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Abstract

This paper studies the regularity of solutions to boundary value problems for
Laplace’s equation on Lipschitz domains € in R? and its relationship with adaptive
and other nonlinear methods for approximating these solutions. The smoothness
spaces which determine the efficiency of such nonlinear approximation in L,(£)
are the Besov spaces B2 (L,(Q)), 7 := (a/d 4+ 1/p)~!. Thus, the regularity of the
solution in this scale of Besov spaces is investigated with the aim of determining
the largest a for which the solution is in B¥(L-(2)). The regularity theorems
given in this paper build upon the recent results of Jerison and Kenig [JK]. The
proof of the regularity theorem uses characterizations of Besov spaces by wavelet
expansions.
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1 Introduction

This paper is concerned with the regularity of solutions to second order elliptic boundary
value problems. We shall consider two related model problems. The first is the following
boundary value problem for Laplace’s equation:

—Au = f on QcCRY (1.1)
u = 0 on 0N

The second is the Dirichlet problem for harmonic functions on €:

Av = 0 on QcCRY (1.2)
v = g on 0N

We assume throughout this paper that € is a bounded, simply-connected, Lipschitz
domain contained in R? (see [A] for the definition of Lipschitz domains).

We shall prove regularity theorems for the solution to (1.1) and (1.2) in a certain scale
of Besov spaces. The particular scale of Besov spaces that we consider is of interest to
us because it is connected to the rate of convergence of nonlinear and adaptive methods
of approximation as we shall now explain.

We consider for example (1.1) in the weak formulation

a(u,v) = (f,v) forall ve Hi (), (1.3)

where Hj(€2) is the subspace of the Sobolev space H'(2) = W'(L,(Q)) which reflects
the homogeneous boundary conditions.

The numerical treatment of (1.3) is generally performed by means of a Galerkin ap-
proach, i.e., we consider a nested sequence {5;};>¢ of finite dimensional linear subspaces
of H} whose union is dense in H} and project (1.3) onto the spaces S;. One then has to
solve the problems

a(uj,v) = (f,v), veS;, (1.4)

for u; € S;, which corresponds to solving a finite-dimensional linear system. Typical
choices for {5;} ;>0 are finite elements spaces consisting of certain piecewise polyno-
mials on partitions of the domain 2, or a ladder of spaces generated by multiresolution
analysis (see [D] for a discussion of multiresolution analysis).

The approximation order provided by such a Galerkin scheme is related to the
smoothness of the solution u to (1.3) and the approximation properties of the spaces S;.
Consider, for example, approximation in Ly(€). If the domain is sufficiently smooth and
if f € Ly(9), then the weak solution is in the Sobolev space W?(Ly(Q)), see Wloka [W]
for details. Therefore, a Galerkin scheme using suitable finite element spaces obtained
by uniform grid refinement provides an approximation u; € S; which satisfies

Hu—U]‘HL2(Q) < C12_2j|u|VV2(L2(Q))7 ] = 0717--'7



with €' a constant independent of u and j (see e.g. Johnson [J] for details). This can be
restated in terms of the dimension n; = O(2/¢) of S; as

[u — ;]| ryia) = O(n; ). (1.5)

J
We refer to such numerical methods as linear since the approximation u; comes from
the linear space 9j.

An estimate of the form (1.5) does not hold in general for nonsmooth domains, e.g, for
domains with edges and corners, for then the smoothness of u could decrease significantly
due to singularities near the boundary, see e.g. Grisvard [G] or Kondrat’ev and Oleinik
[KO] for details. For example, for Laplace’s equation on a general Lipschitz domain,
we can only expect the solution to be in the Sobolev space W*(Ly(Q)) if a < 3/2 and
therefore 2/d needs to be replaced by 3/2d in (1.5).

One can actually characterize the functions F' which can be approximated with order
O(n=°/?) in the metric L,(Q) by typical sequences of finite element spaces of dimension
n. Indeed, we have this order of approximation if and only if F'is in the Besov space
B (L,(2)). Thus the maximum smoothness a* of the solution u to (1.1) in the Besov
scale BY(L,(Q2)) limits the efficiency that a finite element method can have.

One way to possibly increase numerical efficiency in recovering the solution to (1.3)
is to use adaptive methods. In this case, the underlying grid is refined only in re-
gions where the solution lacks smoothness and the approximation u; is still “far away”
from the exact solution u. To implement such a strategy, one clearly needs some a-
posteriori error estimators which give some information about the local error of the
approximation u;. We will not discuss here the problem of how to construct a-posteriori
error estimators. Let us only remark that for finite elements several error estimators
have been developed in the last years, see e.g. Bank and Weiser [BW], Babuska and
Rheinboldt [BR] and Erikson and Johnson [EJ]. Furthermore, for the wavelet setting,
a first approach was given by Dahlke, Dahmen, Hochmuth and Schneider [DDHS], see
also Bertoluzza [B].

We are interested in the question of whether adaptive methods as described above
can indeed provide increased efficiency in numerically recovering the solution to (1.3).
The question then becomes firstly what is the regularity of a function F' which governs
its approximation by such an adaptive method and secondly does the solution u to
(1.3) possess this regularity. As we shall now describe, the regularity which determines
the efficiency of adaptive methods and related wavelet methods is determined by the
smoothness of u as measured in certain scale of Besov spaces.

In general, an adaptive method can be interpreted as a method of non-linear ap-
proximation. In nonlinear approximation, we do not approximate by elements from a
linear space but rather from a nonlinear manifold. The dimension n of the linear space
is then replaced by the dimension (number of parameters) of the manifold. We first
briefly describe the theory as it applies to nonlinear approximation by wavelet sums.
The theory is rather fully developed in this case and the known results for adaptive
approximation are analogous (although somewhat weaker - as we shall explain).

We shall restrict our discussion of nonlinear wavelet approximation to the case of
approximation in L,(R?), 1 < p < oo, using the orthogonal wavelets of Daubechies.



Similar results hold in other settings [DJP],[DY]. The proofs of the results stated below
are particularly trivial (see e.g. [DT]) in the case p = 2.

Daubechies (see [D]) has constructed a univariate family D,,, m = 1,2..., of com-
pactly supported wavelets. When m = 1, Dy is the Haar function. Larger values of m
correspond to higher smoothness of the wavelet D,,; the smoothness of D,, increases
without bound as m increases to infinity, as does the support of D,,. The wavelet D,,
has m vanishing moments. We fix an arbitrary value of m and let ¢ = ¢,, be the uni-
variate scaling function which generates the wavelet ¢» = D,,. We define ¥° := ¢ and
Pl := ). Further, let £ denote the nontrivial vertices of the square [0,1]¢. Then, the
set W of the 2¢ — 1 functions

d
(y, .. xg) = 1:[ Y(xj), e€k, (1.6)

generate by shifts and dilates an orthonormal (wavelet) basis for Ly(R?). Namely, let
D := D(RY) denote the set of dyadic cubes in R?. Each cube I € D is of the form
I =27k +2770,1]¢ with & € Z¢, j € Z. The functions

nr=MnNk = 2jd/2n(2j ) _k)v I= Z_jk + Z_j[ov 1]d7 ke Zdaj S Z777 S \Ilv (17)

form an orthonormal basis for Lo(R?).
In nonlinear wavelet approximation, we approximate a function F' € L,(R?) by
linear combinations of n of the basis elements n;. Namely, let M, denote the non-linear

S = Z arqni

(Im)eA

with A C D x VU of cardinality n and let

manifold of all functions

On( ) pymay = b (|17 = S|, ma). (1.8)

In this setting, one has the following characterization (see [DJP]) for 1 < p < oo,

i[na/dan(F)Lp(Rd)]T% < oo <= Fe B L (RY), 7=(a/d+1/p)7", (1.9)

n=1

and the BY(L,(RY)) are the Besov spaces (see §2 for the definition of Besov spaces).

Let us make a few remarks comparing (1.9) with the analogous case of linear ap-
proximation (1.5). As we have already noted, for linear approximation, the requirement
for approximation order like O(n=/?) in L,(R?) is that F' has smoothness of order « in
L,(R%)). In the case of nonlinear approximation, the smoothness of F' is measured in
L, (RY), 7 = (a/d + 1/p)~t. Since 7 < p, F' may have a higher order of smoothness a
when measured in L, than it does when measured in L,. It is precisely for these types
of functions that nonlinear methods will perform better than linear methods.

There are analogous results to (1.9) for adaptive approximation; although the situa-
tion here is not as fully developed. For example, for adaptive approximation by piecewise
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polynomials (see [DY]), it is known that for each function F' € Bo*+¢(L.(R%)), ¢ > 0,
7 := (a/d 4+ 1/p)~"', adaptive approximation with n parameters will approximate F' to
order O(n=°/?). In other words, assuming slightly more smoothness than in the case
of nonlinear wavelet approximation, we obtain the same order of approximation. One
should note that adaptive approximation is more restrictive than nonlinear wavelet ap-
proximation. A comparable type of nonlinear wavelet approximation would require that
the approximation only uses sets A that have a tree like structure - whenever (I,n) € A,
then (I’,n) must also be in A for the parent I’ of I.

A similar theory of nonlinear approximation also holds on domains although the
results here are not as complete and need to be developed further. For the case of
nonlinear wavelet approximation, one needs the development of orthogonal (or stable)
wavelet bases for domains. For simple domains such as cubes this is done. For more
general domains first steps have been made (see e.g. [CDD]). The adaptive theory
should carry over as well although the only paper known to the authors is restricted to
domains that are cubes [DY]. Note however that some results can be concluded from
the case of cubes by using the fact that any function ' in a Besov space Bf(L,(9)) with
Q) Lipschitz, can be extended to a function on all of R? with the same Besov regularity.

These results on nonlinear approximation lead us to ask what is the regularity of the
solution u to an elliptic equation as measured in the scale of Besov spaces B®(L.({)),
7 = (a/d +1/p)~'? In particular, does the solution u have a higher smoothness order
« in this scale of Besov spaces then it does when the smoothness is measured in L,(2)?
One of the main results (Theorem 4.1) of the present paper shows that this is indeed the
case. For example, in the case p = 2, we show that the solution u is in the Besov space
B*(L,(Q)), 7 = (a/d+1/2)7", for a < 3d/(2d — 2), provided that f € W7 (L3(Q)), v =
(4 — d)/(2d — 2). Similar results hold for other values of p. In other words, we show
that v has the smoothness necessary that allows adaptive or other forms of nonlinear
approximation to perform better than linear methods.

Our results for the regularity of (1.1) are proved by reducing the problem (in a
standard manner) to the regularity of harmonic functions which are solutions to the
Dirichlet problem (1.2). We prove that if the solution v to (1.2) is in the Besov space
B?(Lp(ﬂ)), then v is also in the Besov space B*(L.(Q)), 7 = (a/d + 1/p)~", for every
0 < a< .
approximation is always greater by a factor d/(d — 1) than its smoothness in the scale

In other words, the regularity of v in the Besov scale for nonlinear

for linear approximation.

Our regularity results are closely related to the work of Jerison and Kenig [JK] who
proved several deep theorems about the Besov regularity of the solutions to the two
model problems (1.1) and (1.2). In fact, in some cases our results can be derived from
theirs. In general, however, our results are new - primarly because we consider (as is
necessary) Besov spaces with smoothness measured in L, where 7 < 1. We remark
further on the connections between our results and those in [JK] in §§3.4.

We want to make clear that the present paper is concerned with the regularity (i.e.
the smoothness) of solutions to elliptic equations. Our motivation for the type of reg-
ularity we study are adaptive and other forms of nonlinear approximation. However,



we do not construct in this paper a numerical scheme for solving (1.3). Indeed, the
nonlinear approximation schemes described above require full knowledge of the solution
u to construct the approximation which is not available when numerically solving (1.3).

An outline of this paper is that in §2, we state the properties we need of Besov spaces
and wavelet decompositions; in §3 we prove the regularity theorem for the Dirichlet
problem (1.2); and in §4 we discuss the regularity of the solution to (1.1).

2 Besov spaces and wavelet decompositions

In this section, we define the Besov spaces and give their characterization in terms of
wavelet decompositions.

Let Q be a Lipschitz domain. If A € R? we denote by Q) the set of all z € Q
such that the line segment [x,2 4 h] is contained in . The modulus of smoothness
wr(F,1)1,00) of a function F' € L,(2), 0 < p < oo, is defined by

w, (F, 1)L, () = s IAL(E, |z, >0,
<t

with A} the r-th difference with step h. For a > 0 and 0 < ¢,p < oo, the Besov space
BZ(L,(9)) is defined as the space of all functions " for which

0O Ty— o 1/
(Joo [t own(Fy ) y]tdtf1) ™, 0 < g < o0,

(2.1)
SUPy>o t_awT(F7t)Lp(Q)7 qg= o0,

| lBg(Lp(0)) = {

is finite with r := [a] 4+ 1. Then, (2.1) is a (quasi-)semi-norm for B (L,(2)). If we add
| F ||z, @) to (2.1), we obtain a (quasi-)norm for B (L,(12)).

It is also possible to characterize Besov spaces by wavelet decompositions. Let ¢ be
a univariate Daubechies’ scaling function and ¢ = D,, be the corresponding wavelet.
These functions have compact support. As noted earlier, the function ¢» = D,, has
m vanishing moments and the smoothness of the D,, increase without bound as m
grows. The functions (1.7) are an orthonormal basis for Ly(R?) and they also form an
unconditional basis for L,(R%), 1 < p < oo. Each I € L,(R%), 1 < p < oo has the

wavelet decomposition
=32 (Fonm (2.2)
1eDnev

with convergence in L,(R?).

We can also restrict the wavelet expansion (2.2) to those n; with [I| < 1. For this,
we define Sy to be the closure in LQ(Rd) of the finite linear combinations of the integer
shifts of the function ¢(xy)--- ¢(x4) and let Py be the orthogonal projector which maps
Ly(RY) onto Sp. Then, Py has an extension as a projector to L,(R?), 1 < p < co. For
each I € L,(R?), we have

F=P(F)+ > S (Fom (2.3)

IeDt nevw



with DT the set of dyadic cubes with measure < 1.

The Besov spaces B?(Lp(Rd)) can be characterized by wavelet coefficients provided
the parameters «, p, g satisty certain restrictions. We shall only need the case ¢ = p. In
describing this characterization it is convenient to use a normalization for the wavelets
which depend on p. If 0 < p < 0o, we define

Nrp = [P (2.4)
Then, |01,z me) = |7]lz,(rey is constant. We can then rewrite (2.3) as
F=PRy(F)+ Z Z<F7 ML ) (2.5)
IeD+ nev

with p’ the conjugate index to p, 1/p 4+ 1/p’ = 1. Note that p’ is negative if p < 1.

Proposition 2.1 Let ¢ and ¢ be in C"(R). If0 < p < oo andr > a > d(1/p —1),
then a function F is in the Besov space B;“(Lp(Rd)), if and only if,

F=P(F)+ > S AF 01, (2.6)

IeD+ nev

with

IeDt nevw

1/p
[ Po( )|z, ey + ( > TR, 77Lp’>|p) < o0 (2.7)
and (2.7) provides an equivalent (quasi-)norm for B;“(Lp(Rd)).

In the case p > 1, this is a standard result and can be found for example in Meyer [M]
(§10 of Chapter 6). For the general case of p, this can be deduced from general results
in Littlewood-Paley theory (see e.g. §4 of Frazier and Jawerth [FJ]) or proved directly
(see Kyriazis [Ky]). The condition that a > d(1/p — 1) implies that the Besov space
B;“(Lp(Rd)) is embedded in L (R?) for some s > 1 so that the wavelet decomposition of
I is defined. Also, with this restriction on «, the Besov space B;“(Lp(Rd)) is equivalent to
the non-homogeneous Besov spaces By defined via Fourier transforms and Littlewood-
Paley theory.

We now fix a value of 1 < p < oo and consider the scale of spaces B2(L.(R%)), 7 =
(a/d +1/p)~', @ > 0. Using the fact that 5; . = |[I|'/?"~Y/"'y; 1, a simple computation
gives

=T E o) |7 = [ )|
This gives the following equivalent characterization of B(L,(R?)).

Proposition 2.2 Let ¢ and ¢ be in C"(R). If1 < p < oo and r > a > 0 and
7= (a/d +1/p)~t, then a function F is in the Besov space BY(L,(RY)), if and only if,

F=P(F)+ > S AF 01, (2.8)

IeD+ nev
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with

1/7
1 E6(£)|| 2, ey (Z > KE )] ) < o0 (2.9)

IeD+ nev

and (2.9) provides an equivalent (quasi-)norm for B(L.(R%)).

3 Regularity of the solution to the Dirichlet bound-
ary value problem

In this section, we shall study the regularity of harmonic functions on . Our main
result shows that whenever an harmonic function v on ) is known to be in a Besov
space B?(Lp(ﬂ)), then it automatically has additional smoothness in a scale of Besov
spaces associated to p and A. This added smoothness is nontrivial in the sense that
general nonharmonic functions do not possess this property.

We shall utilize certain maximal functions which measure smoothness that have been
extensively studied in [DS]. Let IT = II,, be a bounded projector from L;([0, 1]¢) onto
the space P, of polynomials of total degree at most m. Such a projector gives by change
of scale a projector Il from L1(Q) onto P, for each cube @ (all cubes are taken with
sides parallel to the coordinate axis). If # > 0, we take m := [] and define for each
F e Li(9), '

i —
Fi(r) = sup- |Q|1+ﬁ/d/Q P = TgF)|. (3.1)

It was shown by DeVore and Sharpley [DS] (see Theorem 7.1 and Corollary 11.6 ')
that for 1 < p < oo the following inequality holds for each F' € Bg([/p(ﬂ)),

|y < C1Flgas, (3.2)

(@)’
with a constant €' which depends at most on 2 and .
The following theorem is an extension of a result of Jerison and Kenig (see Theorem

4.1'in [JK]).

Theorem 3.1 Let 1 < p < oo, f >0, and let k > [ be an integer. Then there is a
constant C > 0 depending only on k, 3, and Q such that whenever v is an harmonic

function on Q which is in Bg([/p(ﬂ)) we have

16(x) =1V (@), < Cllollpp, 8(x) := dist (z,09), (3.3)

(@)’

where VFv denotes the vector of all kth order derivatives of v and |V*v| is its Euclidean
length.

Lwhile Corollary 11.6 of [DS] is stated for 1 < p < oo the same proof is valid for p = 1, 00



Proof: We first consider the case when 0 < # < 1. For any function F' defined on
R?, we define its dilates F5(y) := 67¢F(y/é), § > 0. Let o be a fixed C*° function on R?
which is radial and supported in the unit ball. It follows from the mean-value property
of harmonic functions that for any v and for 6 := §(x), we have

D7v(z) = /Rd v(y)((S/Q)_h'(ch,o)g/g(x —y)dy, x€Q, (3.4)

see e.g. Stein [S], Appendix C for details. We use (3.4) with |y| = k to obtain

[D7v(x)] < sup (5/2)_M|(D”99)6/2($—y)|/ [v(y)|dy
yEB(x,6/2) B(x,§/2)
< (§/2)7%F sup | D7 / v(y)|d
< (@2 s (D) [ ()

1
< 05—“57/ d Q.
< T Sy P €

We can replace v by v — Ilgv where II is the projector corresponding to m =0 if 8 < 1
and to m = 1 if § = 1 (because Ilgv is also harmonic). In this way we obtain the
inequality

6(x)PIDw(x)| < Cvé(:z;), x €. (3.5)

Taking a norm with respect to L,(€) and using (3.2) establishes (3.3) in the case 0 <
g<1

Consider now any 3 > 0 and write f = {4+ a with0 < a < 1. Since k— 3 = k—{(—q,
we can apply what we have already proved to any of the functions D7v, |y| = ¢ and
obtain

18(x) =2 IV D ()| z,02) < CLD 0lBgrp) < Cllvllgg, (3.6)

)’
where the last inequality follows from the reduction theorem for Besov spaces (see e.g.

Theorem 6.2.7 in Bergh and Lofstrém [BL]). Since |y| = € is arbitrary, we have proved
(3.3). O

The following is the main result of this paper.

Theorem 3.2 Let Q be a bounded Lipschitz domain in R®. If v is an harmonic function
on Q which is in the Besov class B?(Lp(ﬂ)), for some 1 < p < oo and A >0, then

=
ve BNL(Q)), 1= (%—I——) , 0<ac<
p

= (3.7)

Proof: We fix 7 and « as in the statement of the theorem. We will denote by m an
integer which depends on «, A, and d and whose value will be specified during the course
of the proof of this theorem. Because ) is a Lipschitz domain, we can extend v to all of
R? with the extension in B?(Lp(Rd)). We denote this extension also by v.



We can represent v with respect to the wavelet basis (1.7). Let ¢ := D,, be
the Daubechies” wavelet with parameter m and let ¥ be the collection of multivari-
ate wavelets defined by (1.6). We require that m is large enough that the functions
¢ and ¢ are in C°(R), s := [d\/(d — 1)] + 1. Since ¢ and its generating function
¢ have compact support, there is a cube ) C R?, centered at the origin, such that
supp 7 C Q for all n € U. By shifts and dilates we obtain the cubes Q(1I) := 277 k+277(Q),
I =277k +277[0,1]¢, which contain supp 5z, for all I € D, n € ¥. We recall our nota-
tion D7 for the dyadic cubes of measure at most 1. Let A denote the set of pairs (I,7),
I €Dt npeV, for which Q(1)NQ # . Then, on Q, we have

v=Pyv+vy, vo:= Z {(v,nrnr, (3.8)
(Im)eA

where Py is the projector introduced in §2. The function Pyvlg is in C*(9) because it
is a finite linear combination of shifts of ¢(x1)--- ¢(x4). To complete the proof of the
theorem, we shall show that v € BY(L,(R?)) from which the theorem follows.

It will be (notationally) convenient to use the L,-normalized wavelets 5y, introduced

in §2. We have
Vo := Z (Vs N1 )1 (3.9)

(Im)eA

According to Proposition 2.2, we are left with showing

1/7
(Z |<Uﬂ71,p'>|7) < oo. (3.10)
(

In)eA

To prove (3.10), we shall use Theorem 3.1 which says that that &(z)™=*|V™v(x)| €
L,(8).
For I € DY, let
or:= inf é(x).
d xég(f) (x)

There is a polynomial P; of total degree < m such that

lv = PrllLyeuy < ClRUI™ olwm, @y < CHI™ olwnw,@n)-

The constants C' which appear here and later in this proof depend only on «, d, m, and
the Lipschitz character of ). Recall that n;, is orthogonal to any polynomial of total
degree < m. Hence,

IA

[{0;m1,07)] {0 = Pronren)| < llo = Prllzeaplinry i, me (3.11)

< CUPolwm o)
1/p
clp s (st )
Q)

= O .

IA

10



where p; 1s defined by the last equality.
Let A; denote the set of those pairs (I,1) € A with |I] = 2774, For each k = 0,1, ..
let A, C Aj be the set of those (I,7) € A; such that

)

k277 < 6p < (k+1)277
From the Lipschitz character of €2, it follows that
[Ajul C2ED G k=01, (3.12)

Also note that since the domain Q is bounded, we have A;p = 0 if & > C27. Let
A% = A; \ Ajo. We now fix j with 0 < j < oo and estimate the portion of the sum in
(3.10) corresponding to (I,n) € A?. For each (I,7) € A?, the cube Q([) is contained
strictly in Q. It follows from (3.11) that

S ol <0 Y o

(Im)eA? (I,m)€eA?
We use Holder’s inequality with exponents £ and z%’ to find

p—T

bS]

(A—m)pT

P
S Woom)T <O Y 258 S

(Im)eA] (Iim)eAT (Lm)€AT

Now, a point z € Q appears in at most C' of the cubes Q([), I € Aj. Using Theorem
3.1, we obtain

hSaR]
bS]

Soul o= | X [ Ve

(Im)EA? (Imens” Q)

< ([ B wre@iPde ) < Cllellym, < C

Therefore, using (3.12), and summing over the sets A.,, & =1,2,..., gives
9 g 9 g TR 9 < 7g
C'27 A—m)pT p;‘r
S Nl < CY X 2% e
(I,m)€eA? k=1 (I)€A;
o2 pm (A—m)pr 5
< OS2 T (k27 T
k=1
< C d 1— p)\‘r Zz: (()\ m)pr %

11



We now choose m large enough that (m — A)7 > 1 — 7/p and obtain
(=t=n gy

S v < 020

(Im)eA]

We now define A := U2 A? and sum our last inequalities over all dyadic levels

g =0,1,... to find

Z |<v777[p <022] (d=Lp=r) 1)(p ) /\T)SC

(I,m)eAe
provided
(d=1D(p—7) . pld —1)
— A €. _ A
) T<0, 1le, T p)\—l—d—l (3.13)

This condition on 7 is equivalent to the condition on « given in the statement of the
theorem.

Finally, we need to estimate the sum of wavelet coefficients corresponding to the sets
Ajo, 7 =0,1,.... Using Holder’s inequality, and the fact that |A;o| < €2/~ gives

7/p
Z |<U777[,p/>|7 S CQ](d—l)(l—T/p)( Z |<v777[7p/>|p)

(Im)€h; o (Im)€h; o
7/p
< ng(d—l)(l—T/p)Q—jM( Z 2Apj|<v7mp/>|p) ‘
(I,U)EA],O

Hence, summing over all dyadic levels j and using Holder’s inequality again, we find

p—T

o0 T/p p=r
> % |<v,m,p/>rs0(2 )y 2Am‘|<v,m,p/>|p) (Zz<—’;-?+<d—1>f>) |

J=0(Im)€h 0 720 (I,n)€A 0 7>0

From Proposition (2.1), the first sum on the right side is bounded by CHUHB;\(LP(ROZ))
which is in turn bounded by CHUHB;\(LP(Q)). The second sum on the right side is finite if

the exponent of 2/ is negative or what is the same thing if

p(d —1)
p)\—l—d—l

This is the same restriction we had on 7 in (3.13) and corresponds to the condition on «
stated in the theorem. We have therefore completed the verification of (3.10) and have
therefore proved the theorem. a

We use the remainder of this section to explain how Theorem 3.2 can be used and
to bring out the connections between this theorem and the results of Jerison and Kenig

K.
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Jerison and Kenig (Theorem 5.1 of [JK]) have shown that for each 1 < p < oo,
there is a range of values s such that if the boundary condition ¢ is in the Besov space
B3 (L,(052)), then the solution v to (1.2) is in the Besov space B;+1/p(Lp(Q)). Thus,
under these same conditions on g, Theorem 3.2 implies that v is in B2 (L.(§)), provided
a < %. In certain cases (namely if 7 > 1), the results of Theorem 3.1 follow from
their results.

We single out for further mention only the case p = 2 in the following corollary.

Corollary 3.1 Let Q be a bounded Lipschitz domain in R®. If v is a solution to the
Dirichlet problem (1.2) with g € W*(Ly(9R)) then

3d
2d—1)

a 1\7!
veBﬂLgm,T:(E+§), 0<a<

(3.14)

Proof: If g € W'(Ly(99)), then v € W3/2(Ly(Q)) (see [JK]). The Corollary then fol-

lows from Theorem 3.2. O

Note that it d = 2,3, then « is permitted to be larger than 2 and 7 < 1. For d > 4,
the corrollary can be also derived from Theorem 5.1 of [JK].

Theorem 3.2 says that if an harmonic function v is in a Besov space B?(Lp(ﬂ)), then
it is automatically in the Besov space BY(L,(€)) of that theorem. By interpolation and
embeddings for Besov spaces, we can conclude that v is in a family of Besov spaces
B:(L,(2)) for a certain range of the parameters ¢ and s. This is depicted in Figure 1 for
the special case A =3/2, p =2, d = 2 of Corollary 3.1. If v € BS/Z(LQ(Q)), then it is in
B (Ly(Q)) whenever (1/g,s) is in the interior of the quadrilateral with vertices (1/2,0),
(1/2,3/2), (2,0), (2,3). The heavy line connecting (1/2,0) to (2,3) corresponds to the
spaces BS(L,(9)) of Theorem 3.2.
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Figure 1: Regularity spaces when g € By(L2(99Q)), v € BQS/?(LQ(Q)), Q C R

4 Regularity Estimates for Laplace’s equation

There is a general strategy for reducing the boundary value problem (1.1) to the Dirichlet
problem (1.2) for harmonic functions which proceeds as follows. Suppose that f is in
some space X () which can be a smoothness space like By (L,(2)) or W(L,(£2)) or
an L,(9) space (in the case a = 0). We can extend f to a compactly supported function
f defined on all of R? which is in the space X*(R%). We solve the problem (1.1) with
f replaced by f and with © replaced by a ¢ domain ) which strictly contains Q. For

suitable X, the solution @ will be in X**?(2). We can write the solution u to (1.1) as
u=u—v on ), (4.1)
where v is the solution to the Dirichlet problem

Av = 0 onf), (4.2)

v|aQ = ﬂ|aQ =4g.
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We use a trace theorem to infer smoothness of ¢ on 9€). In this way, a regularity
theorem can be deduced for u from regularity theorems for v. We give one example of
this approach which employs our regularity results. Several new variants are possible.

Theorem 4.1 Let Q be a bounded Lipschitz domain in R, Then, there is an 0 < ¢ < 1
depending only on the Lipschitz character of 0 such that whenever u is a solution to

—Au = f on QCRY (4.3)
u = 0 on 09

with [ € By (Ly(), A := 751+ 3), 1 < p < 2+¢ then u € BY(L,(Q)), 7 =
(a/d+1/p)~Y, for all 0 < a < .

Proof: Using the approach outlined above, we have u € B?(Lp((l)). Hence, by
the embeddings of Besov spaces: B?(Lp(ﬂ)) — B?(LT(Q)) — B2(L.(Q)), we have
u € BY(L,(9)) for any a,7 as in the statement of the theorem. Since A > 1/p, we
can use the trace theorem of Jonsson and Wallin (p. 209 in [JW]) to conclude that
g € Bg([/p(aﬂ)) for every # < 1. From the regularity theorem of Jerison and Kenig

(Theorem 5.1 of [JK]), v is in Bg"’l/p([/p(ﬂ)) for every # < 1. Theorem 3.2 now im-
plies that v € B2(L,(92)) for every a and 7 as in the statement of the theorem. Since
u = @ — v, the theorem follows. a
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our attention to the problems studied in this paper and to Marius Mitrea for valuable
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References

[A] R.A. Adams, Sobolev Spaces, Academic Press, New York (1975).

[BR] I. Babuska and W.C. Rheinboldt, A posteriori error estimates for finite element
computations, SIAM J. Numer. Anal. 15 (1978), 736-754.

[BW] R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial
differential equations, Math. Comp. 44 (1985), 283-301.

[BL] J. Bergh and J. Lofstrom, [Interpolation Spaces, Springer Verlag, Berlin-
Heidelberg-New York (1976).

[B] S. Bertoluzza, A posteriori error estimates for wavelet Galerkin methods,
Preprint Nr. 935, Istituto di Analisi Numerica, Pavia, (1994).

[CDD] A. Cohen, W. Dahmen, and R. DeVore, Multiscale decompositions on bounded
domains, IGPM-Bericht, Nr. 113 (1995), RWTH Aachen.

15



[DDHS] S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale

[D]

[DJP]

[DS]

[DT]
[DY]

[FJ]

[FJ]

[JW]

[KO]

[Ky]

bases and local error estimation for elliptic problems, IGPM-Bericht, Nr. 124
(1996), RWTH Aachen.

[. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference
Series in Applied Math. 61, STAM, Philadelphia, (1992).

R. DeVore, B. Jawerth, and V. Popov, Compression of wavelet decompositions,

Amer. J. Math. 114 (1992), 737-785.

R. DeVore and R. Sharpley, Maximal functions measuring smoothness, Mem-

oirs of the Amer. Math. Soc. 293 (1984), 1-115.
R. DeVore and V. Temlyakov, Some remarks on greedy algorithms, preprint.

R. DeVore and X.M. Yu, Degree of adaptive approximation, Math. Comp. 55
(1990), 625-635.

K. Erikson and C. Johnson, An adaptive finite element method for linear elliptic
problems, Math. Comp. 50 (1988), 361-385.

M. Frazier and B. Jawerth, A discrete transform and decompositions of distri-

bution spaces, J. of Funct. Anal. 93(1990), 34-170.

P. Grisvard, Behavior of the solutions of elliptic boundary value problems in
a polygonal or polyhedral domain, in: Symposium on Numerical Solutions of

Partial Differential Equations I1I, B. Hubbard Ed., Academic Press, New York,
(1975), 207-274.

D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz
domains, to appear in J. of Funct. Anal.

C. Johnson, Numerical Solution of Partial Differential Fquations by the Finite
FElement Method, Cambridge University Press, Cambridge, (1987).

A. Jonnson and H. Wallin, Function Spaces on Subsets of R", Harwood Aca-
demic Publishers, Mathematical Reports, Vol. 2, (1984).

V.A. Kondrat’ev and O.A. Oleinik, Boundary value problems for partial dif-
ferential equations in non-smooth domains, Russian Math. Surveys 38 (1983),

1-86.

G. Kyriazis, Wavelet coefficients measuring smoothness in H,(R%), to appear
in Journal of Applied and Computational Harmonic Analysis.

Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced mathe-
matics, vol. 37, Cambridge (1992).

16



[S] E.M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, Princeton, (1970).

[W] J. Wloka, Partielle Differentialgleichungen, B.G. Teubner, Stuttgart, (1982).

17



