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schemes these concepts hinge upon making successive corrections of current solutionswhen progressing to �ner scales of discretization. However, the wavelet methodologydi�ers from the �nite element techniques in that direct use of bases is made whichspan the complements between successive trial spaces. It is clear that the constructionof such bases may be a prohibitive task by itself. On the other hand, several caseshave been studied where such bases are available and have proved to o�er signi�cantadvantages. For instance, pre-wavelets have been shown to yield robust precondi-tioners in combination with sparse grid discretizations for two- and three-dimensionalanisotropic problems [GO]. Divergence free wavelets with small support have beenapplied to the Stokes problem where again the change from two to three spatial vari-ables does not cause any problem. More generally, there are examples of wavelet baseswith built in Ladyzhenskaya-Babu�ska-Brezzi-condition for various types of saddle pointproblems. Finally, such bases give rise to matrix compression techniques when dealingwith discretizations of pseudo-di�erential or singular integral operators as they arise,for instance, in connection with boundary element methods. Wavelet bases de�ned ontwo dimensional manifolds in IR3 satisfying all the requirements which guarantee op-timal compression and convergence rates have now become available [DS1]. This is animportant aspect, since for such equations on two dimensional manifolds the fact thatcorresponding system matrices are not sparse is the major computational bottleneck.So far the compression techniques apply to Galerkin or collocation schemes based onessentially uniformly re�ned trial spaces.In view of the availability of the various instances of promising stable multiscalebases for PDE as well as integral equation problems, the question arises how to designand analyse adaptive strategies in connection with such multiscale bases oriented meth-ods. Therefore the objective of this paper is to discuss some basic concepts and ideaswhich we feel are crucial for the understanding of adaptive techniques in connectionwith multiscale bases, and to relate them to existing techniques in more conventionalsettings. A particular motivation is that for integral equations the understanding oflocal error estimators is comparatively less developed than for partial di�erential equa-tions. To our knowledge the results of this paper o�er for the �rst time reliable ande�cient a-posteriori error estimators also for integral operators in the sense that thecurrent error is bounded from above and below by expression involving computablelocal quantities. It will be seen that on one hand, unlike the �nite element case localerror estimators arise in a fairly uni�ed fashion essentially as coe�cients of correspond-ing multiscale expansions. On the other hand, as mentioned before, these facts canbe established for a rather wide class of problems involving di�erential and integraloperators. We also emphasize that the a-posteriori error estimators are not con�nedto symmetric problems.We will focus here on (analogues for) energy norm estimates in terms of residuals.Thus our starting point is similar to the observations made in [O, R] for more specialsituations. The main problem treated here is then to analyse further the resulting errorterms which still contain in�nitely many terms. It will be shown that these expressionscan be reduced in the general case to e�cient and reliable error bounds involving�nitely many terms. It will be seen that these estimates give rise to adaptive spacere�nement techniques which are guaranteed to converge without assuming beforehand2



the so called saturation property. We wish to mention that this work has been inspiredto some degree by the results in [Do] for the technically quite di�erent setting ofpiecewise linear �nite elements for Laplace's equation and by recent studies in [Be]concerning wavelet related error estimators for univariate two point boundary valueproblems.The layout of the paper is as follows. In Section 2 we describe a general frameworkfor the type of problems to be studied and list a few examples. In Section 3 wecollect some relevant facts concerning multiscale bases. In Section 4 we collect someprerequisites about Galerkin schemes, in particular, pertaining to their stability andpreconditioning of resulting matrices. Section 5 is devoted to a-posteriori residualestimates with respect to energy (-like) norms and their algorithmic consequences.2 A Class of ProblemsWe will be concerned with linear operator equationsAu = f (2.1)where A will be assumed to be a boundedly invertible operator from some Hilbertspaces H1 into another Hilbert space H2, i.e.,kAukH2 � kukH1 ; u 2 H1; (2.2)where 'a � b' means that both quantities can be uniformly bounded by some constantmultiple of each other. Likewise ' <� ' indicates inequalities up to constant factors. Wewill write out such constants explicity only when their value matters.To get an idea of the range of problems we have in mind, one can follow [DPS1], andview A as a classical pseudo-di�erential operator. This covers a wide range of classicaldi�erential and (singular) integral operators. It is known that when A is injectiveand its symbol is strongly elliptic a G�arding inequality holds which implies (2.2) forSobolev spaces H1 = Hs, H2 = Hs��, say (where the order � of A is determined bythe homogeneity of the symbol). A typical example of this sort may be described asfollows (see [CS]).Let 
1 � IR2 be a bounded simply connected Lipschitz domain, 
2 := IR2 n �
1 itscomplement and � = @
1 its boundary. Then for a given f 2 H 12 (�) and g 2 H� 12 (�)one seeks (u1; u2) 2 H1(
1)�H1loc(
2) satisfying�uj = 0 in 
j; for j = 1,2 (2.3)u1 = u2 + f; @u1@n1 = @u2@n2 + g on �and the radiation condition limjxj!1(u2(x)� b2� log jxj) = 0for some b 2 IR. 3



To present an equivalent integral equation formulation with respet to �, we intro-duce the single layer potentialV �(x) = � 1� Z� �(y) log jx� yjdsy;the double layer potentialK�(x) = � 1� Z� �(y) @@ny log jx� yjdsy;its adjoint K 0, and the hypersingular operatorW�(x) = � @@nxK�(x):Then the operator A de�ned byA : H� 12 (�)�H 12 (�) ! H� 12 (�)�H 12 (�)(u; v) 7! A�uv � = ��Ku V vWu K 0v�is for Lipschitz domains linear, bounded and boundedly invertible, i.e.,
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2H�12 (�)�H 12 (�) = kuk2H�12 (�) + kvk2H 12 (�) :Then (2.3) is equivalent to the integral equation [CS]A�uv � = 12(� fg �+A� fg �):In this case one has H1 = H2 = H� 12 (�) �H 12 (�).In general the spaces Hi; i = 1; 2, will be elements of a whole scale of spaces Hsor products of such, where Hs will, for instance, be Sobolev spaces relative to somedomain 
 � IRd or relative to some possibly closed piecewise smooth manifold as above(see e.g. [DPS1]). The Sobolev spaces can be de�ned with the aid of a partition ofunity and an atlas. A typical case is that 
 is the boundary of some domain 
̂ � IRd+1.Thus Hs(
) could be taken as the trace space of Hs+ 12 (
̂). Specially, when 
 � IRnis a bounded domain we denote by Hs(
) (for s > 0) the usual Sobalev space on 
and by Hs0(
) the closure of C10 (
) with respect to k�kHs(
). When s is negative Hsis to be understood as the dual of H�s. We have spaces Hs in mind which satisfyHs0(
) � Hs � Hs(
), e.g. prescribing homogeneous Dirichlet boundary conditions onpart of @
. 4



Symmetry selects an important subclass of operators. By this we mean operatorsA such that for some � 2 IRa(u; v) = (Au; v)0; u; v 2 H �2 (2.4)is a symmetric bilinear form, where (�; �)0 denotes the standard inner product on H0 =L2(
). Moreover, we will assume that A is elliptic in the sense thata(u; u) � kuk2H �2 (
) ; u 2 H �2 : (2.5)It is clear that in this case (2.2) holds with H1 = H �2 , H2 = H� �2 .Of course, the simplest examples of this type are 
 � IRd, Au = ��u or Au =��u+cuwhere � = Pdj=1 @2@x2j is the Laplacian and c > 0. Here � = 2 and H1 = H10 (
)or H1(
) respectively.In order to focus on the main ideas, we will con�ne the following analysis to thetechnically somewhat simpler case H1 = H t;H2 = H�t where t = �2 , although thearguments extend to the situation considered in the �rst example as well.3 MultiresolutionOur goal is to employ Galerkin methods for the approximate solution of (2.1). It is wellknown that the most e�cient ways of solving the resulting systems of equations exploitthe interaction of several scales of discretization. To correspond to the above scope ofapplications we formulate the relevant facts for the following general framework.Suppose H is a Hilbert space (of functions de�ned on 
, say) with inner product(�; �). Again typical examples are H = L2(
), H = Hs(
) or products of such spaces.Let S = fSjg1j=0 be a sequence of closed nested subspaces of H whose union is densein H. We will always assume that Sj is spanned by �j = f�j;k : k 2 Ijg where thesebases are uniformly stable, i.e.,kck`2(Ij) � 





Xk2Ij ck�j;k





H (3.1)uniformly in j 2 IN0. Here we denote as usual k�k2H = (�; �) and kck2̀2(Ij) = Pk2Ij jckj2.Successively updating a current approximation in Sj�1 to a better one in Sj can befacilitated if stable bases 	j = f j;k : k 2 Jjgfor some complementWj of Sj�1 in Sj are available. De�ning for convenience 	0 = �0,W0 := S0, any vn = Pk2In ck�n;k 2 Sn has then an alternative multiscale representationvn = nXj=0 Xk2Jj dj;k j;kwhich corresponds to the direct sum decompositionSn = nMj=0Wj :5



Let Tn denote the transformation that takes the coe�cents dj;k in the multiscale repre-sentation of vn into the coe�cients ck of the single scale representation. It correspondsto the synthesis part of the fast wavelet transform.It will be useful for later purposes to brie
y describe the structure of Tn. Forconvenience let us view �j as a column vector whose components are �j;k, k 2 Ij.Nestedness and stability imply the existence of (#Ij+1) � (#Ij)-matrices Rj;0 suchthat �Tj = �Tj+1Rj;0: (3.2)Likewise there exists a (#Ij+1) � (#Jj)-matrix Rj;1 such that	Tj+1 = �Tj+1Rj;1 (3.3)and it is known that uniform stability of the complement bases 	j is equivalent tothe uniform boundedness of the composed matrices Rj = (Rj;0;Rj;1) as well as theirinverses as mappings from `2(Ij+1) into itself [CDP]. It is easy to see that then Tn hasthe form Tn = R̂0 � � � R̂n�1; R̂` = �R` 00 I � : (3.4)The application of Tn requires O(dimSn) operations if the number of nonzero entriesin each row and column of the Rj remain uniformly bounded.To avoid loss of accuracy when executing Tn it is important that Tn are wellconditioned, i.e., kTnk 


T�1n 


 = O(1); n!1; (3.5)where k�k denotes the spectral norm. It is well-known that this is equivalent to the factthat 	 = Sj2IN0 	j forms a Riesz-basis of H, i.e. every v 2 H has a unique expansionv = 1Xj=0 Xk2Jj(v; ~ j;k) j;k (3.6)such that kvkH � 0@ 1Xj=0 Xk2Jj j(v; ~ j;k)j21A 12 ; v 2 H; (3.7)where ~	 = f ~ j;k : k 2 Jj; j 2 IN0g forms a biorthogonal system( j;k; ~ j0;k0) = �j;j0�k;k0; j; j 0 2 IN0; k 2 Jj; k0 2 Jj0 (3.8)and is in fact also a Riesz-basis for H (cf. [D]). It is clear that when the complementsWj are orthogonal the stability of each 	j su�ces to ensure (3.7) and hence (3.5).However, in many practical cases orthogonality is di�cult to realize, in particular,when the functions in �j and 	j are to have small supports which in turn will beessential for our applications and for the e�ciency of Tn.Assuming henceforth the stability of 	j for each level j the additional informationwhich will be needed to ensure the stability (3.7) across levels in the biorthogonal casecan conveniently be described in terms of the projectorsQnv := nXj=0 Xk2Jj(v; ~ j;k) j;k; Q0nv := nXj=0 Xk2Jj(v;  j;k) ~ j;k6



which are obviously adjoints of each other. Note thatQjQn = Qj; for j � n: (3.9)It is useful to keep the following facts in mind (cf. [D]).Remark 3.1 (3.9) is equivalent to either of the following statements1. The mappings Qn �Qn�1 are also projectors and(Qn �Qn�1)(Q` �Q`�1) = �n;`(Qn �Qn�1)2. The ranges ~Sn of the adjoints Q0n are also nested.By (3.7) the Qn (and hence the Q0n) are uniformly bounded so thatkv �QnvkH <� distH(v; Sn); v 2 H; (3.10)and likewise for the Q0n. Thus ~S = f ~Sjg1j=0 is also a nested dense sequence of closedsubspaces of H.Evidently, when the 	j are stable (3.7) (and hence (3.5)) is equivalent tokvkH � 0@ 1Xj=0 k(Qj �Qj�1)vk2H1A 12 ; v 2 H; (3.11)where Q�1 � 0. It is shown in [D] that certain (mild) regularity and approximationproperties of S and ~S in addition to (3.9) guarantee (3.11). When H = L2(
) theseconditions can be formulated in terms of an inverse estimatekvnkHs(
) <� 2ns kvnkL2(
) ; vn 2 Sn; (3.12)for s < 
, some 
 > 0, and a direct estimateinfvn2Sn kv � vnkL2(
) <� 2�sn kvkHs(
) ; v 2 Hs(
); (3.13)for s � m, some 
 � m(2 IN).Theorem 3.1 Let Q = fQjg1j=0 satisfy (3.9) and assume that S and ~S both satisfy(3.12) and (3.13) relative to some 
; 
0 > 0, 
 � m, 
0 � m0, thenkvkHs(
) � 0@ 1Xj=0 22js k(Qj �Qj�1)vk2L2(
)1A 12 (3.14)� 0@ 1Xj=0 k(Qj �Qj�1)vk2Hs(
)1A 12 ; v 2 Hs(
);holds for s 2 (�
0; 
). Moreover, the projectors Qj, Q0j are uniformly bounded inHs(
), s 2 (�
0; 
). 7



Remark 3.2 Instead of powers of 2 in (3.12){(3.14) we could have used powers of afor some a > 1 which re
ects the subdivision rate of successive re�nement levels. Sincethis entails no essential di�erences we will stick in the following with halving meshsizes.Note that the projectors Qn may be also represented asQnv = Xk2In(v; ~�n;k)�n;k (3.15)where ~�n = f~�n;k : k 2 Ing is a stable basis for ~Sn which is dual to �n, i.e.(�n;k; ~�n;k0) = �k;k0; k; k0 2 In: (3.16)Usually the projectors are more easily available in this form where, according to Remark3.1 one has to �nd dual collections ~�j that are also re�nable. For ways of deriving from(3.15) corresponding multiscale bases 	; ~	 we refer to [CDP].For our applications it will be important to work with local bases, i.e., we will alwaysassume that diam(supp�n;k); diam(supp n;k) � 2�n; n 2 IN: (3.17)Furthermore, it is desirable that the ~�n;k, ~ n;k have the same propertydiam(supp~�n;k); diam(supp ~ n;k) � 2�n; n 2 IN: (3.18)A su�cient condition for the direct estimate (3.13) to hold for s � m is then that allpolynomials of degree � m � 1 are (locally) contained in each Sj , j 2 IN . Moreover,when (3.17) and (3.18) hold, one easily veri�es then local estimates of the formkQnv � vkL2(D) <� 2�nm kvkHm(D̂n) ; v 2 Hmloc (3.19)where for any D �� 
, D̂n is also a domain in 
 satisfyingD � D̂n � 
; dist(D; @D̂n) <� 2�n; n 2 IN: (3.20)Throughout the rest of the paper we will assume that the bases �j , ~�j , 	j, ~	j satisfythe above assumptions with respect to parameters 
; 
 0;m;m0 which have to be tunedto the particular application (see [DS1] for examples of such bases de�ned on twodimensional (closed) manifolds in IR3).Finally, it will be important to make use of so called moment conditions. If 	 is astable multiscale basis for L2(
) where 
 is a domain in IRd, 	 is said to have vanishingmoments of order m0 if Z
 P (x) j;k(x)dx = 0 (3.21)holds for all polynomials of degree less than m0. Since estimates of the form (3.13) or(3.19) usually imply that the approximation spaces contain polynomials of the ordercorresponding to the highest approximation order and since the  j;k are orthogonalto ~Sj the moment conditions are closely related to the order of exactness of the dual8



multiresolution sequence ~S. The fact that polynomials appear in (3.21) is actuallynot essential. What matters is that (3.21) holds for a �nitely dimensional family offunctions which locally approximate any smooth function well. Accordingly, this notioncan be modi�ed. For instance, when the domain 
 is a manifold represented by a familyof smooth parametric mappings �i : 2! 
i � 
, where2 is a �xed parameter domain,one can work with the conditionZ2 P (x) j;k(�i(x))dx = 0; (3.22)see [DS1].4 Galerkin SchemesWe are interested in e�cient numerical schemes for (2.1). To this end, we recall the fol-lowing facts concerning Galerkin methods for (2.1) from [DPS1]. Suppose that S;	; ~	have the above properties with associated projectors Qj. The standard Galerkin pro-cedure requires to �nd uj 2 Sj such that(Auj; vj) = (f; vj); vj 2 Sj; (4.1)which is equivalent to Q0jAuj = Q0jf: (4.2)To simplify the notation we will write in the following k � ks instead of k � kHs as well ast := �=2 where � is the order of A. Our basic assumption (2.2) reads now throughoutthe rest of the paper kAvk�t � kvkt; v 2 H t: (4.3)We will also assume that the Galerkin scheme is (t;�t)-stable, i.e.,kQ0jAvjk�t >� kvjkt; vj 2 Sj: (4.4)Obviously (4.4) holds when A is selfadjoint and a(�; �) := (A�; �) satis�es (2.5). Moregenerally, it has been shown in [HW] that when A is strongly elliptic in the sense thatkerA = f0g and the real part of the principle part of the symbol of A is coercive then(4.4) holds as well. More generally, one has [DPS1]Remark 4.1 Suppose that A satis�es (2.2) for H1 = Hs;H2 = Hs�� and let
 > t; 
0 > �t: (4.5)If S satis�es (3.12) and (3.13) then for any ��m � s � �2 the Galerkin scheme (4.2)is (s; s� �)-stable, i.e., 


Q0jAuj


s�� >� kujks ; uj 2 Sj: (4.6)Denoting by u; uj the solution of (2.1) and (4.2), respectively, one hasku� ujks <� 2j(s��) kuk� (4.7)for �m+ � � s < 
 � m, s � � , t � � � m.9



Thus under such premises the discrete equations (4.2) possess a unique solutionwhose deviation from the exact solution can be estimated for a scale of norms.It will be convenient to introduce the following notation. LetJ := f� = (j; k) : k 2 Jj; j 2 IN0g = 1[j=0(fjg � Jj):De�ning j�j := j if � 2 Jj;let An := ((A �0;  �))j�j;j�0j<n so that (4.2) is equivalent to the linear system of equa-tions And = fn; (4.8)where fn := ((f;  �))j�j<n. Moreover, introducing the diagonal matrix Dsn de�ned by(Dsn)�;�0 := 2sj�j��;�0;it is known [DPS1] that cond2(D�tn AnD�tn ) � 1: (4.9)Thus whenAn is selfadjoint positive de�nite (which will be referred to as the symmetriccase), a conjugate gradient iteration applied to Bn := D�tn AnD�t would perform verywell. But even for certain nonsymmetric sytems stemming from the discretizing ellipticintegral equations corresponding nonsymmetric versions like GMRES have proven tobe very e�cient.A few more comments on the practical realization are in order. For a wide class ofoperators with global Schwarz kernel the matrices An are fully populated but can beapproximated very well by sparse matrices in such a way that the resulting compressedsystems can be handled e�ciently [DPS1] while the accuracy of the correspondingsolutions is still asymptotically optimal. On the other hand, when A is a di�erentialoperator it would be more e�cient to store the sparse sti�ness matrix A�n relative tothe �ne scale basis �n. SinceAn = TTnA�nT; fn = Tnf�n ;where the components of f�n are (f; �j;k), and Tn is the multiscale transformation from(3.4). Thus the preconditioning can be realized by applying the fast transformationTn to sparse arrays.Note that estimates of the form (3.13) re
ect that the spaces Sj arise from uniformre�nements. However, in the present paper our main concern is not to �nd possiblysparse representations of the operator A relative to a-priori �xed trial spaces but to �ndpossibly economical trial spaces leading to as small linear systems as possible in the�rst place. More precisely, we wish to determine step by step possibly small subspacesof the full spaces Sj which recover the solution as well as possible. To describe this weset for any � � J S� := span f � : � 2 �g; Q�v := X�2�(v; ~ �) �:10



and A� := ((A �0;  �))�;�02� :In the symmetric case corresponding to (2.5) one still haskQ0�Av�k�t � kv�kt; v� 2 S�; (4.10)so that the matricesA� are still nonsingular. Moreover, since for j�j := maxfj�j : � 2�g the matrix A� is a principal submatrix of Aj�j, the diagonal preconditioning stillproduces uniformly bounded condition numbers.In general, we will assume in the following thatQ0�Au� = Q0�f (4.11)possesses a unique solution u� in S� and that (4.10) holds. By the same arguments asused in [DPS1] for the full spaces it follows from (4.10) that alsocond2(D�t� A�D�t� ) � 1; (4.12)where as above (Ds�)�;�0 := 2sj�j��;�0. In fact, de�ning�sv := 1Xj=0 2sj(Qj �Qj�1)v;one clearly has, in view of (3.9),�sQ� = Q��s; ��1s = ��s: (4.13)Thus Theorem 3.1 says thatk�svk� � kvks+� ; s+ � 2 (�
0; 
): (4.14)Setting w� := �tv� for v� 2 S� and keeping (4.5) in mind, (4.14), (4.13), and (4.10)imply kw�k0 � kv�kt � kQ0�Av�k�t� k�0�tQ0�AQ���tw�k0;which means that the operators �0�tQ0�AQ���t and their inverses are uniformly boundedon L2. Moreover, it is easy to see that D�t� A�D�t� is the matrix representation of�0�tQ0�AQ���t which con�rms (4.12).5 Multiscale Error Estimates5.1 Some Preliminary RemarksIn the symmetric case it is natural to estimate the accuracy of the Galerkin solutionwith respect to the energy norm k � k := a(�; �)1=2:11



Since by (2.5), this norm is equivalent to k � kt we will employ this latter norm mostof the time in the general (possibly non-symmetric) situation. To explain the usualstarting point for adaptive strategies we focus for a moment though on the symmetriccase. The basic idea is very simple (see e.g. [BEK] or [BW]). Suppose that u0; u00are Galerkin approximations to the solution u of (2.1) from spaces S0; S00 respectively,where u00 is a more accurate solution, i.e., S0 � S 00.Remark 5.1 When A is selfadjoint positive de�nit one has for u0; u00, as aboveku00 � u0k � ku� u0k : (5.1)Moreover, one has for some � < 1ku� u0k � (1� �2)� 12 ku00 � u0k (5.2)if and only if ku� u00k � � ku� u0k : (5.3)The assertion is a trivial consequence of the orthogonality of the error u�u00 to u0�u00so that ku� u0k2 = ku� u00k2 + ku00 � u0k2.The relation (5.3) is often called saturation property requiring that the new approx-imation u00 is strictly better than the previous one u0. Thus if the saturation propertyholds the quantity ku0 � u00k provides a lower and upper bound for the true errorku � u0k. Such a-posteriori bounds are called e�cient and reliable. In the �nite ele-ment context S00 could be a trial space corresponding to a re�ned mesh or a trial spacewith the same mesh as S0 but containing higher order trial functions. In either casethe expression u0 � u00 can be evaluated e�ciently typically by solving local problems[BEK]. The resulting bounds are then usually comprised of sums of local terms whoseprecise form, however, depends strongly on the particular discretization at hand.On the other hand, symmetry plays a crucial role already in the derivation of theerror bounds and in many previous investigations the saturation property has to beassumed beforehand, which from a principal point of view is certainly not satisfactory.In the following we will also study energy estimates or more generally estimatesrelative to the norm k � kt but for the above general multiscale basis setting. Our goalis to develop computable e�cient and reliable error bounds that lead to an adaptivestrategy which ensures that the saturation property is satis�ed automatically and thuscan be proved to converge. These estimates will be formulated in terms of waveletcoe�cients and thus take a rather uni�ed form for a wide range of cases.5.2 An A-Posteriori Error EstimateOnce a Galerkin approximation u� 2 S� to the solution u of (2.1) has been determinedone can, in principle evaluate the residualr� = Au� � f = A(u� � u): (5.4)12



On account of (4.3), we havec1kr�k�t � ku� u�kt � c2kr�k�t; (5.5)where we have now speci�ed the constants c1; c2 in (4.3) for later purposes.As above in connection with preconditioning we will next make again essential useof the norm equivalences in Theorem 3.1, recalling that under the assumption (4.5),kr�k�t can be estimated by weighted sequence norms of the wavelet coe�cients of r�.In fact, specifying also the constants in (3.14) by c3; c4, we obtainc30@ X�2Jn� 2�2tj�jj(r�;  �)j21A1=2 � kr�k�t � c40@ X�2Jn� 2�2tj�jj(r�;  �)j21A1=2 ; (5.6)where we have used that, since u� is a Galerkin solution,r� = X�2J(r�;  �) ~ � = X�2Jn�(r�;  �) ~ �:Thus, combining (5.5) and (5.6), we obtain, in principle, an e�cient and reliableerror bound. However, at this stage it is practically useless since it still involves in-�nitely many terms. Our goal is now to replace the bounds in (5.6) by computableexpressions. To this end, let us abbreviate�� := 2�tj�jj(r�;  �)jand note that upon inserting the expansionu� = X�02� u�0 �0of the Galerkin solution u� yields the representation�� = 2�tj�jjf� � X�02�(A �0;  �)u�0j; f� := (f;  �); (5.7)and therefore, by (5.6),c30@ X�2Jn� �2�1A1=2 � kr�k�t � c40@ X�2Jn� �2�1A1=2 : (5.8)Obviously, replacing the entities �� by �nitely many computable ones requires someinformation about the given data, here in terms of the right hand side f , and aboutthe behavior of the entries (A �0;  �).We will �rst show that for almost all � 2 J the sums P�02�(A �0;  �)u�0 canactually be neglected. To this end, it is well-known that for a large class of operatorsA the (A �0;  �) decay when either the levels j�j; j�0j or the supports 
�;
�0 of thewavelets  �;  �0, respectively, are far apart. Thus supposing that the spatial domain13



of the functions in H t is d, we will assume the following basic estimate on the entries(A �0;  �) 2�(j�0 j+j�j)tj(A �0;  �)j <� 2�jj�j�j�0jj(d=2+�)(1 + 2min(j�j;j�0j)dist(
�;
�0))d+m0+2t ; (5.9)where again 2t = � is the order of A, � > 0 is some �xed real number and m0 is apositive integer which typically represents the order of exactness of ~S or the order ofvanishing moments of the  � (which have to be suitably interpreted depending on thetype of the underlying domain 
, see e.g. [DS1]).Let us brie
y outline some circumstances under which estimates of the form (5.9)hold. To begin with a simple but instructive case let A = ��, t = 1, H1 = H10 (
),
 � IRd, and suppose that the r � have vanishing moments of order m0, i.e.,Z
 P (x) � r �(x)dx = 0;for any vector valued function whose components are polynomials of degree less thanm0. Then one has for any such polynomial and j�j > j�0j(A �0;  �) = Z
 r �0(x) � r �(x)dx = Z
 (r �0(x)� P (x)) � r �(x)dx� maxx2
� jr �0(x)� P (x)j Z
 jr �(x)jdx:Thus when r �0 is still H�older continuous with exponent � > 0 elementary calculationsshow that the �rst factor can be estimated by a constant times 2�j�j�2j�0j(1+�)2 d2 j�0jwhile the second factor is bounded by a constant times 2�dj�j2 d2 j�j2j�j so that overallone obtains in this casej(A �0;  �)j <� 8><>: 2j�j+j�0j2( d2+�)(j�0j�j�j) if 
� \ 
�0 6= ;;0 if 
� \ 
�0 = ;:Obviously this is a special case of (5.9). The above estimate is still crude. In fact, amuch stronger decay occurs when j�j is much larger than j�0j and 
� does not intersectthe singular support of  �0 [S].More generally, we admit operators with Schwartz kernels of global support(Av)(x) = Z
 K(x; y)v(y)dy;where we require that whenever d + �+ j�j+ j�j > 0j@�x@�yK(x; y)j <� dist (x; y)�(d+�+j�j+j�j) (5.10)holds with constants depending only on �; � 2 ZZd+. Estimates of the type (5.10) areknown to hold for a wide range of cases including classical pseudodi�erential operatorsand Calder�on-Zygmund operators (see e.g. [DPS1, S]).The following result has been established in [DPS1, DPS2].14



Lemma 5.1 Assume that 	 has vanishing moments of order m0 in the sense of (3.21),(3.22), respectively, and assume that for 2t = � � 0, the basis functions �j;k are H�oldercontinuous with exponent � 2 (0; 1], i.e.,j�`;k(x)� �`;k(x0)j <� 2`(d=2+�)[dist(x; x0)]�;while for 2t = � > 0 we require H�older continuity of order n+ � > t, i.e.,jD��`;k(x)�D��`;k(x0)j <� 2`(d=2+�+j�j)[dist(x; x0)]� 8j�j � n:Then for d+ � +m0 > 0 and any �; �0 2 J one has2�(j�0j+j�j)tj(A �0;  �)j <� 8><>: 2�jj�j�j�0jj(d=2+�) if 
� \ 
�0 6= ;;2�jj�j�j�0 jj(d=2+m0+t)(1+2min(j�j;j�0 j)dist(
� ;
�0 ))d+m0+2t if 
� \ 
�0 = ;: (5.11)One should note that a more careful analysis leads to the following stronger estimate[PS, S] j(A �0;  �)j <� 2�(j�j+j�0j)(d=2+m0)(dist(
�;
�0))d+2m0+�provided that 
� 6= 
�0. Moreover, we emphasize that the estimates concerning over-lapping supports could also be re�ned, especially when dealing with operators of neg-ative order. The quantitative e�ect of possibly sharp estimates will certainly play anessential role in any concrete application. Here estimates of the form (5.9) or (5.11)should be viewed as representatives of a certain decay property which su�ces to provethe principal fact that the bounds in (5.8) can be reduced to �nitely many local quan-tities. The reasoning is closely related to matrix compression techniques based onestimates of the form (5.11) [DPS1].Lemma 5.2 Assume that (5.9) holds. Let 0 < � < � be �xed where � is the constantfrom (5.9) and choose for � > 0 positive numbers �1; �2 > 0 such that�m0+�1 + 2��=�2 � �: (5.12)For � 2 J de�ne the neighborhoodJ�;� := f�0 2 J : jj�j � j�0jj � ��12 and 2min(j�j;j�0j)dist(
�;
�0) � ��11 g:Then there exists a constant c5 depending only on �;m0; �, the constant c3 and thestability constant in (4.10) of the Galerkin scheme such that the quantitiese� := X�02�nJ�;�(A �0;  �)u�0; � 2 J n �; (5.13)satisfy 0@ X�2Jn� 2�2tj�jje�j21A1=2 � c5�kQ0�fk�t: (5.14)15



Proof: It has been shown in [DPS1, S], that the in�nite symmetric matrix R� =(a��;�0)�;�02J de�ned bya��;�0 = 8><>: 2�jj�j�j�0 jj(d=2+�)(1+2min(j�j;j�0 j)dist(
�;
�0))d+m0+� ; � 2 J n �; �0 2 J n J�;�;0; else;satis�es kR�k <� � (5.15)where k � k denotes here the spectral norm and the constant in (5.15) depends only onthe constants c1; c2; c3; c4 and �; �. Therefore we infer from (5.9) thatX�2Jn� 2�2tj�jje�j2 � X�2Jn� ������ X�02�nJ�;� 2�jj�j�j�0jj(d=2+�)(1 + 2min(j�j;j�0j)dist(
�;
�0))d+m0+� 2tj�0jju�0j������2<� �2 X�02�nJ�;� 22tj�0jju�0j2<� �2ku�k2t <� �2kQ0�Au�k2�t = �2kQ0�fk2�t;where we have used (4.10) and (4.11) in the last step.Remark 5.2 It is obvious from the above proof that the quantity kQ0�fk�t in (5.14)can be replaced by either ku�kt or kfk�t with a modi�ed constant c5. The latter choicehas the advantage of being independent of � but the disadvantage that in a strict senseit is not computationally accessible while the �rst two choices can be estimated via thecoe�cients f�; u�; � 2 � and the corresponding norm equivalences.The idea is now to replace for a given � > 0 and a given � � J the quantities �� in(5.8) by d�(�; �) = d� := 2�tj�jjf� � X�02�\J�;�(A �0;  �)u�0j; � 2 J n �: (5.16)We will show next that the quantities d� give rise to a new a-posteriori estimate whichis still up to any chosen tolerance e�cient and reliable. For the special case of secondorder two point boundary value problems a similar result was obtained by S. Bertoluzzawho was as far as we know the �rst to establish an a-posteriori estimate of the followingtype [Be].Theorem 5.1 Under the assumptions in Lemma 5.2 one hasku� u�kt � c2c40@ X�2Jn� d�(�; �)21A1=2 + c2c4c5�kQ0�fk�t; (5.17)as well as 0@ X�2Jn� d�(�; �)21A1=2 � 1c1c3ku� u�kt + c5�kQ0�fk�t: (5.18)16



Proof: Both inequalities follow immediatelyby the triangle inequality and the estimate(5.14) of Lemma 5.2. In fact, we apply �� � d� + 2�tj�jje�j to (5.5), (5.8) and obtain(5.17). Likewise, because d� � �� + 2�tj�jje�j; we employ again (5.5), (5.8) and (5.14).A few comments on the above result are in order. It is clear that also the sums(P�2Jn� d2�)1=2 are not �nite yet. However, de�ningN�;� := f� 2 J n � : � \ J�;� 6= ;g (5.19)one has, by construction, #N�;� <1; (5.20)so that all but �nitely many of the terms d�(�; �) depend only on the right hand sidef . Since f 2 H�t the series P�2J 2�2tj�jjf�j2 converges so that P�2Jn (nle[�) 2�2tj�jjf�j2can be made arbitrary small by choosing � appropriately. In fact, the contribution off to (P�2Jn(N�;�[�) d2�)1=2 is justX�2Jn(N�;�[�) 2�2tj�jjf�j2 <� kf �Q0�[N�;�fk2�t � infv2 ~S�[N�;� kf � vk2�t (5.21)� infv2 ~S� kf � vk2�t:We will see that this contribution can be subsumed under the perturbation of order �.This is precisely the problem of adaptively approximating an explicitly given functionor distribution. Thus any singularities of f will be re
ected by the initial choice of astarting set �. The above estimates of the quantities e� show how much this informationis smeared due to the pseudo-locality of the elliptic operator which becomes accessiblethrough the multiscale representation. If f is very smooth the contribution of (5.21)will be negligible and the adaptive choice of larger sets ~� will be dominated by thebehavior of the current approximation u� and the action of A.Due to the assumed compact support of the  � each of the quantities d�(�; �) isa trivial local lower bound for the error. To re�ne this information one needs moreknowledge about the local behavior of the residuals. We do not want to elaborateon this issue here but remark that this is a non-trivial problem for operators withnegative order (cf. [R, WY, F]). To our knowledge no e�cient and reliable estimatorshave so far been known. For example, Carstensen and Stephan proved in [CaS] a-posteriori estimates without deriving lower bounds. It is remarkable, that within ourapproach operators with negative order seem to have to some extent even advantagesover operators with positive order, because of their smoothing property, i.e., (A �0;  �)decays faster for j�j ! 1 if A �0 is smoother.5.3 A Convergent Adaptive StrategyThe next step is to use the a-posteriori error estimates for an adaptive re�nementstrategy. Although totally di�erent in a technical sense and with regard to the wholesetting the results are similar in spirit to those by D�or
er [Do] who considers adaptivere�nement of piecewise linear �nite elements for Poisson's equation in two dimensions.17



In the present setting re�nement simply means adding properly selected basis functions � to the current solution space. We will describe assumptions, that guarantee animprovement for the approximate solution after the re�nement step.Throughout the remainder of this section we adhere to the assumptions madeabove.Lemma 5.3 Suppose that � � ~� � J and let u~� be the Galerkin solution with respectto S~� = spanf � : � 2 ~�g:Then we have 0B@ X�2~�n� d�(�; �)21CA1=2 � 1c3c1ku~� � u�kt + c5�kQ0�fk�t: (5.22)Proof: For � 2 ~� we haveX�02�(A �0;  �)u�0 = (Au�;  �) = (A(u� � u~�);  �) + f�and therefore, by (5.13) and (5.16),d�(�; �) = 2�tj�jjf� � X�02�(A �0;  �)u�0 + e�j� 2�tj�jj(A(u� � u~�);  �)j+ 2�tj�jje�j:Because of (5.5) and (5.6) we obtainX�2~�n� 2�2tj�jj(A(u� � u~�);  �)j2 � c�23 kA(u� � u~�)k2�t� 1c23c21ku� � u~�k2t :Thus (5.14) provides0B@X~�n� d�(�; �)21CA1=2 � 1c3c1ku~� � u�kt + c5�kQ0�fk�t;as claimed.Our next goal is to use (5.22) for selecting a set ~� containing � such that thesaturation property is guaranteed to hold. So far all our previous estimates did notrequire any symmetry assumptions on the operator A. For the next step, however, itseems that more information about A is needed. The simplest setting would again bethe symmetric case, i.e., a(�; �) := (A�; �) (5.23)de�nes a symmetric bilinear form such that k � k := a(�; �)1=2 satis�esk � k � k � kt: (5.24)We will formulate and prove the next result for this simple setting and will indicatelater how to weaken the assumptions somewhat.18



Theorem 5.2 Suppose that (5.23) and (5.24) hold and let eps > 0 be a given tolerance.Fix any �� 2 (0; 1) and de�ne Ce :=  1c1c3 + 1� ��2c2c4 ! : (5.25)Choose any �� > 0 such that ��Ce � 1 � ��2(2� ��)c2c4 : (5.26)Finally, for a given � � J let � := ��epsc5kQ0�fk�t : (5.27)Then whenever ~� � J , � � ~� is chosen so that0B@ X�2~�n� d�(�; �)21CA1=2 � (1� ��)0@ X�2Jn� d�(�; �)21A1=2 ; (5.28)there exists a constant � 2 (0; 1), depending only on the constants ��; ��, the constantsin (5.24) and the constants ci; i = 1; : : : ; 4, such that eitherku� u~�k � �ku� u�k (5.29)or (P�2Jn� d�(�; �)2)1=2 < eps.Proof: We �rst assume, that ku � u�kt � epsCe where the constant Ce > 0 is de�nedby (5.25). When ~� satis�es (5.28) we infer from (5.22), (5.17), (5.27) and (5.26)ku~� � u�kt � c1c30BB@0B@ X�2~�n� d�(�; �)21CA1=2 � c5�kQ0�fk�t1CCA� c1c3 �(1� ��)� 1c2c4ku� u�kt � c5�kQ0�fk�t�� c5�kQ0�fk�t�� c1c3  1 � ��c2c4 ku� u�kt � (2� ��)c5�kQ0�fk�t!= c1c3  1 � ��c2c4 ku� u�kt � (2� ��)��eps!� c1c3  1 � ��c2c4 � (2� ��)��Ce! ku� u�kt� c1c3(1� ��)2c2c4 ku� u�kt: (5.30)By (5.24), there exists then a constant c6 2 (0; 1) depending on the above constantand the constants in (5.24) such thatku~� � u�k � c6ku� u�k: (5.31)19



At this point we exploit symmetry by applying Remark 5.1 which con�rms the assertion(5.29) with � = q1 � c26.On the other hand, ku� u�kt < epsCe yields, in view of (5.18) and (5.27),0@ X�2Jn� d�(�; �)21A1=2 � 1c1c3ku� u�kt + c5�kQ0�fk�t� epsc1c3Ce + �� � eps� ( 1c1c3 + ��Ce) epsCe :Taking (5.25) and (5.26) into account, we see that ( 1c1c3+��Ce)Ce < 1 so that0@ X�2Jn� d�(�; �)21A1=2 < epswhich completes the proof.Note that (P�2Jn� d�(�; �)2)1=2 < eps yields, by (5.17),ku� u�kt � c2c4(1 + ��)eps: (5.32)Remark 5.3 By Remark 5.2, the term kQ0�fk�t in (5.27) can be replaced by ku�kt or�P�2� 22j�jtju�j2� so that (5.27) can be replaced by� := ��epsc5 (P�2� 22j�jtju�j2) : (5.33)The constants change then in an obvious way.The above result may be formulated in terms of the following algorithm.Assumptions: We assume, that the constants c1; c2; c3; c4 and c5 or estimates for theseconstants are known.Initialization: Fix �� 2 (0; 1) and the desired accuracy eps. Compute Ce; �� accord-ing to (5.25) and (5.26), respectively. Choose an initial set � � J .Algorithm A:Step 1: Compute the Galerkin solution u� with respect to �.Step 2: Compute 0@X�2� 22j�jtju�j21A20



and � according to (5.33). Determine��;� := 0@ X�2Jn� d�(�; �)21A1=2 : (5.34)If ��;� < eps Stop, accept u� as solution which satis�es (5.32). Otherwise, by Theo-rem 5.2, one has ku� u~�k � �ku� u�k with � 2 (0; 1).Step 3: Determine an index set ~�, � � ~� � J such that0B@ X�2~�n� d�(�; �)21CA1=2 � (1� ��)��;�:Set ~�! �and go to Step 1.5.4 Variants and Computational AspectsObviously the crucial task in the above algorithm is the computation of the quantities��;� de�ned in (5.34) which, however, still involve in�nitely many terms. As pointedout above (see (5.20)) the set N�;� of indices in J n� for which d�(�; �) depends on thecurrent approximate solution u� and on the operator A is �nite so that all but �nitelymany of the coe�cients d�(�; �) actually take the formd�(�; �) = 2�tj�jjf�j; � 2 J n (� [ N�;�): (5.35)Apparently this is a principal problem since in a strict sense f is generally not com-pletely accessible. There could always be a large wavelet coe�cient f� for very highlevel j�j which makes it impossible to realize step 3 in a strict sense.A simple remedy is to assume that the data f possess a �nite expansion in termsof ~	. This could be viewed as solving a perturbed problem where the data are approx-imated by elements from the spaces in ~S. In this case the quantities ��;� involve only�nitely many computable terms which ultimately depend only on A and the currentsolution u�.Another reasonable assumption is that f has some extra regularity. To be speci�c,suppose that f 2 Hs for some s > 0, where t + s � m0 say. Combining (5.21) and(5.16), and employing standard approximation estimates analogous to (3.13) whichextend to negative norms as well (see e.g. [D]), yields��;� � 0@ X�2N�;� d�(�; �)21A1=2 + c7 2�j(�)(t+s)kfks; (5.36)21



where j(�) := minfj�j : � 2 J n (� [ N�;�)g. If the error term involving f is smallrelative to �P�2N�;� d�(�; �)2�1=2 the latter term can be used as a basis for the determi-nation of ~� in step 3. However, when f is smooth except at certain isolated places anestimate of the above type will not help since the set � [ N�;� may not be well suitedto approximate f e�ciently.Therefore we will elaborate a little more on the following model where the a-prioriknowledge about the given data is subsumed in theAssumption B: We have a way of solving the direct problem of approximating farbitrarily well by elements of the spaces ~Sn. Thus we assume that (estimates for) thequantities0@ X�2Jn� 2�2tj�jjf�j21A1=2 � c7 infv2 ~S� kf � vk�t; c5kQ0�fk�t � c05kfk�t (5.37)are accessible for any � � J (see Remark 5.2).The corresponding approximation procedure itself could be adaptive or nonlinear[DJP, DV]. The point of view taken now makes the in
uence of f on the structure ofthe adapted solution spaces more transparent. To this end, de�nea�(�; �) = a� := 2�tj�jj X�02�\J�;�(A �0;  �)u�0j; � 2 J n �; (5.38)and note that, in view of (5.19),a�(�; �) = 0 for � 2 J n �; � 62 N�;�: (5.39)Since d� � a�+2�tj�jjf�j, and a� � d�+2�tj�jjf�j the counterpart to Theorem 5.1 readsProposition 5.1 Under the assumptions in Lemma 5.2 one hasku� u�kt � c2c40B@0@ X�2N�;� a�(�; �)21A1=2 + c05�kfk�t + c7 infv2~S� kf � vk�t1CA ; (5.40)as well as0@ X�2N�;� a�(�; �)21A1=2 � 1c1c3ku� u�kt + c05�kfk�t + c7 infv2~S� kf � vk�t: (5.41)Moreover, for � � ~� � J and u�; u~� as in Lemma 5.3 we have0B@ X�2~�\N�;� a�(�; �)21CA1=2 � 1c1c3ku~� � u�kt + c05�kfk�t + c7 infv2 ~S� kf � vk�t: (5.42)22



The proof follows exactly the lines of the proof for Theorem 5.1 and Lemma 5.3taking the estimates (5.37) as well as the de�nition of N�;� (5.19) and (5.38) into ac-count. Again employing exactly the same arguments as before in the proof of Theorem5.2 one obtainsTheorem 5.3 Suppose that (5.23) and (5.24) hold and let eps > 0 be a given tolerance.Fix any �� 2 (0; 1) and de�ne Ce :=  1c1c3 + 1� ��2c2c4 ! : (5.43)Choose any �� > 0 such that ��Ce � 1 � ��2(2 � ��)c2c4 (5.44)and set � := ��eps2c05kfk�t : (5.45)Suppose that � � J is chosen so thatc7 infv2 ~S� kf � vk�t < 12��eps: (5.46)Then whenever ~� � J , � � ~� is chosen so that0B@ X�2~�\N�;� a�(�; �)21CA1=2 � (1� ��)0@ X�2N�;� a�(�; �)21A1=2 ; (5.47)there exists a constant � 2 (0; 1), depending only on the constants ��; ��, the constantsin (5.24) and the constants ci; i = 1; : : : ; 4 such that eitherku� u~�k � �ku� u�k (5.48)or (P�2N�;� a�(�; �)2)1=2 = (P�2Jn� a�(�; �)2)1=2 < eps.This gives rise to the following variant of Algorithm A.Initialization: Fix the desired accuracy eps > 0, �� 2 (0; 1), compute Ce; �� accordingto (5.43), (5.44).Algorithm B:Step 1: Compute � according to (5.45). 23



Step 2: Determine an index set � � J such thatc7 infv2~S� kf � vk�t < 12��eps:Step 3: Compute the Galerkin solution u� with respect to �.Step 4: Compute ��;� := 0@ X�2N�;� a�(�; �)21A1=2 : (5.49)If ��;� < eps Stop, accept u� as solution which satis�es (5.32). Otherwise, by Theo-rem 5.3, one has ku� u~�k � �ku� u�k with � 2 (0; 1).Step 5: Determine an index set ~�, � � ~� � J such that0B@ X�2~�\N�;� a�(�; �)21CA1=2 � (1 � ��)��;�:Set ~�! �and go to Step 3.Remark 5.4 Again we could have used the computable quantities kQ0�fk�t or ku�ktin the de�nition of � instead of kfk�t which would require an additional evaluation ofthese terms in each step as well as a possible change of �.Remark 5.5 Further variants suggest themselves. For instance, a completely analo-gous reasoning con�rms that Proposition 5.1 and Theorem 5.3 remain valid for a�(�; �)and infv2 ~S� kf�vk�t replaced by d�(�; �) and infv2 ~S�[N�;� kf�vk�t, respectively. Sincetrivially infv2 ~S�[N�;� kf � vk�t � infv2~S� kf � vk�t (5.50)the perturbation caused by f might then even be smaller. On the other hand, thepractical consequences of this principal advantage might be negligible since the set �and not �[N�;� is the input for the next adaptive re�nement step. At any rate, due to(5.50), Algorithm B works in exactly the same form for a�(�; �) replaced by d�(�; �).Shooting directly for the �nal desired accuracy might require starting inAlgorithmB with a rather re�ned set �. To better balance the in
uence of f and A it maytherefore be preferable to view the above algorithms as one loop in a scheme of thefollowing type where we assume again the respective initializations of Algorithm A orB. 24



(I) Choose the �nal desired accuracy epsf and some initial eps0 > 0 (which could bemuch larger than epsf ). Put eps = eps0.(II) Apply Algorithm A or B with eps.(III) If eps � epsf Stop, accept u� as the approximate solution. Otherwise set eps2 !eps and go to (II).To tie the above observations into previous studies, note thata( �;  �) � 22tj�j: (5.51)In fact, by (5.23) and (5.24), one hasa( �;  �) � k �k2t <� 22tj�j; (5.52)where we have used the inverse estimate (3.12) and the fact that stability of 	j impliesthe normalization k �k0 � 1:Conversely, since (Qj�j �Qj�j�1) � =  �, the estimates (3.10), (3.13) yieldk �k20 <� 2�2tj�jk �k2t ;which together with (5.52) con�rms (5.51). Therefore the quantities �2� can be replacedby �2� := j(r�;  �)j2a( �;  �) :Note that w�;� := (r�;  �)a( �;  �) �is the solution of the local problema(w�;�; v) = (r�; v); v 2 span f �g:We conclude this section with some comments on computational issues. Dependingon how expensive the evaluation of A is, one could evaluate (r�;  �) and hence d�by quadrature. When A has a global Schwarz kernel one has to evaluate the entries(A �0;  ) of the sti�ness matrices by quadrature to compute then d�(�; �) or a�(�; �).For e�cient ways of computing the entries (A �0;  �) based on adaptive quadraturewe refer to [S, DS2]).When A is a di�erential operator one would generally compute and store the sparsersti�ness matrices relative to the single scale basis functions �j;k. Suppose that j =maxfj�j : � 2 �g so that u� = P�02� u�0 �0 = Pk2Ij cj;k�j;k where the coe�cientscj;k and u�0 are interrelated by the multiscale transformation Tj (3.4). Suppose nowthat � 2 J n � and ` = j�j > j. Since by (3.2) and (3.3) �Tj = �T̀R`�1;0 � � �Rj;0 and	T̀ = �T̀R`�1;1 the relation(r�;  �) = Xk2Ij cj;k(A�j;k;  �)� (f;  �)25



takes the form(r�;  �) = cTj (A�j;  �)� (f;  �) (5.53)= cTj RTj;0 � � �RT̀�1;0(A�`; (�T̀R`�1;1)k)� (f; (�T̀R`�1;1)k):When ` is not much larger than j the sparsity of the matrices Rj;0, Rj;1 ensures thatthese calculations are cheap.5.5 Some Comments on the Role of SymmetryLet us point out next that symmetry is a convenient but not quite necessary assumptionin the above context. We will brie
y indicate one way of weakening this hypotheses.In many cases there is a symmetric H t-elliptic bilinearform s(�; �) such that the di�er-ence k(u; v) := a(u; v)� s(u; v) 8u; v 2 H t (5.54)is a compact bilinearform, which induces estimates by a weaker norm than k � kt. Bythis assumption the bilinearform s(�; �) de�nes a normkuk := qs(u; u) 8u 2 H t;which is equivalent to k � kt, i.e. kuk � kukt: (5.55)Since for ~� � J; � � ~�ku� u�k2 � ku� ue�k2 � ku� � ue�k2= s(u� u�; u� u�)� s(u� ue�; u� ue�)� s(u� � ue�; u� � ue�)= 2s(u � ue�; ue� � u�);the Galerkin orthogonality a(u� ue�; u� � ue�) = 0;provides s(u� ue�; u� � ue�) = �k(u� ue�; u� � ue�); (5.56)so that ku� ue�k2 = ku� u�k2 � ku� � ue�k2 + 2k(u� ue�; u� � ue�): (5.57)Now we assume further thatjk(u� ue�; u� � ue�)j � �(ku� ue�k2 + ku� u�k2) (5.58)holds for some � > 0. As in the proof of Theorem 5.2 we conclude from (5.30) and(5.55) that kue� � u�k2 � �02ku� u�k226



for some �0 2 (0; 1), which, on account of (5.57) and (5.58), yieldsku� ue�k � s1 � �02 + �1 � � ku� u�k: (5.59)If � is small enough one obtainsku� ue�k � �00ku� u�kfor some �00 2 (0; 1), i.e., we can again con�rm the validity of the saturation propertywith respect to � and e�.Let us consider next two typical examples, namely1. a simple boundary value problem involving a symmetric elliptic second orderpartial di�erential operator and a �rst order term destroying symmetry,2. an integral equation.Throughout these examples all functions are assumed to be real-valued and 
 � IRd isa bounded Lipschitz domain with boundary � = @
.1): Let x = (x1; : : : ; xd) 2 IRd and A the partial di�erential operator de�ned byA = ��+ @x1:The weak formulation of the homogeneous Dirichlet problemAu(x) = f(x) 8x 2 
uj@
 = 0;for a given function f 2 H�1(
) readsa(u; v) := (ru;rv) + (@x1u; v) = (f; v) 8v 2 H10 (
):Then one can show (cf. [W]), that a G�arding inequality holds, i.e., there are constants�; q > 0 such that a(u; u) � �(ru;ru)0� q(u; u)0 8u 2 H10 (
):The bilinear form s(u; v) := (ru;rv) 8u; v 2 H10 (
);is symmetric and H10 (
)-elliptic. Furthermore we havek(u; v) := (@x1u; v):Since, jk(u� u�; u� � u~�)j � ku� u~�k1ku� � u~�k0� (ku� � uk0 + ku� u~�k0)ku� u~�k1;27



condition (5.58) will indeed hold if ku� � uk0; ku� u~�k0 are small compared toku� � uk1; ku� u~�k1 which is a reasonable assumption.2): Let g be the usual fundamental solution of the Laplace operator in IRd, i.e.g(x; y) = 8><>: � 12� log jx� yj for d = 214� 1jx�yj for d = 3:Denoting by 
 the trace operator 
 : Hsloc(IRd)! Hs�1=2(�) for s 2 (1=2; 1] the singlelayer potential is de�ned by V = 
Swhere Su(x) := Z� g(x; y)u(y)dsy 8x 2 IRd n �:Then a typical singular integral equation problem readsV u(x) = f(x) 8x 2 �for a given function f 2 H1=2(�).The following theorem holds (cf. [C]).Theorem 5.4 For all � 2 [�1=2; 1=2] the operators S : H�1=2+�(�) ! H1+�loc (IRd)and V : H�1=2+�(�)! H1=2+�(�) are continuous. Furthermore there exists a compactoperator K : H�1=2(�)! H1=2(�) and a constant � such thath(V +K)u; ui � �kuk2�1=2 8u 2 H�1=2(�): (5.60)Now we show that there is actually a symmetric compact operator K satisfying (5.60).For an arbitrary u 2 H�1=2(�) we consider w = �Su 2 H1loc(IRd), choose a cut o�function � 2 C10 (IRd) with � = 1 on a neighborhood of 
 and de�ne w1 := wj
; w2 :=�wj
c with 
c := IRdn
. By the continuity properties of the trace operator 
1v := @nvj�and the jump relation 
1w2 � 
1w1 = u we conclude thatkuk�1=2;� = k
1w2 � 
1w1k2�1=2;�<� kw1k21;
 + kw2k21;
c + k�w2k20;
c; (5.61)where the subscripts �;
 and 
c indicate the respective domains.Now Green's �rst forumula yields0 = krw1k20;
 � h
1w1; 
0w1i (5.62)and Z
c w2�w2 dx = krw2k20;
c + h
1w2; 
0w2i: (5.63)28



Summing (5.62), (5.63) and using again the jump relation we obtain by 
0w1 = 
0w2 =�V u krw1k20;
 + krw2k20;
c = Z
c w2�w2 dx+ hV u; ui: (5.64)Inserting the identity (5.64) in (5.61) yields the estimatekuk2�1=2;� <� kw1k20;
 + kw2k20;
c + k�w2k20;
c + Z
c w2�w2 dx + hV u; ui;which motivates the following de�nition of the symmetric compact operator KhKu; ui := kw1k20;
 + kw2k20;
c + k�w2k20;
c + Z
c w2�w2 dx;i.e., hKu; vi := 1=2(hK(u + v); (u+ v)i � hK(u� v); (u� v)i):Clearly s(u; v) = hV u; vi+ hKu; vide�nes a symmetric and H�1=2(�)-elliptic bilinear form, which induces a norm kuk =qs(u; u), that is equivalent to k � k�1=2.It remains to investigate the estimate (5.58). By the continuity properties of thesingle layer potential one obtainsjk(u� u~�; u� � ue�)j <� ku� u�k2�1;� + ku� ue�k2�1;�:Thus condition (5.58) will be satis�ed if ku�u�k2�1;�, ku�ue�k2�1;� are small comparedto ku� u�k2�1=2;�, ku� ue�k2�1=2;� which is again a reasonable assumption.5.6 ConclusionsExploiting properties of stable multiscale bases, especially norm equivalences for certainranges of Sobolev norms, we have shown that certain a-posteriori error estimators interms of wavelet coe�cients of residuals are e�cient and reliable. Moreover, they giverise to adaptive schemes which are guaranteed to converge for a wide range of ellipticoperator equations including those of negative order without assuming the validity ofthe saturation property beforehand. To our knowledge these are the �rst results of thistype for the latter class of problems.References[BM] Babu�ska, I., Miller, A., A feedback �nite element method with a posteriorierror estimation: Part I. The �nite element method and some basic propertiesof the a posteriori error estimator. Comput. Methods Appl. Mech. Engrg. 61(1987) 1{40. 29
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