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1 IntroductionIn recent years, wavelet analysis has become a useful tool for both theoretical linesof developments and practical applications. Therefore the construction of appropriatewavelet bases is a �eld of increasing importance. Special emphasis was put on the con-struction of wavelets by using spline functions, since spline functions are well-understood,allow for explicit computations, and possess additional structure. First examples of one-dimensional B-spline wavelets were constructed by Lemari�e [16] and Battle [1] and laterinvestigated in detail by Chui and Wang [5], [6], see also Micchelli [18]. In higher di-mensions, a �rst approach using box splines was given by Riemenschneider and Shen,see also [4]. In [19], they constructed an orthonormal box spline wavelet basis. However,the resulting wavelet basis is not compactly supported since the integer translates of abox spline are in general not orthonormal. This problem can be avoided by consideringpre-wavelets. For box splines, this concept was also developed by Riemenschneider andShen [20]. But again, when dealing with pre-wavelets, at least one of the associated�lters will be in�nite, so that the usefulness of pre-wavelets is limited. One way to getaround this di�culty is to use a biorthogonal wavelet basis, i.e., two systems of functionsf igi2I ; f ~ igi2I satisfying for some expanding integer scaling matrix the biorthogonalityconditionhmj=2 i(M j � ��);mj0=2 ~ i(M j0 � ��0)i = �ii0���0�j;j0 ; m := jdetM j : (1.1)In this setting, the wavelets can be chosen to have compact support, and all the calcu-lations and corresponding numerical algorithms are as simple and convenient as in theorthonormal case.In general, a system of wavelets can be constructed by using the multiresolutionanalysis technique introduced by Mallat [17]. A multiresolution analysis consists of anested sequence fVjgj2ZZ of closed subspaces of L2(IRn) such that their union is denseand their intersection is zero. Furthermore, we assume that the space V0 is spanned bythe integer translates of one function ' called the generator and that the spaces Vj arerelated with each other by a scaling process with respect to an expanding integer scalingmatrix, i.e., f(�) 2 Vj () f(M �) 2 Vj+1 : (1.2)To ensure the nestedness and condition (1.2), a natural candidate for ' would be are�nable function, i.e., a function satisfying a two-scale-relation of the form'(x) = X�2ZZn a�'(Mx� �) ; � 2 ZZn ; (1.3)for some suitable sequence fa�g�2ZZn 2 `2(ZZn). In the biorthogonal setting, one has todeal with two sequences fVjgj2ZZ; f~Vjgj2ZZ and tries to �nd the systems f igi2I ; f ~ igi2Ias bases functions for the speci�c complement spaces W0 of V0 in V1, and ~W0 of ~V0 in~V1, that satisfy W0 ? ~V0; ~W0 ? V0; V1 = W0 � V0; ~V1 = ~W0 � ~V0 : (1.4)2



The essential step in doing this consists in the extension of a row vector (ae1(z); :::; aem(z)),of trigonometric polynomials to a matrix with constant determinant onT n := fz 2 Cnj jzij = 1 ; i = 1; : : : ng. If m is large, this problem can be highlynontrivial, see e.g. [15] for details. On the other hand, for scaling matrices satisfy-ing jdetM j = 2, the extension problem becomes quite simple. Furthermore, the casejdetM j = 2 is important, because only one wavelet is needed to generate a waveletbasis.Fortunately, some box splines which are re�nable with respect to a special subclassof these scaling matrices can be found and therefore may serve as generators for amultiresolution analysis. The reason for this is given by the intimate relations betweenbox splines and regular self{a�ne tilings. In the sequel, we will always restrict ourselvesto expanding integer scaling matricesM 2 ZZn�n satisfyingMn = 2I: (1.5)It is well{known that these scaling matrices can produce regular self{ a�ne lattice tilings,i.e., parallelepipeds Q that satisfyjQj = 1; [�2ZZn(Q+ �) �= IRn; Q \ (Q+ �) �= ;; � 2 ZZn n f0g ; (1.6)Q �= [dj2RM�1(Q+ dj); (1.7)where R is a complete set of representatives for ZZn=MZZn, see e.g. [14] and [11] fordetails. Observe that the number of cosets in ZZn=MZZn is given by m = jdetM j:Therefore in our case we only have to deal with two representatives. We always choose0 to be the representative of MZZn and denote the representative of ZZn=MZZn by d.Let us now brie
y recall the de�nition of a box spline. To this end, let X :=fx1; : : : ; xsg � ZZn n f0g denote a set of not necessarily distinct vectors satisfying s > nand hXi := span X = IRn :Then the box spline B( � jX) is de�ned by requiring that the equationZIRn f(y)B(yjX)dy = Z[0;1]s f(Xu)du (1.8)holds for any continuous function f on IRn. The vectors x1; : : : ; xs are called the di-rection vectors of B( � jX). From (1.8) it is easy to derive a formula for the Fouriertransform of B( � jX), dB( � jX)(�) = Yxl2X  1 � e�ixl��ixl � � ! : (1.9)For further information, the reader is referred to the book of de Boor, H�ollig andRiemenschneider [3]. Equation (1.9) illuminates the intimate relation between box3



splines and self-a�ne tilings since it can be used to check that the convolution product�Q � �Q � : : : � �Q| {z }K�times for some K 2 IN where Q is a self-a�ne set satisfying (1.6) and (1.7)is the box spline B( � jX); X = (d d : : : d| {z }K�times Md Md : : :Md| {z }K�times : : :Mn�1d Mn�1d : : :Mn�1d| {z }K�times ),d = d2. Then equation (1.7) implies that B( � jX) is re�nable with respect to M , see[9]. In this paper, we will study this particular class of box splines in Section 2 andconstruct a corresponding compactly supported biorthogonal wavelet basis in Section 3.2 Dual Box Spline PairsTo construct a biorthogonal wavelet basis, we have to �nd the approximation sequencesfVjgj2ZZ and f~Vjgj2ZZ or equivalently we have to �nd suitable generators ' and ~'. Itturns out that ' and ~' have to form a dual pair, i.e.,h'(�); ~'(� � �)i = �0� ; � 2 ZZn (2.10)see e.g. [7] for details. Therefore our �rst step to construct a biorthogonal box splinewavelet basis is to �nd a dual function for the box spline'(�) = B( � j d d : : : d| {z }K�times Md Md : : :Md| {z }K�times : : :Mn�1d Mn�1d : : :Mn�1d| {z }K�times ): We want to �nd thedual function by means of a reduction principle. Indeed, it turns out that the problemcan be converted to a simple tensor{product setting where the dual pair can be builtfrom univariate dual functions for cardinal B-splines. These speci�c dual functions arewell{known and e.g. studied in [7]. To carry out the program, we need a factorizationresult for the special scaling matrices we are dealing with. This fact is studied in thefollowing lemma.Lemma 2.1 Suppose that M is an n � n expanding integer scaling matrix with theproperty Mn = �2 I :If there exists a representative d 2 ZZn=MZZn, so that the matrix (d;Md; : : : ;Mn�1d) isunimodular, then M possesses the factorizationM = AS�A�1where A 2 SL(n;ZZ), S = diag (�2;�1; : : : ;�1) and � is an irreducible permutationmatrix.Proof: We assume that Mn = 2I. The case Mn = �2I is argued in a similarfashion.It follows from the assumptions that M can be diagonalized over C and that itseigenvalues are contained in f21=ne2�il=n; l = 0; : : : ; n � 1g. ( or f21=ne2�i(l+1=2)=n; l =0; : : : ; n � 1g, if Mn = �2I). From this it is easy to see that the vectors M jx; j =0; : : : ; n� 1; are linearly independent for any x 2 IRn; x 6= 0.4



Given d 2 ZZn=MZZn with det(d;Md; : : : ;Mn�1d) = �1 we consider the paral-lelepiped Q = fx 2 IRnjx = Pn�1j=0 cjM jd; 0 � cj � 1g of volume 1. Then MQ consistsof all points y = Pn�1j=1 cj�1M jd + 2cn�1d. Clearly, y 2 Q, if and only if 0 � cn�1 � 1=2and y 2 d+Q, if and only if 1=2 � cn�1 � 1. ThereforeMQ = Q [ (d +Q)(MQ = (�2d+Q)[(�d+Q) ifMn = �2I) and Q is aM -self{a�ne tile of measure 1. Thestructure of scaling matrices that permit parallelepipeds as tiles is well-understood andLemma 9 of [14] asserts that M factors as M = AD�A�1, for some unimodular matrixA with integer entries, a diagonal matrix D with integer entries �̂j, and a permutationmatrix �, such that Qnk=1 j�̂�k(i)j > 1 for i = 1; : : : ; n. Since jdetM j = 2, D must be ofthe form diag(�2;�1; : : : ;�1). Moreover, the permutation P is irreducible, otherwiseM would act as an isometry on a proper invariant subspace of IRn, which is impossible.2Now we are able to state and to prove the main result of this section.Theorem 2.1 Let M be an n�n expanding integer scaling matrix satisfying Mn = 2I:Suppose that d is chosen such that the matrix (d;Md; : : : ;Mn�1d) is unimodular andlet '(�) := B( � j d d : : : d| {z }K�times Md Md : : :Md| {z }K�times : : :Mn�1d Mn�1d : : :Mn�1d| {z }K�times ), K 2 IN; be anassociated box spline. Furthermore, let ~�(�) denote a dual basis for the univariate cardinalB-spline NK := �[0;1) � : : : � �[0;1)| {z }K�times . Then there exists a unimodular integer matrix V andan integer scaling matrix ~M which also satis�es ~Mn = 2I such that(i) ' and ~'(�) := ~�
 ~�
 � � � 
 ~�| {z }n�times (V �1�) form a dual pair, i.e., h'(� � �); ~'(�)i = �0�for � 2 ZZn, and(ii) both ' and ~' are re�nable with respect to ~M .Proof: Let us �rst consider the case of the special family of scaling matrices S� = S�where S = diag(�2;�1; : : :�1) and � is an irreducible permutation matrix. The generalcase can later on be reduced to this special setting. By ` 2 f1; : : : ng we denote the indexwith (S)`` = �2. Then every representative d of ZZn=S�ZZn with respect to S� is of theform (m1;m2; : : :m`�1; 2m` + 1;m`+1; : : :mn) for some m1; : : : ;mn 2 ZZ. A canonicalchoice is d = ( 0; : : : ; 0| {z }(`�1)�times; 1; 0; : : : ; 0| {z }(n�`)�times) 2 f0; 1gn. Then f0; d; S�d; : : : ; Sn�1� dg = f0; 1gnand the same arguments as in the proof of Lemma 2.1 show that the corresponding self{a�ne set is the unit cube ~Q := [0; 1)n: There exist other possible choices, for instance forn = 2 and S� =  0 12 0 ! we may take ~d = �57�; then S� ~d = � 710�, i.e., det( ~d; S� ~d) = 1:We �rst reduce these exotic cases to the canonical one. Observe that a noncanonical5



self{a�ne set P can be mapped onto ~Q by means of a unimodular transformation U ,i.e., ~Q = U�1P: We setX := (d d : : : d| {z }K�times S�d S�d : : : S�d| {z }K�times : : : Sn�1� d Sn�1� d : : : Sn�1� d| {z }K�times )and~X := ( ~d ~d : : : ~d| {z }K�times S� ~d S� ~d : : : S� ~d| {z }K�times : : : Sn�1� ~d Sn�1� ~d : : : Sn�1� ~d| {z }K�times ):Then B( � j ~X) = �P � �P � : : : � �P| {z }K�times (�) = �P � �P � : : : � �P| {z }K�times (UU�1�)= �U�1P � : : : � �U�1P| {z }K�times (U�1�) = B(U�1 � jX):Let us now suppose that we have found a biorthogonal basis �(�) for B( � jX). ThenhB( � j ~X); �(U�1(� � �))i = hB(U�1�)jX); �(U�1(� � �)i = hB( � jX); �(� � �)i = �0�;� = U�1�, i.e., �(U�1�) is a dual basis for B( � j ~X). Moreover, �(U�1�) and B( � j ~X)are re�nable functions with respect to ~S� = US�U�1 since one has for some appropriatesequences fc�g�2ZZn and fa�g�2ZZn�(U�1x) = X�2ZZn c��(S�U�1x� �)= X�2ZZn c��(U�1US�U�1x� �)= X�2ZZn c��(U�1(US�U�1x� U�))= X�2ZZn cU�1��(U�1( ~S�x� �))and B( x j ~X) = B( U�1x jX)= X�2ZZn a�B(S�U�1x� �jX)= X�2ZZn a�B(U�1(US�U�1x� U�)jX)= X�2ZZn aU�1�B(U�1( ~S�x� �))jX)= X�2ZZn aU�1�B( ~S�x� �j ~X):Consequently, i) and ii) hold with V = U; ~M = ~S� = US�U�1. To �nish the caseof the special matrices S� it remains to construct a biorthogonal basis for B( � jX).6



Observe that B( � jX) is the tensor product cardinal B-spline NK(x1)NK(x2) : : : NK(xn).Therefore ~'(x1; : : : ; xn) = ~�(x1)~�(x2) : : : ~�(xn) is a dual function for B( � jX). If K iseven then the dual function ~� can be chosen in such a way that ~�(�x) = ~�(x), see [7]Section 6.A for details. Let i0 be the index with (S�)`;i0 = �2 then we obtain for some�nite sequence fckgk2ZZ~'(x1; : : : xn) = ~�(x1)~�(x2) : : : ~�(xn)= Xk2ZZ ck ~�(x1) : : : ~�(xi0�1)~�(xi0+1) : : : ~�(xn)~�(2xi0 � k) (2.11)= Xk2ZZ ck ~'(S�x� �k)with (�k)i := ( �k ; i = `0 ; i 6= ` ;which shows that ~' is re�nable with respect to S�. If K is odd one has ~�(�x) = ~�(1+x)and similar, but slightly more technical arguments as in (2.11) show that ~' is alsore�nable with respect to S�.Now let M denote an arbitrary scaling matrix satisfying Mn = 2I and let the asso-ciated representative d be chosen such that jdet(d;Md; : : : ;Mn�1d)j = 1: According toLemma 2.1 M possesses a factorizationM = AS�A�1;where A is a unimodular matrix and S� is one of the canonical matrices from above.Let P denote the tile associated withM and d. Then ~P = A�1P is a self{a�ne tile withrespect to S� since S�(A�1P ) = A�1MA(A�1P )= A�1MP= A�1(P [ (P + d))= A�1P [ (A�1P +A�1d):Observe that A�1d is an admissible representative, for if A�1d = S�e for some e 2 ZZn;then A�1d = A�1MAe so that d =MAe which is a contradiction. Therefore withY := (d d : : : d| {z }K�times Md Md : : :Md| {z }K�times : : :Mn�1d Mn�1d : : :Mn�1d| {z }K�times );Z := (A�1d A�1d : : : A�1d| {z }K�times S�A�1d S�A�1d : : : S�A�1d| {z }K�times : : : Sn�1� A�1d Sn�1� A�1d : : : Sn�1� A�1d| {z }K�times )we obtain B( � jY ) = �P � �P � : : : � �P| {z }K�times (�)= � ~P � � ~P � : : : � � ~P| {z }K�times (A�1�)= B(A�1 � jZ):7



Therefore if ~�(�) is a dual function for B( � jZ); then ~�(A�1�) is a dual function forB( � jY ). ~�(�) is re�nable with respect to ~US� ~U�1 for some suitable unimodular matrix~U , so that ~�(A�1�) is re�nable with respect to ~M = (A ~U)S�(A ~U)�1 since for somesequence fb�g�2ZZn~�(A�1x) = X�2ZZn b�~�( ~US� ~U�1A�1x� �)= X�2ZZn b�~�(A�1((A ~U)S�(A ~U)�1x�A�))= X�2ZZn bA�1�~�(A�1( ~Mx� �)):It remains to check that B( � jY ) is also re�nable with respect to ~M: We obtainB( � jY ) = B(A�1 � jZ)= X�2ZZn a�B( ~US� ~U�1A�1x� �jZ)= X�2ZZn a�B(A�1((A~U)S�(A ~U)�1x�A�)jZ)= X�2ZZn aA�1�B( ~Mx� �jY );so that indeed i) and ii) hold with V = A ~U and ~M = (A ~U)S�(A ~U)�1. 23 Biorthogonal Box Spline WaveletsOnce we have found a dual pair, we want to construct the associated wavelet basis. Fora given scaling matrixM and a re�nable function ' we introduce the subsymbolsa�(z) := X�2ZZn aM�+�z�; � 2 R; (3.12)where once again R denotes a complete set of representatives of ZZn=MZZn: Thena(z) = X�2R z�a�(zM):It is easy to check that ' and ~' indeed give rise to a multiresolution analysis, see e.g. [2].Therefore to construct a biorthogonal basis, we have to �nd a basis for the complementspaces W0 and ~W0, respectively.A general procedure is the following. One has to extend the row (a�1(z); : : : ; a�m(z))to a matrix A(z) = (a�~�(z))�;~�2Rsatisfying detA(z) = const for all z 2 T n:8



Then one has to solve the equationA(z) �B(z) = mI; B(z) = (b�~�(z�1))~�;�2R:If there exists a re�nable function �(�) satisfying�(x) = X�2ZZn b0��(Mx� �)and h�(�); '(� � �)i = �0;�;then the functions �(x) := X�2ZZn a��'(Mx� �); ~ �0(x) := X�02ZZn b�0�0�(Mx� �0); �; �0 2 Rnf0g;satisfy hmj=2 �(M j � ��);mj0=2 ~ �0(M j0 � ��0)i = ��;�0�j;j0��;�0; (3.13)i.e., the system f �g�2Rnf0g; f ~ �0g�02Rnf0g forms a biorthogonal wavelet basis. For furtherinformation concerning biorthogonal bases and suitable extensions the reader is referrede.g. to Cohen and Daubechies [8] and to Dahmen and Micchelli [12].In general, the extension problem is nontrivial. However, in our special case, thesolution is quite simple and can always be given explicitly. Unless otherwise stated, allsymbols and subsymbols are assumed to be de�ned with respect to the scaling matrix~M from Theorem 2.1.Theorem 3.1 Suppose that the conditions of Theorem 2.1 are satis�ed and let a(z) andb(z) denote the symbols of ' and ~', respectively. Furthermore, let c(z) denote the symbolof ~�
 � � � 
 ~�| {z }n�times with respect to a canonical scaling matrix S�: Then the symbols a�(z) andb�(z) can be chosen asa�(z) := �c(A�U)�1�(z�A�U �S�) + z�c0(z�A�U �S�); b�(z) = �a�(z�M) + z�a0(z�M ) ;and the functions (x) = X�2ZZn a��'( ~Mx� �); ~ (x) = X�2ZZn b�� ~'( ~Mx� �)generate a biorthogonal wavelet basis.Proof: As stated above, we have to extend the row (a0(z); a�(z)) to a matrix withconstant determinant on T n. However, in Theorem 2.1 we have already constructed adual function ~'. The duality relationh'(�); ~'(� � �)i = �0;�9



necessarily implies a0(z)b0(z�1) + a�(z)b�(z�1) = 2;so that one possible extension is given by� a0(z) a�(z)�b�(z�1) b0(z�1)� � � b0(z�1) �a�(z)b�(z�1) a0(z) � = 2I;i.e., a�0(z) = �b�(z�1); a��(z) = b0(z�1):It was already shown above that~'(x) = X�2ZZn cU�1A�1� ~'( ~Mx� �);so that b�(z�1) = X�2ZZn c(A�U)�1 ~M�+(A�U)�1�z�� = X�2ZZn cS��(A�U)�1�+(A�U)�1�z��= X�2ZZn cS��+(A�U)�1�z�(A�U)� = c(A�U)�1�(z�A�U );b0(z�1) = c0(z�A�U ):This yieldsa�(z) = a�0(z ~M) + z�a��(z ~M) = �c(A�U)�1�(z�A�U �S�) + z�c0(z�A�U �S�): 2It is well-known and easy to check from (1.9) that every box spline satis�es a two-scale-relation with respect to the scaling matrix M = 2I. In some applications it may beinteresting to �nd a biorthogonal wavelet basis also for the dyadic scaling. A classicalconstruction of these wavelets would require the extension of a 2n-dimensional vector asdescribed above. If the set of direction vectors is judiciously chosen, then the Theoremof Quillen and Suslin ensures that such an extension exists, see e.g. [15] for details.Nevertheless, its explicit determination can be very complicated. It turns out that theconstruction presented here provides a way to circumvent this di�culty. Indeed, at leastfor our special family of box splines a biorthogonal wavelet basis with respect to dyadicscaling matrices can be always constructed explicitly by using the wavelet basis given inTheorem 3.1.Theorem 3.2 Suppose that the assumptions of Theorem 3.1 are satis�ed. Let  and~ be the corresponding biorthogonal box spline wavelets and let Rk := fdk1; : : : ; dk2kg,k 2 f1; : : : n � 1g be full sets of representatives of the cosets of ZZn=MkZZn. Moreover,de�ne for k 2 f1; : : : ; n� 1g; i 2 f1; : : : ; 2kg dki (�) := 2k=2 (Mk(� �M�kdki )) and ~ dki (�) := 2k=2 ~ (Mk(� �M�kdki )) : (3.14)Then f ; dki g k2f1;:::;n�1gi2f1;:::;2kg and f ~ ; ~ dki g k2f1;:::;n�1gi2f1;:::;2kg form a biorthogonal wavelet basiswith respect to scaling by 2. 10



Proof: We want to prove this theorem by using the concept of multiresolution analy-sis for the construction of wavelets. Let fVjgj2ZZ and fV �j gj2ZZ be the multiresolutionanalysis generated by the box spline ' with respect to scaling byM and 2, respectively,that is, Vj = spanf'(M j � ��)j � 2 ZZng and V �j = spanf'(2j � ��)j � 2 ZZng :Thus, we have V0 = V �0 and since Mn = 2I, one easily concludes that Vn = V �1 . Let Wjand W �j be the complement spaces of Vj in Vj+1 and of V �j in V �j+1, respectively. Thespaces Wj are spanned by the translates of  (M j�), i.e.,Wj := spanf (M j � ��)j � 2 ZZngand one has W �0 = n�1Mk=0Wk : (3.15)Therefore it remains to �nd suitable bases for the spaces Wk. As one would expect, thesystem f ; dki gi2f1;:::;2kg naturally does the job since for some f 2 Wk; k � 1f(x) = X�2ZZn c� (Mkx� �) = 2kXi=1 X�2ZZn cMk�+dki  (Mkx� (Mk� + dki ))= 2kXi=1 X�2ZZn cMk�+dki  (Mk(x� ��M�kdki )) = 2kXi=1 X�2ZZn cMk�+dki  dki (x� �) :Consequently,W �0 = spanf (� � �) ;  dki (� � �)j k 2 f1; : : : ; n� 1g; i 2 f1; : : : ; 2kg; � 2 ZZng :It can be shown analogously that the system f ~ ; ~ dki gik has similar properties. It remainsto prove the duality of  dki and ~ dkj . We obtain for k 2 f1; : : : ; n� 1gh dki (� � �); ~ dkj (�)i = ZIRn 2k=2 (Mk(x� ��M�kdki ))2k=2 ~ (Mk(x�M�kdkj ))dx= ZIRn 2k (Mkx�Mk� � dki ) ~ (Mkx� dkj )dx= 1jdetM jk ZIRn 2k (x� (Mk�+ dki )) ~ (x� dkj )dx= �dkj ;Mk�+dki = �i;j�0;� :h dki ; ~ dlji = 0 for k 6= l, since Vk is biorthogonal fo ~Vl. This proves the assertion. 211



4 ExamplesWe �nish this note by some simple examples to indicate the applicability of the construc-tion presented above. For simplicity, we will restrict ourselves to the case n = 2. Theclaim is to �nd dual pairs for which both functions ' and ~' are at least C10 . Therefore,our examples are based onN3(x) = �[0;1) � �[0;1) � �[0;1) = 8>>><>>>: x2=2 0 � x � 1;�(x� 3=2)2 + 3=4 1 � x � 2;(x� 3)2=2 2 � x � 3;0 otherwise:A family of symmetric dual functions K; ~K ~�(�) for NK(�) with arbitrarily high regularitywas computed by Cohen, Daubechies and Feauveau in [7]. It turns out that the functionK; ~K ~� is Cm if ~K > 0:2401K + 1:2401(m + 1): Therefore, in our case, C1�continuityrequires at least ~K � 4. Choosing ~K = 5, a combination of the results in [7] and (2.11)yields the following expression for c(z):c( 0�4) = � 10512; c( 0�3) = 30512; c( 0�2) = 38512; c( 0�1) = �194512; c(00) = � 26256; c(01) = 350256;c(02) = 350256; c(03) = � 26256; c(04) = �194512; c(05) = 38512; c(06) = 30512; c(07) = � 10512:Example 4.1 For the �rst example, let the scaling matrix M be given byM = � 1 11 �1� :M produces the quincunx-grid �, i. e.,� = (�1; �2) 2 � if and only if �1 + �2 is even;and therefore we may choose d = �10�. The resulting self{a�ne tile P is the parallelepipedwith vertices �00�; �10�; �11� and �21� which produces the box spline'(�) = B( � j 1 1 1 1 1 10 0 0 1 1 1 );see Figure 4.1. Insert Figure 1It is easy to check that M factors asM = AS�A�1 for A = � 1 11 0� ; S� = � 0 12 0� :In this special case, ~P = A�1P is the unit cube so that ~U = I and ~M =M: The symbolof the dual generator ~'(�) = �
 �(A�1�) is given byb(z) = X�2ZZ2 cA�1�z� = X�2ZZ2 c�zA� = c(z):In Figure 4.2, we plotted ~'. 12



Insert Figure 2It remains to construct the wavelet basis. According to Theorem 3.1 we �rst haveto compute the subsymbols of c(z) with respect to S� and A�1� for some suitablerepresentative �. If we choose � = �10� we obtainc0(z) = X�2Z2 cS��z� = � 10512z�21 + 38512 z�11 � 26256 + 350256z1 � 194512z21 + 30512z31;c(01)(z) = X�2Z2 cS��+(01)z� = 30512z�21 � 194512z�11 + 350256 � 26256 z11 + 38512z21 � 10512z31:Therefore, since A � S� = �1 11 0� � � 0 12 0� = � 2 10 1� ;we get a�(z) = �c(01)(z�A�S� ) + z(1;0)c0(z�A�S�)= 10512z�61 + 30512 z�51 � 38512 z�41 � 194512 z�31 + 26256z�21 + 350256z�11�350256 � 26256z1 + 194512 z21 + 38512z31 � 30512z41 � 10512 z51:The corresponding function  (�) is plotted in Figure 4.3.Insert Figure 3Finally, we have to compute ~ (�). This is now very easy since the symbol a(z) of'(�) with respect to M is clearly given bya(z) = 14(1 + z1)3 = 14(1 + 3z1 + 3z21 + z31);so that a0(z) = 14 + 34z1z2; a�(z) = 34 + 14z1z2:Consequently,b�(z) = �a�(z�M ) + z�a0(z�M ) = �14z�21 + 34z�11 � 34 � 14z1:The resulting wavelet is shown in Figure 4.4.Insert Figure 413



Example 4.2 For the second example, let us consider the canonical matrix S� = 0 12 0 ! and the self{a�ne tile P produced by d = �57�, i.e., the parallelepiped withvertices 0; �57�; � 710� and �1217�. Then A = I; U = �5 77 10� and~M = US�U�1 = �5 77 10� � � 0 12 0� � � 10 �7�7 5 � = � 105 �73151 �105� :The symbol b(z) of the dual generator is given byb(z) = X�2ZZ2 cU�1�z� = X�2ZZ2 c�zU� = X�2ZZ2 c�z5�1+7�21 z7�1+10�22 :We may choose d = �10� as a second representative for ZZ2= ~MZZ2: Then U�1�10� = �10�7�so thatc( 10�7)(z) = 30512z21z�102 � 194512z31z�102 + 350256z41z�102 � 26256z51z�102 + 38512z61z�102 � 10512z71z�102 :By the fact that U � S� = � 5 77 10� � �0 12 0� = �14 520 7�this yieldsa�(z) = �c(10�7)(z�U �S�) + z1c0(z�U �S�)= � 30512z221 z302 + 194512z81z102 � 350256z�61 z�102 + 26256 z�201 z�302 � 38512z�341 z�502 + 10512 z�481 z�702� 10512z291 z402 + 38512z151 z202 � 26256z1 + 350256z�131 z�202 � 194512z�271 z�402 + 30512z�411 z�602 :It remains to compute the symbol b� of ~ . Clearly, the symbol of B( � j�01��01��01�S��01�S��01�S��01�)with respect to S� is given by~a(z) = 14(1 + 3z2 + 3z22 + z32) :Since a(z) = P�2ZZ2 ~aU�1�z� we obtaina(z) = 14(1 + 3z71z102 + 3z141 z202 + z211 z302 ) ;so that a0(z) = 14(1 + 3z51z72); a(01) = 14(3z391 z562 + z441 z632 ) :Finally, we getb(01)(z) = �a(01)(z�M) + z(01)a0(z�M ) = 14(�1 + z�201 z�292 � 3z�141 z�202 + 3z�61 z�92 ) :14
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