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Abstract

This paper is concerned with the analysis and decomposition of medical multi-channel
data. We present a signal processing technique that reliably detects and separates signal
components such as mMCG, fMCG or MMG by involving the spatio-temporal morphology
of the data provided by the multi-sensor geometry of the so-called multi-channel supercon-
ducting quantum interference device (SQUID) system. The mathematical building blocks are
Coorbit theory, multi-α-modulation frames and the concept of joint sparsity measures. Com-
bining the ingredients, we end up with an iterative procedure (with component dependent
projection operations) that delivers the individual signal components.
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1 Introduction

One focus in the field of prenatal diagnostics is the investigation of fetal developmental brain pro-
cesses that are limited by the inaccessibility of the fetus. Currently there exist two techniques
for the study of fetal brain function in utero namely functional magnetic resonance imaging
(fMRI) [15, 17] and fetal magnetoencephalography (fMEG) [9, 10, 16, 21]. There are several
advantages and disadvantages of both techniques. The fMEG, for instance, is a completely
passive and non-invasive method with superior temporal resolution and is currently measured
by a multi-channel superconducting quantum interference device (SQUID) system, see Figure 1.
However, the fMEG is measured in the presence of environmental noise and various near-field
biological signals and other interference as for example, maternal magnetocardiogram (mMCG),
fetal magnetocardiogram (fMCG), uterine smooth muscle (magnetomyogram=MMG), and mo-
tion artifacts [19, 28]. After the removal of environmental noise [27], the emphasis is on the
detection and separation of mMCG, fMCG and MMG. To solve this detection problem seriously
is the main prerequisite for observing and analyzing the fMEG. In the majority of reported work
the MCG was reduced by adaptive filtering and/or noise estimation techniques [20, 22]. In [20]
different algorithms for elimination of MCG from MEG recordings are considered, e.g. direct
subtraction (DS) of a MCG signal, adaptive interference cancellation (AIC), and orthogonal
signal projection algorithms (OSPA). All these approaches and their slightly modified versions
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Figure 1: Multi-channel superconducting quantum interference device (SQUID) system.

are used for fMEG detection. In this paper, we present a different data processing technique
that reliably detects both, the mMCG+fMCG and MMG+“motion artifacts” by involving the
spatio-temporal morphology of the data given by the multi-sensor geometry information. Math-
ematically, the main ingredients of our procedure are so-called multi-α-modulation frames (for
which the construction relies on the theory of Coorbit spaces) for an optimal/sparse signal
expansion and the concept of joint sparsity measures.

A sparse representation of an element in a Hilbert or Banach space is a series expansion
with respect to an orthonormal basis or a frame that has only a small number of large/nonzero
coefficients. Several types of signals appearing in nature admit sparse frame expansions and thus,
sparsity is a realistic assumption for a very large class of problems. Recent developments have
shown the practical impact of sparse signal reconstruction (even the possibility to reconstruct
sparse signals from incomplete information [2, 3, 7]). This is in particular the case for the
medical multi-channel data under consideration that usually consist of pattern representing
specific biomedical information (mMCG and fMCG). But multi-channel signals (i.e., vector
valued functions) may not only possess sparse frame expansions for each channel individually,
but additionally (and this is the novelty) the different channels can also exhibit common sparsity
patterns. The mMCG and fMCG exhibiting a very rich morphology that appear in all the
channels at the same temporal locations. This will be reflected, e.g., in sparse wavelet/Gabor
expansions [1, 8] with relevant coefficients appearing at the same labels, or in turn in sparse
gradients with supports at the same locations. Hence, an adequate sparsity constraint is a so-
called common or joint sparsity measure that promotes patterns of multi-channel data that do
not belong only to one individual channel but to all of them simultaneously.

In order to sparsely represent the MCG data we propose the usage of multi-α-modulation
frames. These frames have only been recently developed as a mixture of Gabor and wavelet
frames. Wavelet frames are optimal for piecewise smooth signals with isolated singularities,
whereas Gabor frames have been very successfully applied to the analysis of periodic structures.
The α-modulation frames therefore have the potential to detect both features at the same time,
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and therefore they seem to be extremely well-suited for the problems studied in this paper.
Indeed, the numerical experiments presented here definitely confirm this conjecture.

This paper is organized as follows. In Section 2, we briefly recall the setting of α-modulation
frames as far as this is needed for our purposes. Then, in Section 3, we explain how these frames
can be used in multi-channel data processing involving joint sparsity constraints. Finally, in the
last section, we present the numerical experiments.

2 Coorbit theory and α-modulation frames

In this section, we review the basic that provide so-called α-modulation frames. We propose to
treat the medical data analysis problem with this specific kind of frame expansions since varying
the parameter α allows to switch between completely different frame expansions highlighting
different features of the signal to be analyzed while having to manage only one frame construction
principle. The focus is not yet on multi-channel data approximation but rather on the basic
methodologies that apply for single-channel signals but can (in the next section) simply be
extended to multi-channel data.

In general, the motivation (and central issue in applied analysis) is the problem of analyzing
and approximating a given signal. The first step is always to decompose the signal with respect
to a suitable set of building blocks. These building blocks may, e.g., consist of the elements of
a basis, a frame, or even of the elements of huge dictionaries. Classical examples with many
important practical applications are wavelet bases/frames and Gabor frames, respectively. The
wavelet transform is very useful to analyze piecewise smooth signals with isolated singularities,
whereas the Garbor transform is well–suited for the analysis of periodic structures such as
textures. Quite surprisingly, there is a common thread behind both transforms, and that is
group theory. In general, a unitary representation U of a locally compact group G in a Hilbert
space H is called square integrable if there exists a function ψ ∈ H auch that∫

G
|〈ψ,U(g)ψ〉H|2dµ(g) <∞,

where dµ denotes the (left) Haar measure on G. In this case, the voice transform

Vψf(g) := 〈f, U(g)ψ〉H

is well-defined and invertible on its range by its adjoint. It turns out that the Gabor transform
can be interpreted as the voice transform associated with a representation of the Weyl-Heisenberg
group in L2, whereas the wavelet transform is related with a square-intergrable representation
of the affine group in L2.

Since both transforms have their specific advantages, it is quite natural to try to combine
them in a joint transform. One way to achieve this would be to use the affine Weyl-Heisenberg
group GaWH which is the set R2+1 × R+ equipped with group law

(q, p, a, ϕ) ◦ (q′, p′, a′, ϕ′) = (q + aq′, p+ a−1p′, aa′, ϕ+ ϕ′ + paq′).

This group has the Stone-Von-Neumann representation on L2(R)

U(q, p, a, ϕ)f(x) = a−1/2e2πi(p(x−q)+ϕ)f

(
x− q
a

)
= e2πiϕTxMωDaf(t), (1)

where
Mωf(t) = e2πiωtf(t), Txf(t) = f(t− x), and Daf(t) = |a|−1/2f(t/a),
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which obvious contains all three basic operation, i.e., dilations, modulations and translations.
Unfortunately, U is not square integrable. One way to overcome this problem is to work with
representations modulo quotients. In general, given a locally compact group G with closed
subgroup H, we consider the quotient group X = G/H and fix a section σ : X → G. Then, we
define the generalized voice transform:

Vψf(x) := 〈f, U(σ(x))ψ〉H. (2)

In the case of the affine Weyl-Heisenberg group, it has been shown in [4] that by using the specific
group H := {(0, 0, a, ϕ) ∈ GaWH} and the specific section σ(x, ω) = (x, ω, β(x, ω), 0), β(x, ω) =
(1 + |ω|)−α, α ∈ [0, 1), the associated voice transform (2) is indeed well-defined and invertible
on its range. Hence, it gives rise to a mixed form of the wavelet and the Gabor transform, and
it also provides some kind of homotopy between both cases. Indeed, for α = 0, we are in the
classcial Gabor setting, whereas the case α = 1 is very close to the wavelet setting, see, e.g., [4]
for details.

Once a square-integrable representation modulo quotients is established, there is also natu-
ral way to define associated smoothnness spaces, the so-called coorbit spaces, by collecting all
functions for which the voice transform has a certain decay, see [11, 12, 13]. More precisely,
given some positive measurable weight function v on X and 1 ≤ p ≤ ∞, let

Lp,v(X) := {f measurable : fv ∈ Lp(X)}.

Then, for suitable ψ, we define the spaces

Hp,v := {f : Vψ(A−1
σ f) ∈ Lp,v}, Aσf :=

∫
X
〈f, U(σ(x))ψ〉HU(σ(x))ψdµ, (3)

where dµ denotes a quasi-invariant measure on X. In the classical cases, i.e., for the affine
group and the Weyl-Heisenberg group, one obtains the Besov spaces and the modulation spaces,
respectively. In the setting of the affine Weyl-Heisenberg group and the specific case vs(ω) =
(1 + |ω|)s, the following theorem has been shown in [4]:

Theorem 1 Let 1 ≤ p ≤ ∞, 0 ≤ α < 1 and s ∈ R. Let ψ ∈ L2 with suppψ̂ compact and
ψ̂ ∈ C2. Then the coorbit spaces Hp,vs−α(1/p−1/2),α are well-defined and can be identified with the
α–modulation spaces M s,α

p,p , which are defined by

M s+α(1/q−1/2),α
p,p (R) = {f ∈ S ′(R) : 〈f, U(σ(x, ω))ψ〉 ∈ Lp.vs(R2)}. (4)

Consequently, the α–modulation spaces are the natural smoothness spaces associated with
representations modulo quotients of the affine Weyl–Heisenberg group.

When it comes to practical applications, then one can only work with discrete data, and
therefore it is necessary to discretize the underlying representation in a suitable way. Indeed, in
a series of papers [11, 12, 12] Feichtinger and Gröchenig have shown that a judicious discretization
gives rise to frame decompositions. The general setting can be described as follows. Given an
Hilbert space H, a countable set {fn : n ∈ N} is called a frame for H if

‖f‖2H ∼
∑
n∈N
|〈f, fn〉H|2 for all f ∈ H. (5)

As a consequence of (5), the corresponding operators of analysis and synthesis given by

F : H → `2(N), f 7→ (〈f, fn〉H)n∈N (6)
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F ∗ : `2 → H, c 7→
∑
n∈N

cnfn (7)

are bounded. The composition S := F ∗F is boundedly invertible and gives rise to the following
decomposition and reconstruction formulas:

f = SS−1f =
∑
n∈N
〈f, S−1fn〉Hfn = S−1Sf =

∑
n∈N
〈f, fn〉HS−1fn. (8)

The Feichtinger-Gröchenig theory gives rise to frame decompositions of this type, not only for
the underlying representation space H but also for the associated coorbit spaces. Indeed, it
is possible to decompose any element in the coorbit space with respect to the frame elements
(atomic decomposition), and it is also possible to reconstruct it from its sequence of moments.
For the case of the α-modulation spaces, these results can be summarized as follows.

Theorem 2 Let 1 ≤ p ≤ ∞, 0 ≤ α < 1 and s ∈ R. Let ψ ∈ L2 with suppψ̂ compact and
ψ̂ ∈ C2. Then there exists ε0 > 0 with the following property: Let Λ(α) := {(xj,k, ωj)}j,k∈Z
denote the point set ωj := pα(εj), xj,k := εβ(ωj)k, 0 < ε ≤ ε0 where

pα(ω) := sgn(ω)
(

(1 + (1− α)|ω|)1/(1−α) − 1
)
,

then the following holds true.

i) (Atomic decomposition) Any f ∈M s,α
p,p can be written as

f =
∑

(j,k)∈Z2

cj,k(f)Txj,kMωjDβα(ωj)ψ

and there exist constants 0 < C1, C2 <∞ (independent of p) such that

C1‖f‖Ms,α
p,p
≤

 ∑
(j,k)∈Z2

|cj,k(f)|p(1 + (1− α)|j|)
s−α(1/p−1/2)

1−α p

1/p

≤ C2‖f‖Ms,α
p,p
.

ii) (Banach Frames) The set of functions {ψj,k}j,k∈Z := {Txj,kMωjDβα(ωj)ψ}j,k∈Z2 forms a
Banach frame for M s,α

p,p . This means that:

1) There exist constants 0 < C1, C2 <∞ (independent of p) such that

C1‖f‖Ms,α
p,p
≤

 ∑
(j,k)∈Z2

|〈f, ψj,k〉|p(1 + (1− α)|j|)
s−α(1/p−1/2)

1−α p

1/p

≤ C2‖f‖Ms,α
p,p
.

2) There is a bounded, linear reconstruction operator S such that

S
(

(〈f, ψj,k〉H′1,vs−α(1/p−1/2)
×H1,vs−α(1/p−1/2)

)j,k∈Z

)
= f.

In what follows, we apply the concept of α-modulation frames according to Theorem 2 to our
multi-channel data. As we have mentioned in this section, we expect that these frame provide a
mixture of Gabor- und wavelet frames: for small α, the frames are similar to Gabor frames and
therefore suitable for texture detection (e.g. the detection oscillatory/swinging components),
whereas for α close to one, the frames are similar to wavelet frames and therefore suitable to
extract signal components that contain singularities (e.g. rapid jumps as they appear in heart
beat pattern). By varying the parameter α, it is possible to pass from one case to the other.
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3 Multi-channel data, `q-joint sparsity and recovery model

Within this section, we focus now on multi-channel data and its representation by different α-
modulation frames, the concept of joint sparsity (detection of common pattern) and, finally, on
establishing the signal recovery model.

The aspect of common sparsity patterns was quite recently under consideration e.g. in
[25, 26]. In the framework of inverse problems/signal recovery this issue was discussed in [14].
In the latter paper the authors proposed an algorithm for solving vector valued linear inverse
problems with common sparsity constraints. In [24] this approach was generalized to nonlinear
ill-posed inverse problems. In what follows, we revise this specific iterative thresholding scheme
for solving the MCG signal recovery problem with joint sparsity constraints. We refer the
interested reader to [24] in which the vector-valued joint sparsity concept is discussed and for
the projection and thresholding techniques used therein to [5, 6, 18].

In order to cast the recovery problem as an inverse problem leading to some variational
functional with a suitable sparsity constraint (forcing the detection of common signal pattern),
we firstly have to realize that we want to act on channels of frame coefficient sequences since
we aim to identify those coefficients at labels where specific medical patterns appear. To this
end, we assume we are given n channels containing m components we wish to recover, i.e. we
measure data

y = (y1, . . . , yn) ∈
n⊗
j=1

Y = Yn ,

where each channel can be represented as a sum of m different components,

yj =
m∑
i=1

f ij .

Suppose f ij belongs for j = 1, . . . , n to some Hilbert space Xi and that each Xi is spanned by one
individual αi-modulation frame Ψαi = {ψiλ : λ ∈ Λ(αi)} such that each f ij ∈ Xi can be expressed
by

f ij =
∑

λ∈Λ(αi)

(f ij)λψ
i
λ.

The index λ is a shorthand notation for (j, k) and Λ(αi) for the index set corresponding to
the specific choice αi. This construction allows the choice of different smoothness spaces that
are spanned by differently structured frames (different choice of αi) and involves therewith
the fact that fMCG, mMCG and MMG are of completely different nature. If we denote with
Fi : Xi → `2(Λαi) the associated αi-modulation analysis operator, compare with (6), and with
idi : Xi → Y the embedding operator, we may define the relationship between the data of the
j-th channel yj and the frame coefficients f j = (f1

j , . . . ,f
m
j ) of the m associated components,

yj = Af j = A(f1
j , . . . ,f

m
j ) =

m∑
i=1

idiF ∗i f ij ,

where f ij ∈ `2(Λ(αi)), i.e. f j = (f1
j , . . . ,f

m
j ) ∈

⊗m
i=1 `2(Λαi). Consequently,

A :
m⊗
i=1

`2(Λαi)→ Y via (f1, . . . ,fm) 7→
m∑
i=1

idiF ∗i f i and

A∗ : Y →
m⊗
i=1

`2(Λαi) via y 7→ (F1id∗1y, . . . , Fmid∗my) .
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Following the arguments in [14, 25] on joint sparsity and denoting with f i = (f i1, . . . ,f
i
n)

the vector of frame coefficient sequences of all n channels with respect to one specific signal
component, a reasonable measure that forces a coupling of non–vanishing frame coefficients
through all n channels (representing a common morphology) is of the form

Φ(f i) = Φpi,qi,ωi(f
i) =

∑
λ∈Λ(αi)

ωiλ‖(f i·)λ‖piqi (9)

with qi ∈ [1,∞], pi ∈ {1, qi}, ωiλ ≥ c > 0 and where the qi-norm is taken with respect to the
channel index, i.e.

‖(f i·)λ‖qi =

 n∑
j=1

|(f ij)λ|qi

1/qi

.

Forcing for a common sparsity pattern (e.g. common heart beats) a coupling of the different
channels is advantageous and can be achieved when setting, e.g., qi = 2 and pi = 1.

Summarizing the findings, anm component signal recovery model in a variational formulation
reads as

Jµ,p,q(f) = Jµ,p,q(f1, . . . ,fm) =
n∑
j=1

‖yj −Af j‖2Y + 2
m∑
i=1

µiΦpi,qi,ωi(f
i) (10)

or in compact form

Jµ,p,q(f) = ‖y − Ãf‖2Yn + 2
m∑
i=1

µiΦpi,qi,ωi(f
i) ,

where we have defined the following shorthand notations

Ãy = (Ay1, . . . , Ayn), µ = (µ1, . . . , µm), p = (p1, . . . , pm), q = (q1, . . . , qm) .

An approximation to the original m different signal components (mMCG, fMCG, MMG, ...)
is now computed by means of the minimizer f ∈ (

⊗m
i=1 `2(Λαi))

n of (10). Unfortunately, a
direct approach towards its minimization leads to a nonlinear optimality system where the
frame coefficients are coupled. Instead, we propose to replace (10) by a sequence of functionals
that are much easier to minimize and for which the sequence of the corresponding minimizers
converges at least to a critical point of (10). To be explicit, for f ∈ (

⊗m
i=1 `2(Λαi))

n and some
auxiliary a ∈ (

⊗m
i=1 `2(Λαi))

n, we define a surrogate functional

Jsµ,p,q(f ,a) := Jµ,p,q(f) + C‖f − a‖2(⊗m
i=1 `2(Λαi ))

n − ‖Ãf − Ãa‖2Yn (11)

and create an iteration process by:

1. Pick some initial guess [f ]0 ∈ (
⊗m

i=1 `2(Λαi))
n and some proper constant C > 0.

2. Derive a sequence ([f ]k)k=0,1,... by the iteration:

[f ]k+1 = arg min
f∈(

⊗m
i=1 `2(Λαi ))

n
Jsµ,p,q(f , [f ]k) k = 0, 1, 2, . . . (12)

It will turn out that the minimizers of the surrogate functionals are easily computed. In par-
ticular, the problem decouple, and every frame coefficient can be treated separately. In order
to ensure the existence of global minimizers, norm convergence of the iterates [f ]k, and regu-
larization properties, some weak assumptions (exhibiting no significant restriction) have to be
made, see for details [23] and [24] and references therein.
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4 Algorithmic implementation and numerical experiments

In order specify the numerical algorithm, we have to setup the constant C and to derive the
necessary condition for a minimum of Jsµ,p,q(f ,a) yielding the concrete proceeding of iteration
(12).

The constant C can be easily determined, see [23]. For f ∈ (
⊗m

i=1 `2(Λαi))
n, we have

〈Ãf , Ãf〉Yn =
n∑
j=1

‖Af j‖2Y .

Since A is bounded, it holds ‖A‖ = ‖A∗‖, and we may estimate

〈A∗y,A∗y〉⊗m
i=1 `2(Λαi )

=
m∑
i=1

‖Fiid∗i y‖2`2(Λαi )
≤

m∑
i=1

‖Fi‖2‖id∗i ‖2‖y‖2Y .

Therefore,

‖Ãf‖2 ≤
n∑
j=1

m∑
i=1

‖Fi‖2‖id∗i ‖2‖f j‖2⊗m
i=1 `2(Λαi )

≤
m∑
i=1

‖Fi‖2‖id∗i ‖2‖f‖2Yn

and consequently, C must be chosen such that ‖Ã‖2 ≤
∑m

i=1 ‖Fi‖2‖id
∗
i ‖2 < C. In order to

specify the algorithm, we firstly rewrite (10),

Jsµ,p,q(f ,a) = ‖C−1Ã∗y + a− C−1Ã∗Ãa− f‖2(⊗m
i=1 `2(Λαi ))

n +
2
C

m∑
i=1

µiΦpi,qi,ωi(f
i) + rest ,

where the “rest” does not depend on f . The righthand side without the “rest” can be rewritten
as follows

Jsµ,p,q(f ,a)− rest

=
n∑
j=1

‖C−1A∗yj + aj − C−1A∗Aaj − f j‖2⊗m
i=1 `2(Λαi )

+
2
C

m∑
i=1

µiΦpi,qi,ωi(f
i)

=
n∑
j=1

m∑
i=1

‖C−1Fiid∗i (yj −Aaj) + aij − f ij‖2`2(Λαi )
+

2
C

m∑
i=1

µiΦpi,qi,ωi(f
i)

=
m∑
i=1


n∑
j=1

‖C−1Fiid∗i (yj −Aaj) + aij − f ij‖2`2(Λαi )
+

2µi
C

Φpi,qi,ωi(f
i)


=

m∑
i=1

∑
λ∈Λ(αi)


n∑
j=1

|
(
C−1Fiid∗i (yj −Aaj) + aij − f ij

)
λ
|2 +

2µi
C
ωiλ‖(f i·)λ‖piqi


=

m∑
i=1

∑
λ∈Λ(αi)

{
‖(C−1Fiid∗i (y· −Aa·) + ai·)λ − (f i·)λ‖22 +

2µi
C
ωiλ‖(f i·)λ‖piqi

}
.

For pi = qi, the variational equations completely decouple and a straightforward minimization
with respect to (f ij)λ yields the necessary conditions. For pi = 1, the term within the brackets
is of the following general structure

‖y − x‖22 + ν‖x‖q ,
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with x, y ∈ Rn and some ν ∈ R+. The minimizing element x∗ of this functional is easily obtained,
see [14, 24],

x∗ = (I − PBq′ (ν))(y) , (13)

where PBq′ (ν) is the orthogonal projection onto the ball Bq′(ν) with radius ν in the dual norm
of ‖ · ‖q (i.e. 1/q+ 1/q′ = 1). In general, the evaluation of PBq′ (ν) is rather difficult and only for
a few individual choices of q given, see [14, 23]. For the case qi = 2 (on which we shall focus),
the projection is explicitly given by

PBq′ (ν)(y) =
{
y if ‖y‖2 ≤ ν
ν y
‖y‖2 otherwise . (14)

In what follows, we adapt now the algorithm to our concrete medical signal analysis problem.
The 155-channel SQUID data consist (beside biological background noise) essentially of four
components: fMCG, mMCG, MMG and “motion artifacts”. We aim to split the multi-channel
signal into fMCG+mMCG and MMG+“motion artifacts”. Therefore, we set n = 155 and
m = 2. Since the fMCG+mMCG is assumed to be coupled trough all the 155 channels, we
put on this signal component (i = 1) the joint sparsity constraint. This ensures the natural
condition that heart beat patterns appear in all the channels at the same (temporal) location.
On the other hand, since the MMG+“motion artifacts” component (i = 2) can be arbitrarily
(but sparsely) localized, we do not put a common sparsity constraint on this signal component.
These constraint setup can be realized when choosing p1 = 1, q1 = 2 and p2 = q2 = 1. Finally, we
have to select adequate αi-modulation frames. Since the fMCG+mMCG component is allowed
to consist of rapid jumps (being close to singularities), we prefer α1 close to one. In contrast,
the MMG+“motion artifacts” component is supposed to be much smoother, we prefer α2 close
to zero. For this particular situation, the variational functional reads as

Js(µ1,µ2),(1,1),(2,1)(f ,a)− rest

=
∑

λ∈Λ(αi)

{
‖(C−1F1id∗1(y· −Aa·) + a1

· )λ − (f1
· )λ‖22 +

2µ1

C
ω1
λ‖(f1

· )λ‖2

+ ‖(C−1F2id∗2(y· −Aa·) + a2
· )λ − (f2

· )λ‖22 +
2µ2

C
ω2
λ‖(f2

· )λ‖1
}
.

Defining
M i(yj ,aj) := C−1Fiid∗i (yj −Aaj) + aij ,

the individual α1-modulation frame coefficients of signal component 1 are given thanks to (13)
and (14) by

(f1)λ = ((f1
1)λ, . . . , (f1

155)λ) = (I − PB2(µ1ω1
λ/C))

(
(M1(y1,a1))λ, . . . , (M1(y155,a155))λ

)
(15)

for all λ ∈ Λ(α1), whereas the α2-modulation frame coefficients of signal component 2 are given
by

(f2)λ = ((f2
1)λ, . . . , (f2

155)λ) = Sµ1ω1
λ/C

(
(M2(y1,a1))λ, . . . , (M2(y155,a155))λ

)
(16)

for all λ ∈ Λ(α2) and where Sµ1ω1
λ/C

denotes the well-known nonlinear soft-shrinkage operator
(acting on each channel individually).

With the help of (15) and (16), the iterates (12) that approximate the minimizer of (10) can
finally be written as[

(f1)λ
(f2)λ

]
k+1

=

(
(I − PB2(µ1ω1

λ/C))
(
(M1(y1, [f1]k))λ, . . . , (M1(y155, [f155]k))λ

)
Sµ1ω1

λ/C

(
(M2(y1, [f1]k))λ, . . . , (M2(y155, [f155]k))λ

) ) . (17)
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Procedure (17) is now applied to the SQUID multi-channel data. The original data (for sake
of simple illustration restricted to two channels) at different zoom level can be seen in Figure
2. One clearly observes similarities and differences of the two channels. The similarities are
given by the fMCG and mMCG (fetal and maternal heart beats) signal component whereas the
differences due to biological background noise, the MCG and “motion artifacts”.

The results that are obtained with the application of iteration (17) (setting α1 = 0.9, α2 = 0
and µ1 = µ2 = 0.001) to the SQUID data are visualized in Figure 3.
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[11] H. G. Feichtinger and K. Gröchenig. A unified approach to atomic decompositions via
integrable group representations. Proc.Conf. Function Spaces and Applications, Lund 1986,
Lecture Notes in Math., 1302:52–73, 1988.

10



Figure 2: Two particular channels of the SQUID multi-channel data (MLL1-1304 left and MLL6-
1304 right) at different zoom level.

11



Figure 3: The reconstruction/decomposition of two particular channels of the SQUID multi-
channel data (MLL1-1304 left and MLL6-1304 right). Top row: reconstructions f1

1+f2
1 (left) and

f1
2 + f2

2 (right); middle row: fMCG+mMCG reconstructed component f1
1 (left) and f1
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