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Abstract

This paper is concerned with the analysis of adaptive multiscale techniques
for the solution of a wide class of elliptic operator equations covering, in principle,
singular integral as well as partial differential operators. The central objective is
to derive reliable and efficient a-posteriori error estimators for Galerkin schemes
which are based on stable multiscale bases. It is shown that the locality of cor-
responding multiresolution processes combined with certain norm equivalences
involving weighted sequence norms leads to adaptive space refinement strate-
gies which are guaranteed to converge in a wide range of cases, again including
operators of negative order.
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1 Introduction

The increasing importance of adaptive techniques in large scale computation is re-
flected by a vast amount of recent literature on this topic primarily in connection with
finite element schemes (see e.g. [BEK, BM, BR, BW, J, Ve]). How to fit such adaptive
techniques into the context of stable splittings for fast multilevel Schwarz type precon-
ditioners for elliptic problems has been briefly indicated in [O]. On the other hand,
there have been several attempts to apply wavelet concepts to the solution of differential
and more generally pseudo-differential equations. As the above mentioned multilevel
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schemes these concepts hinge upon making successive corrections of current solutions
when progressing to finer scales of discretization. However, the wavelet methodology
differs from the finite element techniques in that direct use of bases is made which
span the complements between successive trial spaces. It is clear that the construction
of such bases may be a prohibitive task by itself. On the other hand, several cases
have been studied where such bases are available and have proved to offer significant
advantages. For instance, pre-wavelets have been shown to yield robust precondi-
tioners in combination with sparse grid discretizations for two- and three-dimensional
anisotropic problems [GO]. Divergence free wavelets with small support have been
applied to the Stokes problem where again the change from two to three spatial vari-
ables does not cause any problem. More generally, there are examples of wavelet bases
with built in Ladyzhenskaya-Babuska-Brezzi-condition for various types of saddle point
problems. Finally, such bases give rise to matrix compression techniques when dealing
with discretizations of pseudo-differential or singular integral operators as they arise,
for instance, in connection with boundary element methods. Wavelet bases defined on
two dimensional manifolds in IR® satisfying all the requirements which guarantee op-
timal compression and convergence rates have now become available [DS1]. This is an
important aspect, since for such equations on two dimensional manifolds the fact that
corresponding system matrices are not sparse is the major computational bottleneck.
So far the compression techniques apply to Galerkin or collocation schemes based on
essentially uniformly refined trial spaces.

In view of the availability of the various instances of promising stable multiscale
bases for PDE as well as integral equation problems, the question arises how to design
and analyse adaptive strategies in connection with such multiscale bases oriented meth-
ods. Therefore the objective of this paper is to discuss some basic concepts and ideas
which we feel are crucial for the understanding of adaptive techniques in connection
with multiscale bases, and to relate them to existing techniques in more conventional
settings. A particular motivation is that for integral equations the understanding of
local error estimators is comparatively less developed than for partial differential equa-
tions. To our knowledge the results of this paper offer for the first time reliable and
efficient a-posteriori error estimators also for integral operators in the sense that the
current error is bounded from above and below by expression involving computable
local quantities. It will be seen that on one hand, unlike the finite element case local
error estimators arise in a fairly unified fashion essentially as coefficients of correspond-
ing multiscale expansions. On the other hand, as mentioned before, these facts can
be established for a rather wide class of problems involving differential and integral
operators. We also emphasize that the a-posteriori error estimators are not confined
to symmetric problems.

We will focus here on (analogues for) energy norm estimates in terms of residuals.
Thus our starting point is similar to the observations made in [O, R] for more special
situations. The main problem treated here is then to analyse further the resulting error
terms which still contain infinitely many terms. It will be shown that these expressions
can be reduced in the general case to efficient and reliable error bounds involving
finitely many terms. It will be seen that these estimates give rise to adaptive space
refinement techniques which are guaranteed to converge without assuming beforehand



the so called saturation property. We wish to mention that this work has been inspired
to some degree by the results in [Do] for the technically quite different setting of
piecewise linear finite elements for Laplace’s equation and by recent studies in [Be]
concerning wavelet related error estimators for univariate two point boundary value
problems.

The layout of the paper is as follows. In Section 2 we describe a general framework
for the type of problems to be studied and list a few examples. In Section 3 we
collect some relevant facts concerning multiscale bases. In Section 4 we collect some
prerequisites about Galerkin schemes, in particular, pertaining to their stability and
preconditioning of resulting matrices. Section 5 is devoted to a-posteriori residual
estimates with respect to energy (-like) norms and their algorithmic consequences.

2 A Class of Problems

We will be concerned with linear operator equations
Au=f (2.1)

where A will be assumed to be a boundedly invertible operator from some Hilbert
spaces Hy into another Hilbert space H,, i.e.,

[Aullg, ~llully, ,  we Hy, (2.2)

where ’a ~ b means that both quantities can be uniformly bounded by some constant
multiple of each other. Likewise ’ < ’indicates inequalities up to constant factors. We
will write out such constants explicity only when their value matters.

To get an idea of the range of problems we have in mind, one can follow [DPS1], and
view A as a classical pseudo-differential operator. This covers a wide range of classical
differential and (singular) integral operators. It is known that when A is injective
and its symbol is strongly elliptic a Garding inequality holds which implies (2.2) for
Sobolev spaces Hy = H®, Hy = H*7?, say (where the order p of A is determined by
the homogeneity of the symbol). A typical example of this sort may be described as
follows (see [CS]).

Let Q; C IR? be a bounded simply connected Lipschitz domain, 0, := IR?\ Q; its
complement and I' = 9€2; its boundary. Then for a given f € H%(F) and g € H_%(F)
one seeks (uy,uz) € H'Y(Qy) x HE (€3) satisfying

loc

Au; = 0 in§Q;, forj=12 (2.3)
—|—f aul 8u2 n T
Uy = u _— = = on
1 2 9 anl anz g

and the radiation condition

. b
lim (uz(x) — glog lz]) =0

|l’|—>OO

for some b € IR.



To present an equivalent integral equation formulation with respet to I', we intro-
duce the single layer potential

1
Vo(r) = —;/q)(y) log |& — yl|ds,,
r

the double layer potential

: 1 0
Ko(w) = —— [ @(y)5—log | ~ ylds,,
T Yy

its adjoint K’, and the hypersingular operator

0 K®(x).

Wo(x) = ~ 5

Then the operator A defined by

A:H*() x H3(T) — H () x H2(I)

Ku Vo
(u,v0) = A(v) (Wu K’v)

is for Lipschitz domains linear, bounded and boundedly invertible, i.e.,

LS| U (5| T
18l

Then (2.3) is equivalent to the integral equation [CS]
Lf /

A(0)=3) =20

(v 2( g * g )

In this case one has H; = H,y = H_%(F) X H%(F).

In general the spaces H;,7 = 1,2, will be elements of a whole scale of spaces H?

with

2 2
= |lull; _1 + o5 1 .
RPN [ PRSP

or products of such, where H?® will, for instance, be Sobolev spaces relative to some
domain Q C IR? or relative to some possibly closed piecewise smooth manifold as above
(see e.g. [DPS1]). The Sobolev spaces can be defined with the aid of a partition of
unity and an atlas. A typical case is that ) is the boundary of some domain QO c R,
Thus H*(Q) could be taken as the trace space of HS"'%(Q). Specially, when Q C IR"
is a bounded domain we denote by H*(2) (for s > 0) the usual Sobalev space on €2
and by H(€2) the closure of C§°(£) with respect to H-HHS(Q). When s is negative H?
is to be understood as the dual of H7°. We have spaces H® in mind which satisty
H () C H° C H?(Q), e.g. prescribing homogeneous Dirichlet boundary conditions on
part of 9f.



Symmetry selects an important subclass of operators. By this we mean operators
A such that for some p € IR

a(u,v) = (Au,v)o, u,v € H? (2.4)

is a symmetric bilinear form, where (-, -)q denotes the standard inner product on H® =
Lo(82). Moreover, we will assume that A is elliptic in the sense that
2 o
au,u) ~ HuHHg(Q) , ue H>. (2.5)
It is clear that in this case (2.2) holds with H; = H5, M, =H%.

Of course, the simplest examples of this type are Q C IR?, Au = —Au or Au =
—Au+cuwhere A = Y70 % is the Laplacian and ¢ > 0. Here p = 2 and H' = Hj(Q)

or H'(Q) respectively.

In order to focus on the main ideas, we will confine the following analysis to the
technically somewhat simpler case Hy = H',H, = H~" where t = £, although the
arguments extend to the situation considered in the first example as well.

3 Multiresolution

Our goal is to employ Galerkin methods for the approximate solution of (2.1). It is well
known that the most efficient ways of solving the resulting systems of equations exploit
the interaction of several scales of discretization. To correspond to the above scope of
applications we formulate the relevant facts for the following general framework.

Suppose H is a Hilbert space (of functions defined on Q, say) with inner product
(,-). Again typical examples are H = Ly(2), H = H*() or products of such spaces.
Let & = {5;}52, be a sequence of closed nested subspaces of H whose union is dense
in H. We will always assume that S; is spanned by ®; = {¢;x : k € I;} where these
bases are uniformly stable, i.e.,

~

> bk

kel

lelle, 1)) (3.1)

H

uniformly in 57 € INy. Here we denote as usual HH%I =(-,-) and HCHZ)(I]) = kel |lex |2
Successively updating a current approximation in S;_; to a better one in 5; can be
facilitated if stable bases

U ={vje: k€ J;}
for some complement W; of S;_; in S; are available. Defining for convenience ¥y = @y,
Wo := So, any v, = Y per, Ck@nk € Sy has then an alternative multiscale representation

Up = Z Z dl,kqvb]‘,k

J=0keJ,

which corresponds to the direct sum decomposition

5 =W
7=0



Let T, denote the transformation that takes the coefficents d; ;, in the multiscale repre-
sentation of v, into the coefficients ¢; of the single scale representation. It corresponds
to the synthesis part of the fast wavelet transform.

It will be useful for later purposes to briefly describe the structure of T,. For
convenience let us view ®; as a column vector whose components are ¢;;, k € I;.
Nestedness and stability imply the existence of (#/;+1) X (#I;)-matrices R, such
that

o' = o7, Rj,. (3.2)
Likewise there exists a (#1,41) x (#.J;)-matrix R, such that
U, =0 R, (3.3)

and it is known that uniform stability of the complement bases ¥, is equivalent to
the uniform boundedness of the composed matrices R; = (R;0,R;1) as well as their
inverses as mappings from (3(/;41) into itself [CDP]. It is easy to see that then T, has
the form

. - - R, 0
T,=Ro---R,_1, Rg:<0£ I). (3.4)

The application of T, requires O(dim S,,) operations if the number of nonzero entries
in each row and column of the R; remain uniformly bounded.

To avoid loss of accuracy when executing T, it is important that T, are well
conditioned, i.e.,

T 7

where ||-|| denotes the spectral norm. It is well-known that this is equivalent to the fact

1), n— oo, (3.5)

that ¥ = U;cp, ¥, forms a Riesz-basis of H, i.e. every v € H has a unique expansion

iz ik Vb (3.6)

J=0keJ;

such that

HUHH ~ (Z Z (v ¢17 ) , vEH, (3.7)

J=0 keJ;

where U = {;/N)]k : k€ J;,5 € INg} forms a biorthogonal system
(ip, Vit p) = 85 i06pprs 5,7 € Noy k€ J; K €Ty (3.8)

and is in fact also a Riesz-basis for H (cf. [D]). It is clear that when the complements
W, are orthogonal the stability of each W, suffices to ensure (3.7) and hence (3.5).
However, in many practical cases orthogonality is difficult to realize, in particular,
when the functions in ®; and ¥; are to have small supports which in turn will be
essential for our applications and for the efficiency of T,,.

Assuming henceforth the stability of W, for each level j the additional information
which will be needed to ensure the stability (3.7) across levels in the biorthogonal case
can conveniently be described in terms of the projectors

Qv = Z Z 77ZJJ7 ¢]7k7 Q U= Z Z ¢]7 ¢]7

7=0keJ; J=0keJ;



which are obviously adjoints of each other. Note that

Q0w = Q;, forj<n. (3.9)
It is useful to keep the following facts in mind (cf. [D]).
Remark 3.1 (3.9) is equivalent to either of the following statements

1. The mappings Qn — Qn_1 are also projectors and
(Qrn — Qn1)(Qr — Qu1) = 65 p(Qr — Qr1)
2. The ranges S, of the adjoints Q' are also nested.
By (3.7) the Q, (and hence the Q') are uniformly bounded so that

v — Quvlly < distg(v,S,), veH, (3.10)

and likewise for the Q. Thus S = {gj}‘]?‘;o is also a nested dense sequence of closed
subspaces of H.
Evidently, when the U, are stable (3.7) (and hence (3.5)) is equivalent to

[ollz ~ (ZH — Qi) HZ) , Ve, (3.11)

where 1 = 0. It is shown in [D] that certain (mild) regularity and approximation
properties of § and S in addition to (3.9) guarantee (3.11). When H = Ly(Q) these

conditions can be formulated in terms of an inverse estimate
lvallzrsy < 2% vallr, @), Ve € Sus (3.12)
for s < v, some v > 0, and a direct estimate

inf o= vl @) 277" 0llgey . v € H(Q), (3.13)

Un €S,
for s < m, some v < m(€ INV).

Theorem 3.1 Let Q = {Q;}32, satisfy (5.9) and assume that S and S both satisfy
(3.12) and (3.13) relative to some v,y >0, v <m, v <m’, then

2

[0llzs(@y ~ (222”!\ ~Qj=1)vll7, ) (3.14)

(ZH ~Qj1) Hipm)) , ve H(Q),

holds for s € (=+',v). Moreover, the projectors Q;, Q' are uniformly bounded in
H2(Q), s € (=7'7).



Remark 3.2 Instead of powers of 2 in (3.12)-(3.14) we could have used powers of a
for some a > 1 which reflects the subdivision rate of successive refinement levels. Since
this entails no essential differences we will stick in the following with halving mesh
si2€S.

Note that the projectors (), may be also represented as
an = Z (U, qzn,k)qsn,k (315)

kel
where ®, = {énk : k€ 1,} is a stable basis for S which is dual to o, ie.
(Gus Gupr) = Sy s k' € I, (3.16)

Usually the projectors are more easily available in this form where, according to Remark
3.1 one has to find dual collections Ci)j that are also refinable. For ways of deriving from
(3.15) corresponding multiscale bases W, W we refer to [CDP].

For our applications it will be important to work with local bases, i.e., we will always
assume that

diam(supp¢, k), diam(suppe, ) ~ 27", n € IN. (3.17)
Furthermore, it is desirable that the qzmk, ;/Njnk have the same property

diam(suppq;mk), diam(suppi)n’k) ~27" néelN. (3.18)

A sufficient condition for the direct estimate (3.13) to hold for s < m is then that all
polynomials of degree < m — 1 are (locally) contained in each S;, j € IN. Moreover,
when (3.17) and (3.18) hold, one easily verifies then local estimates of the form

1@t =0l i) S 27" l0llgmp,y > v € Hi. (3.19)
where for any D CC €, D, is also a domain in satisfying
DcD,cqQ, dist(D,dD,) <27, nelN. (3.20)

Throughout the rest of the paper we will assume that the bases ®;, i)j, Ui, W7 satisfy
the above assumptions with respect to parameters +,~’, m, m’ which have to be tuned
to the particular application (see [DS1] for examples of such bases defined on two
dimensional (closed) manifolds in IR?).

Finally, it will be important to make use of so called moment conditions. If ¥ is a
stable multiscale basis for Ly(2) where Q is a domain in IR?, ¥ is said to have vanishing
moments of order m/ if

/P(x)m(x)dx —0 (3.21)

holds for all polynomials of degree less than m’. Since estimates of the form (3.13) or
(3.19) usually imply that the approximation spaces contain polynomials of the order
corresponding to the highest approximation order and since the ;; are orthogonal
to S’j the moment conditions are closely related to the order of exactness of the dual



multiresolution sequence S. The fact that polynomials appear in (3.21) is actually
not essential. What matters is that (3.21) holds for a finitely dimensional family of
functions which locally approximate any smooth function well. Accordingly, this notion
can be modified. For instance, when the domain €2 is a manifold represented by a family
of smooth parametric mappings x; : O — Q; C , where O is a fixed parameter domain,
one can work with the condition

/P(x)m(@(x))dx — 0, (3.22)

see [DS1].

4 Galerkin Schemes

We are interested in efficient numerical schemes for (2.1). To this end, we recall the fol-
lowing facts concerning Galerkin methods for (2.1) from [DPS1]. Suppose that S, U, W
have the above properties with associated projectors ();. The standard Galerkin pro-
cedure requires to find u; € S; such that

(Auj,v;) = (fv5), v; €5, (4.1)

which is equivalent to
Qs = QL. (12)
To simplify the notation we will write in the following | - ||s instead of || - ||z« as well as

t := p/2 where p is the order of A. Our basic assumption (2.2) reads now throughout
the rest of the paper

[Aollce~ ol v € H. (13)
We will also assume that the Galerkin scheme is (¢, —t)-stable, i.e.,
15 Avjll—e 2 llville,  vj € S (4.4)

Obviously (4.4) holds when A is selfadjoint and a(-,-) := (A-,-) satisfies (2.5). More
generally, it has been shown in [HW] that when A is strongly elliptic in the sense that

ker A = {0} and the real part of the principle part of the symbol of A is coercive then
(4.4) holds as well. More generally, one has [DPS1]

Remark 4.1 Suppose that A satisfies (2.2) for Hy = H*, Hy = H*~" and let
>t 4>t (4.5)
If S satisfies (3.12) and (3.13) then for any p—m < s < £ the Galerkin scheme (4.2)
is (8,5 — p)-stable, i.e.,
|@iAws, 2 luill, w; €S (4.6)
Denoting by u,u; the solution of (2.1) and (4.2), respectively, one has
Ju—ul, < 26 ul, (4.7

for—m—l—p§8<’y§m,3§7',t§r§m,



Thus under such premises the discrete equations (4.2) possess a unique solution
whose deviation from the exact solution can be estimated for a scale of norms.
It will be convenient to introduce the following notation. Let

o0

Ji={A= (k) k€ Jid € o) = () x ).

7=0

Defining
Al ;=5 if A e J;,

let A, := ((Ar,02)) V)< SO that (4.2) is equivalent to the linear system of equa-
tions

A, d=1, (4.8)
where f, := ((f, ;/)A))Mkn. Moreover, introducing the diagonal matrix D? defined by

(Di)/\«\' = 25|/\|5/\7/\/,

it is known [DPS1] that
condy (DA, D ") ~ 1. (4.9)

Thus when A, is selfadjoint positive definite (which will be referred to as the symmetric
case), a conjugate gradient iteration applied to B, := D> *A, D" would perform very
well. But even for certain nonsymmetric sytems stemming from the discretizing elliptic
integral equations corresponding nonsymmetric versions like GMRES have proven to
be very efficient.

A few more comments on the practical realization are in order. For a wide class of
operators with global Schwarz kernel the matrices A,, are fully populated but can be
approximated very well by sparse matrices in such a way that the resulting compressed
systems can be handled efficiently [DPS1] while the accuracy of the corresponding
solutions is still asymptotically optimal. On the other hand, when A is a differential
operator it would be more efficient to store the sparse stiffness matrix Ag, relative to
the fine scale basis ®,,. Since

A, =TTAs, T, f,=T,.fs,,

where the components of fg,, are (f, ¢;1), and T, is the multiscale transformation from
(3.4). Thus the preconditioning can be realized by applying the fast transformation
T, to sparse arrays.

Note that estimates of the form (3.13) reflect that the spaces S; arise from uniform
refinements. However, in the present paper our main concern is not to find possibly
sparse representations of the operator A relative to a-priori fixed trial spaces but to find
possibly economical trial spaces leading to as small linear systems as possible in the
first place. More precisely, we wish to determine step by step possibly small subspaces
of the full spaces S; which recover the solution as well as possible. To describe this we
set for any A C J

Sh:=span{y: A € A}, Qv := Z(v,iu);/u.

AEA

10



and
Ap = ((A¢A’7¢A))A,A’EA‘
In the symmetric case corresponding to (2.5) one still has

|QrAvall—¢ ~ |[valls, va € Sa, (4.10)

so that the matrices A, are still nonsingular. Moreover, since for |A| := max {|A|: A €
A} the matrix Ay is a principal submatrix of Ay, the diagonal preconditioning still
produces uniformly bounded condition numbers.

In general, we will assume in the following that

QhAuy = Q\ f (4.11)

possesses a unique solution u, in Sy and that (4.10) holds. By the same arguments as
used in [DPS1] for the full spaces it follows from (4.10) that also

condy(Di*AADYY) ~ 1, (4.12)

where as above (D) := 25|A|5A7A/. In fact, defining
Sev =3 29(Q; — Qi-a)v,
7=0

one clearly has, in view of (3.9),
Y00 = OpY,, YT =3, (4.13)

S

Thus Theorem 3.1 says that
1250l ~ vllstr, s+ 7€ (=7,7). (4.14)

Setting wy = X;vp for vy € Sy and keeping (4.5) in mind, (4.14), (4.13), and (4.10)
imply

[wallo ~ [[valle ~ |Q) Aval[—¢
~ HZ/—tQ;\AQAZ—twAHo,

which means that the operators ¥,y AQaX_; and their inverses are uniformly bounded
on Ly. Moreover, it is easy to see that Dy*A, Dy’ is the matrix representation of

YL QWAQAY _; which confirms (4.12).

5 Multiscale Error Estimates

5.1 Some Preliminary Remarks

In the symmetric case it is natural to estimate the accuracy of the Galerkin solution
with respect to the energy norm

-1l i= -,

11



Since by (2.5), this norm is equivalent to || - || we will employ this latter norm most
of the time in the general (possibly non-symmetric) situation. To explain the usual
starting point for adaptive strategies we focus for a moment though on the symmetric
case. The basic idea is very simple (see e.g. [BEK] or [BW]). Suppose that o, u”
are Galerkin approximations to the solution u of (2.1) from spaces S, 5" respectively,
where v is a more accurate solution, i.e., S C 5.

Remark 5.1 When A is selfadjoint positive definit one has for u',u”, as above
[ = || < flu = ]| (5.1)
Moreover, one has for some [ < 1
=] < (1= 837 |l — o] (5.2)

if and only if
Ju —u"|| < B [u =] (5.3)

The assertion is a trivial consequence of the orthogonality of the error v —u” to u’ — u”
so that |lu — u’H2 = |ju — u”H2 + ||u” — u’HZ.

The relation (5.3) is often called saturation property requiring that the new approx-
imation u” is strictly better than the previous one u’. Thus if the saturation property
holds the quantity ||u’ — u”|| provides a lower and upper bound for the true error
|lu — u'||. Such a-posteriori bounds are called efficient and reliable. In the finite ele-
ment context S” could be a trial space corresponding to a refined mesh or a trial space
with the same mesh as S’ but containing higher order trial functions. In either case
the expression v’ — u” can be evaluated efficiently typically by solving local problems
[BEK]. The resulting bounds are then usually comprised of sums of local terms whose
precise form, however, depends strongly on the particular discretization at hand.

On the other hand, symmetry plays a crucial role already in the derivation of the
error bounds and in many previous investigations the saturation property has to be
assumed beforehand, which from a principal point of view is certainly not satisfactory.

In the following we will also study energy estimates or more generally estimates
relative to the norm || - ||; but for the above general multiscale basis setting. Our goal
is to develop computable efficient and reliable error bounds that lead to an adaptive
strategy which ensures that the saturation property is satisfied automatically and thus
can be proved to converge. These estimates will be formulated in terms of wavelet
coefficients and thus take a rather unified form for a wide range of cases.

5.2 An A-Posteriori Error Estimate

Once a Galerkin approximation uy € Sy to the solution w of (2.1) has been determined
one can, in principle evaluate the residual

ry = Aupy — f = A(up — u). (5.4)

12



On account of (4.3), we have
allrall-e < flu = ualle < eaflrall-s, (5.5)

where we have now specified the constants ¢1, ¢y in (4.3) for later purposes.

As above in connection with preconditioning we will next make again essential use
of the norm equivalences in Theorem 3.1, recalling that under the assumption (4.5),
||rall-+ can be estimated by weighted sequence norms of the wavelet coefficients of r,.
In fact, specifying also the constants in (3.14) by ¢, ¢4, we obtain

1/2 1/2
C3 ( Z 2_2t|/\||(7“1\,77/)/\)|2) S HrAH—t S Cyq ( Z 2_2t|/\||(TA,77/)/\)|2) 5 (56)

AEJ\A AEJ\A

where we have used that, since uy is a Galerkin solution,

ra = O (ra, )ty = Y. (ra, ).

Aed AeJ\A

Thus, combining (5.5) and (5.6), we obtain, in principle, an efficient and reliable
error bound. However, at this stage it is practically useless since it still involves in-
finitely many terms. Our goal is now to replace the bounds in (5.6) by computable
expressions. To this end, let us abbreviate

&y 1= 27N |(ry, 1)

and note that upon inserting the expansion

UpA = Z u/\/77/)/\/

MeA

of the Galerkin solution u, yields the representation

5/\ = 2_t|A||f/\ - Z (A¢A'7 ¢A)UA'|7 f/\ = (f7 ¢A)7 (57)

MeA

and therefore, by (5.6),

1/2 1/2
Cs ( Z 5?) <|lrall-¢ < eq ( Z 5?) ) (5.8)

AEJ\A AEJ\A

Obviously, replacing the entities 6, by finitely many computable ones requires some
information about the given data, here in terms of the right hand side f, and about
the behavior of the entries (A, 1y).

We will first show that for almost all A € J the sums > yca(Athy, ¥\ )uy can
actually be neglected. To this end, it is well-known that for a large class of operators
A the (A, 1Py ) decay when either the levels |Al, |X| or the supports Q,, 2\ of the
wavelets 1y, 10\, respectively, are far apart. Thus supposing that the spatial domain

13



of the functions in H' is d, we will assume the following basic estimate on the entries
(A¢A'7 77Z)/\)
9-IIM=INI(d/240)

N+
2” ( |(A77Z)/\/ ¢A)| (1 n 2mm(|/\| Y] )dlst(ﬂ/\, Q/\/))d-l—m +2t7

(5.9)

where again 2t = p is the order of A, ¢ > 0 is some fixed real number and m’ is a
positive integer which typically represents the order of exactness of S or the order of
vanishing moments of the ¢, (which have to be suitably interpreted depending on the
type of the underlying domain , see e.g. [DS1]).

Let us briefly outline some circumstances under which estimates of the form (5.9)
hold. To begin with a simple but instructive case let A = —A, t = 1, H' = H}(Q),
Q) C IR?, and suppose that the Vi), have vanishing moments of order m’, i.e.,

/P ) Viha(w)de =0,

for any vector valued function whose components are polynomials of degree less than
m’. Then one has for any such polynomial and |A| > ||

(A, iby) = /Vg/w(:z;)-V;/)A(x)dx:/(Vg/}A/(x)—P(x))-V;/)A(x)dx

Q
< max |Vou(e) = Po)] [ [Vin(a)lde,
Q

€L,

Thus when Vi, is still Holder continuous with exponent o > 0 elementary calculations
show that the first factor can be estimated by a constant times 9= PlooVI(1+a)9 5 1N|
while the second factor is bounded by a constant times 9=dM25 2N g5 that overall
one obtains in this case

AHIIRE+IINI=ADif 0y Ny £ 0,

(A )] < |
0 if Q/\QQA/:@.

Obviously this is a special case of (5.9). The above estimate is still crude. In fact, a
much stronger decay occurs when |A| is much larger than || and Q) does not intersect
the singular support of ¥y [S].

More generally, we admit operators with Schwartz kernels of global support

/[&:L'y y)dy,

where we require that whenever d + p + |a| 4+ |3] > 0
020 K (2, y)| < dist (a, )+l (5.10)

holds with constants depending only on «, 8 € Zfll_. Estimates of the type (5.10) are
known to hold for a wide range of cases including classical pseudodifferential operators
and Calderén-Zygmund operators (see e.g. [DPSI, S]).

The following result has been established in [DPS1, DPS2].

14



Lemma 5.1 Assume that U has vanishing moments of order m' in the sense of (3.21),
(3.22), respectively, and assume that for 2t = p <0, the basis functions ¢; ) are Holder
continuous with exponent o € (0,1], i.e.,

|bes(e) = den(a’)] < 292 [dist(x, ")),
while for 2t = p > 0 we require Holder continuity of order n + o > t, t.e.,
D% Gup() = D*dep(a’)| < 272D dist (2, 2)]7 Vo] < .
Then for d+ p+m' >0 and any \,\ € J one has

9= IN-IXl(d/2+0) if QN Q£ 0,

o—lIAl= M [I(d/24m! +1) ) B
(142min(IALIN Ddist (5,2, ))m +2¢ if Ny =10.

o= (INTHAD (Aghy, 46 )] < (5.11)

One should note that a more careful analysis leads to the following stronger estimate
[PS, 5]
9= (IN+INV)(d/24m")

(diSt(Q/\, Q/\/))d—I—Qm’—I—p

provided that Q, # Q.. Moreover, we emphasize that the estimates concerning over-

[(Apy, oa)] S

lapping supports could also be refined, especially when dealing with operators of neg-
ative order. The quantitative effect of possibly sharp estimates will certainly play an
essential role in any concrete application. Here estimates of the form (5.9) or (5.11)
should be viewed as representatives of a certain decay property which suffices to prove
the principal fact that the bounds in (5.8) can be reduced to finitely many local quan-
tities. The reasoning is closely related to matrix compression techniques based on

estimates of the form (5.11) [DPS1].

Lemma 5.2 Assume that (5.9) holds. Let 0 < 6 < o be fired where o is the constant
from (5.9) and choose for € > 0 positive numbers e, €2 > 0 such that

et 4 a7 < ¢ (5.12)
For A € J define the neighborhood
Jre={NeJ: A=V <t and 27NN Ddist(Qy, Q) < 1)

Then there exists a constant c¢s depending only on 6,m’,p, the constant cs and the
stability constant in (4.10) of the Galerkin scheme such that the quantities

€)= Z (A¢A/,¢A)UA/, red \ A, (513)

NEA\T,

satisfy

1/2
( 5 2—21*'A'|eA|2) < esellQS -+ (5.14)

AEJ\A
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Proof: It has been shown in [DPSI, S|, that the infinite symmetric matrix R =
(af\7/\/)/\,/\’ej defined by

o—IIA=1A"[I(d/2+ <)
aE o (1+2min(|)\|,|)\/|)dist(Q>\7Q>\/))d+m/+p7 )\ S J \ A7 )\/ S J \ JA7E7
AN T
0, else,
satisfies
IR < e (5.15)
where || - || denotes here the spectral norm and the constant in (5.15) depends only on

the constants ¢, ¢y, ¢3, ¢4 and p, 6. Therefore we infer from (5.9) that

9-IA- [N l(d/2+0) ?

Agg%AQ—zﬂAHeAP < A;%%A NE%;;xe(l +_QnﬁnqALuq)dimmglM&)Ad)d+nw+p2ﬂAIIUAW
< & Y 22Vljyy 2
NEA\J;
S Cllually S CllQiAuallz, = SIS,
where we have used (4.10) and (4.11) in the last step. |

Remark 5.2 [t is obvious from the above proof that the quantity ||Q\ fll-¢ in (5.14)
can be replaced by either ||upll; or || f||=+ with a modified constant cs. The latter choice
has the advantage of being independent of A but the disadvantage that in a strict sense
it is not computationally accessible while the first two choices can be estimated via the
coefficients fr,ur, A € A and the corresponding norm equivalences.

The idea is now to replace for a given € > 0 and a given A C J the quantities 6, in

(5.8) by
dy(Aye)=dy =27 = ST (A, )un], A€ T\ A (5.16)

NeAnJy o

We will show next that the quantities d, give rise to a new a-posteriori estimate which
is still up to any chosen tolerance efficient and reliable. For the special case of second
order two point boundary value problems a similar result was obtained by S. Bertoluzza
who was as far as we know the first to establish an a-posteriori estimate of the following
type [Be].

Theorem 5.1 Under the assumptions in Lemma 5.2 one has

1/2
= uale < eaes ( > dA<A,e>2) T cacacsel| Q@ fl—i (5.17)

AEJ\A

as well as

1/2
1
(Z dA<A,e>2) < —Jlu = ualle + ese QS+ (5.18)
1¢€3

AEJ\A
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Proof: Both inequalities follow immediately by the triangle inequality and the estimate

(5.14) of Lemma 5.2. In fact, we apply 6y < dy + 2" P|ey| to (5.5), (5.8) and obtain

(5.17). Likewise, because dy < 8y 4+ 27 |ey|, we employ again (5.5), (5.8) and (5.14).
[ |

A few comments on the above result are in order. It is clear that also the sums
d*)Y/? are not finite vet. However, definin
AeJ\A @) y ) g

Naci={ e J\A: ANy, 2 0) (5.19)

one has, by construction,

4Ny, < o0, (5.20)

so that all but finitely many of the terms d\(A, €) depend only on the right hand side
f. Since f € H™" the series 3,5 27 21| £1]? converges so that 2N\ (nleun) 272 £y
can be made arbitrary small by choosing A appropriately. In fact, the contribution of

F 1o (Taenwy uny &) s just

> 27MIAP S I = Qhow JIE~ it =l (5.21)

AEJ\ (N, (UA) vESAUN, .

< inf [If = vlZ,
UESA

We will see that this contribution can be subsumed under the perturbation of order e.
This is precisely the problem of adaptively approximating an explicitly given function
or distribution. Thus any singularities of f will be reflected by the initial choice of a
starting set A. The above estimates of the quantities e\ show how much this information
is smeared due to the pseudo-locality of the elliptic operator which becomes accessible
through the multiscale representation. If f is very smooth the contribution of (5.21)
will be negligible and the adaptive choice of larger sets A will be dominated by the
behavior of the current approximation u, and the action of A.

Due to the assumed compact support of the ) each of the quantities dy\(A,¢€) is
a trivial local lower bound for the error. To refine this information one needs more
knowledge about the local behavior of the residuals. We do not want to elaborate
on this issue here but remark that this is a non-trivial problem for operators with
negative order (cf. [R, WY, F]). To our knowledge no efficient and reliable estimators
have so far been known. For example, Carstensen and Stephan proved in [CaS] a-
posteriori estimates without deriving lower bounds. It is remarkable, that within our
approach operators with negative order seem to have to some extent even advantages
over operators with positive order, because of their smoothing property, i.e., (A, 1))
decays faster for |A\| — oo if Ay is smoother.

5.3 A Convergent Adaptive Strategy

The next step is to use the a-posteriori error estimates for an adaptive refinement
strategy. Although totally different in a technical sense and with regard to the whole
setting the results are similar in spirit to those by Dérfler [Do] who considers adaptive
refinement of piecewise linear finite elements for Poisson’s equation in two dimensions.
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In the present setting refinement simply means adding properly selected basis functions
¥y to the current solution space. We will describe assumptions, that guarantee an
improvement for the approximate solution after the refinement step.

Throughout the remainder of this section we adhere to the assumptions made
above.

Lemma 5.3 Suppose that A C A C J and let ui be the Galerkin solution with respect
to
S =span{yy : A € A}

Then we have
1/2

1
Yo NP < ——luz —ualls + esellQu S (5.22)
AEA\A €31

Proof: For A € A we have
Z (ALZ)/\/, ¢A)UA' = (Aul\7 77Z)/\) = (A(UA o u[\)? 77Z)/\) + f/\

MeA
and therefore, by (5.13) and (5.16),

dy(Aye) = 27PN — ST (A, 0 )un + ey

NeEA
< 27 (Afuy = ug), )]+ 27 Mey].
Because of (5.5) and (5.6) we obtain

S 2 P(Afuy —uz) )P <R[ Alua —ug)l,

AEA\A
1 2
< @HUA — ugll;-
Thus (5.14) provides
1/2
1
YA < ——lug — ualls + esel| Q4 fll -,
=z C3Cq
A\A
as claimed. [

Our next goal is to use (5.22) for selecting a set A containing A such that the
saturation property is guaranteed to hold. So far all our previous estimates did not
require any symmetry assumptions on the operator A. For the next step, however, it
seems that more information about A is needed. The simplest setting would again be
the symmetric case, i.e.,

a(-, )= (A-,") (5.23)

1/2

defines a symmetric bilinear form such that || - || := a(-,-)"/* satisfies

[ AF~ - e (5.24)

We will formulate and prove the next result for this simple setting and will indicate
later how to weaken the assumptions somewhat.

18



Theorem 5.2 Suppose that (5.23) and (5.24) hold and let eps > 0 be a given tolerance.

Fiz any 6 € (0,1) and define
1 1—6
C, = (— + ) . (5.25)

C1C3 202 Cyq

Choose any p* > 0 such that

o< L0

e < ——m———. 3.26
- 2(2 — 0*)0204 ( )

Finally, for a given A C J let

wreps
€= —————. 5.27
cs| Q@S- 21

Then whenever A C J, A C A is chosen so that

1/2 1/2
(Z dA(A,e)z) (1—07) (Z dr(A € ) , (5.28)

AEA\A AEJ\A

there exists a constant k € (0,1), depending only on the constants p*,0*, the constants
in (5.24) and the constants ¢;;1 = 1,...,4, such that either

o= s < = 529
or (Xaena da(A, €)Y < eps.

Proof: We first assume, that |[u — uplls > —e where the constant C. > 0 is defined
by (5.25). When A satisfies (5.28) we infer from (5.22), (5.17), (5.27) and (5.26)

AEA\A

1/2
Jug —ualle = cres (Z dA(Aaé)z) — ese| Q4 S

> e ((1 — 0 {—Hu —uplle — esel| @ f1I- t} - C5EHQZXfH—t)
1—
> ¢ic3 ( Hu —uplly — (2 - 07 )CSGHQAJCH t)
1—
= cic3 ( Hu—uAHt—(Z—G \Ite eps)
1 — (9*
> cyes ( — (2—9*),“*06) |u — ualls
CoCy
0103(1 — 0*)
> L uale (5-30)

By (5.24), there exists then a constant ¢ € (0,1) depending on the above constant
and the constants in (5.24) such that

lug = uall = collu — uall- (5.31)
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At this point we exploit symmetry by applying Remark 5.1 which confirms the assertion
(5.29) with k = /1 — ¢2.
On the other hand, |[u — uall: < % yields, in view of (5.18) and (5.27),

1/2
1
( > dA(Avﬁ)z) < ——|lu — ualls + ese|| Q) fl -
C1C3

AEJ\A
< eps L eps
cre3C,
_ Ggt w0 eps
< . .

1 *
(6103 +u Oe)

Taking (5.25) and (5.26) into account, we see that o < 1 so that
1/2
( > dA(A,e)Q) < eps
AEJ\A
which completes the proof. ]
Note that (3\eqa dr(A, €))% < eps yields, by (5.17),
|u — upllt < eaea(l + p™)eps. (5.32)

Remark 5.3 By Remark 5.2, the term ||Q fl|-¢ in (5.27) can be replaced by ||upl|: or
(ZAGA 22|A|t|uA|2) so that (5.27) can be replaced by

B wreps
¢s (Zaea 220y |?)”

The constants change then in an obvious way.

[

(5.33)

The above result may be formulated in terms of the following algorithm.

Assumptions: We assume, that the constants ¢y, ¢a, ¢3, ¢4 and ¢5 or estimates for these
constants are known.

Initialization: Fix 6 € (0,1) and the desired accuracy eps. Compute C., u* accord-
ing to (5.25) and (5.26), respectively. Choose an initial set A C .J.

Algorithm A:

Step 1: Compute the Galerkin solution u, with respect to A.

Step 2: Compute

Z 22|/\|t|u/\|2
AEA
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and e according to (5.33). Determine

1/2
NAe i= ( Z dA(A,e)Q) ) (5.34)

AEJ\A

If na. < eps Stop, accept uy as solution which satisfies (5.32). Otherwise, by Theo-
rem 5.2, one has ||u — ug|| < k|lu — uyp|| with x € (0,1).

Step 3: Determine an index set A, A € A C J such that
1/2

Y AN = (=
AEA\A

Set
and go to Step 1.

5.4 Variants and Computational Aspects

Obviously the crucial task in the above algorithm is the computation of the quantities
na,e defined in (5.34) which, however, still involve infinitely many terms. As pointed
out above (see (5.20)) the set Nj . of indices in J \ A for which d\(A, €) depends on the
current approximate solution u, and on the operator A is finite so that all but finitely
many of the coefficients d\(A, €) actually take the form

dy(A, ) =27, A e T\ (AU Nyy). (5.35)

Apparently this is a principal problem since in a strict sense f is generally not com-
pletely accessible. There could always be a large wavelet coefficient f) for very high
level |A| which makes it impossible to realize step 3 in a strict sense.

A simple remedy is to assume that the data f possess a finite expansion in terms
of . This could be viewed as solving a perturbed problem where the data are approx-
imated by elements from the spaces in S. In this case the quantities na, involve only
finitely many computable terms which ultimately depend only on A and the current
solution uy,.

Another reasonable assumption is that f has some extra regularity. To be specific,
suppose that f € H?® for some s > 0, where ¢t + s < m’ say. Combining (5.21) and
(5.16), and employing standard approximation estimates analogous to (3.13) which
extend to negative norms as well (see e.g. [D]), yields

1/2
TIA e S ( Z d/\(Av 6)2) + C7 2_j(A)(t+S)HfH57 (536)

AENA7€
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where j(A) := min{|A| : A € J\ (AU Ny.)}. If the error term involving f is small
relative to (Z/\GNA7€ dr(A, 6)2)1 ’ the latter term can be used as a basis for the determi-

nation of A in step 3. However, when f is smooth except at certain isolated places an
estimate of the above type will not help since the set A U Nj . may not be well suited
to approximate f efficiently.

Therefore we will elaborate a little more on the following model where the a-priori
knowledge about the given data is subsumed in the

Assumption B: We have a way of solving the direct problem of approximating [
arbitrarily well by elements of the spaces S,. Thus we assume that (estimates for) the
quantities

1/2
(Zg—ztww) Seinf vl el Sl 63T
vESH

AEJ\A

are accessible for any A C J (see Remark 5.2).

The corresponding approximation procedure itself could be adaptive or nonlinear
[DJP, DV]. The point of view taken now makes the influence of f on the structure of
the adapted solution spaces more transparent. To this end, define

a/\(A,é) =aqa) = 2_t|/\|| Z (A¢A/,¢A)UA/|, A€ J\A, (538)

NEANT; ¢
and note that, in view of (5.19),
ax(A,e) =0 for A€ J\ A, A & Nj.. (5.39)
Since dy < ay+2" M| fy], and ay < dy+27"1|f\| the counterpart to Theorem 5.1 reads

Proposition 5.1 Under the assumptions in Lemma 5.2 one has

1/2
le—ull < cen | | 3 as(hel]  +ellflleter inf IF—vl], (540
AGNA7€ UESA
as well as
1/2 |
S | < —fu—unlt el e nf el (541)
AGNA,e CICS UGSA

Moreover, for A C A C J and up,uj as in Lemma 5.3 we have
1/2

1 .
S alhe?| < g — ualle+ chell flloeter inf I — ol (5.42)
=z C1C3 VESH
AEANN, ¢
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The proof follows exactly the lines of the proof for Theorem 5.1 and Lemma 5.3
taking the estimates (5.37) as well as the definition of N, (5.19) and (5.38) into ac-
count. Again employing exactly the same arguments as before in the proof of Theorem
5.2 one obtains

Theorem 5.3 Suppose that (5.23) and (5.24) hold and let eps > 0 be a given tolerance.

Fiz any 6 € (0,1) and define
1 1—6
C, = (— + ) . (5.43)

C1C3 202 Cyq

Choose any p* > 0 such that

1—0"
O < 77— 5.44
# - 2(2 — 0*)0204 ( )
and set §
(Weps
€= ———. 5.45
AV 4
Suppose that A C J is chosen so that
: L
er inf ||f —vl|—e < —p"eps. (5.46)
VESH 2
Then whenever A C J, A C A is chosen so that
1/2 1/2
> an(A,e)? > (1 -6 ( > aA(A,e)z) , (5.47)
AEANN, . AENR ¢

there exists a constant k € (0,1), depending only on the constants p*,0*, the constants
in (5.24) and the constants ¢;;1 = 1,...,4 such that either

[l — ul] < #llu = uall (5.48)

or (Zaen, . ax(A, )2 = (Zrena an(A, )72 < eps.
This gives rise to the following variant of Algorithm A.

Initialization: Fix the desired accuracy eps > 0, 8* € (0, 1), compute C, g™ according
to (5.43), (5.44).

Algorithm B:

Step 1: Compute € according to (5.45).
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Step 2: Determine an index set A C J such that

: L,
er inf || f — v]|—: < zp"eps.
VESH 2

Step 3: Compute the Galerkin solution u, with respect to A.

Step 4: Compute

1/2
NAe 1= ( Z aA(A,e)Q) ) (5.49)
AeJVA,e

If na. < eps Stop, accept uy as solution which satisfies (5.32). Otherwise, by Theo-
rem 5.3, one has ||u — ug|| < k|lu — up|| with x € (0,1).

Step 5: Determine an index set A, A € A C J such that

1/2

S | =010

AEANN, .

Set

and go to Step 3.

Remark 5.4 Again we could have used the computable quantities || Q' fll-¢ or |[uall:
in the definition of € instead of || f||—+ which would require an additional evaluation of
these terms in each step as well as a possible change of c.

Remark 5.5 Further variants suggest themselves. For instance, a completely analo-
gous reasoning confirms that Proposition 5.1 and Theorem 5.3 remain valid for ay(A, €)
and inf .5 || f —v|| - replaced by d\(A, ¢) and infvegAUNAe | f —v||-t, respectively. Since
trivially 7

inf = ol < inf 1 — ol (5.50)

veShun, . vESy

the perturbation caused by f might then even be smaller. On the other hand, the
practical consequences of this principal advantage might be negligible since the set A
and not AU Ny . is the input for the next adaptive refinement step. At any rate, due to
(5.50), Algorithm B works in exactly the same form for ax(A,e€) replaced by d\(A,€).

Shooting directly for the final desired accuracy might require starting in Algorithm
B with a rather refined set A. To better balance the influence of f and A it may
therefore be preferable to view the above algorithms as one loop in a scheme of the
following type where we assume again the respective initializations of Algorithm A or

B.
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(I) Choose the final desired accuracy eps; and some initial eps, > 0 (which could be
much larger than eps;). Put eps = eps,.

(IT1) Apply Algorithm A or B with eps.

(IIT) If eps < eps; Stop, accept uy as the approximate solution. Otherwise set ezﬁ —
eps and go to (II).
To tie the above observations into previous studies, note that
a(r, ihy) ~ 22, (5.51)
In fact, by (5.23) and (5.24), one has
a(r,2) ~ [l < 22, (5.52)

where we have used the inverse estimate (3.12) and the fact that stability of W; implies
the normalization

[¥allo ~ 1.
Conversely, since (Qy — @r=1)¥x = 0y, the estimates (3.10), (3.13) yield

lall < 27 leall?,

which together with (5.52) confirms (5.51). Therefore the quantities 3 can be replaced
by
2 [(ras o2)[*
a(Pr, ¥n)

Wy 1= (TA7¢A) ¢A

a(¢A7 77Z)/\)

Note that

is the solution of the local problem

a(wl\,/\vv) = (TA,U), v € span {¢A}

We conclude this section with some comments on computational issues. Depending
on how expensive the evaluation of A is, one could evaluate (r,,t,) and hence d)
by quadrature. When A has a global Schwarz kernel one has to evaluate the entries
(Atpri, 1) of the stiffness matrices by quadrature to compute then dy(A,€) or ay(A,e).
For efficient ways of computing the entries (Awy/, 1)) based on adaptive quadrature
we refer to [S, DS2]).

When A is a differential operator one would generally compute and store the sparser
stiffness matrices relative to the single scale basis functions ¢;;. Suppose that j =
max {[A] 1 A € A} so that ux = Yyenuntdy = Xpey, ¢ 196 Where the coefficients
¢;r and wy are interrelated by the multiscale transformation T; (3.4). Suppose now
that A € J\ A and { = |A\| > j. Since by (3.2) and (3.3) CI);F = ®IR, ;- R;o and
\Ilg = CI)%FRg_M the relation

(ra,n) = Y ¢a(Adjn, 0r) — (f, 1)

kel
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takes the form

(rastn) = ¢ (A ) — (f,4h) (5.53)
= C]‘TRio s Rg—l,O(Aq)fv (q)ng—l,l)k) —(f, ((I)gRﬁ—l,l)k)-

When ( is not much larger than j the sparsity of the matrices R, o, R;; ensures that
these calculations are cheap.

5.5 Some Comments on the Role of Symmetry

Let us point out next that symmetry is a convenient but not quite necessary assumption
in the above context. We will briefly indicate one way of weakening this hypotheses.
In many cases there is a symmetric H'-elliptic bilinearform s(+,-) such that the differ-
ence

k(u,v) :=a(u,v) — s(u,v) VYu,ve€ H* (5.54)

is a compact bilinearform, which induces estimates by a weaker norm than || - ||;. By
this assumption the bilinearform s(-,-) defines a norm

|ul| := /s(u,u) Yue H,

which is equivalent to || - ||, i.e.
[l ~ - (5.55)
Since for A C J, A C A
lu = uall® = flu = ugl* = flua — uz]l*

= s(u—upr,u—up) — s(u —uy,u—uy) — s(uy — ug,up — uy)

= 2s(u —ug,uz — up),
the Galerkin orthogonality

a(u —uz,up —ux) =0,

provides
s(u —ug,up —uy) = —k(u —uy,upy — uy), (5.56)
so that
i — gl = flu — wall? = lan — gl + 20 — ey un —uz). (557)

Now we assume further that
b — g ua — )| < 6( = uzll? + Il — ua ) (5.59)

holds for some ¢ > 0. As in the proof of Theorem 5.2 we conclude from (5.30) and
(5.55) that

lug = uall® = w7 [lu = ua |
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for some £’ € (0,1), which, on account of (5.57) and (5.58), yields

1—k24+6

—url <
e =zl < (/"

||u — wpll- (5.59)

It 6 is small enough one obtains
[ — gl < &7l[u = wuall

for some £" € (0,1), i.e., we can again confirm the validity of the saturation property
with respect to A and A.
Let us consider next two typical examples, namely

1. a simple boundary value problem involving a symmetric elliptic second order
partial differential operator and a first order term destroying symmetry,

2. an integral equation.

Throughout these examples all functions are assumed to be real-valued and Q C IR? is
a bounded Lipschitz domain with boundary I' = 9.

1): Let = (21,...,24) € IR? and A the partial differential operator defined by
A=-A+0,,.
The weak formulation of the homogeneous Dirichlet problem

Au(z) = f(z) Ve

ulpa =0,
for a given function f € H~1(Q) reads
a(u,v) = (Vu, Vo) + (p,u,v) = (f,v) Yo € Hy(Q).

Then one can show (cf. [W]), that a Garding inequality holds, i.e., there are constants
p,q > 0 such that

a(u,u) > p(Vu,Vu)g — q(u,u)y Yu € H&(Q).

The bilinear form

s(u,v) := (Vu, Vo) Yu,v e Hi(D),

is symmetric and Hj()-elliptic. Furthermore we have
k(u,v) := (0pu,v).
Since,

[l = uzllfJua = ugllo

(lua = wullo + [lu = wzllo)llw — uzll,

[F(w — g, up —ug)]
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condition (5.58) will indeed hold if ||uy — ulfo, ||t — ujz|lo are small compared to
|lua — w1, ||u — ug|[x which is a reasonable assumption.

2): Let g be the usual fundamental solution of the Laplace operator in IR?, i.e.

—>loglz —y| ford=2
L1 for d = 3.

ar [z—y]

g(x,y) =

Denoting by 7 the trace operator v : Hf (IRY) — H* '/*(T) for s € (1/2,1] the single
layer potential is defined by
V=~5

where

Su(x) := /g(:z;,y)u(y)dsy Vo e IR\ T.
r
Then a typical singular integral equation problem reads
Vu(z) = f(x) Veel

for a given function f € H'Y*(T).

The following theorem holds (cf. [C]).
Theorem 5.4 For all ¢ € [—1/2,1/2] the operators S : H™'/**7(T') — Ht7(IRY)
and V : H='2*7(T) — H'Y?*7(T) are continuous. Furthermore there exists a compact
operator K : H=V*(T') — H'Y*(T') and a constant p such that

(V4 K)uyu) 2 pllull2yy, Yu € D). (5.60)

Now we show that there is actually a symmetric compact operator K satisfying (5.60).

For an arbitrary v € H='/2(T') we consider w = —Su € H}._(IR?), choose a cut off
function y € C&°(IR?) with x = 1 on a neighborhood of ) and define w; := w|q, wy :=
xw|ge with Q¢ := IRT\ Q. By the continuity properties of the trace operator v,v := d,v|r

and the jump relation y3wy; — 41wy = u we conclude that

HUH—1/2;F = "71w2_71w1"2—1/2;F

S horllie + llw2llige + | Aws|l5q-. (5.61)

~

where the subscripts I', 2 and ¢ indicate the respective domains.
Now Green’s first forumula yields

0= vang;Q — (y1w1, Yown) (5.62)

and

/ngwg dr = ||Vwal3.qc + (11w, yow2). (5.63)
QC
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Summing (5.62), (5.63) and using again the jump relation we obtain by yow; = yowy =
—Vu
IVl + IV 3g = [ wadwsda+ (Vi ). (5.64)
QC

Inserting the identity (5.64) in (5.61) yields the estimate

[ullZ1 20 S llhorllso + llw2llooe + | Awsll5q: + /szwz dr + (Vu, u),
Qc

which motivates the following definition of the symmetric compact operator K

(Ku,u) o= g + sl + 1Awal3ge + [ w2y de,
Qc

- (Ku,0) = 1/2((K (u + v), (u + 0)) — (K(u— o), (1 — ).
Clearly
s(u,v) = (Vu,v) + (Ku,v)

defines a symmetric and H~'/2(T)-elliptic bilinear form, which induces a norm ||u|| =
s(u,u), that is equivalent to || - ||=1/2.
It remains to investigate the estimate (5.58). By the continuity properties of the
single layer potential one obtains

b — g, un —ug)l S llu—uallZyr + v — w2y

Thus condition (5.58) will be satisfied if ||u —uy |21, |[u —uz||? 1 are small compared
to [ju — uAH2—1/2;Fv ||u — UKH2—1/2;F which is again a reasonable assumption.

5.6 Conclusions

Exploiting properties of stable multiscale bases, especially norm equivalences for certain
ranges of Sobolev norms, we have shown that certain a-posteriori error estimators in
terms of wavelet coefficients of residuals are efficient and reliable. Moreover, they give
rise to adaptive schemes which are guaranteed to converge for a wide range of elliptic
operator equations including those of negative order without assuming the validity of
the saturation property beforehand. To our knowledge these are the first results of this
type for the latter class of problems.
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