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1 IntrodutionA lassial problem in applied mathematis is to analyze and to proess a given set ofsignals. Usually, the �rst step is to deompose the signal into ertain building bloks. Awidespread strategy is to use Fourier transform, i.e., to analyze the signal with respetto its omponents orresponding to di�erent frequenies. Although very suessful inmany appliations, Fourier analysis has the serious disadvantage that the basis funtionsare not loal so that small hanges in the signal inuene the whole Fourier spetrum.Therefore many attempts have been made to loalize the Fourier transform in somenatural way. In 1946, Gabor [19℄ introdued a time{frequeny analysis whih is oftenalled the short{time Fourier transform. The idea is to use a window funtion g in orderto loalize the Fourier analysis. In the meantime, the short{time Fourier transform hasindeed been established as a powerful tool in signal analysis. Another way to obtainsome kind of loal analysis would be to use the wavelet transform. Then the modulationterm in the short{time Fourier transform is replaed by a dilation proedure, and it ispossible to work with very loalized basis funtions. Starting with the pioneering work ofGrossmann and Morlet [24℄, wavelet analysis has beome a very important �eld in appliedmathematis with many suessful appliations in image/signal analysis/ompression,numerial analysis, geophysis and in many other �elds. Although they may behavequite di�erent in appliations, there exists a ommon thread between Gabor and wavelettransform. Both an be derived from square integrable group representations of a ertaingroup, see, e.g., [25℄ and Setion 2 for details. Both transforms have their advantages anddrawbaks, so that the deision whih method to use depends on the spei� appliation.For further information and a general overview on both transforms we refer to theexellent textbooks whih have appeared quite reently [8, 21, 23, 27, 28, 29, 33℄.In any ase, when it omes to pratial appliations, only a disrete set of oeÆientsan be handled. It is therefore neessary to diretize both transforms to obtain somekind of basis for the funtion spae under onsideration. However, onstruting somestable basis may be asking to muh, nevertheless, it is usually possible to obtain at leasta frame. In general, given a Hilbert spae H, a system fhmgm2Z is alled a frame if thereexist onstants A and B; 0 < A � B <1 suh thatAkFk2H �Xm2ZjhF; hmij2 � BkFk2H : (1.1)This setting an also be generalized to Banah spaes, see, e.g., [15, 16℄ for details. Inour ase, the frames are obtained by disretizing the underlying group representation insome lever way. A very general mahinery for frame onstrutions has been developedin the pioneering work of Feihtinger and Gr�ohenig [14, 15, 16, 17℄. We shall present amore detailed disussion in Setion 4. One these frames are onstruted, they usuallyalso give rise to frames in ertain smoothness spaes. These smoothness spaes are againde�ned by the underlying square integrable group representation, i.e., one ollets allfuntions for whih the assoiated (Gabor are wavelet) transform is ontained in some(weighted) Lp{spae on the group. These funtions spaes are usually alled oorbitspaes and will be introdued more aurately in Setion 3. For the Gabor transform,2



the oorbit spaes are nothing else but the modulation spaes, whereas for the wavelettransform one obtains the Besov spaes. We refer to [9, 10, 14, 15, 16, 17, 21, 29, 31℄ forthe de�nitions and the main properties of modulation and Besov spaes. At this point,the strong analytial properties of wavelets ome into play. Indeed, it an be shownthat moreover stable wavelet bases for a huge sale of Besov spaes involving thoserelated with Lp{spaes for p < 1 an be established, see again [9, 10, 29℄ for details.These relationships have some very important onsequenes. In fat, it an be shownthat the order of onvergene of nonlinear approximation shemes suh as best N{termapproximation or adaptive wavelet Galerkin methods depends on the regularity of theapproximated objet in a very spei� Besov sale, see, e.g, [5, 7, 9, 10℄ for details. Forthe ase of the Gabor transform, quite reently results have been derived by Gr�ohenigand Samarah [22℄. They have shown that the approximation order of nonlinear shemesbased on loal Fourier bases is determined by the regularity in some spei� sale ofmodulation spae. Nevertheless, these results are naturally weaker when ompared withthose for the wavelet ase.In any ase, when it omes to pratial appliations, it is learly desirable to generalizethe theories developed so far to bounded domains and manifolds. This problem has beenintensively studied in the last few years. Beause of the strong analytial properties ofwavelets, one might feel temptered to start with the wavelet transform. However, usuallythe dilation proedure involved in the wavelet transform does not �t together very wellwith the boundedness of the domain. Nevertheless, quite reently an almost ompletesolution to this problem has been given by Antoine and Vandergheynst [2, 3℄. Theirapproah makes heavy use of group theory and an also be used to onstrut suitablewavelet frames [4℄. However, the whole mahinery is very ompliated. It is fun for thespeialists but terrible for the average onsumer. In this ontext, Gabor analysis seemsto have a serious advantage. It seems that the generalization of the Gabor transform tomanifolds is muh simpler than for the wavelet transform. Indeed, quite reently, a �rstapproah for the ase of the sphere in Rd has been presented by Torresani [32℄.In summary, the urrent state of the art suggests the following questions:� Is it possible to onstrut a generalized Gabor transform on manifolds and toproperly de�ne the assoiated oorbit spaes?� Is it possible to generalize the mahinery developed by Feihtinger and Gr�ohenigto this ase and to obtain generalized Gabor frames in these oorbit spaes?� What are the smoothness spaes whih determine the order of onvergene of theassoiated best N{term approximation shemes?� Is it possible to ome from abstrat general nonsense to onrete appliations, e.g.,by ombining these investigations with Torresani's results in order to obtain Gaborframes on spheres?In order to exeute this program, we proeed in the following way. We start by disussingthe group theoretial bakground in Setion 2. Given our manifold N , the �rst step is3



learly to �nd a loally ompat group G whih admits a unitary representation in theHilbert spae L2(N ): To be on safe side, this representation has to be irreduible andsquare integrable. The �rst property is usually relatively easy to realize whereas theseond one often auses trouble beause the group is to `large'. To obtain a `smaller'group, one natural way would be to extrat a losed subgroup GF and to restrit therepresentation to the quotient spae G=GF . However, sine G=GF has no longer a groupstruture, one has to ensure that nevertheless all the nie properties of square integrablerepresentations an be saved. One these relationships are lari�ed, we are able to de�neassoiated oorbit spaes in Setion 3. Loosely speaking, these generalized oorbit spaesonsist of all funtion for whih the assoiated Gabor transform is ontained in someLp{spae on the quotient manifold G=GF . Aording to our program, the next stepis to onstrut Banah frames for these oorbit spaes in Setion 4. To this end, weinvestigate to what extent the general approah of Feihtinger and Gr�ohenig an beadapted to our setting. The �rst step is always to de�ne some kind of approximationoperator. This operator is usually de�ned by means of a onvolution with the Gabortransform of the analyzing funtion itself. Sine a group struture doesn't longer exist inour setting, a onvolution is no longer well{de�ned. We therefore suggest to replae thisonvolution by a suitable de�ned integral transform involving a spei� kernel de�nedby means of the analyzing funtion, see Subsetion 4.2 for details. The next step isto disretize this approximation operator to obtain the desired frames. In Subsetion4.3, we show that under very natural assumptions both, the upper and the lower framebound, an be established. As outlined above, we also intend to analyze nonlinearapproximation shemes based on the new Banah frames. In Setion 5, we show thatthe results of Gr�ohenig and Samarah on Banah frames arry over to our ase withoutany serious diÆulty. Finally, in Setion 6, we disuss some appliations of our theory,i.e., we treat the problem of analyzing funtions on spheres. Our approah is based onthe fundamental investigations of Torresani [32℄. We show that in the setting of [32℄all our assumptions are satis�ed so that our theory yields generalized oorbit spaes onspheres and also provides us with suitable Banah frames for these spaes.Remark 1.1 i) We want to emphasize that we do not laim to redisover the wholeworld of square integrable group representations. It is lear the some of the buildingbloks used in this paper have already been established before, at least partially. However,we intend to establish the relationships between all these building bloks and to show thatthey �t together quite niely.ii) The basi idea of this paper has been developed while listening to a talk of K. Gr�ohenigon \New Results in Time{Frequeny Analysis".2 Group Theoretial BakgroundLet H be a Hilbert spae and let G be a separable Lie group with (right) Haar measure�. A ontinuous representation of G in H is de�ned as a mappingU : G �! L(H) (2.1)4



of G into the spae L(H) of unitary operators on H, suh that U(gg0) = U(g)U(g0) forall g; g0 2 G, U(e) = Id and for any �;  2 H, the funtion g 2 G ! h�; U(g) iH isontinuous. The representation U is said to be square-integrable if it is irreduible andthere exists a nonzero  2 H suh thatZG jh ; U(g) iHj2 d�(g) <1 : (2.2)Suh a funtion  is alled admissible. In the sequel, we shall always be onernedwith the ase that the Hilbert spae H is given as some L2{spae on a manifold N ,i.e. H = L2(N ): As an example, let us onsider the redued Weyl-Heisenberg groupGredWH �= R2 � S1, generated by time and frequeny translations on the real line. Thegroup operation is expliitly given by(p; q; �)(p0; q0; �0) = (p+ p0; q + q0; �+ �0 + p0q):The Weyl{Heisenberg group GredWH admits unitary irreduible representations on L2(R)whih at as follows:U(p; q; �)f(x) = exp(i(��+ q(x� �p)))f(x� �p):Beause S1 is ompat it is easy to hek that U is square integrable for any nonzero 2 H. This spei� representation an be viewed as the basi building blok for thelassial Gabor transform, see, e.g., [21℄ for details. However, there are ases in whihsquare-integrable representations are not available. A simple example is the full Weyl{Heisenberg group GWH �= R2 � R. Nevertheless, its oeÆients hf; U(q; p; 0) i forma square integrable funtion of (q; p) 2 R2 . This example suggests a general strategy.Indeed, the ases where no square-integrable representations are available an very oftenbe handled by restriting U to a onvenient quotient G=P, where P is a losed subgroupof G. Unless otherwise stated, we shall always onsider right oset spaes, i.e.,g1 � g2 if and only if g1 = h Æ g2 for some h 2 P: (2.3)Beause U is not diretly de�ned on G=P, it is neessary to embed G=P in G. This an berealized by using the anonial �ber bundle struture of G with projetion � : G ! G=P.Let � : G=P ! G be a Borel setion of this �ber bundle, i.e. �Æ�(h) = h for all h 2 G=P.We introdue U Æ � and some quasi-invariant measure � on G=P, whih is de�ned byZG=P �ZP f(h Æ g)d�(h)�d�([g℄) = ZG f(g)d�(g) for all f 2 C0(G); (2.4)where � denotes the (right) Haar measure on P, see [30, 32℄ for details.Then we say that U is stritly square integrable mod (P; �), if there exists  2 L2(N )suh that the mapping V : L2(N )! L2(G=P) de�ned byV f(h) := hf; U(�(h)�1) iL2(N ) (2.5)5



is an isometry. In this ase, ( ; �) is alled a stritly admissible pair and  a stritlyadmissible funtion (with respet to �) [2℄.To exploit this onept, the �rst step is learly to de�ne an appropriate subgroupof G. We begin with the adjoint mapping of G ating on itself by inner automorphism,i.e. ad(h)g := hgh�1, where g; h 2 G. This ation indues a orresponding ation Ad(h)on the Lie algebra TeG of G, Ad(h)X = hXh�1 with X 2 TeG. Finally, the oadjointAd(h)� on the dual Lie algebra T �e G is de�ned byhX;Ad(h)�F i := hAd(h)X;F i; for F 2 T �e G:For F 2 T �e G, let GF := fg 2 G : Ad(g)�F = Fg (2.6)denote the stability subgroup of F . Whenever the oadjoint orbit OF �= G=GF an beassoiated with the representation under onsideration, the quotient spae G=GF is anatural andidate to perform the previous onstrution.Assume now that ( ; �) is a stritly admissible pair for our setting. Then the isometryV an be inverted on its image by its adjoint V � , whih is obviously given byV � F (s) := ZG=GF F (h)U(�(h)�1) (s) d�(h):This provides us with the reonstrution formulaf = V � V f = ZG=GF hf; U(�(h)�1) iL2(N )U(�(h)�1) d�(h) (2.7)for f 2 L2(N ).We intend to establish a orrespondene priniple between L2(N ) and a subspae ofL2(G=GF ) similar to the orrespondene priniple between L2(Rn) and a subspae of thesquare integrable funtions on the redued Weyl-Heisenberg group. We de�ne a kernelon G=GF � G=GF R(h; l) := hU(�(h)�1) ; U(�(l)�1) iL2(N ) (2.8)= h ; U(�(h)�(l)�1) iL2(N )= V (U(�(h)�1) )(l): (2.9)Note that R(h; l) = R(l; h). Further, we see by (2.9) that R(h; �) 2 L2(G=GF) for any�xed h 2 G=GF and by applying Shwarz's inequality in (2.8) thatR 2 L1(G=GF � G=GF ).Now we an prove the following orrespondene priniple between L2(N ) and the repro-duing kernel spaeM2 := fF 2 L2(G=GF) : hF;R(h; �)iL2(G=GF ) = F (h)g: (2.10)6



Proposition 2.1 Let U be a stritly square integrable representation of G mod (GF ; �)and  a stritly admissible funtion. Let V and R be de�ned by (2.5) and (2.8), respe-tively.i) For every f 2 L2(N ), the following equation is satis�edhV f; R(h; �)iL2(G=GF ) = V f(h);i.e., V f 2 M2.ii) For every F 2 M2 there exists a uniquely determined funtion f 2 L2(N ) suhthat F = V f .Consequently, the spaes L2(N ) and M2 are isometrially isomorph.Proof i) Sine U(�(h)�1) 2 L2(N ) we have by (2.7) thatV f(h) = hf; U(�(h)�1) iL2(N )= hf; ZG=GF R(l; h)U(�(l)�1) d�(l)i= ZG=GF R(h; l)hf; U(�(l)�1) iL2(N ) d�(l)= hV f; R(h; �)iL2(G=GF ) :ii) Let F 2 L2(G=GF) ful�ll F (h) = ZG=GF F (l)R(h; l)d�(l):Then we obtain by the de�nition of R in (2.8)F (h) = ZG=GF F (l)hU(�(h)�1) ; U(�(l)�1) iL2(N ) d�(l)= h ZG=GF F (l)U(�(l)�1) d�(l); U(�(h)�1) iL2(N )= V (V � F )(h) :Sine V is an isometry, the mapping V V � is an orthogonal projetor onto the imageof V . Thus, there exists f 2 L2(N ) suh that F = V V � F = V f . The uniqueness off 2 L2(N ) is lear beause V is injetive. �7



3 Coorbit Spaes on Homogeneous SpaesWe want to modify the onept of oorbit spaes [17℄ to funtions de�ned on manifolds.In order to keep omparisons as simple as possible, we adapt the notations given in[13, 14, 15, 16, 17℄. Furthermore, to keep the tehnial diÆulties at a reasonable level,we only onsider the `simplest' ase, e.g., the weight funtions w involved in the usualde�nition of oorbit spaes is assumed to be w � 1: The general ase will be studied ina forthoming paper.Let U be a stritly square integrable representation of G mod (GF ; �) with a stritlyadmissible funtion  . For the kernel R in (2.8), we will need the basi assumption thatZG=GF jR(h; l)jd�(l) � C (3.1)with a onstant C <1 independent of h 2 G=GF .By H 01 we denote the spae of all ontinuous linear funtionals onH1 := ff 2 L2(N ) : V f 2 L1(G=GF)g:As usual, the norm k � kH1 on H1 is de�ned askfkH1 := kV fkL1(G=GF ):By de�nition, we have the following ontinuous embeddingsH1 ,! H ,! H 01:Further, we note by (3.1) that U(�(h)�1) 2 H1 for all h 2 G=GF . Consequently, thefollowing generalization of the operator V in (2.5) on H 01 is well de�ned:V f(h) := hf; U(�(h)�1) i; (3.2)where f 2 H 01. For any f 2 H 01, we obtain by (3.1) thatkV fkL1(G=GF ) = khf; U(�(h)�1) ikL1(G=GF )� kfkH01 ess suph2G=GF kU(�(h)�1) kH1= kfkH01 ess suph2G=GF kRkL1(G=GF )� CkfkH01 : (3.3)Thus, V : H 01 ! L1(G=GF). For F 2 L1(G=GF) and g 2 H1, we have further thathF; V giL2(G=GF ) = ZG=GF F (l)V g(l) d�(l)8



= ZG=GF F (l)hg; U(�(l)�1) iL2(N ) d�(l)= h ZG=GF F (l)U(�(l)�1) d�(l); giL2(N ):We de�ne the operator ~V : L1(G=GF )! H 01 by~V F := ZG=GF F (l)U(�(l)�1) d�(l) ;where the integral is onsidered in the weak sense. Then we obtain for F 2 L1(G=GF)that V ~V F = h ZG=GF F (l)U(�(l)�1) d�(l); U(�(h)�1) iL2(N )= ZG=GF F (l)hU(�(l)�1) ; U(�(h)�1) iL2(N ) d�(l)= hF;R(h; �)iL2(G=GF ) : (3.4)Similar to the oorbit spaes on Rn we de�neMp := ff 2 H 01 : V f 2 Lp(G=GF)g ; (3.5)with 1 � p � 1 and norm kfkMp := kV fkLp(G=GF ):It is straightforward that k � kMp de�nes a seminorm. The property that kfkMp =0; i:e:; V f = 0, implies f = 0 follows similarly as in [14℄ by proving that fU(�(h)�1) :h 2 G=GFg is a dense subset of H1. The basi step for the investigations outlined belowis a orrespondene priniple between these oorbit spaes and ertain subspaes on thequotient group G=GF whih are de�ned by means of the reproduing kernel R. To thisend, we onsider the subspaesMp := fF 2 Lp(G=GF) : hF;R(h; �)iL2(G=GF ) = Fg (3.6)of Lp(G=GF) with 1 � p � 1. Then the desired orrespondene priniple an beformulated as follows:Proposition 3.1 Let U be a stritly square integrable representation of G mod (GF ; �)and  a stritly admissible funtion. Let V be de�ned by (3.2) and let R in (2.8) ful�ll(3.1). 9



i) For every f 2 Mp, the following equation is satis�edhV f; R(h; �)iL2(G=GF ) = V f ;i.e., V f 2 Mp.ii) For every F 2 Mp, 1 � p � 1, there exists a uniquely determined funtionalf 2Mp suh that F = V f .Consequently, the spaes Mp and Mp, 1 � p � 1, are isometrially isomorph.Proof Assertion i) follows in the same way as i) in Proposition 2.1, where only propertiesof  were used.ii). For F 2 Mp, 1 � p � 1, we have thatkFkL1(G=GF ) = k ZG=GF F (l)R(h; l) d�(l)kL1(G=GF )= ess suph2G=GF j ZG=GF F (l)R(h; l) d�(l)j;and further, by applying H�older's inequality with 1=p+ 1=q = 1, the fat thatR 2 L1(G=GF � G=GF) and (3.1),j ZG=GF F (l)R(h; l) d�(l)j � ZG=GF jF (l)jjR(h; l)j1=p+1=q d�(l)� ( ZG=GF jF (l)jpjR(h; l)j d�(l))1=p( ZG=GF jR(h; l)jd�(l))1=q�  kFkLp(G=GF ) :Consequently, we have that kFkL1(G=GF ) � kFkLp(G=GF ) :Thus, F 2 L1(G=GF) and by (3.4) we obtain that F = V ( ~V F ), where ~V F 2 H 01 andsine F 2 Lp(G=GF) also ~V F 2 Mp. The uniqueness ondition follows by de�nition ofMp. �Applying Proposition 3.1 i) and (3.4) we get for f 2 H 01 thatV ~V (V f) = hV f; R(h; �)iL2(G=GF ) = V f :Hene, ~V V is the identity in H 01 and we have the reonstrution formulaf = ~V V f = ZG=GF hf; U(�(h)�1) iL2(N )U(�(h)�1) d�(h) :10



We �nish the setion by establishing the relationships of our generalized oorbit spaesto the fundamental spaes L2(N ) and H 01.Proposition 3.2 Under the assumptions outlined above, the following relations arevalid:i) M1 = H 01,ii) M2 = L2(N ).Proof i). For f 2 H 01 we have by (3.3) that kV fkL1(G=GF ) � jjf jjH01 whih yields the�rst assertion.ii). Let f 2 L2(N ). Then we obtain by Proposition 2.1 that V (f) 2 M2. By Proposi-tion 3.1 there exists g 2M2 suh that V (f) = V (g) whih implies by de�nition of M2that f = g.Conversely, let f 2 M2. Then we have by Proposition 3.1 that V (f) 2 M2. ByProposition 2.1 there exists g 2 L2(N ) suh that V (f) = V (g) whih implies by de�-nition of M2 that f = g. �
4 Banah Frames for Coorbit SpaesOne our generalized oorbit spaes are established, the next step is to derive someatomi deomposition for these spaes, i.e., we want to onstrut suitable Banah frames.This program is performed in several steps. In the next subsetion, we present somepreparations and state our main result. The remaining two subsetions are devotedto the building bloks whih are neessary to prove this result. The major step isthe onstrution of a suitable approximation operator whih is de�ned and analyzed inSubsetion 4.2. This approximation operator an then be used to establish the framebounds in Subsetion 4.3.The results in this setion are again inspired by the pioneering work of Feihtingerand Gr�ohenig, [14, 15, 16, 17℄.4.1 Setting and Main ResultBefore we an state and prove our main result, some preparations are neessary. Givensome neighborhood U of the identity in G, a family X = (xi)i2I in G is alled U{denseif Si2I Uxi = G. A family X = (xi)i2I in G is alled relatively separated, if for anyompat set Q � G there exists a �nite partition of the index set I, i.e., I = Sr0r=1 Ir,suh that Qxi \ Qxj = ; for all i; j 2 Ir with i 6= j.Let U be an arbitrary ompat neighborhood of the identity in G. By [12℄, there existsa bounded uniform partition of unity (of size U), i.e., a family of ontinuous funtions('i)i2I on G suh that 11



� 0 � 'i(g) � 1 for all g 2 G;� there is an U -dense, relatively separated family (xi)i2I in G suh thatsupp 'i � Uxi;� Pi2I 'i(g) � 1 for all g 2 G.Furthermore, we de�ne the U{osillation with respet to the analyzing wavelet  asosU(l; h) := supu2U jh ; U(�(l)�(h)�1) � U(u�1�(l)�(h)�1) iL2(N )j : (4.1)In the sequel, we shall always assume that (xi)i2I an be hosen suh that�(G=GF ) \ Uxi 6= ; implies xi 2 �(G=GF ). LetI� := fi 2 I : �(G=GF) \ Uxi 6= ;g :Then there exist hi suh that xi = �(hi), where i 2 I�. Note thatXi2I� 'i(�(h)) = 1 ;where h 2 G=GF .In this setting, we an prove our main theorem.Theorem 4.1 Let G be a separable Lie group with stability subgroup GF de�ned by (2.6)and let � be a quasi{invariant measure on G=GF . Further, let U be a stritly squareintegrable representation of G mod (GF ; �) in L2(N ) with stritly admissible funtion  .Let a ompat neighborhood U of the identity in G be hosen so small thatZG=GF osU(l; h)d�(l) < 1 and ZG=GF osU(l; h)d�(h) < 1 : (4.2)Let X = (xi)i2I be a U{dense and relatively separated family. Furthermore, suppose thatfor any ompat neighborhood Q of the identity in G�fh 2 G=GF : �(h) 2 Q�(hi)g � CQ > 0holds for all i 2 I�. Finally, let us assume that for any ompat neighborhood Q of theidentity in G our window funtion  ful�lls the following inequalityZG=GF supq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j d�(l) � C (4.3)with a onstant C < 1 independent of h 2 G=GF . Then any f 2 Mp, 1 � p < 1, hasan expansion f =Xi2I� iU(�(hi)�1) : (4.4)12



Moreover, the set  i = U(�(hi)�1) ; i 2 I�; (4.5)is a Banah frame for Mp, i.e., there exist two onstants 0 < A � B <1 suh that1B kfkMp � k(hf;  ii)i2I�k`p � 1AkfkMp: (4.6)The proof of this theorem is presented in the following two setions.4.2 Approximation OperatorsIn this setion, we show that under the assumptions of Theorem 4.1 the expansion (4.4)is valid. The basi idea is to onstrut expansions for the spaes Mp and then to useProposition 3.1 ii) to derive the desired expansions also for Mp. The major tool is thegeneralized reproduing kernel R(h; l). Indeed, the de�nition of Mp in (3.6) suggeststhat disretizing R(h; l) may yield a suitable approximation for funtions in Mp. Wetherefore onsider the following approximation operator in Mp:T'F (h) := Xi2I�hF; 'i Æ �iL2(G=GF )R(hi; h)= Xi2I� ZG=GF F (l)'i(�(l))d�(l)R(hi; h) :By de�nition of Mp, we have thatF (h) = hF;R(h; �)iL2(G=GF ) = ZG=GF F (l)R(h; l) d�(l)= Xi2I� ZG=GF F (l)'i(�(l))R(l; h) d�(l)and onsequentlyF (h)� T'F (h) =Xi2I� ZG=GF F (l)'i(�(l)) [R(l; h)�R(hi; h)℄ d�(l) :Therefore we obtainjF (h)� T'F (h)j �Xi2I� ZG=GF jF (l)j'i(�(l))jR(l; h)� R(hi; h)j d�(l) :
13



Now �(l) 2 Uxi implies that there exists ui 2 U suh that �(l) = uixi = ui�(hi). Then�(hi)�1 = �(l)�1ui and we get by the de�nition of R thatjF (h)� T'F (h)j � Xi2I� ZG=GF jF (l)j'i(�(l))jhU(�(l)�1) ; U(�(h)�1) iL2(N ) �hU(�(l)�1ui) ; U(�(h)�1) iL2(N )j d�(l)= Xi2I� ZG=GF jF (l)j'i(�(l))�jh ; U(�(l)�(h)�1) � U(u�1i �(l)�(h)�1) iL2(N )j d�(l)� ZG=GF jF (l)josU(l; h) d�(l) ;where osU(l; h) is de�ned by (4.1). Then we onlude thatkF � T'FkLp(G=GF ) = k(I � T')FkLp(G=GF )� ( ZG=GF ( ZG=GF jF (l)josU(l; h) d�(l))p d�(h))1=p :Now, by applying the generalized Young inequality, see, e.g., [18℄, p. 185, Theorem 6.18,and realling the assumptions (4.2), we obtaink(I � T')FkLp(G=GF ) < kFkLp(G=GF ) :Consequently jjj(I � T')jjj < 1, i.e., I � T' is a ontration on Mp and T' is invertibleon Mp. Thus we an writeF = T'T�1' F =Xi2I�hT�1' F; 'i Æ �iL2(G=GF )R(hi; h) : (4.7)Let f 2 Mp. Then we have by Proposition 3.1 ii) that F := V f 2 Mp and further byde�nition of V thatV f = hf; U(�(h)�1) i= Xi2I�hT�1' F; 'i Æ �iL2(G=GF )R(hi; h)= Xi2I�hT�1' F; 'i Æ �iL2(G=GF )hU(�(hi)�1) ; U(�(h)�1) iL2(N )= hXi2I�hT�1' F; 'i Æ �iL2(G=GF )U(�(hi)�1) ; U(�(h)�1) iL2(N ) :Hene we obtain the following disrete reonstrution formula for f 2Mpf =Xi2I�hT�1' F; 'i Æ �iL2(G=GF )U(�(hi)�1) ; (4.8)and (4.4) is shown with i := hT�1' F; 'i Æ �iL2(G=GF ).14



4.3 Frame BoundsIn this setion, we want to prove the seond part of Theorem 4.1, i.e., we want to establish(4.6). To this end, it is suÆient to show that there exist two onstants 0 < A � B <1suh that AkfkMp � k(hT�1' V f; 'i Æ �i)i2I�klp � BkfkMp (4.9)holds. Indeed, the oeÆients hT�1' V f; 'i Æ�iL2(G=GF ) are given by funtionals �i inM 0p,i.e. hT�1' V f; 'i Æ �iL2(G=GF ) = hf; �ii ;where �i = V � ((T�1' )�'i Æ �). Now duality arguments [14, 15℄ yield thatf i = U(�(hi)�1) : i 2 I�gis a Banah frame for Mp, 1 � p <1, i.e., there exist onstants 0 < A � B <1 suhthat 1B kfkMp � k(hf;  ii)i2I�k`p � 1AkfkMpand the reonstrution of f from the frame oeÆients isf = Xi2I�hf;  ii�i :In the following lemmata, we show that under the assumptions in Theorem 4.1 both,the upper and the lower bound in (4.9), are valid.Lemma 4.1 Suppose that the onditions in Theorem 4.1 are satis�ed. For any f 2Mplet the sequene (i)i2I� = (hT�1' V f; 'i Æ �iL2(G=GF ))i2I�be given by (4.8). Then there exists a onstant B <1 suh that the following inequalityholds: k(i)i2I�k`p � BkfkMp :In partiular, we have that (i)i2I� 2 `p.Proof 1. First we show that for any sequene (�i)i2I� 2 `p the inequalityk(�i)i2I�k`p � C1=pU kXi2I� j�ij1Uxi Æ �kLp(G=GF ) (4.10)holds, where again xi = �(hi) and where 1Uxi denotes the harateristi funtion of Uxi.Sine (xi)i2I is a relatively separated family, there exists a splitting I = Sr0r=1 Ir suhthat Uxi\Uxj = ; for i; j 2 Ir and i 6= j. This results in a deomposition I� = Sr0r=1 I�r ,where I�r = fi 2 Ir : Uxi \ �(G=GF ) 6= ;g :15



Then we obtain (4.10) bykXi2I� j�ij1Uxi Æ �kpLp(G=GF ) = ZG=GF 0� r0Xr=1 Xi2I�r j�ij1Uxi(�(h))1Ap d�(h)� r0Xr=1 ZG=GF 0�Xi2I�r j�ij1Uxi(�(h))1Ap d�(h)= r0Xr=1 ZG=GF Xi2I�r j�ijp1Uxi(�(h))d�(h)� CUXi2I� j�ijp :2. Let F 2 Lp(G=GF). Then the appliation of (4.10) yieldsk(hF; 'i Æ �i)i2I�k`p � k(hjF j; 'i Æ �i)i2I�k`p� C�1=pU kXi2I�hjF j; 'i Æ �i1Uxi Æ �kLp(G=GF ) :Further, we see for an arbitrary �xed h 2 G=GF thatXi2I�hjF j; 'i Æ �i1Uxi(�(h)) =Xi2IhhjF j; 'i Æ �i ;where Ih := fi 2 I� : xi 2 U�1�(h)g and further thatXi2IhhjF j; 'i Æ �i = Xi2IhhjF j; 'i(�(�))i� hjF j; 1UU�1(�(�)�(h)�1)i :Sine ZG=GF 1UU�1(�(l)�(h)�1) d�(l) = �fl 2 G=GF : �(l) 2 UU�1�(h)g �  ;for all h 2 G=GF we obtain by the generalized Young inequality, ompare again with theappendix, thatk(hF; 'i Æ �i)i2I�k`p � C�1=pU khjF j; 1UU�1(�(�)�(h)�1)ikLp(G=GF )� C�1=pU kFkLp(G=GF ) :Finally, we onlude by using F = T�1' V f 2 Mp in the above inequality thatk(hT�1' V f; 'i Æ �i)i2I�k`p �  kT�1' V fkLp(G=GF )�  jjjT�1' jjj kV fkLp(G=GF )�  jjjT�1' jjj kfkMp : �16



The next step is to derive the lower bound in (4.9).Lemma 4.2 Suppose that the onditions in Theorem 4.1 are satis�ed. Then there existsa onstant A > 0 suh that for any sequene (i)i2I� 2 `p, 1 � p � 1, the followinginequality holds: kXi2I� iU(�(hi)�1) kMp � 1Ak(i)i2I�k`p : (4.11)In partiular, we have by (4.8) thatkfkMp � 1Ak(hT�1' V f; 'i Æ �i)i2I�k`p :Proof By de�nition of the norm in Mp and (2.9) we havekXi2I� iU(�(hi)�1) kMp = kXi2I� iR(hi; h)kLp(G=GF ) :By the Riesz{Thorin Interpolation Theorem, see, e.g., [18℄ Chapter 6 and the appendixfor details, it suÆes to prove the inequality (4.11) for p = 1 and p =1. For p = 1, weobtain by(3:1)kXi2I� iU(�(hi)�1) kM1 = ZG=GF jXi2I� iR(hi; h)j d�(h)� Xi2I� jij supi2I� ZG=GF jR(hi; h)j d�(h)� Ck(i)i2I�k`1 :For p =1 it follows thatkXi2I� iU(�(hi)�1) kM1 = suph2G=GF jXi2I� iR(hi; h)j� supi2I� jij suph2G=GFXi2I� jR(hi; h)j : (4.12)Sine (xi)i2I is a relatively separated family, we have for any ompat neighborhood Qof the identity in G that I� = Sr0r=1 I�r and Qxi \ Qxj = ; for i; j 2 I�r and i 6= j.Hene we obtain Xi2I� jR(hi; h)j = r0Xr=1 Xi2I�r jR(hi; h)j :17



For all l 2 G=GF with the property that �(l) 2 Q�(hi), we have that �(hi)�1 2 �(l)�1Qand henesupq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j � jhU(�(h)�1) ; U(�(hi)�1) iL2(N )j= jR(h; hi)j = jR(hi; h)j :Let Bi := fl 2 G=GF : �(l) 2 Q�(hi)g. Then the above inequality impliesZBi supq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j d�(l) � jR(hi; h)j�(Bi) :Now we have that for i; j 2 I�r and i 6= j the sets Bi and Bj are disjoint. Consequently,we obtain ZG=GF supq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j d�(l) �� Xi2I�r ZBi supq2Q jhU(�(h)�1) ; U(�(l)�1q) iL2(N )j d�(l)� Xi2I�r jR(hi; h)j�(Bi)� CQ Xi2I�r jR(hi; h)jand further by (4.3) for all h 2 G=GFXi2I�r jR(hi; h)j � CCQ ; Xi2I� jR(hi; h)j � r0CCQ :Together with (4.12) this yieldskXi2I� iU(�(hi)�1 )kM1 � k(i)i2I�k`1 r0CCQ : �
5 Nonlinear Approximation with Banah FramesOne our Banah frames are established, they an learly be used to deompose, toapproximate and to analyze ertain funtions on N . Then it is learly desirable to18



determine the quality of ertain approximation shemes based on our frames, i.e., theapproximation order omes into play. In this setion, we disuss nonlinear approximationshemes based on our Banah frames. Espeially, we are interested in the quality of thebest N{term approximation. The setting an be desribed as follows.Let f i = U(�(hi)�1) : i 2 I�g denote the Banah frame onstruted in theprevious setion, i.e., we have for any f 2Mp thatf =Xi2I�hf; �ii i ; hf; �ii = i := hT�1' V f; 'i Æ �iL2(G=GF ) (5.1)and k(i)i2I�k`p � kfkMp : (5.2)We want to approximate our funtions f 2Mp by elements from the nonlinear manifolds�n, n 2 N , whih onsist of all funtions S 2 Mp whose expansions with respet to ourframe have at most n nonzero oeÆients, i.e.,�n := fS 2Mp : S =Xi2J ai i; J � I�; ardJ � ng :Then we are interested in the asymptoti behavior of the errorEn(f)Mp := infS2�n kf � SkMp :Usually, the order of approximation whih an be ahieved depends on the regularityof the approximated funtion as measured in some assoiated smoothness spae. Forinstane, for nonlinear wavelet approximation, the order of onvergene is determinedby the regularity as measured in a spei� sale of Besov spaes. For nonlinear approx-imation based on Gabor frames, it has been shown in [22℄ that the `right' smoothnessspaes are given by a spei� sale of modulation spaes. It turns out that the resultsfrom [22℄ arry over to our ase without any diÆulty. The basi ingredient in the proofof the theorem is the following lemma whih has been shown in [22℄, see also [11℄.Lemma 5.1 Let a = (ai)1i=1 be a dereasing sequene of positive numbers. For p; q > 0set � := 1=p� 1=q and En;q(a) := (P1i=n aqi )1=q. Then for 0 < p < q � 1 we have2�1=pkak`p �  1Xn=1(n�En;q(a))p 1n!1=p �  kak`pwith a onstant  > 0 depending only on p.Now one an prove the following theorem, see also [22℄.Theorem 5.1 Let f i : i 2 I�g be a Banah frame for Mp, 1 � p � 1, given byTheorem 4.1. If 1 � p < q, � := 1=p� 1=q and f 2Mp, then 1Xn=1 1n �n�En(f)Mq�p!1=p � kfkMpfor a onstant  <1. 19



Proof Let � permutate the sequene (jhf; �iij)i2I� in (5.1) in a dereasing order, i.e.jhf; ��(1)ij � jhf; ��(2)ij � : : : . Then we obtain thatEn(f)Mq � k 1Xi=n+1hf; ��(i)i �(i)kMqand by (5.2) further thatEn(f)Mq �   1Xi=n+1 jhf; ��(i)ijq!1=q = En+1;q(jhf; ��(i)ij) � En;q(jhf; ��(i)ij) :Now we �nish by applying Lemma 5.1 and (5.2) 1Xn=1 1n �n�En(f)Mq�p!1=p �  1Xn=1 1n (n� En;q)p!1=p�  k(jhf; ��(i)ij)k`p�  kfkMp : �
6 Appliation to the SphereIn this setion, we want to explain how the mahinery developed in the previous setionsan be applied to very spei� manifolds, namely to the spheres Sn�1 ontained in Rn .The aim is to derive a generalized windowed Fourier transform on the spheres and toonstrut the assoiated Gabor frames. We therefore explain how the basi steps outlinedabove an be realized for this spei� setting. First of all, in Subsetion 6.1, we onstruta suitable group ating on the Hilbert spae L2(Sn�1). Here we follow the lines of B.Torresani [32℄. Then, in Subsetion 6.2, we introdue and disuss the assoiated oorbitspaes. In ase of the windowed Fourier transform these spaes an be interpreted asgeneralized modulation spaes. The basi tehnial step is to establish a generalizedYoung inequality, i.e., we have to verify (3.1). Subsetion 6.3 is devoted to the frameonstrution. We therefore have to verify that all the assumptions in Theorem 4.1 anbe established.Although some parts of the theory are presented for the general setting, we shallmainly on�ne the disussion to the simplest ase, that is, to the sphere S1 ontained inR2 . The reason for proeeding this way is to keep the tehnial diÆulties at a reasonablelevel. The general ase will be disussed in a forthoming paper.
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6.1 Basi SettingIn this subsetion, we want to establish a suitable group representation for the Hilbertspae H = L2(Sn�1). To this end, we shall mainly follow the lines of fundamentalapproah derived by B. Torresani [32℄. We are interested in building a version of thewindowed Fourier transform on the sphere. Sine the usual windowed Fourier transformis generated with translations and modulations, we need similar transformations on thesphere. A good andidate to start with is the Eulidean group E(n). Let SO(n) denotethe speial orthogonal group of rotations in Rn , thenG := E(n) = SO(n)n Rnwith group operation(R; p) Æ ( ~R; ~p) = (R ~R;R~p+ p); (R; p)�1 = (R�1;�R�1p): (6.1)The group G is a separable Lie group with Haar measure �. As a natural analogueto the Shr�odinger representation of the Weyl-Heisenberg group on L2(Rn), we onsiderthe ontinuous unitary representation U of G on L2(Sn�1) de�ned by(U(R; p))f(s) := ei<s;p>f(R�1s) ; (6.2)where s 2 Sn�1. Note that U an be derived in a more sophistiated way by Makeysindution from some subgroup P of G with G=P �= Sn�1, see, e.g., [32℄ for details.Unfortunately, there does not exist any funtion  2 L2(Sn�1) satisfyingZG jh ; U(g�1) iL2(Sn�1)j2d�(g) <1 ;so that the representation U in L2(Sn�1) is not square integrable. However, the way outlearly onsists in onsidering representations modulo a subgroup of G as explained inSetion 2.As already stated above, we shall mainly restrit ourselves to the ase H = L2(S1)in the sequel. In this ase, R 2 SO(2) and s 2 S1 are given expliitly byR = � os � sin �� sin � os � � s = � sin os  � :Hene, we have by this parametrization L2(S1) �= L2([��; �℄). This leads toU(�; p1; p2) () = ei(p1 sin +p2 os ) ( � �) : (6.3)To overome the integrability problem we have to hoose an appropriate subgroup. Anatural andidate is given by the stability group GF �= f(0; 0; p2) 2 Gg. As explainedin the previous setions, the whole onstrution depends on the hoie of the setion� of the prinipal bundle � : G ! G=GF . In the following, we will primarily onsider21



the at setion de�ned by �(�; p1) = (�; p1; 0). We have to verify that U is stritlysquare integrable mod (GF ; �). To this end, we have to show that there exists a funtion 2 L2(S1) suh that the assoiated wavelet transformV g(h) = hg; U(�(h)�1) iL2(S1) (6.4)= hg; U((�; p1; 0)�1) iL2([��;�℄)= �Z�� eip1 sin  ()g( � �)dis an isometry. The next lemma an also be found in [32℄.Lemma 6.1 Assume that the funtion  2 L2([��; �℄) is suh that supp  � [��=2; �=2℄and 2� �=2Z��=2 j ()j2os  d = 1 : (6.5)Then the map L2(S1) 3 g 7! V g 2 L2(G=GF ) ;where V g is de�ned by (6.4) is an isometry.Proof Assume that g 2 L2([��; �℄) and  2 L2([��; �℄). Then we an writeV g(�; p) = hg; U(�(�; p)�1) iL2(S1) = hU(�(�; p))g;  iL2(S1)= �=2Z��=2 eip sin g( � �) � ()d :By using the substitution sin  = t we obtainZG=GF jV g(�; p)j2d�(�; p) = ZR �Z�� ��� �=2Z��=2 eip sin g( � �) � ()d���2d�dp= ZR �Z�� ��� 1Z�1 eiptg(arsin t� �) � (arsin t)p1� t2 dt���2d�dpand further by Parseval's equalityZG=GF jV g(�; p)j2d�(�; p) = 2� �Z�� 1Z�1 ���g(arsin t� �) � (arsin t)p1� t2 ���2dtd�
22



= 2� �Z�� �=2Z��=2 jg( � �)j2j ()j2os  dd�= kgk2L2(S1) 2� �=2Z��=2 j ()j2os  d : �As a onsequene, the wavelet transform an be inverted by using the adjoint V � . Ofourse the approah works also if0 <  := 2� �=2Z��=2 j ()j2os  d <1:Then the inverse of the wavelet transform is given by V � =p .6.2 Modulation Spaes on the Sphere S1To onstrut properly de�ned modulations spaes, it is learly neessary to ensure theorrespondene priniple in Proposition 3.1. Therefore we have to establish the basiproperty (3.1). Hene, we have to verify that R(l; �) 2 L1(G=GF) for every l 2 G=GFwith a norm that an be bounded independently of h. We shall always work with anadmissible wavelet  in the sense of Lemma 6.1, i.e., we assume that supp � [��=2; �:2℄and that ondition (6.5) is satis�ed. The group law (6.1) ombined with the Euler angleparameterization yields for h = (�h; ph; 0); l = (�l; pl; 0) 2 G=GF�(h)�(l)�1 = (�h � �l; ph � pl os(�h � �l); pl sin(�h � �l)) :We therefore obtainR(l; h) = �=2Z��=2 ei(sin (�pl os �+ph)+os (pl sin �)) ( � �) () d= �=2Z��=2 ei(ph sin �pl sin(��)) ( � �) () d;where � := �h � �l. By substituting t = sin  one hasR(l; h) = 1Z�1 e�ipl sin(arsin t��)eipht (arsin t� �) (arsin t) dtp1� t2 :23



Furthermore, by de�ningF�;pl(t) := e�ipl sin(arsin t��) (arsin t� �) (arsin t)=p1� t2and realling the fat that supp � [��=2; �=2℄ we may writeR(l; h) = F̂�;pl(�ph) : (6.6)The quasi{invariant measure d�(h) of the quotient spae G=GF is given by dphd�h , henewe have ZG=GF jR(l; h)j d�(h) = �Z�� ZR jF̂�;pl(ph)j dph d�h:Interpreting R jF̂�;pl(ph)j dph as the inverse Fourier transform at point 0 and regardingthat the outer integration is over a �nite interval, we see that property (3.1) is equivalentto jF̂�;pl(�)j_(0) < C; (6.7)with some onstant C independent of pl and �l.We have heked numerially that for one of the typial admissible funtions sug-gested by Torresani [32℄ ondition (6.7) is satis�ed. We have hosen funtion  by (x) = os6 x � �[��=2;�=2℄(x) ;whih is admissible in the sense of Lemma 6.1. In Figure 1 we have displayed two typial

0.5

1  

1.5

2  

2.5

3  

3.5

4  

4.5

5  

−600 −400 −200 0 200 400 600
−600

−400

−200

0

200

400

600

p
h

p l

x 10−10 

2 

4 

6 

8 

10

12

−600 −400 −200 0 200 400 600
−600

−400

−200

0

200

400

600

p
h

p l

x 10−5 

Figure 1: Left: jF̂�;pl(�ph)j for � = �2:7416, right: jF̂�;pl(�ph)j for � = 2:0584plots of F̂�;pl(�ph) for � = �2:7416 and � = 2:0584. Numerival experiments were donefor � on the whole grid ��=2 : �=16 : �=2. These �gures indiate that for �xed � theexpression Z jF̂�;pl(�ph)jdph24
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satis�ed. Therefore we have to de�ne some neighborhood U and a related U{densefamily X whih is relatively separated.Let U be given by U := (��=N; �=N) � (��=M; �=M) � (��=M; �=M) and X :=(xn;m)(n;m)2I by xn;m = (�n; pm; qm). One basi premise we have to verify is that theU{osillation (4.1) ful�lls (4.2). For u = (�u; pu; qu) 2 U we start by evaluating�(h)�(l)�1u = (� + �u; ph � pl os � + pu os � + qu sin �; pl sin � � pu sin � + qu os �) ;where � := �h � �l. By (6.3) and sine supp  2 [��=2; �=2℄, we obtain1Z�1 (U(�(h)�(l)�1) () � ()� U(�(h)�(l)�1u) () � ()) d= �=2Z��=2 (U(�; ph � pl os �; pl sin �) () � ()� U(� + �u;ph � pl os � + pu os � + qu sin �; pl sin � � pu sin � + qu os �) () � ()) d= �=2Z��=2 ei(ph sin +pl sin(��)) � ( � �)� ei(pu sin(��)+qu os(��))  ( � � � �u)� � () d= �=2Z��=2 ei(ph sin +pl sin(��))f[ ( � �)�  ( � � � �u)℄ � () +�1� ei(pu sin(��)+qu os(��))� ( � � � �u) � ()g d:Now we an estimate osU(l; h) byosU(l; h) � supu2U ��� �=2Z��=2 ei(ph sin +pl sin(��)) [ ( � �)�  ( � � � �u)℄ � ()d���+supu2U ��� �=2Z��=2 ei(ph sin +pl sin(��)) �1� ei(pu sin(��)+qu os(��))�� ( � � � �u) � ()d��� :We have to verify that osU(l; h) ful�lls the onditions (4.2). We restrit our attentionto the ondition I := ZG=GF osU(l; h) d�(h) < 1:
26



The other ondition follows in a similar way. By our estimate of osU(l; h), we have thatI � �Z�� (I1 + I2) d�h ; (6.8)where I1 := ZR supu2U ��� �=2Z��=2 ei(ph sin +pl sin(��)) [ ( � �)�  ( � � � �u)℄ � ()d��� dph;andI2 := ZR supu2U ��� �=2Z��=2 ei(ph sin +pl sin(��)) �1� ei(pu sin(��)+qu os(��))� (����u) � () d��� dph:Substituting t = sin  in I1, we getI1 = ZR supu2U ��� 1Z�1 eipht eipl sin(��arsin t) [ (arsin t� �)�  (arsin t� � � �u)℄ � (arsin t)p1� t2 dt��� dphIntroduing the funtionsg(t) := ( eipl sin(��arsin t) � (arsin t)1=2p1�t2 for t 2 [�1; 1℄;0 otherwise;andw�u(t) := � [ (arsin t� �)�  (arsin t� � � �u)℄ � (arsin t)1=2 for t 2 [�1; 1℄;0 otherwise;the above expression an be written asI1 = ZR supu2U j ZRw�u(t)g(t)eipht dtj dph= ZR supu2U j((ŵ�u � ĝ)(�ph)j dph� ZR supu2U ZR jŵ�u(v)jjĝ(ph � v)j dv dph: (6.9)We hoose  suÆiently smooth, e.g.,  (t) = os6(t), so that w(r)�u (t) is a ontinuousfuntion for some r � 2 and ĝ 2 L1. Note that w(r)�u (t) has ompat support. Thenlim�u!0w(r)�u (t) = 0 and we obtain by dominated onvergene thatlim�u!0 jjw(r)�u jjL1 = 0:27



The Fourier transform maps L1 ontinuously onto a dense subalgebra of C0. Here C0denotes the Banah spae of ontinuous funtions whih tend to zero at �1 with normjjf jj1 := maxfjf(t)j : t 2 Rg:Thus lim�u!0 jj(w(r)u )̂ jj1 = 0: (6.10)Further, we have that ŵ�u(v) = (�iv)�r (w(r)�u )̂(v);whih by (6.10) implies jŵ�u(v)j � (1 + jvj)�r C(�u); (6.11)where C(�u) is a ontinuous funtion with lim�u!0C(�u) = 0. Inserting (6.11) into (6.9),we get I1 � ZR supu2U C(�u) ZR(1 + jvj)�rjĝ(pl � v)j dv dph= jjĝjjL1 supj�uj��=N C(�u) ZR(1 + jvj)�r dv� C supj�uj��=N C(�u):This expression beomes arbitrary small for suÆiently large N . The term I2 an betreated in a similar way. Now (4.2) follows by (6.8).Finally it is easy to hek that�fh 2 G=GF : �(h) 2 Q�(hi)g � Qfor all i 2 I� as follows: LetQ be of the standard formQ = [��=N; �=N ℄�[��=M; �=M ℄�[��=M; �=M ℄ and let �(hi) = (�i; pi; 0). For l = (; q1; q2) 2 Q we obtain(; q1; q2) Æ �(hi) = (; q1; q2) Æ (�i; pi; 0)= ( + �i; q1 + os()pi; q2 � sin()pi):The term on the right{hand side an be interpreted as some �(h), h 2 G=GF ifq2 � sin()pi = 0, i.e., sin() = q2pi if pi 6= 0; q2 = 0 if pi = 0:For �xed pi 6= 0, the above equation an be satis�ed if q2 2 [��; �℄ and  2 [�Æ; Æ℄ forsome suÆiently small parameters � and Æ. Then we obtain(; q1; q2) Æ �(hi) = ( + �i; q1 + (p2i � q22)1=2; 0):For  2 [�Æ; Æ℄; q2 2 [��; �℄ and q1 2 [��=M; �=M ℄ this set has obviously a positivemeasure.The remaining ondition (4.3) an be heked numerially by performing similaralulations as in Subsetion 6.2. 28



Referenes[1℄ R. A. Adams, Sobolev Spaes, Aademi Press, New York, 1975.[2℄ J.{P. Antoine and P. Vandergheynst, Wavelets on the n{sphere and other manifolds,J. Math. Phys. 39 (1998), 3987{4008.[3℄ J.{P. Antoine and P. Vandergheynst, Wavelets on the 2{sphere: A group theoretialapproah, App. Comput. Harmon. Anal 7 (1999), 1{30.[4℄ J.{P. Antoine, L. Jaques, and P. Vandergheynst, Wavelets on the sphere: Imple-mentation and approximation, Preprint, Universit�e Catholique de Louvain, 2000.[5℄ A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptioperator equations { Convergene rates, Math. Comp. 70 (2001), 27{75.[6℄ A. Cohen, I. Daubehies, and J. Feauveau, Biorthogonal bases of ompatly sup-ported wavelets, Comm. Pure Appl. Math. 45 (1992), 485{560.[7℄ S. Dahlke and R. DeVore, Besov regularity for ellipti boundary value problems,Comm. Partial Di�erential Equations 22(1&2) (1997), 1{16.[8℄ I. Daubehies, Ten Letures on Wavelets, CBMS{NSF Regional Conferene Seriesin Applied Math. 61, SIAM, Philadelphia, 1992.[9℄ R. DeVore, Nonlinear approximation, Ata Numeria 7 (1998), 51{150.[10℄ R. DeVore, B. Jawerth, and V. Popov, Compression of wavelet deompositions,Amer. J. Math. 114 (1992), 737{785.[11℄ R. DeVore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. inComput. Math. 5 (1996), 173{187.[12℄ H.G. Feihtinger, Minimal Banah spaes and atomi deompositions, Publ. Math.Debreen 33 (1986), 167{168 and 34 (1987), 231{240.[13℄ H.G. Feihtinger, Atomi haraterization of modulation spaes through Gabor{type representations, Pro. Conf. \Construtive Funtion Theory", Edmonton,1986, Roky Mount. J. Math. 19 (1989), 113{126.[14℄ H.G. Feihtinger and K. Gr�ohenig, A uni�ed approah to atomi deompostions viaintegrable group representations, Pro. Conf. \Funtion Spaes and Appliations",Lund 1986, Leture Notes in Math. 1302 (1988), 52{73.[15℄ H.G. Feihtinger and K. Gr�ohenig, Banah spaes related to integrable group re-presentations and their atomi deomposition I, J. Funt. Anal. 86 (1989), 307{340.[16℄ H.G. Feihtinger and K. Gr�ohenig, Banah spaes related to integrable group repre-sentations and their atomi deomposition II, Monatsh. Math. 108 (1989), 129{148.29



[17℄ H.G. Feihtinger and K. Gr�ohenig, Non{orthogonal wavelet and Gabor expansionsand group representations, in: Wavelets and Their Appliations, eds. M.B. Ruskaiet.al., Jones and Bartlett, Boston, 1992, pp. 353{376.[18℄ G. B. Folland, Real Analysis, John Wiley & Sons, New York, 1984.[19℄ D. Gabor, Theory of ommuniation, J. Inst. Elet. Engng. 93 (1946), 429{457.[20℄ K. Gr�ohenig, Desribing funtions: Atomi deomposition versus frames, Monatsh.Math. 112 (1991), 1{42.[21℄ K. Gr�ohenig, Foundations of Time{Frequeny Analysis, Birkh�auser, Boston, Basel,Berlin, 2001.[22℄ K. Gr�ohenig and S. Samarah, Nonlinear approximation with loal Fourier bases,Constr. Approx. 16 (2000), 317{331.[23℄ E. Hernandez and G. Weiss, A First Course on Wavelets, CRC Press, Boa Raton,1996.[24℄ A. Grossmann and J. Morlet, Deomposition of Hardy funtions into square inte-grable wavelets of onstant shape, SIAM J. Math. Anal. 15 (1984), 723{736.[25℄ A. Grossmann, J. Morlet, and T. Paul, Transforms assoiated to square integrablegroup representations, II. Examples, Ann. Inst. H. Poinar�e 45 (1986), 293{309.[26℄ J.A. Hogan and J.D. Lakey, Extensions of the Heisenberg group by dilations andframes, Appl. Comput. Harmon. Anal. 2(2) (1995), 174{199.[27℄ A.K. Louis, P. Maass, and A. Rieder, Wavelets. Theory and Appliations, JohnWiley, Chihester, 1997.[28℄ S. Mallat, A Wavelet Tour of Signal Proessing, Aademi Press, San Diego, 1999.[29℄ Y. Meyer, Wavelets and Operators, Cambridge Studies in Advaned Mathematis,vol. 37, Cambridge, 1992.[30℄ W. Shempp and B. Dreseler, Einf�uhrung in die harmonishe Analyse, B.G. TeubnerVerlag, Stuttgart, 1980.[31℄ H. Triebel, Interpolation Theory, Funtion Spaes, Di�erential Operators, North{Holland, Amsterdam, 1978.[32℄ B. Torresani, Position-frequeny analysis for signals de�ned on spheres, Signal Pro-ess. 43(3) (1995), 341-346.[33℄ P. Wojtaszyk, A Mathematial Introdution to Wavelets, Cambridge UniversityPress, 1997. 30


