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Abstract

Some specific box splines are refinable functions with respect to n xn expanding
integer scaling matrices M satisfying M™ = 2I. Therefore they can be used to
define a multiresolution analysis and a wavelet basis associated with these scaling
matrices. In this paper, we construct biorthogonal wavelet bases for this special
subclass of box splines. These specific bases can also be used to derive wavelets
with respect to classical dyadic scaling matrices.
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1 Introduction

In recent years, wavelet analysis has become a useful tool for both theoretical lines
of developments and practical applications. Therefore the construction of appropriate
wavelet bases is a field of increasing importance. Special emphasis was put on the con-
struction of wavelets by using spline functions, since spline functions are well-understood,
allow for explicit computations, and possess additional structure. First examples of one-
dimensional B-spline wavelets were constructed by Lemarié [16] and Battle [1] and later
investigated in detail by Chui and Wang [5], [6], see also Micchelli [18]. In higher di-
mensions, a first approach using box splines was given by Riemenschneider and Shen,
see also [4]. In [19], they constructed an orthonormal box spline wavelet basis. However,
the resulting wavelet basis is not compactly supported since the integer translates of a
box spline are in general not orthonormal. This problem can be avoided by considering
pre-wavelets. For box splines, this concept was also developed by Riemenschneider and
Shen [20]. But again, when dealing with pre-wavelets, at least one of the associated
filters will be infinite, so that the usefulness of pre-wavelets is limited. One way to get
around this difficulty is to use a biorthogonal wavelet basis, i.e., two systems of functions
{iYier, {Wi}icr satisfying for some expanding integer scaling matrix the biorthogonality
condition

<mj/2;/)i(Mj . —oz),mj//Q;/N)i(Mj/ c—a)) = 811000, m o= |det M| . (1.1)

In this setting, the wavelets can be chosen to have compact support, and all the calcu-
lations and corresponding numerical algorithms are as simple and convenient as in the
orthonormal case.

In general, a system of wavelets can be constructed by using the multiresolution
analysis technique introduced by Mallat [17]. A multiresolution analysis consists of a
nested sequence {V;};ez of closed subspaces of L*(IR™) such that their union is dense
and their intersection is zero. Furthermore, we assume that the space V4 is spanned by
the integer translates of one function ¢ called the generator and that the spaces V; are
related with each other by a scaling process with respect to an expanding integer scaling
matrix, i.e.,

) eV = f(M-) e Vi . (1.2)

To ensure the nestedness and condition (1.2), a natural candidate for ¢ would be a
refinable function, i.e., a function satisfying a two-scale-relation of the form

ela)= Y awp(Maz—a), a€Z", (1.3)

aEZ™

for some suitable sequence {a,}oeczn € lo(Z"™). In the biorthogonal setting, one has to
deal with two sequences {V;},ez. {V;}ez and tries to find the systems {t;}ies {iVier
as bases functions for the specific complement spaces Wy of V4 in V;, and WO of ‘N/o in
Vi, that satisfy

Wo L Vo, Wol Vo, Vi=WeaW, i=Weal. (1.4)



The essential step in doing this consists in the extension of a row vector (a., (2), ..., a.,,(2)),
of trigonometric polynomials to a matrix with constant determinant on
T :={z € C" || = 1,0 = 1,...n}. If m is large, this problem can be highly
nontrivial, see e.g. [15] for details. On the other hand, for scaling matrices satisfy-

ing | det M| = 2, the extension problem becomes quite simple. Furthermore, the case
|det M| = 2 is important, because only one wavelet is needed to generate a wavelet
basis.

Fortunately, some box splines which are refinable with respect to a special subclass
of these scaling matrices can be found and therefore may serve as generators for a
multiresolution analysis. The reason for this is given by the intimate relations between
box splines and regular self-affine tilings. In the sequel, we will always restrict ourselves
to expanding integer scaling matrices M € Z"™*" satisfying

M"™ =21 (1.5)

It is well-known that these scaling matrices can produce regular self- affine lattice tilings,
i.e., parallelepipeds () that satisfy

Ql=1, U @Q+a)=R", Qn(Q+a)=0, ac Zz"\{0}, (1.6)

aEZ™

Q= | M7 Q+d), (1.7)
dIER
where R is a complete set of representatives for Z"/MZ", see e.g. [14] and [11] for
details. Observe that the number of cosets in Z"/MZ" is given by m = |det M]|.
Therefore in our case we only have to deal with two representatives. We always choose
0 to be the representative of M Z™ and denote the representative of Z"/MZ"™ by d.
Let us now briefly recall the definition of a box spline. To this end, let X :=
{z',...,2°} C Z"™\ {0} denote a set of not necessarily distinct vectors satisfying s > n
and

(X) :=span X = IR" .
Then the box spline B( - |X) is defined by requiring that the equation
| F@B@IX)dy = [ f(Xuydu (1.8)
R [0,1]°

holds for any continuous function f on IR". The vectors x!,... 2% are called the di-
rection vectors of B( - |X). From (1.8) it is easy to derive a formula for the Fourier
transform of B( - | X),

BT = T (%) | 1.9)

For further information, the reader is referred to the book of de Boor, Hollig and
Riemenschneider [3]. Equation (1.9) illuminates the intimate relation between box
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splines and self-affine tilings since it can be used to check that the convolution product
XQ * Xg * ... * xg for some K € IN where () is a self-affine set satisfying (1.6) and (1.7)

K—times
is the box spline B( - |[X), X = (dd...dMd Md...Md...M"'d M"*d... M"'d),
————
K—times K—times K—times
d = d*. Then equation (1.7) implies that B( - |X) is refinable with respect to M, see
[9]. In this paper, we will study this particular class of box splines in Section 2 and
construct a corresponding compactly supported biorthogonal wavelet basis in Section 3.

2 Dual Box Spline Pairs

To construct a biorthogonal wavelet basis, we have to find the approximation sequences
{V;}iez and {V,},cz or equivalently we have to find suitable generators ¢ and ¢. It
turns out that ¢ and @ have to form a dual pair, i.e.,

(p(), (- —a)) = boa, a€Z” (2.10)

see e.g. [7] for details. Therefore our first step to construct a biorthogonal box spline
wavelet  basis 18  to find a dual function for the box  spline

o()=B(-|dd...dMd Md...Md...M"'d M"'d... M""'d). We want to find the

K —times K —times K —times

dual function by means of a reduction principle. Indeed, it turns out that the problem
can be converted to a simple tensor—product setting where the dual pair can be built
from univariate dual functions for cardinal B-splines. These specific dual functions are
well-known and e.g. studied in [7]. To carry out the program, we need a factorization
result for the special scaling matrices we are dealing with. This fact is studied in the
following lemma.

Lemma 2.1 Suppose that M is an n X n expanding integer scaling matriz with the
property
M" =421 .

If there exists a representative d € Z" /M Z™, so that the matriz (d, Md, ..., M" *d) is
unimodular, then M possesses the factorization

M = ASTIA™!
where A € SL(n, Z), S = diag (£2,+1,...,41) and Il is an irreducible permutation

matriz.

Proof: We assume that M™ = 2I. The case M" = —2[ is argued in a similar
fashion.

It follows from the assumptions that M can be diagonalized over C and that its
eigenvalues are contained in {2'/7e2™/" | = 0,...,n —1}. (or {2/ne2riH1/2/n | —
0,...,n — 1}, if M™ = —2I). From this it is easy to see that the vectors M’z,j =
0,...,n — 1, are linearly independent for any = € IR", = # 0.
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Given d € Z"/MZ"™ with det(d, Md,...,M"'d) = 41 we consider the paral-
lelepiped ) = {x € R"|ax = Z?:_& c;Mid, 0 < ¢; <1} of volume 1. Then MQ consists
of all points y = Z?;ll cj_1M?d + 2¢,_1d. Clearly, y € Q, if and only if 0 < ¢, < 1/2
and y € d+ @, if and only if 1/2 < ¢,_1 < 1. Therefore

MQ=QU(d+Q)
(MQ = (—2d+Q)U(—d+Q)if M" = —21) and @ is a M-self-affine tile of measure 1. The

structure of scaling matrices that permit parallelepipeds as tiles is well-understood and
Lemma 9 of [14] asserts that M factors as M = ADIIA™!, for some unimodular matrix
A with integer entries, a diagonal matrix D with integer entries Sj, and a permutation
matrix I, such that [T;_, |Sﬂ,k(i)| > 1 for¢=1,...,n. Since |det M| = 2, D must be of
the form diag(+2,+1,...,+1). Moreover, the permutation P is irreducible, otherwise
M would act as an isometry on a proper invariant subspace of IR", which is impossible.

O

Now we are able to state and to prove the main result of this section.

Theorem 2.1 Let M be an n X n expanding integer scaling matriz satisfying M™ = 21.

Suppose that d is chosen such that the matriz (d, Md, ..., M""*d) is unimodular and

let o(-):=B(-|dd...d Md Md...Md... M"'d M"'d...M""'d), K € IN, be an
K—times K—times K—times

associated box spline. Furthermore, let q;() denote a dual basis for the univariate cardinal

B-spline N := X[o1) * ... * X[o,1)- Then there exists a unimodular integer matriz V. and

K —times

an integer scaling matriz M which also satisfies M™ = 21 such that

(i) ¢ and $(-) == @@ - @ (V1) form a dual pair, i.e., (o(- — a),$(-)) = doq

n—times

forae Z", and
(ii) both ¢ and ¢ are refinable with respect to M.

Proof: Let us first consider the case of the special family of scaling matrices S = S1I
where S = diag(4+2, £1,...£1) and Il is an irreducible permutation matrix. The general

case can later on be reduced to this special setting. By ¢ € {1,...n} we denote the index
with (5), = +2. Then every representative d of Z" /Sy Z" with respect to Sy is of the
form (mq,ma,...me—1,2me + 1, m4sq,...my) for some mq,...,m, € Z. A canonical

choiceis d = ( 0,...,0 ,1, 0,...,0 ) € {0,1}". Then {0,d, Snd,..., St~ 'd} = {0,1}"
S—— S——

({=1)—times (n—{)—times
and the same arguments as in the proof of Lemma 2.1 show that the corresponding self-

affine set is the unit cube @) := [0, 1)". There exist other possible choices, for instance for

0 1 ; ; . S
5 0 ) we may take d = (i), then Spd = (170), i.e., det(d, Snd) = 1.

We first reduce these exotic cases to the canonical one. Observe that a noncanonical

nzZandSH:(



self-affine set P can be mapped onto @ by means of a unimodular transformation U,

ie.,Q=U"1P. We set

X = (dd...dSnd Sud... Sud...Sp7d Sitd. .. SpYd)
K—times K—times K—times
and
X = (dd...dSyd Snd...Snd...SErd SE~td. .. SEtd).
K—times K—times K—times
Then

B( |X) = XP*XP*-'-*XP('):XP*XP*-'-*XP(UU_I')

K —times K —times
= Xuvu-1p * ...k XU—lp(U_l') = B(U_l . |X)
K —times

Let us now suppose that we have found a biorthogonal basis n(-) for B( - |X). Then

(B X007 (- — a))) = (B XU (- — )} = (B(- [X).(-— ) = bos.
p=U"a,ie, nU™")is a dual basistor B( - |)~() Moreover, n(U~') and B( - |)~()

are refinable functions with respect to Sp = USpU ™" since one has for some appropriate
sequences {c, }aezn and {a,}oczn
n(U™'z) = > can(SnlU 'z — a)
Iy/AL
= Z can(UTUSHU M2 — @)
Iy/AL
= > cap(UNUSHU 'z = Ua))
Iy/AL

= Z cU—1g77(U_1(S~H$ —8))

peznr

and

B(z|X) = B(U'z|X)
= Z aoB(SnU™ 'z — a|X)
aEZ™
= > a.BUNUSnU 2 — Ua)|X)

aEZ™

= 3 apsBU Y (Snz — §))|X)

pezn

= Z GU—15B(§H$ - ﬂp?)
pgezn

Consequently, i) and ii) hold with V = U, M = Sy = USyU™'. To finish the case

of the special matrices Sy it remains to construct a biorthogonal basis for B( - |X).
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Observe that B( - |X) is the tensor product cardinal B-spline N (a1)Ng(22) ... Ni(x,).
Therefore ¢(x1,...,2,) = ¢($1)¢(x2) q;(:zjn) is a dual function for B( - |X). If K is
even then the dual function ¢ can be chosen in such a way that qb( r) = q;(:zj), see [T]
Section 6.A for details. Let ¢y be the index with (Sn), iy = = 42 then we obtain for some
finite sequence {c¢i}rez

S(x1,...x,) =

with
bk, =t
wk»-—{ L

which shows that ¢ is refinable with respect to Sp. If K is odd one has 43(—:1;) = <}5(1 +a)
and similar, but slightly more technical arguments as in (2.11) show that ¢ is also
refinable with respect to St.

Now let M denote an arbitrary scaling matrix satisfying M"™ = 21 and let the asso-
ciated representative d be chosen such that |det(d, Md, ..., M"*d)| = 1. According to
Lemma 2.1 M possesses a factorization

M = ASpA™,

where A 1s a unimodular matrix and Sy is one of th(Ne canonical matrices from above.
Let P denote the tile associated with M and d. Then P = A7' P is a self-affine tile with
respect to Sty since
SH(A_IP) = A_IMA(A_IP)

= A'MP

= AT (PU(P+4d)

= A7'PU (A_lP + A_ld).
Observe that A7'd is an admissible representative, for if A='d = Spe for some e € Z",
then A='d = A='M Ae so that d = M Ae which is a contradiction. Therefore with

Y = (dd...dMd Md.. . Md.. . M"'d M"™'d...M""'d),
——

K —times K —times K —times
Z = (A_ld A7 AT S AT SpATY L. Sp AT . . Sﬁ_lA_ld Sﬁ_lA_ld. .. Sﬁ_lA_ld)
K—times K—times K—times
we obtaln

B(-Y) = xp*xxp*...xxp(")
K —times
= XP*XP* ...*XP(A_I')
K —times

= B(A™- |2).




Therefore if 7(-) is a dual function for B( - |Z), then j(A™") is a dual function for
B( - |Y). 5(-) is refinable with respect to USpU~" for some suitable unimodular matrix
U, so that n(A™") is refinable with respect to M = (AU)Sp(AU)™! since for some

sequence {b, },ezn

(A ) = Zn boj(USnU A e — @)
= Zn boij (AT (AU Sp(AU) 'z — Aa))
- ﬁzzjn ba-rsi(ATH( Mz — 3)).

It remains to check that B( - |Y) is also refinable with respect to M. We obtain

B(-Y) = B(A™'-]2)
= Y a.BUSHUA™ e — a|2)

aEZ™
= 3 a.B(AT((AD)Sn(AU) 2 — Aa)|Z)
aEZ™
= Y aspB(Ma—g|Y),
BeZn
so that indeed i) and ii) hold with V = AU and M = (AU)Sp(AU)™". O

3 Biorthogonal Box Spline Wavelets

Once we have found a dual pair, we want to construct the associated wavelet basis. For
a given scaling matrix M and a refinable function ¢ we introduce the subsymbols

a,(2) = > armatpz”, p € R, (3.12)
aEZ"

where once again R denotes a complete set of representatives of Z" /M Z"™. Then

a(z) = Z Zpap(zM).

pER

[t is easy to check that ¢ and ¢ indeed give rise to a multiresolution analysis, see e.g. [2].
Therefore to construct a biorthogonal basis, we have to find a basis for the complement
spaces Wo and Wy, respectively.

A general procedure is the following. One has to extend the row (a,, (2),...,a,,(z))
to a matrix

A(z) = (a3(2)),,5er
satisfying
det A(z) = const forall € T".



Then one has to solve the equation
Alz)-B(z) =ml,  B(z) = (b3(z7"))sen-
If there exists a refinable function n(-) satisfying

n(x) = Z Wn(Mz — a)

aEZ™

and
(), (- — @) = do.a,
then the functions

PP () = Z alp(Mz — a), ;/N)pl(:zj) = Z bgl,n(M:L' —a'), p,p € R\{0},

aEZ™ aleZn

satisfy 4 4 o 4
<m]/2;/)p(M] . —Oé), m]//Z;/)pl(M]/ . —O/)> = 5070/5]‘7]‘/50[70[/, (313)

i.e., the system {¢*} ,cr\ {0}, {;/N)pl}pleg\{o} forms a biorthogonal wavelet basis. For further
information concerning biorthogonal bases and suitable extensions the reader is referred
e.g. to Cohen and Daubechies [8] and to Dahmen and Micchelli [12].

In general, the extension problem is nontrivial. However, in our special case, the
solution is quite simple and can always be given explicitly. Unless otherwise stated, all

symbols and subsymbols are assumed to be defined with respect to the scaling matrix
M from Theorem 2.1.

Theorem 3.1 Suppose that the conditions of Theorem 2.1 are satisfied and let a(z) and

b(z) denote the symbols of v and @, respectively. Furthermore, let ¢(z) denote the symbol

of @ -+ @ ¢ with respect to a canonical scaling matriz Sy. Then the symbols a”(z) and
—_————

n—times
b*(z) can be chosen as

ap(z) = _E(A.U)—lp(Z_A'U'SH) + ZPQ(Z_A'U'SH% bP(Z) — —EP(Z_M) + ZPEO(Z_M) 7
and the functions

O(e)= Y abp(Me—a),  dle)= 3 Bo(Mr—a)

aEZ™ aeZn
generate a biorthogonal wavelet basis.

Proof: As stated above, we have to extend the row (ao(z),a,(z)) to a matrix with
constant determinant on T". However, in Theorem 2.1 we have already constructed a
dual function ¢. The duality relation

(), (- = @)) = b0



necessarily implies o o
a0l Bo(=™1) + ()b (=71) = 2,
so that one possible extension is given by
(o), o)y (B )y,
5, B ) G ) ) T
ie.

ap(z) = =by(z7"),  ap(z) = bo(z7").

It was already shown above that

o(x) = Z cU—1A—1a<,5(Z\N4:1; — a),

aEZ"™
so that
b_p(Z—l) — Z E(A~U)_1Ma+(A.U)—1pZ_a — Z ESH~(A~U)—1oz—I—(A~U)—1pZ_O‘
[ =y/AL RT=V/AL
= Y Tsupriany-1or M =2y, (7Y,
sez™
W) = @)
This yields
a’(z) = ab(z ~) + ZpaZ(zM) — —E(A.U)—1P(Z_A'U'SH) + Z”%(Z_A'U'SH).

O
It is well-known and easy to check from (1.9) that every box spline satisfies a two-scale-
relation with respect to the scaling matrix M = 2/. In some applications it may be
interesting to find a biorthogonal wavelet basis also for the dyadic scaling. A classical
construction of these wavelets would require the extension of a 2"-dimensional vector as
described above. If the set of direction vectors is judiciously chosen, then the Theorem
of Quillen and Suslin ensures that such an extension exists, see e.g. [15] for details.
Nevertheless, its explicit determination can be very complicated. It turns out that the
construction presented here provides a way to circumvent this difficulty. Indeed, at least
for our special family of box splines a biorthogonal wavelet basis with respect to dyadic
scaling matrices can be always constructed explicitly by using the wavelet basis given in

Theorem 3.1.

Theorem 3.2 Suppose that the assumptions of Theorem 3.1 are satisfied. Let ¢ and
W be the corresponding biorthogonal box spline wavelets and let Ry, := {d’f,...,d’;k},
ke {l,...n— 1} be full sets of representatives of the cosets of Z"™|M*Z". Moreover,
define fork € {1,...,n—1}, i € {1,...,2F}

D) o= TS = M) and D) 1= 2Q(MH- = M*dE) . (3.14)
Then {¢’¢df} ke{l,...n—1} and {J)’J)df} ke{l,...n—1}

ie{1,...,2%} ie{1,...,2%}
with respect to scaling by 2.

form a biorthogonal wavelet basis
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Proof: We want to prove this theorem by using the concept of multiresolution analy-
sis for the construction of wavelets. Let {V;};cz and {V};cz be the multiresolution
analysis generated by the box spline ¢ with respect to scaling by M and 2, respectively,
that is,

Vi =span{p(M’ - —a)| o € Z"} and V" = span{p(2/ - —a)| a € Z"} .

Thus, we have Vi = V" and since M"™ = 21, one easily concludes that V,, = V|*. Let W,
and WZ be the complement spaces of V; in Vier and of V™ in V7, respectively. The
spaces W; are spanned by the translates of ¢ (M7-), i.e.,

W, := span{(M7 - —a)] a € Z"]

and one has

n—1
W =P ws. (3.15)
k=0

Therefore it remains to find suitable bases for the spaces Wj. As one would expect, the
system {1, Yz }ieq1,..oxy naturally does the job since for some f € Wy, k> 1

fla) = 2 catd(Mfz—a)=3" > capara (M z — (MY +d7))

aEZmn =1 aeZm
2k 2k
= Z Z CMka+d§¢(Mk($ —a— M) = Z Z CMka+df¢d§($ —a).
=1 aeZ" =1 aeZ"
Consequently,

Wi = span{¢(- — «) 7¢df('_05)| ke{l,....n—1}, ce{l,...,2%}, ac Z"}.

It can be shown analogously that the system {77[), ;/N)dz; }ix has similar properties. It remains
to prove the duality of ¢, and ;/dek. We obtain for k£ € {1,...,n — 1}
4 J

(o (- = )b ()) = 2P (MM(& — o = M7HE))2 2 (ME(x — M=kdS) )da

o
= /Bn 2P (MFz — M a — df);/;(Mk:Jc — d¥)dx

1 -
_ W/ 2R — (MFa o+ d))(r — db)de

= Ogrratat = 000 -

(Y gr, @/}Ndz> = 0 for k& # [, since V}, is biorthogonal fo Vi. This proves the assertion. a
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4 Examples

We finish this note by some simple examples to indicate the applicability of the construc-
tion presented above. For simplicity, we will restrict ourselves to the case n = 2. The
claim is to find dual pairs for which both functions ¢ and @ are at least C}. Therefore,
our examples are based on

1'2/2 0 S &€ S 17
—(x—3/2)>+3/4 1<z<2,
N3(x) = X[o,1) * X[o0,1) * X[0,1) = (:1:(— 3)2?2) / 2 < ¢ <3
0 otherwise.

A family of symmetric dual functions g z¢(-) for Nx(-) with arbitrarily high regularity
was computed by Cohen, Daubechies and Feauveau in [7]. It turns out that the function
Kﬁq]z is O™ if K > 0.2401K 4 1.2401(m 4+ 1). Therefore, in our case, C''—continuity
requires at least X' > 4. Choosing K = 5, a combination of the results in [7] and (2.11)
yields the following expression for ¢(z):

_ _ 10 _ 30 _ 38 _ 194 _ _ 2 _ 350
fn)= TEE C(n)Tam ) Tuw )T T )T Tme o) e
Cro :@ Cro :—ﬁ Cro :—M Cro :ﬁ Cro :ﬂ Cro :—ﬂ.
(5) — 256° (%) 2560 (%) 5127 (9) — 5120 (o) — 5120 (%) 512

Example 4.1 For the first example, let the scaling matrix M be given by
11
w=(1 1)
M produces the quincunx-grid T, i. e.,
a = (ag,az) € I' if and only if «a; + «az is even,
and therefore we may choose d = ((1)) . The resulting selt—affine tile P is the parallelepiped

with vertices (0), (1), (1) and (f) which produces the box spline

YARYARN
111111
see Figure 4.1.

Insert Figure 1
It is easy to check that M factors as

- » 1 1) _(0 1)
M = ASpA for A_<1 ) osn=(y )

In this special case, P = A~'P is the unit cube so that U = I and M = M. The symbol
of the dual generator ¢(-) = ¢ @ ¢(A™'-) is given by

b(z) = Z Ca-1,2" = Z csz = ¢(2).

a€Z? BeZ?

In Figure 4.2, we plotted .
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Insert Figure 2

It remains to construct the wavelet basis. According to Theorem 3.1 we first have
to compute the subsymbols of ¢(z) with respect to Sy and A™'p for some suitable

representative p. If we choose p = (1) we obtain

0

10 _, 38 _, 26 35 194, 30 ,

@) = L et = TR F R T o5 P ase st T szt Tz
(on(z) = e o 30 o, 19 n 350 26 , n 38 » 10 4
(%) - smet(9)° T 51270 T 5127 T 256 25671 51270 3127

a€Z?

Therefore, since

e (D0 D=6 1)

@’(z) = oy (a7 + 2 ()

10 . 30 . 3% _, 194 ., 26 _, 350 _
51270 TR TR 5120 T ot T o
350 26 194, 38 , 30 , 10 .

556 256 ' T2 T 5 T 50 T 5120t

we get

The corresponding function ¥ (-) is plotted in Figure 4.3.

Insert Figure 3

Finally, we have to compute 772)() This is now very easy since the symbol a(z) of
©(+) with respect to M is clearly given by

1 1
a(z) = 1(1 + 21)3 = 1(1 4+ 3z + 32% + Zi))),

so that

(2) = 1 N 3 (2) = 3 N 1
dol 2 ) = 1 42122, ap\2) = 1 42122.
Consequently,
1 1
() = a7 o+ 2ap(a) = a4 Da = Do

The resulting wavelet is shown in Figure 4.4.

Insert Figure 4
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Example 4.2 For the second example, let us consider the canonical matrix Sy =

( g (1) ) and the self-affine tile P produced by d = (i), i.e., the parallelepiped with

vertices 0, (i), (170) and Gi) Then A=1, U = (? 170) and

- (b 7)‘(0 1)(10 —7)_(105 —73)
M =USnlU _(7 10 2 0 7 5 ) \151 —105/"

The symbol b(z) of the dual generator is given by

_ a Uus __ 5a1+7as Ta1+10as
b(z)= D cp-1a2" = D g’ = Y sy 2 .
=V =V BeZ?

We may choose d = ((1)) as a second representative for ZQ/MZQ, Then U1 ((1))
so that

I
TN
| =
3 ©
S—’

30 o o 194 5 4o 390 4 0 26 5 40, 38 6 10 10 7 10
o) =gpan T At Togan T optia tapat T o

By the fact that
5 7 0 1 14 5
U'S“_<7 10)'(2 0)‘(20 7)

a’(z) = —6(10)(2_U'SH) + Zlﬁo(Z_U'SH)

-7

30 194 350 4 _ 26 50 _ 38 4, 10 & _
_5@232230 n Ezfzéo B %21 20,80 _ 53213422504_ 5@21482270
10 99 40 | 38 15 20 26 390 43 90 194y 4o, 30—y _eo

Thip 2 TRt Tosgti T gggtt 2 T gt 2 Taptt A

this yields

It remains to compute the symbol 8 of ¢ . Clearly, the symbol of B(-| ((1)) ((1)) ((1)) S ((1)) S ((1)) S ((1)))
with respect to Spy is given by

1
a(z) = 1(1 4+ 329 + 323 + Zg)) )
Since a(z) = Y ez Qu-1,2" We obtain
1
o) = Hu e e na)

so that

1 1
ao2) = (1 +32123), a(oy = 7(3:°2° + 24"47) .

Finally, we get

1
b(l)(z) = —E(o)(Z_M) + Z(l)EO(Z_M) = 1(—1 + 270277 — 327 M2 %0 4 32%257) .
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