∈ Rd,
where DQj,l(Rd) denotes the cube in Rd centered at α−jl with sides parallel to the coor-
dinate axes and side length 2α−jD.

A2) |Dγφ(x)| ≤ α|γ|j for |γ| ≤ K.

Now the homogeneous Besov spaces can be characterized as follows.

Theorem 3.1. Let D > 1 and K ∈ N0 with K ≥ 1 + bσc, σ > 0 be fixed. Let 1 ≤ p ≤ ∞. Then
f ∈ Bσ

p,q if and only if it can be represented as

f(x) =
∑
j∈Z

∑
l∈Zd

λ(j, l)φj,l(x), (20)

where the φj,l are K-atoms with suppφj,l ⊂ DQj,l(Rd) and

‖f‖Bσp,q ∼ inf
(∑
j∈Z

α
j(σ− d

p
)q(∑

l∈Zd
|λ(j, l)|p

) q
p

) 1
q

where the infimum is taken over all admissible representations (20).

3.2. Molecules in Shearlet Coorbit Spaces. Further, we will make use of the recently intro-
duced molecules in general coorbit spaces, see [12]. We summarize the results needed from [12]
for our shearlet coorbit spaces. Let ψ ∈ Bw, ψ 6= 0 and let X := {gi}i∈I be a U -dense, relatively
separated family in S. A collection of functions {φi}i∈I from L2(Rd) is called a set of molecules, if
there exists an envelope function H ∈ WR(L∞, L1,w) such that

|SHψφi(g)| ≤ H(g−1i g), i ∈ I.
This definition of the molecules does not depend on the particular choice of ψ ∈ Bw. For a fixed
ψ ∈ Bw and H ∈ WR(L∞, L1,w), let

C := {φ ∈ L2(Rd) : |SHψφ(g)| ≤ H(g)}.
Then, for φi ∈ C, the family {π(gi)φi : i ∈ I} is a set of molecules since

|SHψ(π(gi)φi)(g)) = |〈π(gi)φi, π(g)ψ〉| = |SHψφi(g−1i g)| ≤ H(g−1i g).

The following synthesis property was proved in [12] for general coorbit spaces.

Theorem 3.2. Let {φi}i∈I be a set of molecules subordinated to H ∈ WR(L∞, L1,w). If (ci)i∈I ∈
`p,m, p ∈ [1,∞], then f :=

∑
i∈I ciφi ∈ SCp,m and

‖f‖SCp,m . ‖(ci)i∈I‖`p,m .
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4. Traces of Shearlet Coorbit Spaces

In this section, we are interested in traces of shearlet coorbit spaces. Traces of shearlet coorbit
spaces on R2 onto the real axes were considered in [5]. It turned out that such traces of subspaces of
shearlet coorbit spaces resembling shearlets on the cone are contained in Besov spaces. We will see
that in higher dimensions the shear parameter will play an important role. More precisely, traces
onto d − 1-dimensional hyperplanes containing the x1-axis will be contained in shearlet coorbit
spaces again.

To keep the technicalities at a reasonable level, we restrict ourselves to the practically most
important case of three dimensions. Moreover, we are only interested in weights

m(a, s, t) = m(a) := |a|−r, r ≥ 0

and use the abbreviation

SCp,r := SCp,m.

By (15), the set

{(εα−j , βα
−2j
3 k, S

βα
−2j
3 k

Aα−jτ l) : j ∈ Z, k ∈ Z2, l ∈ Z3, ε ∈ {−1, 1}}. (21)

is U -dense and relatively separated for U defined as in (14). We restrict ourselves to the case a > 0
such that ε = +1. The case a < 0 (and ε = −1) can be handled analogously. For a := α−j ,

s := βα−
2j
3 (k1, k2)

T and t := S
βα
−2j
3 k

Aα−jτ l we use the abbreviation ψj,k,l := π(a, s, t)ψ. By

straightforward computation we obtain that

ψj,k,l(x) = α
5j
6 ψ


αjx1 − τ l1 − α

j
3β(k1x2 + k2x3)

α
j
3x2 − τ l2

α
j
3x3 − τ l3

 . (22)

Replacing f(x) by f τ (x) := f(τx) and ψ(x) by ψτ (x) := ψ(τx), we see that we can work without
loss of generality with τ := 1. In the following, we restrict our attention to this case. Note that if
ψτ (x) has support in [−D,D]3 then ψ has support in [−τD, τD]3.

By Theorem 2.3, any f ∈ SCp,r can be written as

f(x) =
∑
j∈Z

∑
k∈Z2

∑
l∈Z3

c(j, k, l)ψj,k,l(x). (23)

To derive reasonable trace and embedding theorems, it is necessary to introduce the following

subspaces of SCp,r. For fixed ψ ∈ Bw, we denote by SC(η)p,r , η ∈ {0, 1}2 the closed subspace of

SCp,r consisting of those functions which are representable as in (23) but with integers |ki| ≤ α
2j
3 if

ηi = 1. We want to investigate the traces of functions lying in the subspaces SC(η)p,r with respect to
the coordinate planes. For symmetry reasons we can restrict our attention to the x1x2-plane and
to the x2x3-plane. We start with the latter one, where we prove that the traces are contained in
Besov spaces.

Theorem 4.1. Let Trx1f denote the restriction of f to the x2x3-plane, i.e., (Trx1f)(x2, x3) :=

f(0, x2, x3). Then the embedding Trx1(SC(1,1)p,r (R3)) ⊂ Bσ1
p,p(R2) + Bσ2

p,p(R2) holds true, where σ1 +

2bσ1c = 3r − 21
2 + 8

p and σ2 = 3r − 1
2 −

5
2 + 2

p .
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Proof. We split f into f = f1 + f2 as follows:

f1(x1, x2, x3) :=
∑
j≥0

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
l∈Z3

c(j, k, l)ψj,k,l(x1, x2, x3) (24)

f2(x1, x2, x3) :=
∑
j<0

∑
l∈Z3

c(j, 0, l)ψj,k,l(x1, x2, x3). (25)

By Theorem 2.2, the analyzing function ψ can be chosen compactly supported in [−D,D]3 for some
D > 1. For our σi, i = 1, 2 defined in the statement of theorem, let Ki := 1 + bσic, i = 1, 2 and
K := max{K1,K2}. We normalize ψ such that its derivatives of order 0 ≤ |γ| ≤ K are not larger
than 1/max{1, βK}. By the support assumption on ψ we have that

α−
j
3 (l3 −D) ≤ x3 ≤ α−

j
3 (l3 +D)

α−
j
3 (l2 −D) ≤ x2 ≤ α−

j
3 (l2 +D)

−D − α
j
3β(k1x2 + k2x3) ≤ l1 ≤ D − α

j
3β(k1x2 + k2x3).

Consequently, we obtain that

−β(k1l2 + k2l3)−D(1 + β(|k1|+ |k2|)) ≤ l1 ≤ −β(k1l2 + k2l3) +D(1 + β(|k1|+ |k2|)).

Let

I := I(k1, k2, l1, l2) := {n ∈ Z : |n+ β(k1l2 + k2l3)| ≤ D(1 + β(|k1|+ |k2|))}.
For j ≥ 0, we set

λ(j, l2, l3) := α
5+4K1

6
j

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
l1∈I
|c(j, k, l)|

and

φj,l2,l3(x2, x3) := λ(j, l2, l3)
−1α

2K1
3
j

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
l1∈I

c(j, k, l)α−
2K1
3
jψj,k,l(0, x2, x3)

if λ(j, l2, l3) 6= 0 and for j < 0 analogously

λ(j, l2, l3) := α
5
6
j
∑
l1∈I
|c(j, 0, l)|

and

φj,l2,l3(x2, x3) := λ(j, l2, l3)
−1
∑
l1∈I

c(j, 0, l)ψj,k,l(0, x1, x2)

if φj,l2,l3 6= 0. In both cases we set φj,l2,l3 := 0 if λ(j, l2, l3) = 0. Now we can write

Trx1f(x2, x3) = f(0, x2, x3)

=
∑
j∈Z

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
(l2,l3)∈Z2

∑
l1∈I

c(j, k, l)ψj,k,l(0, x2, x1)

=
∑
j≥0

∑
(l2,l3)∈Z2

λ(j, l2, l3)φj,l2,l3(x2, x3) +
∑
j<0

∑
(l2,l3)∈Z2

λ(j, l2, l3)φj,l2,l3(x2, x3)

= Trx1f1(x2, x3) + Trx1f2(x2, x3).
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We want to show that the φj,l2,l3 are Ki-atoms. First, we have that

suppψj,k,l(0, x2, x3) = suppψ

−α
j
3β(k1x2 + k2x3)− l1

α
j
3x2 − l2

α
j
3x3 − l3

 ⊂ DQj,l2,l3(R2)

with respect to the side length 2α−
j
3D. Since we sum over finite sets, this support property is also

true for φj,l2,l3 . Next, we conclude by |ki| ≤ α
2j
3 , i = 1, 2 that for j ≥ 0 the derivatives of φj,l2,l3

can be estimated as

α
−5−4K1

6
j
∣∣∣α 5

6
jDγψ

−α
j
3β(k1x2 + k2x3)− l1

α
j
3x2 − l2

α
j
3x3 − l3

∣∣∣ ≤ α−K1
2j
3 (α

j
3α

2j
3 )|γ| ≤ α

j
3
|γ|, |γ| ≤ K1.

For j < 0 we have similarly that

α−
5
6
j
∣∣∣α 5

6
jDγψ

 −l1
α
j
3x2 − l2

α
j
3x3 − l3

∣∣∣ ≤ α j
3
|γ|, |γ| ≤ K2.

Thus, by their definition, the φj,l2,m3 are Ki-atoms. By Theorem 3.1 and Theorem 2.3 we get

‖Trx1f1‖
p

B
σ1
p,p(R2)

.
∑
j≥0

α
j
3
(σ1− 2

p
)p

∑
(l2,l3)∈Z2

|λ(j, l2, l3)|p

.
∑
j≥0

α
j
3
(σ1− 2

p
)p
α

5+4K1
6

jp
∑

(l2,l3)∈Z2

( ∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
l1∈I
|c(j, k, l)|

)p
and since (

∑N
i=1 |zi|)p ≤ Np−1∑ |zi|p further

‖Trx1f1‖
p

B
σ1
p,p(R2)

.
∑
j≥0

α
j
3
(σ1− 2

p
)p
α

5+4K1
6

jpα2j(p−1)
∑

(l2,l3)∈Z2

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
l1∈I
|c(j, k, l)|p

.
∑
j≥0

αjpr
∑

|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
l1∈I
|c(j, k, l)|p

. ‖f‖pSCp,r(R3)

with r = 1
3(σ1 + 2bσ1c+ 21

2 −
8
p). Analogously we can compute

‖Trx1f2‖
p

B
σ2
p,p(R2)

.
∑
j<0

α
j
3
(σ2− 2

p
)p

∑
(l2,l3)∈Z2

|λ(j, l2, l3)|p

.
∑
j<0

α
j
3
(σ2− 2

p
)p
α

5
6
jp

∑
(l2,l3)∈Z2

(∑
l1∈I
|c(j, k, l)|

)p
.
∑
j<0

αjpr
∑
l

|c(j, k, l)|p

. ‖f‖pSCp,r(R3)

with r = 1
3(σ2 + 5

2 −
2
p). �
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Let us now turn to traces on the x1x2-plane. In this case the shear parameter will play an
additional role so that the traces will again be contained in shearlet coorbit spaces. For the proof
of the theorem, we need the following auxiliary lemma.

Remark 4.2. Consider the representation π((a, s, t)|R2)ψ(x) := |a|−
2
3ψ(A−1a S−1s (x − t)) of the

shearlet group on L2(R2) with

Aa :=

(
a 0

0 sgn (a)|a|
1
3

)
and Ss :=

(
1 s
0 1

)
such that

π((a, s, t)|R2)ψ(x) = |a|−
2
3ψ

(
a−1(x1 − t1 − s(x2 − t2))

sgn (a)|a|−
1
3 (x2 − t2)

)
(26)

which is slightly different from (1). The representation (26) can be interpreted as the restriction of
(1) for d = 3 to the two dimensional case. This representation preserves all the properties shown
in Section 2, in particular, we have that for a neighborhood

U ⊇ [α−
2
3 , α

1
3 )× [−β

2
,
β

2
)× [−τ

2
,
τ

2
)2, α > 1, β, τ > 0

of the identity, the set

X :=

{
(εαj , α

2j
3 βk1, S

α
2j
3 βk1

Aαjτ l) : j ∈ Z, k1 ∈ Z, l ∈ Z2, ε ∈ {−1, 1}
}

is U -dense and relatively separated.

Proof. The group properties, the representation and the U-density can be obtained by straightfor-
ward computation.

Another way to see this is by identifying R2 ' R2 × 0 (and Z2 ' Z2 × 0) and using these sets
with the original setting in Section 2 omitting the third components (i. e. rows and columns). �

Using the setting from Lemma 4.2 to define our shearlet coorbit spaces on R2, we can prove the
following theorem.

Theorem 4.3. Let Trx3f denote the restriction of f to the x1x2-plane, i.e., (Trx3f)(x1, x2) :=

f(x1, x2, 0). Then Trx3(SC(0,1)p,r (R3)) ⊂ SCp,r1(R2)+SCp,r2(R2), where r1 = r− 5
6 + 2

3p and r2 = r− 1
6 .

Proof. We split f into f = f1 + f2 as follows:

f1(x1, x2, x3) :=
∑
j≥0

∑
k1∈Z

∑
|k2|≤α2j/3

∑
l∈Z3

c(j, k, l)ψj,k,l(x1, x2, x3), (27)

f2(x1, x2, x3) :=
∑
j<0

∑
k1∈Z

∑
l∈Z3

c(j, k1, 0, l)ψj,k1,0,l(x1, x2, x3). (28)

Now Trx3f can be written as

Trx3f(x1, x2) = f(x1, x2, 0)

=
∑
j∈Z

∑
k1∈Z

∑
|k2|≤α2j/3

∑
l∈Z3

c(j, k, l)α
5j
6 ψ

α
jx1 − l1 − α

j
3βk1x2

α
j
3x2 − l2
−l3


︸ ︷︷ ︸

ψj,k,l(x1,x2,0)

.
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By Theorem 2.2 we can choose ψ compactly supported in [−D,D]3 for some D > 1. Consequently,
we obtain

Trx3f(x1, x2) =
∑
j∈Z

∑
k1∈Z

∑
|k2|≤α2j/3

∑
(l1,l2)∈Z2

∑
|l3|≤D

c(j, k, l)ψj,k,l(x1, x2, 0)

=
∑
j≥0

∑
k1∈Z

∑
(l1,l2)∈Z2

λ(j, k1, l1, l2)φj,k1,l1,l2 +
∑
j<0

∑
k1∈Z

∑
(l1,l2)∈Z2

λ(j, k1, l1, l2)φj,k1,l1,l2

= Trx3f1(x1) + Trx3f2(x1),

where for j ≥ 0,

φj,k1,l1,l2(x1, x2) := λ(j, k1, l1, l2)
−1α

j
6

∑
|k2|≤α2j/3

∑
|l3|≤D

c(j, k, l)α
2j
3 ψ

α
jx1 − l1 − α

j
3βk1x2

α
j
3x2 − l2
l3


if

λ(j, k1, l1, l2) := α
j
6

∑
|k2|≤α2j/3

∑
|l3|≤D

|c(j, k, l)| 6= 0

and for j < 0,

φj,k1,l1,l2(x1, x2) := λ(j, k1, l1, l2)
−1α

j
6

∑
|l3|≤D

c(j, k1, 0, l)α
2j
3 ψ

α
jx1 − l1 − α

j
3βk1x2

α
j
3x2 − l2
l3


if

λ(j, k1, l1, l2) := α
j
6

∑
|l3|≤D

|c(j, k1, 0, l)| 6= 0.

In both cases we set φj,k1,l1,l2(x1, x2) := 0 if λ(j, k1, l1, l2) = 0.
The functions φj,k1,l1,l2 are molecules by the following reasons: We restrict our attention to a > 0

and τ = 1. With

a := α−j , s := α−
2j
3 βk1 and

(
t1
t2

)
:= S

α−
2j
3 βk1

Aα−j

(
l1
l2

)
=

(
α−jl1 + α−jl2βk1

α−
j
3 l2

)
(29)

representation (26) reads as

π((a, s, t)|R2)ψ(x) = α
2j
3 ψ

(
αjx1 − l1 − α

j
3βk1x2

α
j
3x2 − l2

)
.

With gi = (ai, si, ti) defined by (29) the functions φj,k1,l1,l2(x1, x2) (for j ≥ 0) can be written as

φj,k1,l1,l2(x1, x2) = λ(j, k1, l1, l2)
−1α

j
6

∑
|k2|≤α2j/3

∑
|l3|≤D

c(j, k,m)π(gi|R2)ψ(x1, x2, l3)

= π(gi|R2)
(
λ(j, k1, l1, l2)

−1α
j
6

∑
|k2|≤α2j/3

∑
|l3|≤D

c(j, k, l)ψ(x1, x2, l3)
)

= π(gi|R2)φi(x1, x2),
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with φi(x1, x2) := λ(j, k1, l1, l2)
−1α

j
6
∑
|k2|≤α2j/3

∑
|l3|≤D c(j, k, l)ψ(x1, x2, l3). Let ψ̃ := ψ(x1, x2, 0)

and H(g) := max|l3|≤D |SHψ̃ψ(·, l3)(g)|. Then we know by Theorem 2.2 that H ∈ WR(L∞, L1,w).

Further we obtain

|SHψ̃ (φi) (g)| ≤ λ(j, k1, l1, l2)
−1α

j
6

∑
|k2|≤α2j/3

∑
|l3|≤D

|c(j, k, l)| |SHψ̃ψ(·, l3)(g)|︸ ︷︷ ︸
≤H(g)

≤ |H(g)|.

Hence, φj,k1,l1,l2 is a molecule for j ≥ 0. For j < 0 it can be shown similarly that φj,k1,l1,l2 is a
molecule.

Finally, we obtain by Theorem 3.2 and Theorem 2.3 the desired trace estimate for f ∈ SC(0,1)p,r (R3)):

‖Trx3f1‖
p
SCp,r1 (R2)

.
∑
j≥0

∑
k1∈Z

∑
(l1,l2)∈Z2

αjpr1 |λ(j, k1, l1, l2)|p

.
∑
j≥0

αjp(r1+
1
6
)
∑
k1∈Z

∑
(l1,l2)∈Z2

∣∣∣ ∑
|k2|≤α2j/3

∑
|l3|≤D

|c(j, k1, k2, l)|
∣∣∣p,

.
∑

j,k1,l1,l2

αjp(r1+
1
6
)α

2j
3
(p−1)

∑
|k2|≤α2j/3

∑
|l3|≤D

|c(j, k1, k2, l)|p

. ‖f‖pSCp,r(R3)

with r = r1 + 5
6 −

2
3p . In the same way we obtain

‖Trx3f2‖
p
SCp,r2 (R2)

.
∑
j<0

∑
k1∈Z

∑
(l1,l2)∈Z2

αjpr2 |λ(j, k1, l1, l2)|p

.
∑

j,k1,l1,l2

αjp(r2+
1
6
)
∣∣∣ ∑
|l3|≤D

|c(j, k1, k2, l)|
∣∣∣p

.
∑

j,k1,l1,l2

αjp(r2+
1
6
)
∑
|l3|≤D

|c(j, k1, k2, l)|p

. ‖f‖pSCp,r(R2)

with r = r2 + 1
6 . This completes the proof. �

5. Embeddings into Besov Spaces

In this section, we prove the following embedding result of certain subspaces of shearlet coorbit
spaces in three dimensions into (sums of) homogeneous Besov spaces. We like to mention that
embedding results in Besov spaces have also been shown for the curvelet setting by Borup and
Nielsen [1]. However, the technique used by these authors is completely different since they work
in the frequency domain.

Theorem 5.1. The embedding SC(1,1)p,r (R3) ⊂ Bσ1
p,p(R3) +Bσ2

p,p(R3), holds true, where

σ1 + 2bσ1c = 3r − 21

2
+

9

p
and σ2 −

2

3
bσ2c = r +

5

3p
+

7

6
.
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Proof. By (23) we know that f ∈ SC(1,1)p,r can be written as

f(x) =
∑
j∈Z

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
l∈Z3

c(j, k, l)ψj,k,l(x)

By Theorem 2.2, the analyzing function ψ can be chosen compactly supported in [−D,D]3 for
some D > 1. For our σi, i = 1, 2 defined in the theorem, let Ki := 1 + bσic, i = 1, 2, and
K := max{K1,K2}.

We split f ∈ SC(1,1)p,r as in (27) and (28) into f1 and f2 and restrict our attention to τ = 1 and
β = 1. We normalized ψ such that its derivatives of order 0 ≤ |γ| ≤ K are not larger than 1. With
the index transform l1 = r1 − (k1l2 + k2l3) we obtain

f1(x) =
∑
j≥0

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
(l2,l3)∈Z2

∑
n1∈Z

∑
r1∈I(j,n1)

c(j, k1, k2, r1 − k1l2 − k2l3, l2, l3)

× α
5j
6 ψ

αjx1 − r1 + k1l2 + k2l3 − α
j
3 (k1x2 + k2x3)

α
j
3x2 − l2

α
j
3x3 − l3

 ,

where I(j, n1) := {r ∈ Z : α
2j
3 (n1 − 1) < r ≤ α

2j
3 n1}. For j ≥ 0 we set

φj,n1,l2,l3(x) :=λ(j, n1, l2, l3)
−1α

5+4K1
6

j
∑

|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
r1∈I(j,n1)

c(j, k1, k2, r1 − k1l2 − k2l3, l2, l3)

× α−
2K1
3
jψ

αjx1 − r1 + k1l2 + k2l3 − α
j
3 (k1x2 + k2x3)

α
j
3x2 − l2

α
j
3x3 − l3

 ,

if λ(j, n1, l2, l3) 6= 0 and φj,n1,l2,l3(x) := 0 otherwise, where

λ(j, n1, l2, l3) := α
5+4K1

6
j

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

∑
r1∈I(j,n1)

|c(j, k1, k2, r1 − k1l2 − k2l3, l2, l3)|.

Then we see that

f1(x) =
∑
j≥0

∑
n1∈Z

∑
(l2,l3)∈Z2

λ(j, n1, l2, l3)φj,n1,l2,l3(x).

By the support assumption on ψ, the functions appearing in the definition of φj,n1,l2,l3 can only be
non-zero if the following conditions are satisfied:

−D ≤ α
j
3xi − li ≤ D, i.e., α−

j
3 (li −D) ≤ xi ≤ α−

j
3 (li +D), i = 2, 3

−D ≤ αjx1 − r1 + k1l2 + k2l3 − α
j
3 (k1x2 − k2x3) ≤ D

such that

x1 ≤ α−jr1 + α−jk1(α
j
3x2 − l2) + α−jk2(α

j
3x3 − l3) + α−jD

≤ α−jr1 + α−
j
3 (3D) ≤ α−

j
3n1 + α−

j
3 (3D)

and similarly x1 ≥ α−jr1 − α−
j
3 (3D) ≥ α−

j
3n1 − α−

j
3 (4D). And together

α−
j
3n1 − α−

j
3 (4D) ≤ x1 ≤ α−

j
3n1 + α−

j
3 (3D)
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Thus, φj,n1,l2,l3 is supported in 8DQj,n1,l2,l3 , where the cube is considered with respect to side length

2α
j
3 . The bounds |Dγφj,n1,l2,l3 | ≤ α

j
3
|γ|, |γ| ≤ K1 can be derived as in the proof of Theorem 4.1.

Hence the functions φj,n1,l2,l3 are K1-atoms. Now we obtain by Theorem 3.1 that

‖f1‖pBσ1p,p(R3)
.
∑
j∈Z

α
j
3
(σ1− 3

p
)p
∑
n1∈Z

∑
(l2,l3)∈Z2

|λ(j, n1, l2, l3)|p

.
∑
j∈Z

α
j
3
(σ1− 3

p
)p
α(

5+4K1
6

)jp
∑

(n1,l2,l3)∈Z3

∣∣∣ ∑
|k1|,|k2|≤α2j/3

∑
r1∈I(j,n1)

|c(j, k1, k2, r1 − k1l2 − k2l3, l2, l3)|
∣∣∣p

.
∑
j∈Z

α
j
3
(σ1− 3

p
)p+(

5+4K1
6

)jp+2j(p−1) ∑
(n1,l2,l3)∈Z3

∑
|k1|,|k2|≤α2j/3

∑
r1∈I(j,n1)

|c(j, k1, k2, r1 − k1l2 − k2l3, l2, l3)|p

.
∑
j∈Z

αjpr
∑
l∈Z3

∑
|k1|≤α2j/3

∑
|k2|≤α2j/3

|c(j, k1, k2, l1, l2, l3)|p

. ‖f‖pSCp,r(R3)
.

with r = 1
3(σ1 + 2bσ1c+ 21

2 −
9
p). In the case j < 0 we obtain with J(j, ni) := {r : α−

2j
3 (ni − 1) <

r ≤ α−
2j
3 ni}, i = 2, 3, that

f2(x) =
∑
j<0

∑
l1∈Z

∑
l2∈Z

∑
l3∈Z

c(j, 0, 0, l1, l2, l3)α
5j
6 ψ

α
jx1 − l1

α
j
3x2 − l2

α
j
3x3 − l3


=
∑
j<0

∑
l1∈Z

∑
n2∈Z

∑
n3∈Z

∑
r2∈J(j,n2)

∑
r3∈J(j,n3)

c(j, 0, 0, l1, r2, r3)α
5j
6 ψ

αjx1 − l1
α
j
3x2 − r2

α
j
3x3 − r3


=
∑
j<0

∑
(l1,n2,n3)∈Z3

λ(j, l1, n2, n3)φj,l1,n2,n3(x),

where

φj,l1,n2,n3(x) := λ(j, l1, n2, n3)
−1α

5−4K2
6

j
∑

r2∈J(j,n2)

∑
r3∈J(j,n3)

c(j, 0, 0, l1, r2, r3)ψ

αjx1 − l1
α
j
3x2 − r2

α
j
3x3 − r3


λ(j, n1, l2, l3) := α

5−4K2
6

j
∑

r2∈J(j,n2)

∑
r3∈J(j,n3)

|c(j, 0, 0, l1, r2, r3)|

if λ(j, n1, l2, l3) 6= 0 and φj,n1,l2,l3(x) := 0 if λ(j, n1, l2, l3) = 0. By the support assumption on ψ we
get

α−j(l1 −D) ≤ x1 ≤ α−j(l1 +D)

and since α−j/3 < α−j for j < 0 we further get for i = 2, 3

α−
j
3 (ri −D) ≤ xi ≤ α−

j
3 (ri +D) ⇒ α−j(ni − 2D) ≤ xi ≤ α−j(ni +D).

Consequently, φj,n1,l2,l3 is supported in 4DQj,n1,l2,l3 with respect to side length 2αj . Since 1 ≥
αj|γ|/3 ≥ αj|γ| ≥ αjK2 for 0 ≤ |γ| ≤ K2 and j < 0 we obtain that |Dγφj,l1,n2,n3 | ≤ αj|γ|/3α2jK2/3 ≤
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αj|γ|, 0 ≤ |γ| ≤ K2 so that φj,l1,n2,n3 are K2-atoms. Thus,

‖f2‖pBσ2p,p .
∑
j∈Z

α
j(σ2− 3

p
)p

∑
(l1,n2,n3)∈Z3

|λ(j, l1, n2, n3)|p

.
∑
j<0

α
j(σ2− 3

p
)p
α

5−4K2
6

jp
∑

(l1,n2,n3)∈Z3

∣∣∣ ∑
r2∈J(j,n2)

∑
r3∈J(j,n3)

c(j, 0, 0, l1, n2, n3)
∣∣∣p

.
∑
j<0

α
j(σ2− 3

p
)p
α

5−4K2
6

jpα−
4j
3
(p−1)

∑
l∈Z3

|c(j, 0, 0, l)|p

.
∑
j∈Z

αjpr
∑
k∈Z2

∑
l∈Z3

|c(j, k, l)|p

. ‖f‖pSCp,r ,

where r = σ2 − 2
3bσ2c −

5
3p −

7
6 . �
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[12] K. Gröchenig and M. Piotrowski. Molecules in coorbit spaces and boundedness of operators. Studia Math.,

192(1):61 - 77, 2009.
[13] K. Guo, G. Kutyniok, and D. Labate, Sparse multidimensional representation using anisotropic dilation and

shear operators, in: Wavelets and Splines (Athens, GA, 2005), G. Chen and M.J. Lai, eds., Nashboro Press,
Nashville, TN (2006), 189–201.

[14] L.I. Hedberg and Y. Netrusov, An axiomatic approach to function spaces, spectral synthesis, and Luzin approxi-
mation, Memoirs of the American Math. Soc. 188, 1- 97 (2007).

[15] P. Kittipoom, G. Kutyniok, and W.-Q Lim, Construction of compactly supported shearlet frames, Preprint, 2009.
[16] G. Kutyniok and D. Labate, Resolution of the wavefront set using continuous shearlets, Preprint, 2006.
[17] G. Kutyniok, J. Lemvig, and W.-Q. Lim, Compactly supported shearlets, Preprint, 2010.



SHEARLET COORBIT SPACES: TRACES AND EMBEDDINGS IN HIGHER DIMENSIONS – EXTENDED VERSION21

[18] G. Kutyniok and D. Labate. Shearlets: The First Five Years. Oberwolfach Report 44 (2010), 1-5.
[19] C. Schneider, Besov spaces of positive smoothness, PhD thesis, University of Leipzig, 2009.
[20] H. Triebel, Function Spaces I, Birkhäuser, Basel - Boston - Berlin, 2006

Philipps-Universität Marburg, FB12 Mathematik und Informatik, Hans-Meerwein Straße, Lahn-
berge, 35032 Marburg, Germany

E-mail address: dahlke@mathematik.uni-marburg.de

Technische Universität Kaiserslautern, Fachbereich für Mathematik, E. Schrödinger Str., 67653
Kaiserslautern, Germany

E-mail address: haeuser@mathematik.uni-kl.de

Technische Universität Kaiserslautern, Fachbereich für Mathematik, E. Schrödinger Str., 67653
Kaiserslautern, Germany

E-mail address: steidl@mathematik.uni-kl.de

Hochschule Neubrandenburg - University of Applied Sciences, Institute for Computational Math-
ematics in Science and Technology, Brodaer Str. 2, 17033 Neubrandenburg, Germany

E-mail address: teschke@hs-nb.de


