
Coorbit Spa
es and Bana
h Frames on HomogeneousSpa
es with Appli
ations to Analyzing Fun
tions onSpheresStephan Dahlke�, Gerd Tes
hkeyFa
hberei
h 3Universit�at BremenPostfa
h 33 04 4028334 BremenGermany
Gabriele SteidlzUniversit�at MannheimFakult�at f�ur Mathematikund Informatik68131 MannheimGermanyAbstra
tThis paper is 
on
erned with the 
onstru
tion of generalized Bana
h frameson homogeneous spa
es. The major tool is a unitary group representation whi
his square integrable modulo a 
ertain subgroup. By means of this representation,generalized 
oorbit spa
es 
an be de�ned. Moreover, we 
an 
onstru
t a spe
i�
reprodu
ing kernel whi
h, after a judi
ious dis
retization, gives rise to Bana
hframes for these 
oorbit spa
es. We also dis
uss nonlinear approximation s
hemesbased on our new Bana
h frames. As a 
lassi
al example, we apply our 
onstru
-tion to the problem of analyzing and approximating fun
tions on the spheres.Key Words: Square integrable group representations, time{frequen
y analysis, frames,homogeneous spa
es, 
oorbit spa
es, modulations spa
es, nonlinearapproximation, spheres.AMS Subje
t 
lassi�
ation: 57S25, 42C15, 42C40, 41A25, 46E15.�The work of this author has been partially supported by Deuts
he Fors
hungsgemeins
haft, GrantDa 360/4{1.yThe work of this author has been partially supported by Deuts
he Fors
hungsgemeins
haft, GrantMa 1657/6{1.zThe work of this author has been partially supported by Deuts
he Fors
hungsgemeins
haft, GrantWe 2602/2{1

1



1 Introdu
tionA 
lassi
al problem in applied mathemati
s is to analyze and to pro
ess a given set ofsignals. Usually, the �rst step is to de
ompose the signal into 
ertain building blo
ks. Awidespread strategy is to use Fourier transform, i.e., to analyze the signal with respe
tto its 
omponents 
orresponding to di�erent frequen
ies. Although very su

essful inmany appli
ations, Fourier analysis has the serious disadvantage that the basis fun
tionsare not lo
al so that small 
hanges in the signal in
uen
e the whole Fourier spe
trum.Therefore many attempts have been made to lo
alize the Fourier transform in somenatural way. In 1946, Gabor [19℄ introdu
ed a time{frequen
y analysis whi
h is often
alled the short{time Fourier transform. The idea is to use a window fun
tion g in orderto lo
alize the Fourier analysis. In the meantime, the short{time Fourier transform hasindeed been established as a powerful tool in signal analysis. Another way to obtainsome kind of lo
al analysis would be to use the wavelet transform. Then the modulationterm in the short{time Fourier transform is repla
ed by a dilation pro
edure, and it ispossible to work with very lo
alized basis fun
tions. Starting with the pioneering work ofGrossmann and Morlet [24℄, wavelet analysis has be
ome a very important �eld in appliedmathemati
s with many su

essful appli
ations in image/signal analysis/
ompression,numeri
al analysis, geophysi
s and in many other �elds. Although they may behavequite di�erent in appli
ations, there exists a 
ommon thread between Gabor and wavelettransform. Both 
an be derived from square integrable group representations of a 
ertaingroup, see, e.g., [25℄ and Se
tion 2 for details. Both transforms have their advantages anddrawba
ks, so that the de
ision whi
h method to use depends on the spe
i�
 appli
ation.For further information and a general overview on both transforms we refer to theex
ellent textbooks whi
h have appeared quite re
ently [8, 21, 23, 27, 28, 29, 33℄.In any 
ase, when it 
omes to pra
ti
al appli
ations, only a dis
rete set of 
oeÆ
ients
an be handled. It is therefore ne
essary to di
retize both transforms to obtain somekind of basis for the fun
tion spa
e under 
onsideration. However, 
onstru
ting somestable basis may be asking to mu
h, nevertheless, it is usually possible to obtain at leasta frame. In general, given a Hilbert spa
e H, a system fhmgm2Z is 
alled a frame if thereexist 
onstants A and B; 0 < A � B <1 su
h thatAkFk2H �Xm2ZjhF; hmij2 � BkFk2H : (1.1)This setting 
an also be generalized to Bana
h spa
es, see, e.g., [15, 16℄ for details. Inour 
ase, the frames are obtained by dis
retizing the underlying group representation insome 
lever way. A very general ma
hinery for frame 
onstru
tions has been developedin the pioneering work of Fei
htinger and Gr�o
henig [14, 15, 16, 17℄. We shall present amore detailed dis
ussion in Se
tion 4. On
e these frames are 
onstru
ted, they usuallyalso give rise to frames in 
ertain smoothness spa
es. These smoothness spa
es are againde�ned by the underlying square integrable group representation, i.e., one 
olle
ts allfun
tions for whi
h the asso
iated (Gabor are wavelet) transform is 
ontained in some(weighted) Lp{spa
e on the group. These fun
tions spa
es are usually 
alled 
oorbitspa
es and will be introdu
ed more a

urately in Se
tion 3. For the Gabor transform,2



the 
oorbit spa
es are nothing else but the modulation spa
es, whereas for the wavelettransform one obtains the Besov spa
es. We refer to [9, 10, 14, 15, 16, 17, 21, 29, 31℄ forthe de�nitions and the main properties of modulation and Besov spa
es. At this point,the strong analyti
al properties of wavelets 
ome into play. Indeed, it 
an be shownthat moreover stable wavelet bases for a huge s
ale of Besov spa
es involving thoserelated with Lp{spa
es for p < 1 
an be established, see again [9, 10, 29℄ for details.These relationships have some very important 
onsequen
es. In fa
t, it 
an be shownthat the order of 
onvergen
e of nonlinear approximation s
hemes su
h as best N{termapproximation or adaptive wavelet Galerkin methods depends on the regularity of theapproximated obje
t in a very spe
i�
 Besov s
ale, see, e.g, [5, 7, 9, 10℄ for details. Forthe 
ase of the Gabor transform, quite re
ently results have been derived by Gr�o
henigand Samarah [22℄. They have shown that the approximation order of nonlinear s
hemesbased on lo
al Fourier bases is determined by the regularity in some spe
i�
 s
ale ofmodulation spa
e. Nevertheless, these results are naturally weaker when 
ompared withthose for the wavelet 
ase.In any 
ase, when it 
omes to pra
ti
al appli
ations, it is 
learly desirable to generalizethe theories developed so far to bounded domains and manifolds. This problem has beenintensively studied in the last few years. Be
ause of the strong analyti
al properties ofwavelets, one might feel temptered to start with the wavelet transform. However, usuallythe dilation pro
edure involved in the wavelet transform does not �t together very wellwith the boundedness of the domain. Nevertheless, quite re
ently an almost 
ompletesolution to this problem has been given by Antoine and Vandergheynst [2, 3℄. Theirapproa
h makes heavy use of group theory and 
an also be used to 
onstru
t suitablewavelet frames [4℄. However, the whole ma
hinery is very 
ompli
ated. It is fun for thespe
ialists but terrible for the average 
onsumer. In this 
ontext, Gabor analysis seemsto have a serious advantage. It seems that the generalization of the Gabor transform tomanifolds is mu
h simpler than for the wavelet transform. Indeed, quite re
ently, a �rstapproa
h for the 
ase of the sphere in Rd has been presented by Torresani [32℄.In summary, the 
urrent state of the art suggests the following questions:� Is it possible to 
onstru
t a generalized Gabor transform on manifolds and toproperly de�ne the asso
iated 
oorbit spa
es?� Is it possible to generalize the ma
hinery developed by Fei
htinger and Gr�o
henigto this 
ase and to obtain generalized Gabor frames in these 
oorbit spa
es?� What are the smoothness spa
es whi
h determine the order of 
onvergen
e of theasso
iated best N{term approximation s
hemes?� Is it possible to 
ome from abstra
t general nonsense to 
on
rete appli
ations, e.g.,by 
ombining these investigations with Torresani's results in order to obtain Gaborframes on spheres?In order to exe
ute this program, we pro
eed in the following way. We start by dis
ussingthe group theoreti
al ba
kground in Se
tion 2. Given our manifold N , the �rst step is3




learly to �nd a lo
ally 
ompa
t group G whi
h admits a unitary representation in theHilbert spa
e L2(N ): To be on safe side, this representation has to be irredu
ible andsquare integrable. The �rst property is usually relatively easy to realize whereas these
ond one often 
auses trouble be
ause the group is to `large'. To obtain a `smaller'group, one natural way would be to extra
t a 
losed subgroup GF and to restri
t therepresentation to the quotient spa
e G=GF . However, sin
e G=GF has no longer a groupstru
ture, one has to ensure that nevertheless all the ni
e properties of square integrablerepresentations 
an be saved. On
e these relationships are 
lari�ed, we are able to de�neasso
iated 
oorbit spa
es in Se
tion 3. Loosely speaking, these generalized 
oorbit spa
es
onsist of all fun
tion for whi
h the asso
iated Gabor transform is 
ontained in someLp{spa
e on the quotient manifold G=GF . A

ording to our program, the next stepis to 
onstru
t Bana
h frames for these 
oorbit spa
es in Se
tion 4. To this end, weinvestigate to what extent the general approa
h of Fei
htinger and Gr�o
henig 
an beadapted to our setting. The �rst step is always to de�ne some kind of approximationoperator. This operator is usually de�ned by means of a 
onvolution with the Gabortransform of the analyzing fun
tion itself. Sin
e a group stru
ture doesn't longer exist inour setting, a 
onvolution is no longer well{de�ned. We therefore suggest to repla
e this
onvolution by a suitable de�ned integral transform involving a spe
i�
 kernel de�nedby means of the analyzing fun
tion, see Subse
tion 4.2 for details. The next step isto dis
retize this approximation operator to obtain the desired frames. In Subse
tion4.3, we show that under very natural assumptions both, the upper and the lower framebound, 
an be established. As outlined above, we also intend to analyze nonlinearapproximation s
hemes based on the new Bana
h frames. In Se
tion 5, we show thatthe results of Gr�o
henig and Samarah on Bana
h frames 
arry over to our 
ase withoutany serious diÆ
ulty. Finally, in Se
tion 6, we dis
uss some appli
ations of our theory,i.e., we treat the problem of analyzing fun
tions on spheres. Our approa
h is based onthe fundamental investigations of Torresani [32℄. We show that in the setting of [32℄all our assumptions are satis�ed so that our theory yields generalized 
oorbit spa
es onspheres and also provides us with suitable Bana
h frames for these spa
es.Remark 1.1 i) We want to emphasize that we do not 
laim to redis
over the wholeworld of square integrable group representations. It is 
lear the some of the buildingblo
ks used in this paper have already been established before, at least partially. However,we intend to establish the relationships between all these building blo
ks and to show thatthey �t together quite ni
ely.ii) The basi
 idea of this paper has been developed while listening to a talk of K. Gr�o
henigon \New Results in Time{Frequen
y Analysis".2 Group Theoreti
al Ba
kgroundLet H be a Hilbert spa
e and let G be a separable Lie group with (right) Haar measure�. A 
ontinuous representation of G in H is de�ned as a mappingU : G �! L(H) (2.1)4



of G into the spa
e L(H) of unitary operators on H, su
h that U(gg0) = U(g)U(g0) forall g; g0 2 G, U(e) = Id and for any �;  2 H, the fun
tion g 2 G ! h�; U(g) iH is
ontinuous. The representation U is said to be square-integrable if it is irredu
ible andthere exists a nonzero  2 H su
h thatZG jh ; U(g) iHj2 d�(g) <1 : (2.2)Su
h a fun
tion  is 
alled admissible. In the sequel, we shall always be 
on
ernedwith the 
ase that the Hilbert spa
e H is given as some L2{spa
e on a manifold N ,i.e. H = L2(N ): As an example, let us 
onsider the redu
ed Weyl-Heisenberg groupGredWH �= R2 � S1, generated by time and frequen
y translations on the real line. Thegroup operation is expli
itly given by(p; q; �)(p0; q0; �0) = (p+ p0; q + q0; �+ �0 + p0q):The Weyl{Heisenberg group GredWH admits unitary irredu
ible representations on L2(R)whi
h a
t as follows:U(p; q; �)f(x) = exp(i(��+ q(x� �p)))f(x� �p):Be
ause S1 is 
ompa
t it is easy to 
he
k that U is square integrable for any nonzero 2 H. This spe
i�
 representation 
an be viewed as the basi
 building blo
k for the
lassi
al Gabor transform, see, e.g., [21℄ for details. However, there are 
ases in whi
hsquare-integrable representations are not available. A simple example is the full Weyl{Heisenberg group GWH �= R2 � R. Nevertheless, its 
oeÆ
ients hf; U(q; p; 0) i forma square integrable fun
tion of (q; p) 2 R2 . This example suggests a general strategy.Indeed, the 
ases where no square-integrable representations are available 
an very oftenbe handled by restri
ting U to a 
onvenient quotient G=P, where P is a 
losed subgroupof G. Unless otherwise stated, we shall always 
onsider right 
oset spa
es, i.e.,g1 � g2 if and only if g1 = h Æ g2 for some h 2 P: (2.3)Be
ause U is not dire
tly de�ned on G=P, it is ne
essary to embed G=P in G. This 
an berealized by using the 
anoni
al �ber bundle stru
ture of G with proje
tion � : G ! G=P.Let � : G=P ! G be a Borel se
tion of this �ber bundle, i.e. �Æ�(h) = h for all h 2 G=P.We introdu
e U Æ � and some quasi-invariant measure � on G=P, whi
h is de�ned byZG=P �ZP f(h Æ g)d�(h)�d�([g℄) = ZG f(g)d�(g) for all f 2 C0(G); (2.4)where � denotes the (right) Haar measure on P, see [30, 32℄ for details.Then we say that U is stri
tly square integrable mod (P; �), if there exists  2 L2(N )su
h that the mapping V : L2(N )! L2(G=P) de�ned byV f(h) := hf; U(�(h)�1) iL2(N ) (2.5)5



is an isometry. In this 
ase, ( ; �) is 
alled a stri
tly admissible pair and  a stri
tlyadmissible fun
tion (with respe
t to �) [2℄.To exploit this 
on
ept, the �rst step is 
learly to de�ne an appropriate subgroupof G. We begin with the adjoint mapping of G a
ting on itself by inner automorphism,i.e. ad(h)g := hgh�1, where g; h 2 G. This a
tion indu
es a 
orresponding a
tion Ad(h)on the Lie algebra TeG of G, Ad(h)X = hXh�1 with X 2 TeG. Finally, the 
oadjointAd(h)� on the dual Lie algebra T �e G is de�ned byhX;Ad(h)�F i := hAd(h)X;F i; for F 2 T �e G:For F 2 T �e G, let GF := fg 2 G : Ad(g)�F = Fg (2.6)denote the stability subgroup of F . Whenever the 
oadjoint orbit OF �= G=GF 
an beasso
iated with the representation under 
onsideration, the quotient spa
e G=GF is anatural 
andidate to perform the previous 
onstru
tion.Assume now that ( ; �) is a stri
tly admissible pair for our setting. Then the isometryV 
an be inverted on its image by its adjoint V � , whi
h is obviously given byV � F (s) := ZG=GF F (h)U(�(h)�1) (s) d�(h):This provides us with the re
onstru
tion formulaf = V � V f = ZG=GF hf; U(�(h)�1) iL2(N )U(�(h)�1) d�(h) (2.7)for f 2 L2(N ).We intend to establish a 
orresponden
e prin
iple between L2(N ) and a subspa
e ofL2(G=GF ) similar to the 
orresponden
e prin
iple between L2(Rn) and a subspa
e of thesquare integrable fun
tions on the redu
ed Weyl-Heisenberg group. We de�ne a kernelon G=GF � G=GF R(h; l) := hU(�(h)�1) ; U(�(l)�1) iL2(N ) (2.8)= h ; U(�(h)�(l)�1) iL2(N )= V (U(�(h)�1) )(l): (2.9)Note that R(h; l) = R(l; h). Further, we see by (2.9) that R(h; �) 2 L2(G=GF) for any�xed h 2 G=GF and by applying S
hwarz's inequality in (2.8) thatR 2 L1(G=GF � G=GF ).Now we 
an prove the following 
orresponden
e prin
iple between L2(N ) and the repro-du
ing kernel spa
eM2 := fF 2 L2(G=GF) : hF;R(h; �)iL2(G=GF ) = F (h)g: (2.10)6



Proposition 2.1 Let U be a stri
tly square integrable representation of G mod (GF ; �)and  a stri
tly admissible fun
tion. Let V and R be de�ned by (2.5) and (2.8), respe
-tively.i) For every f 2 L2(N ), the following equation is satis�edhV f; R(h; �)iL2(G=GF ) = V f(h);i.e., V f 2 M2.ii) For every F 2 M2 there exists a uniquely determined fun
tion f 2 L2(N ) su
hthat F = V f .Consequently, the spa
es L2(N ) and M2 are isometri
ally isomorph.Proof i) Sin
e U(�(h)�1) 2 L2(N ) we have by (2.7) thatV f(h) = hf; U(�(h)�1) iL2(N )= hf; ZG=GF R(l; h)U(�(l)�1) d�(l)i= ZG=GF R(h; l)hf; U(�(l)�1) iL2(N ) d�(l)= hV f; R(h; �)iL2(G=GF ) :ii) Let F 2 L2(G=GF) ful�ll F (h) = ZG=GF F (l)R(h; l)d�(l):Then we obtain by the de�nition of R in (2.8)F (h) = ZG=GF F (l)hU(�(h)�1) ; U(�(l)�1) iL2(N ) d�(l)= h ZG=GF F (l)U(�(l)�1) d�(l); U(�(h)�1) iL2(N )= V (V � F )(h) :Sin
e V is an isometry, the mapping V V � is an orthogonal proje
tor onto the imageof V . Thus, there exists f 2 L2(N ) su
h that F = V V � F = V f . The uniqueness off 2 L2(N ) is 
lear be
ause V is inje
tive. �7



3 Coorbit Spa
es on Homogeneous Spa
esWe want to modify the 
on
ept of 
oorbit spa
es [17℄ to fun
tions de�ned on manifolds.In order to keep 
omparisons as simple as possible, we adapt the notations given in[13, 14, 15, 16, 17℄. Furthermore, to keep the te
hni
al diÆ
ulties at a reasonable level,we only 
onsider the `simplest' 
ase, e.g., the weight fun
tions w involved in the usualde�nition of 
oorbit spa
es is assumed to be w � 1: The general 
ase will be studied ina forth
oming paper.Let U be a stri
tly square integrable representation of G mod (GF ; �) with a stri
tlyadmissible fun
tion  . For the kernel R in (2.8), we will need the basi
 assumption thatZG=GF jR(h; l)jd�(l) � C (3.1)with a 
onstant C <1 independent of h 2 G=GF .By H 01 we denote the spa
e of all 
ontinuous linear fun
tionals onH1 := ff 2 L2(N ) : V f 2 L1(G=GF)g:As usual, the norm k � kH1 on H1 is de�ned askfkH1 := kV fkL1(G=GF ):By de�nition, we have the following 
ontinuous embeddingsH1 ,! H ,! H 01:Further, we note by (3.1) that U(�(h)�1) 2 H1 for all h 2 G=GF . Consequently, thefollowing generalization of the operator V in (2.5) on H 01 is well de�ned:V f(h) := hf; U(�(h)�1) i; (3.2)where f 2 H 01. For any f 2 H 01, we obtain by (3.1) thatkV fkL1(G=GF ) = khf; U(�(h)�1) ikL1(G=GF )� kfkH01 ess suph2G=GF kU(�(h)�1) kH1= kfkH01 ess suph2G=GF kRkL1(G=GF )� CkfkH01 : (3.3)Thus, V : H 01 ! L1(G=GF). For F 2 L1(G=GF) and g 2 H1, we have further thathF; V giL2(G=GF ) = ZG=GF F (l)V g(l) d�(l)8



= ZG=GF F (l)hg; U(�(l)�1) iL2(N ) d�(l)= h ZG=GF F (l)U(�(l)�1) d�(l); giL2(N ):We de�ne the operator ~V : L1(G=GF )! H 01 by~V F := ZG=GF F (l)U(�(l)�1) d�(l) ;where the integral is 
onsidered in the weak sense. Then we obtain for F 2 L1(G=GF)that V ~V F = h ZG=GF F (l)U(�(l)�1) d�(l); U(�(h)�1) iL2(N )= ZG=GF F (l)hU(�(l)�1) ; U(�(h)�1) iL2(N ) d�(l)= hF;R(h; �)iL2(G=GF ) : (3.4)Similar to the 
oorbit spa
es on Rn we de�neMp := ff 2 H 01 : V f 2 Lp(G=GF)g ; (3.5)with 1 � p � 1 and norm kfkMp := kV fkLp(G=GF ):It is straightforward that k � kMp de�nes a seminorm. The property that kfkMp =0; i:e:; V f = 0, implies f = 0 follows similarly as in [14℄ by proving that fU(�(h)�1) :h 2 G=GFg is a dense subset of H1. The basi
 step for the investigations outlined belowis a 
orresponden
e prin
iple between these 
oorbit spa
es and 
ertain subspa
es on thequotient group G=GF whi
h are de�ned by means of the reprodu
ing kernel R. To thisend, we 
onsider the subspa
esMp := fF 2 Lp(G=GF) : hF;R(h; �)iL2(G=GF ) = Fg (3.6)of Lp(G=GF) with 1 � p � 1. Then the desired 
orresponden
e prin
iple 
an beformulated as follows:Proposition 3.1 Let U be a stri
tly square integrable representation of G mod (GF ; �)and  a stri
tly admissible fun
tion. Let V be de�ned by (3.2) and let R in (2.8) ful�ll(3.1). 9



i) For every f 2 Mp, the following equation is satis�edhV f; R(h; �)iL2(G=GF ) = V f ;i.e., V f 2 Mp.ii) For every F 2 Mp, 1 � p � 1, there exists a uniquely determined fun
tionalf 2Mp su
h that F = V f .Consequently, the spa
es Mp and Mp, 1 � p � 1, are isometri
ally isomorph.Proof Assertion i) follows in the same way as i) in Proposition 2.1, where only propertiesof  were used.ii). For F 2 Mp, 1 � p � 1, we have thatkFkL1(G=GF ) = k ZG=GF F (l)R(h; l) d�(l)kL1(G=GF )= ess suph2G=GF j ZG=GF F (l)R(h; l) d�(l)j;and further, by applying H�older's inequality with 1=p+ 1=q = 1, the fa
t thatR 2 L1(G=GF � G=GF) and (3.1),j ZG=GF F (l)R(h; l) d�(l)j � ZG=GF jF (l)jjR(h; l)j1=p+1=q d�(l)� ( ZG=GF jF (l)jpjR(h; l)j d�(l))1=p( ZG=GF jR(h; l)jd�(l))1=q� 
 kFkLp(G=GF ) :Consequently, we have that kFkL1(G=GF ) � 
kFkLp(G=GF ) :Thus, F 2 L1(G=GF) and by (3.4) we obtain that F = V ( ~V F ), where ~V F 2 H 01 andsin
e F 2 Lp(G=GF) also ~V F 2 Mp. The uniqueness 
ondition follows by de�nition ofMp. �Applying Proposition 3.1 i) and (3.4) we get for f 2 H 01 thatV ~V (V f) = hV f; R(h; �)iL2(G=GF ) = V f :Hen
e, ~V V is the identity in H 01 and we have the re
onstru
tion formulaf = ~V V f = ZG=GF hf; U(�(h)�1) iL2(N )U(�(h)�1) d�(h) :10



We �nish the se
tion by establishing the relationships of our generalized 
oorbit spa
esto the fundamental spa
es L2(N ) and H 01.Proposition 3.2 Under the assumptions outlined above, the following relations arevalid:i) M1 = H 01,ii) M2 = L2(N ).Proof i). For f 2 H 01 we have by (3.3) that kV fkL1(G=GF ) � 
jjf jjH01 whi
h yields the�rst assertion.ii). Let f 2 L2(N ). Then we obtain by Proposition 2.1 that V (f) 2 M2. By Proposi-tion 3.1 there exists g 2M2 su
h that V (f) = V (g) whi
h implies by de�nition of M2that f = g.Conversely, let f 2 M2. Then we have by Proposition 3.1 that V (f) 2 M2. ByProposition 2.1 there exists g 2 L2(N ) su
h that V (f) = V (g) whi
h implies by de�-nition of M2 that f = g. �
4 Bana
h Frames for Coorbit Spa
esOn
e our generalized 
oorbit spa
es are established, the next step is to derive someatomi
 de
omposition for these spa
es, i.e., we want to 
onstru
t suitable Bana
h frames.This program is performed in several steps. In the next subse
tion, we present somepreparations and state our main result. The remaining two subse
tions are devotedto the building blo
ks whi
h are ne
essary to prove this result. The major step isthe 
onstru
tion of a suitable approximation operator whi
h is de�ned and analyzed inSubse
tion 4.2. This approximation operator 
an then be used to establish the framebounds in Subse
tion 4.3.The results in this se
tion are again inspired by the pioneering work of Fei
htingerand Gr�o
henig, [14, 15, 16, 17℄.4.1 Setting and Main ResultBefore we 
an state and prove our main result, some preparations are ne
essary. Givensome neighborhood U of the identity in G, a family X = (xi)i2I in G is 
alled U{denseif Si2I Uxi = G. A family X = (xi)i2I in G is 
alled relatively separated, if for any
ompa
t set Q � G there exists a �nite partition of the index set I, i.e., I = Sr0r=1 Ir,su
h that Qxi \ Qxj = ; for all i; j 2 Ir with i 6= j.Let U be an arbitrary 
ompa
t neighborhood of the identity in G. By [12℄, there existsa bounded uniform partition of unity (of size U), i.e., a family of 
ontinuous fun
tions('i)i2I on G su
h that 11



� 0 � 'i(g) � 1 for all g 2 G;� there is an U -dense, relatively separated family (xi)i2I in G su
h thatsupp 'i � Uxi;� Pi2I 'i(g) � 1 for all g 2 G.Furthermore, we de�ne the U{os
illation with respe
t to the analyzing wavelet  asos
U(l; h) := supu2U jh ; U(�(l)�(h)�1) � U(u�1�(l)�(h)�1) iL2(N )j : (4.1)In the sequel, we shall always assume that (xi)i2I 
an be 
hosen su
h that�(G=GF ) \ Uxi 6= ; implies xi 2 �(G=GF ). LetI� := fi 2 I : �(G=GF) \ Uxi 6= ;g :Then there exist hi su
h that xi = �(hi), where i 2 I�. Note thatXi2I� 'i(�(h)) = 1 ;where h 2 G=GF .In this setting, we 
an prove our main theorem.Theorem 4.1 Let G be a separable Lie group with stability subgroup GF de�ned by (2.6)and let � be a quasi{invariant measure on G=GF . Further, let U be a stri
tly squareintegrable representation of G mod (GF ; �) in L2(N ) with stri
tly admissible fun
tion  .Let a 
ompa
t neighborhood U of the identity in G be 
hosen so small thatZG=GF os
U(l; h)d�(l) < 1 and ZG=GF os
U(l; h)d�(h) < 1 : (4.2)Let X = (xi)i2I be a U{dense and relatively separated family. Furthermore, suppose thatfor any 
ompa
t neighborhood Q of the identity in G�fh 2 G=GF : �(h) 2 Q�(hi)g � CQ > 0holds for all i 2 I�. Finally, let us assume that for any 
ompa
t neighborhood Q of theidentity in G our window fun
tion  ful�lls the following inequalityZG=GF supq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j d�(l) � C (4.3)with a 
onstant C < 1 independent of h 2 G=GF . Then any f 2 Mp, 1 � p < 1, hasan expansion f =Xi2I� 
iU(�(hi)�1) : (4.4)12



Moreover, the set  i = U(�(hi)�1) ; i 2 I�; (4.5)is a Bana
h frame for Mp, i.e., there exist two 
onstants 0 < A � B <1 su
h that1B kfkMp � k(hf;  ii)i2I�k`p � 1AkfkMp: (4.6)The proof of this theorem is presented in the following two se
tions.4.2 Approximation OperatorsIn this se
tion, we show that under the assumptions of Theorem 4.1 the expansion (4.4)is valid. The basi
 idea is to 
onstru
t expansions for the spa
es Mp and then to useProposition 3.1 ii) to derive the desired expansions also for Mp. The major tool is thegeneralized reprodu
ing kernel R(h; l). Indeed, the de�nition of Mp in (3.6) suggeststhat dis
retizing R(h; l) may yield a suitable approximation for fun
tions in Mp. Wetherefore 
onsider the following approximation operator in Mp:T'F (h) := Xi2I�hF; 'i Æ �iL2(G=GF )R(hi; h)= Xi2I� ZG=GF F (l)'i(�(l))d�(l)R(hi; h) :By de�nition of Mp, we have thatF (h) = hF;R(h; �)iL2(G=GF ) = ZG=GF F (l)R(h; l) d�(l)= Xi2I� ZG=GF F (l)'i(�(l))R(l; h) d�(l)and 
onsequentlyF (h)� T'F (h) =Xi2I� ZG=GF F (l)'i(�(l)) [R(l; h)�R(hi; h)℄ d�(l) :Therefore we obtainjF (h)� T'F (h)j �Xi2I� ZG=GF jF (l)j'i(�(l))jR(l; h)� R(hi; h)j d�(l) :
13



Now �(l) 2 Uxi implies that there exists ui 2 U su
h that �(l) = uixi = ui�(hi). Then�(hi)�1 = �(l)�1ui and we get by the de�nition of R thatjF (h)� T'F (h)j � Xi2I� ZG=GF jF (l)j'i(�(l))jhU(�(l)�1) ; U(�(h)�1) iL2(N ) �hU(�(l)�1ui) ; U(�(h)�1) iL2(N )j d�(l)= Xi2I� ZG=GF jF (l)j'i(�(l))�jh ; U(�(l)�(h)�1) � U(u�1i �(l)�(h)�1) iL2(N )j d�(l)� ZG=GF jF (l)jos
U(l; h) d�(l) ;where os
U(l; h) is de�ned by (4.1). Then we 
on
lude thatkF � T'FkLp(G=GF ) = k(I � T')FkLp(G=GF )� ( ZG=GF ( ZG=GF jF (l)jos
U(l; h) d�(l))p d�(h))1=p :Now, by applying the generalized Young inequality, see, e.g., [18℄, p. 185, Theorem 6.18,and re
alling the assumptions (4.2), we obtaink(I � T')FkLp(G=GF ) < kFkLp(G=GF ) :Consequently jjj(I � T')jjj < 1, i.e., I � T' is a 
ontra
tion on Mp and T' is invertibleon Mp. Thus we 
an writeF = T'T�1' F =Xi2I�hT�1' F; 'i Æ �iL2(G=GF )R(hi; h) : (4.7)Let f 2 Mp. Then we have by Proposition 3.1 ii) that F := V f 2 Mp and further byde�nition of V thatV f = hf; U(�(h)�1) i= Xi2I�hT�1' F; 'i Æ �iL2(G=GF )R(hi; h)= Xi2I�hT�1' F; 'i Æ �iL2(G=GF )hU(�(hi)�1) ; U(�(h)�1) iL2(N )= hXi2I�hT�1' F; 'i Æ �iL2(G=GF )U(�(hi)�1) ; U(�(h)�1) iL2(N ) :Hen
e we obtain the following dis
rete re
onstru
tion formula for f 2Mpf =Xi2I�hT�1' F; 'i Æ �iL2(G=GF )U(�(hi)�1) ; (4.8)and (4.4) is shown with 
i := hT�1' F; 'i Æ �iL2(G=GF ).14



4.3 Frame BoundsIn this se
tion, we want to prove the se
ond part of Theorem 4.1, i.e., we want to establish(4.6). To this end, it is suÆ
ient to show that there exist two 
onstants 0 < A � B <1su
h that AkfkMp � k(hT�1' V f; 'i Æ �i)i2I�klp � BkfkMp (4.9)holds. Indeed, the 
oeÆ
ients hT�1' V f; 'i Æ�iL2(G=GF ) are given by fun
tionals �i inM 0p,i.e. hT�1' V f; 'i Æ �iL2(G=GF ) = hf; �ii ;where �i = V � ((T�1' )�'i Æ �). Now duality arguments [14, 15℄ yield thatf i = U(�(hi)�1) : i 2 I�gis a Bana
h frame for Mp, 1 � p <1, i.e., there exist 
onstants 0 < A � B <1 su
hthat 1B kfkMp � k(hf;  ii)i2I�k`p � 1AkfkMpand the re
onstru
tion of f from the frame 
oeÆ
ients isf = Xi2I�hf;  ii�i :In the following lemmata, we show that under the assumptions in Theorem 4.1 both,the upper and the lower bound in (4.9), are valid.Lemma 4.1 Suppose that the 
onditions in Theorem 4.1 are satis�ed. For any f 2Mplet the sequen
e (
i)i2I� = (hT�1' V f; 'i Æ �iL2(G=GF ))i2I�be given by (4.8). Then there exists a 
onstant B <1 su
h that the following inequalityholds: k(
i)i2I�k`p � BkfkMp :In parti
ular, we have that (
i)i2I� 2 `p.Proof 1. First we show that for any sequen
e (�i)i2I� 2 `p the inequalityk(�i)i2I�k`p � C1=pU kXi2I� j�ij1Uxi Æ �kLp(G=GF ) (4.10)holds, where again xi = �(hi) and where 1Uxi denotes the 
hara
teristi
 fun
tion of Uxi.Sin
e (xi)i2I is a relatively separated family, there exists a splitting I = Sr0r=1 Ir su
hthat Uxi\Uxj = ; for i; j 2 Ir and i 6= j. This results in a de
omposition I� = Sr0r=1 I�r ,where I�r = fi 2 Ir : Uxi \ �(G=GF ) 6= ;g :15



Then we obtain (4.10) bykXi2I� j�ij1Uxi Æ �kpLp(G=GF ) = ZG=GF 0� r0Xr=1 Xi2I�r j�ij1Uxi(�(h))1Ap d�(h)� r0Xr=1 ZG=GF 0�Xi2I�r j�ij1Uxi(�(h))1Ap d�(h)= r0Xr=1 ZG=GF Xi2I�r j�ijp1Uxi(�(h))d�(h)� CUXi2I� j�ijp :2. Let F 2 Lp(G=GF). Then the appli
ation of (4.10) yieldsk(hF; 'i Æ �i)i2I�k`p � k(hjF j; 'i Æ �i)i2I�k`p� C�1=pU kXi2I�hjF j; 'i Æ �i1Uxi Æ �kLp(G=GF ) :Further, we see for an arbitrary �xed h 2 G=GF thatXi2I�hjF j; 'i Æ �i1Uxi(�(h)) =Xi2IhhjF j; 'i Æ �i ;where Ih := fi 2 I� : xi 2 U�1�(h)g and further thatXi2IhhjF j; 'i Æ �i = Xi2IhhjF j; 'i(�(�))i� hjF j; 1UU�1(�(�)�(h)�1)i :Sin
e ZG=GF 1UU�1(�(l)�(h)�1) d�(l) = �fl 2 G=GF : �(l) 2 UU�1�(h)g � 
 ;for all h 2 G=GF we obtain by the generalized Young inequality, 
ompare again with theappendix, thatk(hF; 'i Æ �i)i2I�k`p � C�1=pU khjF j; 1UU�1(�(�)�(h)�1)ikLp(G=GF )� C�1=pU 
kFkLp(G=GF ) :Finally, we 
on
lude by using F = T�1' V f 2 Mp in the above inequality thatk(hT�1' V f; 'i Æ �i)i2I�k`p � 
 kT�1' V fkLp(G=GF )� 
 jjjT�1' jjj kV fkLp(G=GF )� 
 jjjT�1' jjj kfkMp : �16



The next step is to derive the lower bound in (4.9).Lemma 4.2 Suppose that the 
onditions in Theorem 4.1 are satis�ed. Then there existsa 
onstant A > 0 su
h that for any sequen
e (
i)i2I� 2 `p, 1 � p � 1, the followinginequality holds: kXi2I� 
iU(�(hi)�1) kMp � 1Ak(
i)i2I�k`p : (4.11)In parti
ular, we have by (4.8) thatkfkMp � 1Ak(hT�1' V f; 'i Æ �i)i2I�k`p :Proof By de�nition of the norm in Mp and (2.9) we havekXi2I� 
iU(�(hi)�1) kMp = kXi2I� 
iR(hi; h)kLp(G=GF ) :By the Riesz{Thorin Interpolation Theorem, see, e.g., [18℄ Chapter 6 and the appendixfor details, it suÆ
es to prove the inequality (4.11) for p = 1 and p =1. For p = 1, weobtain by(3:1)kXi2I� 
iU(�(hi)�1) kM1 = ZG=GF jXi2I� 
iR(hi; h)j d�(h)� Xi2I� j
ij supi2I� ZG=GF jR(hi; h)j d�(h)� Ck(
i)i2I�k`1 :For p =1 it follows thatkXi2I� 
iU(�(hi)�1) kM1 = suph2G=GF jXi2I� 
iR(hi; h)j� supi2I� j
ij suph2G=GFXi2I� jR(hi; h)j : (4.12)Sin
e (xi)i2I is a relatively separated family, we have for any 
ompa
t neighborhood Qof the identity in G that I� = Sr0r=1 I�r and Qxi \ Qxj = ; for i; j 2 I�r and i 6= j.Hen
e we obtain Xi2I� jR(hi; h)j = r0Xr=1 Xi2I�r jR(hi; h)j :17



For all l 2 G=GF with the property that �(l) 2 Q�(hi), we have that �(hi)�1 2 �(l)�1Qand hen
esupq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j � jhU(�(h)�1) ; U(�(hi)�1) iL2(N )j= jR(h; hi)j = jR(hi; h)j :Let Bi := fl 2 G=GF : �(l) 2 Q�(hi)g. Then the above inequality impliesZBi supq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j d�(l) � jR(hi; h)j�(Bi) :Now we have that for i; j 2 I�r and i 6= j the sets Bi and Bj are disjoint. Consequently,we obtain ZG=GF supq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j d�(l) �� Xi2I�r ZBi supq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j d�(l)� Xi2I�r jR(hi; h)j�(Bi)� CQ Xi2I�r jR(hi; h)jand further by (4.3) for all h 2 G=GFXi2I�r jR(hi; h)j � CCQ ; Xi2I� jR(hi; h)j � r0CCQ :Together with (4.12) this yieldskXi2I� 
iU(�(hi)�1 )kM1 � k(
i)i2I�k`1 r0CCQ : �
5 Nonlinear Approximation with Bana
h FramesOn
e our Bana
h frames are established, they 
an 
learly be used to de
ompose, toapproximate and to analyze 
ertain fun
tions on N . Then it is 
learly desirable to18



determine the quality of 
ertain approximation s
hemes based on our frames, i.e., theapproximation order 
omes into play. In this se
tion, we dis
uss nonlinear approximations
hemes based on our Bana
h frames. Espe
ially, we are interested in the quality of thebest N{term approximation. The setting 
an be des
ribed as follows.Let f i = U(�(hi)�1) : i 2 I�g denote the Bana
h frame 
onstru
ted in theprevious se
tion, i.e., we have for any f 2Mp thatf =Xi2I�hf; �ii i ; hf; �ii = 
i := hT�1' V f; 'i Æ �iL2(G=GF ) (5.1)and k(
i)i2I�k`p � kfkMp : (5.2)We want to approximate our fun
tions f 2Mp by elements from the nonlinear manifolds�n, n 2 N , whi
h 
onsist of all fun
tions S 2 Mp whose expansions with respe
t to ourframe have at most n nonzero 
oeÆ
ients, i.e.,�n := fS 2Mp : S =Xi2J ai i; J � I�; 
ardJ � ng :Then we are interested in the asymptoti
 behavior of the errorEn(f)Mp := infS2�n kf � SkMp :Usually, the order of approximation whi
h 
an be a
hieved depends on the regularityof the approximated fun
tion as measured in some asso
iated smoothness spa
e. Forinstan
e, for nonlinear wavelet approximation, the order of 
onvergen
e is determinedby the regularity as measured in a spe
i�
 s
ale of Besov spa
es. For nonlinear approx-imation based on Gabor frames, it has been shown in [22℄ that the `right' smoothnessspa
es are given by a spe
i�
 s
ale of modulation spa
es. It turns out that the resultsfrom [22℄ 
arry over to our 
ase without any diÆ
ulty. The basi
 ingredient in the proofof the theorem is the following lemma whi
h has been shown in [22℄, see also [11℄.Lemma 5.1 Let a = (ai)1i=1 be a de
reasing sequen
e of positive numbers. For p; q > 0set � := 1=p� 1=q and En;q(a) := (P1i=n aqi )1=q. Then for 0 < p < q � 1 we have2�1=pkak`p �  1Xn=1(n�En;q(a))p 1n!1=p � 
 kak`pwith a 
onstant 
 > 0 depending only on p.Now one 
an prove the following theorem, see also [22℄.Theorem 5.1 Let f i : i 2 I�g be a Bana
h frame for Mp, 1 � p � 1, given byTheorem 4.1. If 1 � p < q, � := 1=p� 1=q and f 2Mp, then 1Xn=1 1n �n�En(f)Mq�p!1=p � 
kfkMpfor a 
onstant 
 <1. 19



Proof Let � permutate the sequen
e (jhf; �iij)i2I� in (5.1) in a de
reasing order, i.e.jhf; ��(1)ij � jhf; ��(2)ij � : : : . Then we obtain thatEn(f)Mq � k 1Xi=n+1hf; ��(i)i �(i)kMqand by (5.2) further thatEn(f)Mq � 
  1Xi=n+1 jhf; ��(i)ijq!1=q = 
En+1;q(jhf; ��(i)ij) � 
En;q(jhf; ��(i)ij) :Now we �nish by applying Lemma 5.1 and (5.2) 1Xn=1 1n �n�En(f)Mq�p!1=p �  1Xn=1 1n (n� 
En;q)p!1=p� 
 k(jhf; ��(i)ij)k`p� 
 kfkMp : �
6 Appli
ation to the SphereIn this se
tion, we want to explain how the ma
hinery developed in the previous se
tions
an be applied to very spe
i�
 manifolds, namely to the spheres Sn�1 
ontained in Rn .The aim is to derive a generalized windowed Fourier transform on the spheres and to
onstru
t the asso
iated Gabor frames. We therefore explain how the basi
 steps outlinedabove 
an be realized for this spe
i�
 setting. First of all, in Subse
tion 6.1, we 
onstru
ta suitable group a
ting on the Hilbert spa
e L2(Sn�1). Here we follow the lines of B.Torresani [32℄. Then, in Subse
tion 6.2, we introdu
e and dis
uss the asso
iated 
oorbitspa
es. In 
ase of the windowed Fourier transform these spa
es 
an be interpreted asgeneralized modulation spa
es. The basi
 te
hni
al step is to establish a generalizedYoung inequality, i.e., we have to verify (3.1). Subse
tion 6.3 is devoted to the frame
onstru
tion. We therefore have to verify that all the assumptions in Theorem 4.1 
anbe established.Although some parts of the theory are presented for the general setting, we shallmainly 
on�ne the dis
ussion to the simplest 
ase, that is, to the sphere S1 
ontained inR2 . The reason for pro
eeding this way is to keep the te
hni
al diÆ
ulties at a reasonablelevel. The general 
ase will be dis
ussed in a forth
oming paper.

20



6.1 Basi
 SettingIn this subse
tion, we want to establish a suitable group representation for the Hilbertspa
e H = L2(Sn�1). To this end, we shall mainly follow the lines of fundamentalapproa
h derived by B. Torresani [32℄. We are interested in building a version of thewindowed Fourier transform on the sphere. Sin
e the usual windowed Fourier transformis generated with translations and modulations, we need similar transformations on thesphere. A good 
andidate to start with is the Eu
lidean group E(n). Let SO(n) denotethe spe
ial orthogonal group of rotations in Rn , thenG := E(n) = SO(n)n Rnwith group operation(R; p) Æ ( ~R; ~p) = (R ~R;R~p+ p); (R; p)�1 = (R�1;�R�1p): (6.1)The group G is a separable Lie group with Haar measure �. As a natural analogueto the S
hr�odinger representation of the Weyl-Heisenberg group on L2(Rn), we 
onsiderthe 
ontinuous unitary representation U of G on L2(Sn�1) de�ned by(U(R; p))f(s) := ei<s;p>f(R�1s) ; (6.2)where s 2 Sn�1. Note that U 
an be derived in a more sophisti
ated way by Makeysindu
tion from some subgroup P of G with G=P �= Sn�1, see, e.g., [32℄ for details.Unfortunately, there does not exist any fun
tion  2 L2(Sn�1) satisfyingZG jh ; U(g�1) iL2(Sn�1)j2d�(g) <1 ;so that the representation U in L2(Sn�1) is not square integrable. However, the way out
learly 
onsists in 
onsidering representations modulo a subgroup of G as explained inSe
tion 2.As already stated above, we shall mainly restri
t ourselves to the 
ase H = L2(S1)in the sequel. In this 
ase, R 2 SO(2) and s 2 S1 are given expli
itly byR = � 
os � sin �� sin � 
os � � s = � sin 

os 
 � :Hen
e, we have by this parametrization L2(S1) �= L2([��; �℄). This leads toU(�; p1; p2) (
) = ei(p1 sin 
+p2 
os 
) (
 � �) : (6.3)To over
ome the integrability problem we have to 
hoose an appropriate subgroup. Anatural 
andidate is given by the stability group GF �= f(0; 0; p2) 2 Gg. As explainedin the previous se
tions, the whole 
onstru
tion depends on the 
hoi
e of the se
tion� of the prin
ipal bundle � : G ! G=GF . In the following, we will primarily 
onsider21



the 
at se
tion de�ned by �(�; p1) = (�; p1; 0). We have to verify that U is stri
tlysquare integrable mod (GF ; �). To this end, we have to show that there exists a fun
tion 2 L2(S1) su
h that the asso
iated wavelet transformV g(h) = hg; U(�(h)�1) iL2(S1) (6.4)= hg; U((�; p1; 0)�1) iL2([��;�℄)= �Z�� eip1 sin 
 (
)g(
 � �)d
is an isometry. The next lemma 
an also be found in [32℄.Lemma 6.1 Assume that the fun
tion  2 L2([��; �℄) is su
h that supp  � [��=2; �=2℄and 2� �=2Z��=2 j (
)j2
os 
 d
 = 1 : (6.5)Then the map L2(S1) 3 g 7! V g 2 L2(G=GF ) ;where V g is de�ned by (6.4) is an isometry.Proof Assume that g 2 L2([��; �℄) and  2 L2([��; �℄). Then we 
an writeV g(�; p) = hg; U(�(�; p)�1) iL2(S1) = hU(�(�; p))g;  iL2(S1)= �=2Z��=2 eip sin 
g(
 � �) � (
)d
 :By using the substitution sin 
 = t we obtainZG=GF jV g(�; p)j2d�(�; p) = ZR �Z�� ��� �=2Z��=2 eip sin 
g(
 � �) � (
)d
���2d�dp= ZR �Z�� ��� 1Z�1 eiptg(ar
sin t� �) � (ar
sin t)p1� t2 dt���2d�dpand further by Parseval's equalityZG=GF jV g(�; p)j2d�(�; p) = 2� �Z�� 1Z�1 ���g(ar
sin t� �) � (ar
sin t)p1� t2 ���2dtd�
22



= 2� �Z�� �=2Z��=2 jg(
 � �)j2j (
)j2
os 
 d
d�= kgk2L2(S1) 2� �=2Z��=2 j (
)j2
os 
 d
 : �As a 
onsequen
e, the wavelet transform 
an be inverted by using the adjoint V � . Of
ourse the approa
h works also if0 < 
 := 2� �=2Z��=2 j (
)j2
os 
 d
 <1:Then the inverse of the wavelet transform is given by V � =p
 .6.2 Modulation Spa
es on the Sphere S1To 
onstru
t properly de�ned modulations spa
es, it is 
learly ne
essary to ensure the
orresponden
e prin
iple in Proposition 3.1. Therefore we have to establish the basi
property (3.1). Hen
e, we have to verify that R(l; �) 2 L1(G=GF) for every l 2 G=GFwith a norm that 
an be bounded independently of h. We shall always work with anadmissible wavelet  in the sense of Lemma 6.1, i.e., we assume that supp � [��=2; �:2℄and that 
ondition (6.5) is satis�ed. The group law (6.1) 
ombined with the Euler angleparameterization yields for h = (�h; ph; 0); l = (�l; pl; 0) 2 G=GF�(h)�(l)�1 = (�h � �l; ph � pl 
os(�h � �l); pl sin(�h � �l)) :We therefore obtainR(l; h) = �=2Z��=2 ei(sin 
(�pl 
os �+ph)+
os 
(pl sin �)) (
 � �) (
) d
= �=2Z��=2 ei(ph sin 
�pl sin(
��)) (
 � �) (
) d
;where � := �h � �l. By substituting t = sin 
 one hasR(l; h) = 1Z�1 e�ipl sin(ar
sin t��)eipht (ar
sin t� �) (ar
sin t) dtp1� t2 :23



Furthermore, by de�ningF�;pl(t) := e�ipl sin(ar
sin t��) (ar
sin t� �) (ar
sin t)=p1� t2and re
alling the fa
t that supp � [��=2; �=2℄ we may writeR(l; h) = F̂�;pl(�ph) : (6.6)The quasi{invariant measure d�(h) of the quotient spa
e G=GF is given by dphd�h , hen
ewe have ZG=GF jR(l; h)j d�(h) = �Z�� ZR jF̂�;pl(ph)j dph d�h:Interpreting R jF̂�;pl(ph)j dph as the inverse Fourier transform at point 0 and regardingthat the outer integration is over a �nite interval, we see that property (3.1) is equivalentto jF̂�;pl(�)j_(0) < C; (6.7)with some 
onstant C independent of pl and �l.We have 
he
ked numeri
ally that for one of the typi
al admissible fun
tions sug-gested by Torresani [32℄ 
ondition (6.7) is satis�ed. We have 
hosen fun
tion  by (x) = 
os6 x � �[��=2;�=2℄(x) ;whi
h is admissible in the sense of Lemma 6.1. In Figure 1 we have displayed two typi
al
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Figure 1: Left: jF̂�;pl(�ph)j for � = �2:7416, right: jF̂�;pl(�ph)j for � = 2:0584plots of F̂�;pl(�ph) for � = �2:7416 and � = 2:0584. Numerival experiments were donefor � on the whole grid ��=2 : �=16 : �=2. These �gures indi
ate that for �xed � theexpression Z jF̂�;pl(�ph)jdph24
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on�ned by Figure 2 whi
h shows the ap-proximated values of R jF̂�;pl(�ph)jdph as fun
tions of pl. Finally, in Figure 3 we havedisplayed the maximal value of R jF̂�;pl(�ph)jdph with respe
t to pl as a fun
tion of �.From this �gure, we observe that 
ondition (6.7) is satis�ed.
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tion of �6.3 Bana
h Frames on the Sphere S1In this subse
tion, we want to derive some atomi
 de
omposition for the new modulationspa
es. To this end, we have to 
he
k that all assumptions in Theorem 4.1 
an be25



satis�ed. Therefore we have to de�ne some neighborhood U and a related U{densefamily X whi
h is relatively separated.Let U be given by U := (��=N; �=N) � (��=M; �=M) � (��=M; �=M) and X :=(xn;m)(n;m)2I by xn;m = (�n; pm; qm). One basi
 premise we have to verify is that theU{os
illation (4.1) ful�lls (4.2). For u = (�u; pu; qu) 2 U we start by evaluating�(h)�(l)�1u = (� + �u; ph � pl 
os � + pu 
os � + qu sin �; pl sin � � pu sin � + qu 
os �) ;where � := �h � �l. By (6.3) and sin
e supp  2 [��=2; �=2℄, we obtain1Z�1 (U(�(h)�(l)�1) (
) � (
)� U(�(h)�(l)�1u) (
) � (
)) d
= �=2Z��=2 (U(�; ph � pl 
os �; pl sin �) (
) � (
)� U(� + �u;ph � pl 
os � + pu 
os � + qu sin �; pl sin � � pu sin � + qu 
os �) (
) � (
)) d
= �=2Z��=2 ei(ph sin 
+pl sin(��
)) � (
 � �)� ei(pu sin(
��)+qu 
os(
��))  (
 � � � �u)� � (
) d
= �=2Z��=2 ei(ph sin 
+pl sin(��
))f[ (
 � �)�  (
 � � � �u)℄ � (
) +�1� ei(pu sin(
��)+qu 
os(
��))� (
 � � � �u) � (
)g d
:Now we 
an estimate os
U(l; h) byos
U(l; h) � supu2U ��� �=2Z��=2 ei(ph sin 
+pl sin(��
)) [ (
 � �)�  (
 � � � �u)℄ � (
)d
���+supu2U ��� �=2Z��=2 ei(ph sin 
+pl sin(��
)) �1� ei(pu sin(
��)+qu 
os(
��))�� (
 � � � �u) � (
)d
��� :We have to verify that os
U(l; h) ful�lls the 
onditions (4.2). We restri
t our attentionto the 
ondition I := ZG=GF os
U(l; h) d�(h) < 1:
26



The other 
ondition follows in a similar way. By our estimate of os
U(l; h), we have thatI � �Z�� (I1 + I2) d�h ; (6.8)where I1 := ZR supu2U ��� �=2Z��=2 ei(ph sin 
+pl sin(��
)) [ (
 � �)�  (
 � � � �u)℄ � (
)d
��� dph;andI2 := ZR supu2U ��� �=2Z��=2 ei(ph sin 
+pl sin(��
)) �1� ei(pu sin(
��)+qu 
os(
��))� (
����u) � (
) d
��� dph:Substituting t = sin 
 in I1, we getI1 = ZR supu2U ��� 1Z�1 eipht eipl sin(��ar
sin t) [ (ar
sin t� �)�  (ar
sin t� � � �u)℄ � (ar
sin t)p1� t2 dt��� dphIntrodu
ing the fun
tionsg(t) := ( eipl sin(��ar
sin t) � (ar
sin t)1=2p1�t2 for t 2 [�1; 1℄;0 otherwise;andw�u(t) := � [ (ar
sin t� �)�  (ar
sin t� � � �u)℄ � (ar
sin t)1=2 for t 2 [�1; 1℄;0 otherwise;the above expression 
an be written asI1 = ZR supu2U j ZRw�u(t)g(t)eipht dtj dph= ZR supu2U j((ŵ�u � ĝ)(�ph)j dph� ZR supu2U ZR jŵ�u(v)jjĝ(ph � v)j dv dph: (6.9)We 
hoose  suÆ
iently smooth, e.g.,  (t) = 
os6(t), so that w(r)�u (t) is a 
ontinuousfun
tion for some r � 2 and ĝ 2 L1. Note that w(r)�u (t) has 
ompa
t support. Thenlim�u!0w(r)�u (t) = 0 and we obtain by dominated 
onvergen
e thatlim�u!0 jjw(r)�u jjL1 = 0:27



The Fourier transform maps L1 
ontinuously onto a dense subalgebra of C0. Here C0denotes the Bana
h spa
e of 
ontinuous fun
tions whi
h tend to zero at �1 with normjjf jj1 := maxfjf(t)j : t 2 Rg:Thus lim�u!0 jj(w(r)u )̂ jj1 = 0: (6.10)Further, we have that ŵ�u(v) = (�iv)�r (w(r)�u )̂(v);whi
h by (6.10) implies jŵ�u(v)j � (1 + jvj)�r C(�u); (6.11)where C(�u) is a 
ontinuous fun
tion with lim�u!0C(�u) = 0. Inserting (6.11) into (6.9),we get I1 � ZR supu2U C(�u) ZR(1 + jvj)�rjĝ(pl � v)j dv dph= jjĝjjL1 supj�uj��=N C(�u) ZR(1 + jvj)�r dv� C supj�uj��=N C(�u):This expression be
omes arbitrary small for suÆ
iently large N . The term I2 
an betreated in a similar way. Now (4.2) follows by (6.8).Finally it is easy to 
he
k that�fh 2 G=GF : �(h) 2 Q�(hi)g � 
Qfor all i 2 I� as follows: LetQ be of the standard formQ = [��=N; �=N ℄�[��=M; �=M ℄�[��=M; �=M ℄ and let �(hi) = (�i; pi; 0). For l = (
; q1; q2) 2 Q we obtain(
; q1; q2) Æ �(hi) = (
; q1; q2) Æ (�i; pi; 0)= (
 + �i; q1 + 
os(
)pi; q2 � sin(
)pi):The term on the right{hand side 
an be interpreted as some �(h), h 2 G=GF ifq2 � sin(
)pi = 0, i.e., sin(
) = q2pi if pi 6= 0; q2 = 0 if pi = 0:For �xed pi 6= 0, the above equation 
an be satis�ed if q2 2 [��; �℄ and 
 2 [�Æ; Æ℄ forsome suÆ
iently small parameters � and Æ. Then we obtain(
; q1; q2) Æ �(hi) = (
 + �i; q1 + (p2i � q22)1=2; 0):For 
 2 [�Æ; Æ℄; q2 2 [��; �℄ and q1 2 [��=M; �=M ℄ this set has obviously a positivemeasure.The remaining 
ondition (4.3) 
an be 
he
ked numeri
ally by performing similar
al
ulations as in Subse
tion 6.2. 28
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