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1 Introduction

One important aspect of the study of a dynamical system is the description of its in-
variant sets. In accordance with this philosophy, it is the aim of this paper to construct
invariant manifolds for specific dynamical systems arising from random diffeomorphisms.
Roughly speaking, we present a generalization of results developed by Pesin (1976),
(1977a), (1977b). In the fundamental first paper, Pesin (1976) proved the existence of
stable manifolds for diffeomorphisms on compact Riemannian manifolds. The basic tool
for the construction is the multiplicative ergodic theorem proved by Oseledec (1968).
One part of this theorem states the existence of appropriate subbundles of the tangent
bundle of the manifold under consideration (Oseledec spaces). The stable manifolds
are obtained by ”pulling down” appropriate parts of these subbundles to the manifold.
Therefore, the resulting invariant families of submanifolds can be interpreted as the
nonlinear analoga of the Oseledec spaces.

During the last few years, it has turned out that the multiplicative ergodic theorem
remains valid in much more general situations, see e.g. Boxler (1989) and Carverhill
(1985) for details. Therefore, it seems plausible that Pesin’s results also permit further
generalizations. This program is carried out in this paper. The generalizations are
concerned with the following points.

e Instead of one diffeomorphism we study the dynamic of products of random dif-
feomorphisms.

e We construct (generalized) stable and unstable manifolds with respect to almost
arbitrary parameters disjoint from the Lyapunov spectrum.

e We construct nonlinear analoga to each of the Oseledec spaces itself (Oseledec
manifolds).

o We consider the globalization problem, i.e., we try to establish the connections
between the generalized stable manifolds of points from different orbits.

The multiplicative ergodic theorem is used to obtain an appropriate splitting of the
tangent spaces. In principle, it is possible to obtain similar results for systems having
another spectral decomposition. For instance, we could study systems to which the
dynamical spectral theory of Sacker and Sell (1978) applies. However, in our setting,
we would have to restrict ourselves to systems on compact probability spaces to apply
this spectral theory which is very restrictive. Since this assumption is not needed for
the spectral theory of Oseledec, the multiplicative ergodic theorem seems to be more
suitable for what we have in mind.

This paper is organized as follows. In Section 2, we briefly recall the concept of ran-
dom diffeomorphisms and state a version of the multiplicative ergodic theorem which is
appropriate for our purpose. Section 3 is devoted to invariant families of local manifolds.
In Section 3.1, we construct measurable families of local stable manifolds. The idea is
to reduce the problem of finding an invariant family of submanifolds to the problem of
constructing an invariant manifold for a mapping in a Banach space of sections of an



appropriate fibre bundle having a hyperbolic fixed point. Furthermore, we show that
for special parameters our construction yields strongly stable manifolds having a specific
dynamical characterization. In Section 3.2 we construct unstable and Oseledec mani-
folds by using a similar technique. Section 3.3 is devoted to the proof of some technical
lemmata. In Section 4 we study the globalization problem. It is a well-known fact that
the strongly stable manifolds give rise to a global foliation. For the generalized stable
manifolds also considered here this is not necessarily true, but we can show that at least
along the smaller strongly stable manifolds the generalized stable manifolds of different
orbits are tangent to the same spaces. A similar result holds for the unstable manifolds.
We have stated this result in the stochastic setting, but to our knowledge a result of
this type is new even for the deterministic case (which is clearly a special case of our
construction). The proof of this result is based on several technical lemmata which are
proved in Section 4.3 and on a specific construction principle for invariant manifolds in
Banach spaces which is explained in Section 4.1.

The investigations in this paper where at least partially inspired by the work of Fathi
et al. (1983). They give a new proof of Pesin’s stable manifold theorem by means of
the reduction idea sketched above. The results presented here are also closely related
to the work of Carverhill (1985) and Boxler (1989) on stochastic flows. By using a
quite different method, they show the existence of strongly stable manifolds and center
manifolds, respectively. In Section 3, we will study the relations of their work to our
approach. Furthermore, there are relations to the work of Pugh and Shub (1989). Using
methods similar to ours, they also give a new proof of Pesin’s stable manifold theorem
and use it to show the existence of ergodic attractors and the absolute continuity of
the stable foliation. Moreover, they give sharp differentiability estimates and generalize
Pesin’s results to arbitrary parameters, e.g., they also study point two of our program.
However, their work is restricted to the deterministic case, and they have no results
concerning the globalization problem for arbitrary parameters.

2 The Setting

In this section, we briefly recall the concept of random diffeomorphisms and multi-
plicative ergodic theory. Let M be a compact Riemannian manifold equipped with the
Levi-Civita connection, and let Diff?(M) denote the set of C'2—diffeomorphisms of M.
Furthermore, let (Q, A, P) be a probability space and {&,},cz be a stationary and er-
godic sequence of random variables with values in a measurable space (Y,)). Without
loss of generality, we may assume that Q = Y%, On Y%, we define the shift

Vp(w)(-) :=w(-+n), neclZ

Y is a measure preserving map and one has £, = & o 1,,. For some measurable mapping
T :Y — Difff(M) we set
To(w)oY,1(w)o...oTq(w) : n>0
e(nyw,-):=< Id : n=0 (2.1)
Tl (w)oTri(w)o...o T (w)o Yo' (w) : n<0,



where T, (w) := T (&, (w)) = T(& o V,(w)). It is easy to check that ¢ defines a cocycle
with respect to 4, i.e.,

en+m,w, ) =en,dn,(w), )op(m,w,-) foral m,n e Z. (2.2)
This cocycle gives rise to a linear skew-product flow 0, defined by

O,: AxM — QxM (2.3)
(w,2) — (Vn(w),o(n,w,x)) .
The compactness of M implies that ¢ possesses an invariant measure v on §) x M,

le.,

O,(v)=v forall n € Z and mq(v) = P,

where mq denotes the canonical projection onto the first factor. For details, the reader
is referred e.g. to Crauel (1990). One way to describe the dynamic of a cocycle ¢ is
given by the famous multiplicative ergodic theorem which says that almost everywhere
with respect to v the differential of ¢ possesses a well-defined asymptotic behaviour.
Furthermore, it ensures the existence of appropriate invariant subbundles of the tangent

bundle T'M of M.

Theorem 2.1 (Multiplicative ergodic theorem of Oseledec)
Let ¢ be a cocycle on M with ergodic invariant measure v on ) x M. Suppose that

/QxM [log* || Tp(1,w, )| + log* [[(Tp(1,w, ) 7] di(w, z) < oo, (2.4)

Then there exists a ©,—invariant set I' C Q x M with v(I') = 1 such that for some
real numbers {\;}iz1. . with Ay < ... < A, and some integers {d;},=1, . satisfying

veey

Soi_ di =d = dim(M) the following holds.
i) There exists a measurable splitting
T.M=E(w,2)®...8 E(w,z), dimE(w,z)=d,,
on I' which is invariant with respect to O, in the sense that
Bi(@u(w,)) = Ty, 2) B, 2)

ii) For all £ in Fiy(w,2)\{0} one has

) 1
M (w,z,8) = nl_l}rinoo glog I To(n,w,z)E|| = A .

veey

{Aiyd;}iz1..., is called the Lyapunov spectrum of the cocycle p. For further informa-
tion concerning random dynamical systems and multiplicative ergodic theory, the reader

is referred e.g. to Arnold and Crauel (1991).
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3 Local Invariant Manifolds

3.1 Local Stable Manifolds

In our setting, a local stable manifold with respect to a parameter ¢ € R consists
of an invariant family of immersed C'' —submanifolds tangent to the spaces Viw,z) =
Bri<pFi(w, x). Observe that it is not necessary to assume that p < 0. (Stable manifolds
with respect to parameters ¢ > 0 are sometimes called center stable manifolds or
pseudo stable manifolds, see e.g. Abraham and Robbin (1967) or Pugh and Shub
(1989)). The main result of this section shows the existence of such families under certain
integrability conditions on the functions

Glw) = sup [T(Lw, ), H(w) == sup [ T2p(1,w,2)] (3.1)
zeM zeM

To simplify the terminology, we will sometimes not distinguish between invariant mani-
folds and invariant families of submanifolds. As stated above, we proceed by transform-
ing the problem to a global situation in an appropriate Banach space. To do that , we
start by lifting the cocycle locally to the tangent spaces by means of the exponential
mapping. These local lifts give rise to a mapping in a Banach space of sections of an
appropriate fibre bundle. It can be shown that this mapping can be approximated in a
certain sense by the differential of the cocycle. By using specific measurable norms, the
zero section of the bundle is converted into a hyperbolic fixed point and we can apply
well-known results concerning invariant manifolds of these points. Fach invariant mani-
fold with respect to this fixed point corresponds to a family of local stable manifolds
for the original cocycle. This technique was first used by Hirsch and Pugh (1970) to
construct invariant manifolds on hyperbolic sets. Further generalizations were given by
Fathi et al. (1983).

The construction depends on some parameters that will be fixed once and for all. We
choose an arbitrary small number @ > 0 and construct stable manifolds for parameters p
disjoint from all intervalls [A; — a, A; + a]. For that purpose, we have to fix a Riemannian
metric on M and to construct a suitable C'*° function ¢ associated with this metric.
Furthermore, we have to fix a parameter e which controls the exponential growth rate of
some specific functions. In principle, the resulting manifolds can depend on the choice of
a,p and g. For pp < 0, it can be shown that this dependence is ameliorated in a certain
sense, see Corollary 3.1 below.

Theorem 3.1 (Local stable manifolds)
Let a € RY, u € R be some fized numbers such that i & [N — a, \; + a| for all \; and

consider the associated splitting

Vj(w,x) = @ Ei(w,x), Vuu(w,x) = @ Ei(w,x) . (3.2)

A< Ai>u

Suppose that
Elogt(G(w)) < oo, FElogt(H(w)) < co. (3.3)



Then there exists an invariant set A C T such that v(A) = 1, a measurable function
a: AxN — (0,00) and a family {W3(w, z)|(w,x) € A} of immersed C'' —submanifolds
such that

i) p(m,w, )(Wi(w, )N Bz, a(w,2,n))) C Wi(O,(w,x)) for all0 <m < n,
i) x € Wiw,z) and T,W;(w,z) = Vi(w,z) .

Remark 3.1
i) Clearly, B(x, o(w, x,n)) denotes the ball of radius o(w, x,n) at x.

ii) The first statement clarifies the meaning of invariance in our setting, whereas the
second one expresses the fact that the manifolds have indeed the desired tangen-
tiality.

iii) The integrability conditions are needed to prove Lemma 3.2. Without this lemma,
one can still prove the existence of invariant manifolds, but their size can no longer
be controlled.

Proof of Theorem 3.1:
First of all, we define a new metric on the tangent spaces of M which depends on w and
is adapted to the Oseledec spaces. We set

€l = 2T Tp(n,w,2)) + 3 NI To(—n,w,2)¢|| for € € Bi(w, ),
=0 n=1
|§|(w,ac) = mZaX|§Z|(w,x) for 5 = Zfzv 52 € EZ((‘U?‘Y;) . (34)
=1

A metric of this form is sometimes called a Lyapunov metric. For later use, we have
to clarify the relations between this new metric and the original Riemannian metric.
Furthermore, we have to study the behaviour of the differential of the cocycle with
respect to the Lyapunov metric. Concerning the first point, we have the following
lemma which will be proved in Section 3.3.

Lemma 3.1 For all € > 0 there exists a measurable function C(w,x,¢€) satisfying
C(O,(w,2),¢) < C(w, z, e)e(d”') for alln € Z (3.5)

and

PN < el < Ol 2, IIE]- (3.6)

The norm of the differential can be estimated as follows.

e(/\i+a)|§|(w,x)
e(_(/\i_a)) |§|®(w,1’)

|T99(17w7x)§|®(w,x) Z e(/\i_a)|£|(w,x) for 5 S Ei(wvx)v (37)

>
Z |(T99(17w7x))_1§|(w,x) Z e(_(/\i+a))|£|®(w,x) for 5 S Ez((a(wvx)) .
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We will only prove the first inequality in detail. By using the definition of ©, in (2.3)
and the cocycle property (2.2) of ¢ we obtain

o0

To(Lw,e)lows = Y N To(n, 0w, «))To(1,w, 2)E|

n=0
o]

_I_ Z e((/\i_a)n) "TS‘Q(_n? @(w, (E))TS«Q(17 W, x)f”

=1

B i)e( /\+anHT( (nvﬂ(w)v')OS‘o(lvwv'))fH

+ 6((/\i_a)n)"Tx(S‘o(_n7ﬁ(w)v')09‘9(17(’07'))5"

Mg Il

3
Il
—

o0

= 3 OEIM T(n 4 1w, )]

n=0
o]

+ 3 T Tp(—(n — 1), w0, 2)¢|

n=1

= ) Y7 LEOHNED T (n 4 1w, 2)¢|
n=0

o0

Z M Tp(—(n = 1), w0, 2 )¢

S e/\-l—a |§|(wac)

The remaining estimates can be proved analogously.
Next claim is to lift the underlying cocycle locally to the tangent spaces by means of
the exponential mapping, i.e., we define for a sufficiently small neighbourhood U(w, x)

of 0, in T, M
f(w,x) : TJL’M 0 U(w,ac) — Tap(l,w,x)M (38)
5 — EXP;(ll,w,x) © 9‘9(17(‘07 ) © EXpl,(f) )

These mappings have to be modified in such a way that they are defined on the whole
tangent plane. This is performed by composing them in an appropriate way with the
differential of . More precisely, one has the following lemma which will also be proved
in Section 3.3.

Lemma 3.2 For all €,( > 0 there exists on a ©,—invariant set A,A C T,v(A) =1 a
function D(w,x,¢€) such that the mapping

F(w@): TxM — Tw(17w7$)M (39)

£ To(lw, )+ (fluw — Te(l,w,))(€) .g(%)

is well-defined and satisfies



CL) Llp| |(F(w,x) - Tc,o(l,w,:z:)) <,
b) Fluw) (&) = fww)(&) for [we) < Dlw,x,¢),
¢) D(O,(w,x),¢) > D(w,x, )= for all n € Z,

d) Lip? \DF0) <1,

where g denotes a suitable O —function and 7 is a constant depending only on the
geometry of M.

Now we want to collect all the mappings F{, ) to one global function in an appropriate
Banach space. To this end, let us consider the measurable fibre bundle

(Qx M, Q xTM,n) with 7(w,§) = (w, Tpé), (3.10)

where s denotes the canonical projection from T'M onto M. According to Lemma 3.2
we will henceforth consider the subbundle

(A, 771 (A), 7).

The Banach space we want to deal with consists of bounded sections of (A, 77 !(A), 7).
Each section S is of the form

S(w7 $) = (w7 U(wv l’)),
so that we may define the Banach space B by

B:={S||5| = ( su)pA|a(w,:1;)|(w7x) < 00} (3.11)
w,r)e

Theorem 2.1 immediately implies that B possesses a splitting
B:BI@BQ@...@BT7
where
B; =15 € Blo(w,z) € E;(w, ) for all (w,z) € A}.
We set
B = B, B;:=&B. (3.12)
Ai<p Ai>p
The mapping F{, ) as well as the differential of ¢ admit a certain continuation to the
space B. Indeed, we may define

F B— B (3.13)
(‘7:5)((“)7 J}) = (wv F®—1(W71’)U(®_1(w7 J}))),
T B— B (3.14)

(TS)(w,x) = (w,Te(l,0_1(w,z))o(O_1(w,x))).

Now we are able to apply existence theorems concerning invariant manifolds in Banach
spaces to F and T. More precisely, we want to use the following version of the stable
manifold theorem proved by Irwin (1972).



Theorem 3.2 Let T' be an isomorphism of a Banach space E with invariant subspaces
Ey and By such that E = E, @& By, we define T; = T|g,. Suppose that ||Ty|| < || Ty ]|~
and let k be such that |Th|| < k < ||TyY|7Y. Let f: E — E be a (global) Lipschitz map
such that f(0) =0 and Lip(f —T) = < min(k — || T3], /|75 '||7* — &). Then the set

Wi = Az € Efsup [[+7" f*(2)]] < o0}

is the graph of a Lipschitz map g : Eiy — Ey, with Lip(g) < 1. Moreover, Lip(f|W?) <
|Ty|| + I, which implies that k=" f"(x) — 0 for n — oo if @ € W5.

To apply Theorem 3.2 it is sufficient to check

a) 7 is an isomorphism,

b) [Tl < eMita) < et < errima) < [T By ™" where Ay := maxy, <, A,

c) F —T is a Lipschitz map with Lip(F — T) < (, ( sufficiently small.
For then, the conditions of Theorem 3.2 are satisfied with k = e#. Eq. (3.7) yields

T

= sup  sup [To(1,0-1(w, 7))o (O-1(w, ))|(w)
S€B;,|S|=1 (w,x)

< sup sup(eMTo (0 (w, 7))o, )
S€B;,|S|=1 (w,x)

< elhita)

— Y

B;

which implies that 7 is bounded. The boundedness of the inverse (7'5)(w,z) =
(w, (Te(l,w,2)) Lo (O(w, z))) can be proved analogously, so that a) is shown. Statement
b) follows from the estimates

1T |B:| < max|T || < maxelite) < ePuta) 771 g, | < maxel~(im0) < el=(upi=a)),
" Ai<p ' A< ’ " Ai>p

Finally, c) is a consequence of Lemma 3.2 a):

(F=T)S = (F=T)5| < C(Sup) |o(O-1(w, ) = 5(O-1(w, 2))|o_, (wa) < ¢|S = 5.

Therefore, we can use Theorem 3.2 to deduce that the set

W, = {5 € B|sup e FrS| < oo}
n>0

is the graph of a function G : B} — B satisfying G(0) = 0 and Lip G < 1.

It can be checked that the global mapping G gives rise to local mappings G(w, x)
of the tangent spaces into themselves. The desired local manifolds are determined by
G(w,x), i.e., they can be obtained by simply applying the exponential map to the graph
of G(w,x). To carry out this construction, we want to use the following lemma which
will be proved in Section 4.1.



Lemma 3.3 G induces a family of mappings
Glw,z): Vj(w,x) — Vuu(w,x)

such that
g(S)(wv J}) = (wv g(wv J})U(w, x))

Using the functions G(w, x) we define
Wi(w,x) := Exp,{¢ € graph G(w, z)| |§|(W7$) < D(w,x,€)} . (3.15)

We have to verify that these objects satisfy the conditions i) and ii). Let us start by
proving i). To this end, it is sufficient to construct the measurable function « in such a
way that for all m <n

= Wi(w,x)ﬂB(x,oz(w,x,n)) = |F@m_1(w71,)o. ) .oF(wJ)oEXp;l(z)|@m(w7l,) < D(Op(w,x),€).

(3.16)
This can be seen as follows. For » € Wi(w,z), z = Exp,(£) we define
o (0,8 if (@0,7) = (w, ),
8¢ = 3.17
(“”9”)(%:1;) { (@,0) otherwise . (3.17)

Obviously, 5(W 2 € graph G, and since graph G is invariant with respect to F it follows
that .7'—7”5g ) € graph G. Therefore, since

Fo,._ 1 (w2)°°F (w2 ()

}—m(sfww) = 06, ’ ’ (3.18)

we obtain
Fo, \(wa) 0.0 F(§) € graph (O, (w,)).
Hence, by using Eq. (3.16), Lemma 3.2 b), Eq. (3.8) and the cocycle property (2.2), we
get
DO (w,z),€) 2 |Fo,,_ (wa) ©- /e (wn)
= |fom_i(wr) ©- Ofwx (Elom(w,
= IEXD (10, () 10.00) © P (L ﬂm—l(“)v ) © BXPy it )
OEXptp(ll,ﬁm_g(w),np(m—?,w,x)) o...0p(l,w,)oExp,(&)|em(we)
= |EXPZ (00 0P (1 Vi1 (W), ) 0p(1, 0 (W), )0 0p(1, w0, ) 0 Exp, (€)@ (wrr)
= [EXD S 0y © P(17,0, ) (2)0m(0)

which implies that
plm,w,z) € Wi(On(w, z)).
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Let us define the function a(w,z,n) as follows:

C(w,z, €)' D(w, x, ¢)el=) if e(wte) 4 ¢ <1,

3.19
(e(/\k+a) + C)‘”C(w, x, c)_lD(w, x, 6)6(—571) otherwise . ( )

a(w,x,n)::{

We will only discuss the second case in detail, the first case can be studied analogously.
Suppose that z € Wi(w,z), d(z,2) < a(w,z,n). Then, by employing Theorem 3.2,
Lemma 3.1 and Lemma 3.2 we obtain

|F®m_1(w,x) 0...0 F(Wvl’)(f)|®m(w,x) — |f‘m5£ )|
_ ( /\k-l—a _I_ m|§| wx

VAN VANRVANRVAN

and i) is proved. It remains to prove ii). To this end, we want to use the following
theorem.

Theorem 3.3 Suppose that the conditions of Theorem 3.2 are satisfied. Furthermore,

suppose that f is a C'—map and that Lip(f — T) is sufficiently small. Then g is also a
Cl'— map, and if Df(0) =T, then Dg(0) = 0.

For k < 1, the proof of Theorem 3.3 was also given by Irwin (1972). However, it is
easy to prove the theorem in its full generality by using the graph transform method
described in Section 4, see e.g. Dahlke (1988) for details. To apply Theorem 3.3, we

introduce the mapping

DF(S): B— B
Df(S)(g)(w,x) = (W, Doo_(wa) Fo_ (wnd(O_1(w,x))).

Lemma 3.2 d) implies that

[F(S+5) = F(S) = DF(5)S] < sup (501 (@, )5 (0| F(O-1 (w0, 2)) oy < |57,

which shows that DF(.S) is indeed the derivative of F. Furthermore, since ToExp, = Id,
we obtain

DF(0)S(w,z) = (w,DoFo_,(wno(O_1(w,z)))
= (w, Do(Exp;' 0 p(1,0-1(w), ) 0 ExXpy_1p0))o(O-1(w,z)))
= (vaS‘Q(lv6—1(w7x))0(®—1(w7x)))7
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which implies that DF(0) = 7. Therefore, it follows from Theorem 3.3 that G is C*
and DG = 0, and hence, by employing the continuous linear operators

wye) Vj(w,x) — B Twe) ' B — Vuu(w,x)

£ — 5(5(”71,) S — o(w,x)

we obtain that each local map G(w, ) is C* and satisfies DoG(w,x) = 0, i.e., G(w, ) is
tangent to V7. O

Remark 3.2

i) The proof of Theorem 3.1 shows that, in principle, similar results can be obtained
for dynamical systems on non-compact manifolds. However, in this case, one
has to assume the existence of an invariant measure. Furthermore, the radius of
injectivity of the manifold under consideration has to be different from zero.

ii) To be on safe side and to obtain a C''— family of submanifolds, we have assumed
that Y(w) € Diff*(M). As one would expect, the smoothness of the submanifolds
Wi (w, x) increases with the smoothness of the cocycle . In fact, it can be checked
that if T(w) € Diff" (M), then the W;(w,z) are C"~'. In the deterministic case,
sharper results are available. For instance, it can be shown that for a C"+F—
diffeomorphism the strongly stable manifolds are also C"*+#, provided that r + 3 >
1, see Pugh and Shub (1989) for details. Under some additional conditions, a
similar result holds for the generalized stable manifolds.

iii) The set W} is also invariant with respect to F~1 . This is a consequence of its
dynamical characterization according to Theorem 3.2. Using this property, it can
be checked that the family {W;(w, z)|(w,z) € A} is also backward invariant in the
sense stated in part i) of Theorem 3.1.

According to Theorem 2.1, the distribution formed by the subspaces V*(w, ) is mea-
surable, i.e., it is given by a measurable mapping into the corresponding Grassmann
bundle over M. The local stable manifolds W (w, ) can be interpreted as the nonlinear
analoga of the spaces V;/(w, z). Consequently, they are measurable in a similar sense.

Theorem 3.4 Let CO(VMS, V') denote the measurable bundle over A whose fiber with re-
spect to (w, x) consists of the continuous functions from V3 (w, x) into V'(w, ), equipped
with the topology of uniform convergence on compact sets. Then the mapping

A COVEVY
(w,2) — G(w, )

provides a measurable section of this bundle.
Proof: Let B(M) denote the Borel c—algebra of M. It can be checked that the subset

B, :={S€B|Sis A®B(M),A® B(T'M) — measurable}
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forms a closed subspace of B, see e.g. Dahlke (1989) for details. Analogously to B, B,
can be decomposed as

Bm = Bfn,p, @ Bfn,u?

where

B = {S € By| o(w,x) € V;(w,x)},
B, = {S€ Byl o(w,x)c V(v )}

Therefore, the construction of Theorem 3.1 can also be performed for the space B,,,
which implies that the set

W, =15 € Bn|sup le=H Fr S| < oo}
n>0

is the graph of a Lipschitz map G,, : B; , — B, . Once again, G,, induces local maps
Gm(w, x), and it can be checked that they coincide with the mappings G(w, ), see again
Dahlke (1989) for details. We want to use the following theorem.

Theorem 3.5 Let (X, A) be a measurable space and M, N separable and metrizable
C>— manifolds. Let C°(M,N) denote the space of continuous functions from M into
N, equipped with the topology of uniform convergence on compact sets. Furthermore, let
map(X, M) and map(X, N) denote the space of all mappings from X into M and N,
respectively. To an arbitrary function f: X — C°(M, N) we associate the mapping

J: map(X, M) — map(X,N)
J(O0)(x) = f(z)0(z).

If J maps measurable functions into measurable functions, then f is measurable.

For the case that X is a polish space with Borel o—algebra this theorem was proved
by Fathi et al. (1983). However, it can be checked that this assumption is in fact not
necessary, see Dahlke (1989).

Consider the sets

Vio= | ({wl x Vi(w,2)) cQxTM,
(w,@)EA

ve = ({wl x Vi(w,2) C QO x TM.
(w,@)EA

Since the spaces V;)(w,z) and V!(w, x) depend measurable on (w, ), it follows that the
bundles V* and V* are measurable trivial, i.e., there exist measurable mappings

T¢: Ve — AxRF, k=dimV}(w,2),
T": V* — A xR

13



Using the first trivialization, the space B; , can be identified with the set M(A,RF)
of measurable functions from A into R*. The space B, can be treated similarly.
Therefore, G, induces mappings

G: A — C°RMRTH
(w,2) — G(w,2).

However, since J defined by

J: M(ARY) — M(A R
J(O)(w,x) — G(w,z)(0(w,x))

is well-defined, i.e., maps measurable functions into measurable functions, Theorem 3.5
implies that the mapping (w, ) — G(w, x) is measurable. O

Remark 3.3 We have not used the space B, in the proof of Theorem 3.1 since it was
sometimes convenient to use the functions 55(” .- However, without further assumptions
on the space (€2, A) it is not a priori clear that these sections are measurable.

If we choose i < 0, then a little bit more can be said about the structure of the resulting
stable manifolds, for then, the points in Wj(w,z) possess a dynamical characterization.
By using a quite different approach, a result of this type was proved before by Carverhill
(1985).

Corollary 3.1 (Strongly stable manifolds)
Let i < 0 and € sufficiently small. Then there exist measurable functions 3(w,x),v(w, x)
such that

z € Wi(w,z) N Bz, B(w,x)) if and only if

z € B(x,B(w,z)) and d(p(n,w,z),o(n,w,z)) < ’y(w,x)e((“_e)”) for all n € N.

Proof: It is sufficient to show

a) z € Wi(wvx) = |EXP;(1 )(@(nvwvz)”@n(w,x) < (e(/\k+a) + C)n|EXp;1(Z)|(W7$),

n,W, T

b) = € Wiw,a) <= [Expl, oy (9(0,0,2)) o) < ¢ D(w, 2, ¢)

n,W, T

This can be seen as follows. Suppose that a) and b) hold. By means of Lemma 3.1 these
implications can be easily transformed to the original Riemannian metric. We obtain

a) z € Wi(w,2) = d(p(n,w,z), o(n,w, 2)) < rC(w, z, ) (™) + () d(z, 2),

b) z € Wilw,z) <= d(p(n,w, ), p(n,w,2)) < D(w,z,)C(w,z,¢)~ ellt=Im)

14



Therefore, if we define

then &) yields for z € Wi (w,z) N B(z, (w,z)) and € small enough since erta) ¢ < et

d(p(n,w, ), p(n,w,2)) < rCw,a, (™) 4 ()d(x, 2)
n) D(w, z,¢)

((p—e)yn) A\ =)
rC(w,z,€)e Clwa, o

IA

D(w,2,€) ((u-0pn)
Clw,z,¢)

= 7(@7 x)e((“’_e)n)?

IA

and the other implication is a direct consequence of lN))
Let us carry on by proving a). Since g < 0 we may choose ¢ small enough such that

e(Arta) +l<et <e .
Suppose that z € W3 (w, ), z = Exp,({). Then Theorem 3.2 and Lemma 3.2 imply

|F®n—1(w,1’)o' . 'OF(W,x)(§)|®n(w,1’) < (e(/\k+a)‘|'§)n|§|(w,x) < e(_m)D(w, €T, 6) < D(®n(wv l’)v 6)-
Therefore, we obtain

(e 4+ O™ Exp; (D)) = 1Fon_y(w) © -« © Flow)(E)|on wa)

= |f®n_1(w71’) 0...0 f(w,x)(§)|®n(w,w)
-1

= |Expw(n7w,x) (p(n,w,2)) |®n(W71’)7

and a) is shown. It remains to prove b). We have to show that ¢ € graph G(w, ), i.e.,
5fw 2 € graph G. To do that, we want to use the dynamical characterization of the set

W, according to Theorem 3.2. By employing once again the fact that e D(w, x,€) <
= D(w, x,¢) < D(O,(w, x), ¢) we obtain

[Fo_w) 0+ © Flow)(E)lonwe) = IEXD, 0@ (1w, 2) |0, w0
and therefore
|€(_“”)f”5(£W,x)| = e(—“”)|Exp;(1n7w,x)99(n,w,Z)|®n(w,x) < D(w,z,€) < oo.
The Corollary is proved. a

From the construction of the spaces V(w, ), it is clear that V7 (w,z) C V;? (w, ) if
1 < pig. Since we have interpreted the manifolds W3 (w, z) as the nonlinear analoga of
the spaces V(w, x), they should behave in a similar way. Indeed, one has the following

15



Corollary 3.2 Let the numbers py, ..., u.—1 be chosen such that
MFta<py<d—a<mta<...<p_1<A—a.

Then
Wi (w,2) CW; (w,2) C...C W, _(w,2).

Proof: The dynamical characterization of the set W; implies that it is sufficient to
show that the conditions of the Theorems 3.2 and 3.3 are satisfied simultaneously for all
i, 1 =1,...,7 — 1. However, this can be easily checked by using the definition of the
Lyapunov metric in Eq. (3.4) and the fact that the constant ( may be chosen arbitrary
small. O

3.2 Unstable and Oseledec Manifolds

From our point of view, an invariant family of C''—submanifolds Wi(w, x) is called a
family of unstable manifolds if each W (w, z) is tangent to V*(w, ). In principle, the
existence of such a family can be shown by mimicking the proof of Theorem 3.1 with
o(—1,w,x) instead of ¢(1,w,z). However, this could e.g. produce a different function
D(w,x,€) which would be very unconvenient in the following. As we will see, it is
necessary for our purpose to fix all the functions and parameters that are used once and
for all. Therefore, we will prove the existence of the unstable families by employing the
setting of Theorem 3.1.

Theorem 3.6 Suppose that the conditions of Theorem 3.1 are satisfied. Then there
exists a set A C 1" such that v(A) = 1, a measurable function § : A x N — (0,00) and
a family {W}(w, x)|(w,z) € A} of immersed C*—submanifolds such that

i) o(—m,w, )(W;j(w,x) N B(x,d(w,x,n))) C W:L‘(@_m(w,x)) for m < n,
i) x € Wi(w,z)and T,W}(w,x) = Vi (w, ).

Proof: We want to apply the Theorems 3.2 and 3.3 to F~! and 7 1. It can be checked
that
LipF~' < (|T7'7" = Lip(T — F))~" (3.20)

and therefore
Lip(F~H =771 < T HLip(T = F)(IT ™ = Lip(T = F))~" .

Hence, we are able to fulfil the conditions of Theorem 3.2 by choosing the parameter ¢
in Lemma 3.2 sufficiently small. Once again, Lemma 3.3 implies the existence of local
functions H(w, x) which determine the unstable manifolds. By construction, one has

FHS)w,2) = (w0, F(Lyo(0w, x)).
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Therefore, it remains to show that there exists a function L(w, z,€) satisfying
L(O,(w,z),¢) > L(w,z)e= "D n ez,

and
F@;il(w,x)(f) = f@;il(w,x)(f) for |§|(W71’) S L((‘U?x? 6)7
for then, after setting
Wiw, ) := Exp,{¢ € graph H(w, )| [¢](ws) < L(w,z,€)}

the function § can be obtained by following the lines of the construction of the function «
in Theorem 3.1. The function L can be generated from the function D. By construction

|FG;_11(W7x)(§)|®_1(w,x) < D(O_1(w, ), ¢)
implies
F@;_ll(w,x)(g) = f@;il(w,x)(f) :
Furthermore, one has
176 (o wa) STiDFG! (€l
<[1Te(1,0-1(w, @)™ = Lip(Fo_ () — To(1, 01w, )] 7 € w.a)
< (M — O

compare with (3.20). Therefore, by setting
L(w,z,€) := D(w, z, e)e(_e)(eul"'“) —()
it follows for ||y, < L(w, z,€)
|FG;_11(w,x)(§)|®—1(W7l’) S (e(/\rl—a) - C)_1|§|(W,l’) S D(wv €T, 6)6_6 S D(®—1(w7 l’), 6)'

Finally, since F is Lipschitz-close to T, F~1 is C'! which implies that Wi(w, ) is ct. o
So far, we have constructed stable and unstable manifolds associated with appropriate
parameters . Our construction shows that this parameter can in fact be chosen almost
arbitrary, so that it seems natural to try to intersect the stable and unstable manifolds
with respect to different parameters to obtain invariant manifolds tangent to the Oseledec

spaces F;(w, x) themselves. The following theorem shows that these so-called Oseledec
manifolds really exist.

Theorem 3.7 Suppose that the conditions of Theorem 3.1 are satisfied and that the
number p; < pg are disjoint from all intervals [\, — a, A\ + a]. We set

Vi(w,z) = P FEi(w, ), Vi (w ) = P Ei(wa), Vi(w,z) = P Ei(w, ).

Ai<p1 1 <Aq< 2 A > 2

Then there exists a set A C ' such that v(A) = 1, a measurable function p: AxNxN —
(0,00) and a family {W; , (w,z)|(w,z) € A} of immersed C'—submanifolds such that
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(On(w,x)) forn <N,
(O_p(w, ) form < M,

) om0, ) (Wi (@
pl=m,w, - )J(WE L, (@

i) e WS (w,x) and T,WE | (w,x) =V | (w, ).

1,42 1,02 1,42

1,42

)N Bz, p(w,z, N M))) C W¢

K1, H2

)N B(x, plw, 2, N, M))) C W¢

Proof: Once again, the proof can be performed by using global results on invariant
manifolds in Banach spaces. Consider the splitting

s L . C P . I .
BM T @ B“ M 2t @ B“ BM2 T @ BZ'
Ai<pr p1 <A1 <pi2 p2 <A

If we set A\, := maxy, <, {Ai}, An i= maxy, <, {Ai}, then we obtain by Eq. (3.7)

Tlss, | < et et < emiime) < |77
ur

1
m M2| (321)
| < et < g2 < Bnvima) < 7= 1|Bu|

Ml 12

We want to use the following theorem on invariant manifolds.

Theorem 3.8 Let T' be an isomorphism of a Banach space E with invariant subspaces
Fy, By and By such that £ = Ey @ Fy @ Es, we define T; = T|g,. Suppose that

ITo)l < N7~ < Tl < 175717
and let k and K be such that
1T > 6 > Tl (T~ > & > (7571
Let f: E — E be a (global) Lipschitz map such that f(0) =0 and
Lip(f =T) =k <min(||T5|7" — &, 5 — || T2]),
Lip(f 7 =17 =k <min(|Tf|™" = & & — [ T51)).
Then the set

Wi = {r € E| sup |7 f"(2)|] < oo A sup &7 7" ()] < oo}

is the graph of a Lipschitz map g : Ey — Ey @ E3 with Lip(g) < 1. Furthermore, if f is
a C'—map and k, k sufficiently small, then g is C*, and if Df(0) = T, then Dg(0) = 0.

A proof of this theorem can be found e.g. in Dahlke (1989). If we choose the parameter ¢
in Lemma 3.2 sufficiently small, then it follows by (3.21) that the conditions of Theorem
3.8 are satisfied which implies by Lemma 3.3 the existence of suitable functions

Clw,z): V) (wx) — V) (w,2) BV (w0, z).

H1,H2

Therefore, we may set

Wi (@, 2) i= Exp, {€ € graph C(w, 2)] [{|.0) < min(D(w, z,¢), L(w, 2, ¢))}

15142

and proceed as in the proofs of the Theorems 3.1 and 3.6. O
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Remark 3.4 In the case of one vanishing Lyapunov exponent we obtain for p; =
—b, py = b the so-called center manifolds. For stochastic flows on R¢, and by using
a quite different method, the existence of center manifolds was established by Boxler
(1989). Clearly, this non-compact case can also be treated in the way suggested here,
see Remark 3.2. On R? equipped with the canonical connection we obtain

fwa)(&) = Expgiy 40 0 o(L,w, ) 0 Exp,(€) = ¢(Lw, o + &) — o(L,w, ) := ¢(1,w, 2, §).

Let us furthermore define

qb(lvwv ) = 99(17(“)7 T+ ) - 99(17(“)7 l’) - TS‘Q(L(‘U? l’)()
In Boxler (1989), the center manifolds are obtained under boundedness conditions on

the derivatives of ¢. Fach point y in the resulting manifold possesses a dynamical
characterization of the form

1 1
lim sup —10g H@(nvwv Z, y)” < 57 hI_I)l inf—log H@(nvwv Z, y)” > —9 (322)
n—4—0o0 N

n—+oo N

for some sufficiently small 4. This result can be obtained in our setting as follows.
Suppose that

[Do(1,w, )] < W

Then
| flow) (T (1,0, 2 )~ flo.m) (m)-T (1w, 2)n) 0w <C(O(w, z), )]|p(1,w, ) — (1, w,n)||
ggug — 1l < CIE — Dwnn)-

Therefore, for ( sufficiently small, we can use Theorem 3.7 to obtain the center manifolds
as graphs of the mappings

Clw,a): Folw,z) — V2 (w,z) B V! (w,x).

Every point ¢ € graph C(w, x) satisfies

FG)n_l(w,x) ©...0 F(w,x)(f) = f@n_l(w,x) ©...0 f(w,x)(f) = @(nvwv L, 5) .
Hence Lemma 3.1 and Theorem 3.2 yield
r|95(n7w7x7§)|®n(w,x)
7 Fo,_ () © - 0 Fluw)(§)|en ()
r(LipFlw; )" €] (w.2)
r([T1B; + €)" €] )
rC(w,, e)(e" + )" [I]l;

[e(n,w, 2, )

VAN VAN VAN VAN VAN

and therefore

1 X . 1
—log[|p(n,w, v, || < log(e® +¢) + —~log(rC(w, 2, €)l|¢]])

which means that in the forward direction our construction also gives rise to a dynamical
characterization of the form (3.22) with § = log(e® + (). The backward direction can be
treated analogously.
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3.3 Proof of the Lemmata 3.1 and 3.2

Proof of Lemma 3.1

First of all, it can be checked that for all p disjoint from the Lyapunov spectrum and
¢ > 0 sufficiently small there exists a function A(w,z,¢€, 1) satisfying

I To(n,w,z)f]] < Aw,z, c,u)]\fﬂe(“”) forall £ € Vi(w,z), n >0, (3.23)
I To(—n,w,2)f]] < Aw,z, e,u)]\fﬂe(_“”) for all £ € V(w,z), n >0, (3.24)

AO,(w,2),e,u1) < A(w,x,e,u)e(d”') , ne’l. (3.25)
For deterministic systems, the existence of such a function was established by Fathi et
al. (1983). However, their proof immediately carries over to the stochastic situation

since it is only based on Theorem 2.1 and Hadamard’s inequality. Using (3.23), (3.24)
and the definition of the Lyapunov metric in (3.4) we obtain for & € F;(w, x)

Alw,z, 6, \i + 5) + Alw, z, 6, i — 5)
o < el

1 — e(_%)

which implies for £ =377, &

(3.26)

A(w,x,c, )‘2 + g) + A(w,x,c, )‘2 - g)
|§|(w,x) - m?X |£2|(w,x) S meX ( : 2 Hfz” .

1 — e(_%)

The expression on the right-hand side can be estimated further by employing the angle
¥, (w, z) between two subspaces V?(w, ) and V'(w, x) which is defined by

) e
cos((e0,2)) i= p{Mmelfem(a)vnem(a)}a (3.27)

where 1 is disjoint from the Lyapunov spectrum. The asymptotic behaviour of such an
angle is described by the following lemma which is a generalization of the corresponding

deterministic result of Pesin (1976), see Dahlke (1989) for details.

Lemma 3.4 For every € > 0 there exists a measurable function M(w,x,€) on I' such
that

M(w,x,e,p1) < sin(%)

: (3.28)
MO, (w,2),e,p) > M(w,x,c,/,c) ~nl) for all n € Z. (3.29)

The norm of one component &; can be estimated from above by

€] < Hlff%¢me$DVmwa (3.30)
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see the proof of Lemma 4.7 for details. Therefore, combining (3.30) and (3.28) we obtain

117’—1 . @/)/\]4_@((4),1') — 117’—1 _
&l <277 [T sin(—=—=——=)7" ¢l <277 II M(w, 2, e, 0 + )7 I€]]
Jj=1 7=1

so that, by inserting this expression into (3.26), we see that

21gr r—1
C(wvxve):: (maX(A(wvxvgv)‘i + g)—I_A(w?vav)‘i - )))HM(w,x7E,)\j+a)_l
T T

l—e 32\ r 2
does the job since
C(O,(w,x),€)
1—1r
273

_ (maX(A(e)n(w, 2), ; )\Z»+%)+A(®n(w, ), 5 hi— )))ﬁM(@n(w, 2), ; A+a)!

1—e™ i

(M)

Proof of Lemma 3.2:

Essentially, this lemma is the generalization to the stochastic situation of a corresponding
deterministic result proved by Fathi et al. (1983). In Dahlke (1989) a detailed description
of this generalization is given, so we will be brief and restrict ourselves to the presentation
of the main ideas. For further information, the reader is referred to Fathi et al. (1983)
and Dahlke (1989).

Let (Ui, ;)i=1,...m be a fixed finite atlas of M and let 7 > 0 be a sufficiently small
number less than the radius of injectivity such that for # € M the ball B(x,7) lies
strictly inside a domain Us(,). This is always possible by Lebesque’s covering lemma, see
e.g. Walters (1982) for details. First step is to show that for all € there exist functions
E(w,€),I(w,¢) such that for all (w,z) in a set A C I', v(A) = 1 the mapping fuq is
well-defined for £ € T, M with ||¢]| < FE(w, €) and satisfies

| De frowy = Do fomll < Lw, 1€ —nl|

Furthermore, we want to show that £ and I can be chosen such that

EW,(w),&) > E(w,é)e=nD
[(9,(w), &) < I(w,&)eldD

for all n € Z. Moreover, the function E(w,é€) has to satisfy E(w,€é) < 1. However, the
construction presented below provides this property in a natural way.
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From the estimate
d(e(l,w, ), 0(1,w,y)) < %}I&!\T@(lawai‘)“d(%y) < G(w)d(z,y) < max(G(w), 1)d(z, y)

we see that f(, ) is well-defined for all ¢ € T, M with ||¢|| < r(max(1,G(w)))™" and that
there exist charts (U;, ¢;), (Uj, ;) such that Exp,(§) € U;, ¢(1,w,Exp,(£)) € U;. By
employing this fact, a long-winded, but standard computation using local coordinates
shows that

1De flwie)= D frava | < el(max(1, G(w))* +max(1, G(w)+max(L, H(w)][[E—nll =:J(w)|E=n],

where ¢ only depends on the geometry of M. Let us now consider e.g. the term
é(w) := c¢max(l,G(w)) in more detail. Our integrability assumptions clearly imply
that E'log é(w) < 00. Therefore, since the shift by 9 is measure-preserving, we obtain
by Birkhoft’s ergodic theorem that

1 n—1 »
li_>m — > log G(¥;(w)) exists P —a.e.,

and hence

. 1
lim —
n—%too n|

log G(0,(w)) =0 P —ae..

Consequently, for every € > 0 there exists a number N(w) such that

G0, (w)) < el for In| > N(w).

The other terms can be estimated analogously, so that we have established the existence
of a measurable function J(w) satisfying

J(0,(w)) < J(w)el@™) foralln € Z, we Qy, O CQ, P(Q) = 1.

An application of Lemma 1.1.1 in Pesin (1976) yields the existence of a function /(w, €)
satisfying

I(w,¢), (3.32)
Hw, &) neZ, we.

IA A

[(90(w), €)

The function F(w, €) can be constructed analogously with respect to a set 5. Therefore,
by setting
A= ((leQQ) X M)OF

we have proved our first claim.
After these preliminaries, we are now ready to prove the estimates stated in Lemma

3.2. We set for ||¢]| < FE(w,é€)
) (€)= Jwm (&) = Te(l,w, 7)€
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Next we choose a C*—function ¢(?) in such a way that

L <2
g(t):{o it

Then, using g and an appropriate function K(w,z,€) < 1 which will be constructed
below the mapping

Hiy0)(§) = hwo)(§)g (EQ((,U, al)‘g’t(w, , 6))

is well-defined for all ¢ € T, M. (In the sequel, we will sometimes drop the arguments
w,z and &) We will proceed as follows. First of all, we show that for £, € T,M

i) |H() — H(n)|| < by JKETHE =]
i) |DeH — D H|| < by J K3 E73||6 — |2

with some constants by, b;. Next step is to rewrite these inequalities in terms of the
Lyapunov metric. From the resulting estimates the function K (w,x,€) can be derived.
Finally, an appropriate modification of K(w,x, €) gives rise to the function D(w, z,¢).

We only want to show ii) in detail. Statement i) can be proved analogously. First of
all, it is easy to check that for ||¢]| < FFE(w, ) K (w, x, €)

a) o) () < 72J(w, K (w, 2, E)?,
ﬁ) Hth(WJU)H S F‘](wvg)[((wvxvg)v

v) Lip Pw,z) < FJ(w, &) K(w,x,€),

N

8) Lip? Dhyr < (27F)7J(w, &) K (w, z, )7,
We have to study

P 2 2 2
Dee(€) = De (o) ) €)= gigas s MENEC)-+al ) DeR(E)

We want to estimate these two terms separately. To do that, we have to distinguish
between the following cases.

- 5777 € B(()?FE[()v
- £ € B(0,FEK), n ¢ B(0,FEK),
- &n ¢ B(O,FEK).
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We will only study the first case in detail. Using ) and §), the second term can be
estimated as follows.

oLy e — g b a < eI — g Iy s — D
NErpe prpz/ ot = e 2~ Ny ¢ "
< FJIK 1i |H§H2 . HUH2|2 (~)%J[7%H§_ H%
= p g 22 2K2 2r A n
oo N IDUEN =Ml st et n
< K Lip> P 2N JKZ|E = nll2
< 7JK LipZg | K LR 12+ (27)2 J K2 [[€ — )|
T Tk Hf 77” N 1
< 7JK Lip2g (27 + (272 JK2||€ — nl|2
pzg ( )(E[) (27) 1€ =]
JKz 1 i
< [rLlp g (27)% + (27)2])1€ — | 7.

The treatment of the first term is a little bit more involved. We get

2 2 2 2
I 2@ — g () 2. )
) el

2
< ! h e [ : —dq :
< mae || g h €. ) — zzh )0 )+ mzh (). Yl () — o (A
The right-hand side can be estimated further by using the following facts which will be
proved below.
a) [[2E7K2R(E)(E, ) — 2E72K2h(n)(n,-)|| < (2F)2JKZE72|€ - ||2,
b) [2ET*K2R(&)(&, )| < 4P TR E2,
for [|€]], |[n]] £ FEK. Using a) and b), we obtain

2 2 2 2
I (o) (@) — o' MME[ b n, )|
Il

E? |E2K2 FE?K?

5

2r)2 1 1
<max|g|( )2 JKZ|[E—n|> +

JK* Rl 1 L
< pa [max |¢/](27)7 + 47%(27) > Lip=¢/]|[€ — |7,

2

so that, by combining the estimates of both terms, we finally get

JK‘
| D¢ Hiw.r)y — Dy Hw || < PR 1€ —nl|?

as stated in ii).
Let us carry on by proving a) and b). Combining &), v) and the fact that ||¢|| < 7EK
we obtain for an arbitrary ( € T, M

[R(E)E, ) = ~(n)(n, Ol < ([R(E) = RODINENNCH + [[R)II(E = n, O
< PJKE=nlllIENCh + 7 K2|I€ = nlll[C]]
<

272 T K€ —nll|<],
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and therefore

2 2 472 J s L (27)3JK: s
- N - . < AT _ 7 =~ 7 T _ 2
l 27z K& ) = g P )l = —5 (2PE)Z(IE — | 7zl =l

proving a). Statement b) follows immediately from the estimates

2 472 J 472 4P JK
s b6 £~ el < 22 K) < =5

Now let us return to our original goal. Using Lemma 3.1, the statements i) and ii) can

be transformed to the Lyapunov metric as follows

111) |H(W7w)(§) — H(W7x)(77)|@(w7l,) < T61€EC((4), z, E)J[X]E_wf — 77|(w7x),

(w
From iii) and iv) we can guess how to choose the functions K (w, x, €) and D(w, x,€). We
o8 CE 1
13022 C(w, x, €)2J? rbyefC(w, 2, €)J’ '
Then (3.32) and Lemma 3.1 imply that

K(O,(w,z),8) > K(w,z, &)™

set

K(w,x,€) := min (

K(w, z,¢€) can now be used to construct the function D(w,z,¢). We define for € = 5

FE(w, ) K (w, x, €)

T
227y

D(w,x,€) :=
Then D(w,x,€) satisfies
DO, (w,x),€) > D(w,z, e)e(_d”'),

i.e., statement c¢) in Lemma 3.2 is proved. It is easy to see that for this choice of D(w, x,€)
the other statements of Lemma 3.2 also hold. Property a) is a consequence of iii) since

: : P12
Lip| ((Fuz — Te(l,w,z)) = Lip|, ((f(w,x) — T@(L%l’))g(m)

. [l
= L1p| | ((f(w,x) - T@(l,w,l’))g( EQ](Q)

d) follows from iv) in a similar way. It remains to check b). However, using (3.6) we
observe that |{|(..) < D(w,z,¢) implies

H5H2E—2Af—2 S 7:22—1

and therefore

1€]1°
—1
dSryel
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4  The Globalization Problem

In Section 3 we have constructed local invariant manifolds with respect to almost arbi-
trary parameters disjoint from the Lyapunov spectrum. It seems natural to ask if these
local objects can be "glued together” to well-defined global foliations. It was shown by
Pesin (1977a) and Carverhill (1985) that this globalization procedure can be carried out
for strongly stable manifolds, i.e., for g < 0 the local stable manifolds give rise to inte-
gral manifolds of the distribution V’(w, ), see also Ruelle (1979). However, the proofs
are always based on the dynamical characterization of the local manifolds as described
in Corollary 3.1. For g > 0, such a dynamical characterization does no longer hold, so
that this case is much more complicated. Without a dynamical characterization, the
structure of the local stable manifolds can depend e.g. on the chosen parameters and on
the C'**—function. Similar problems occur already for the construction of deterministic
center manifolds, see e.g. Carr (1981) for details.

Nevertheless, even for ¢ > 0, the construction is by no means arbitrary since the
local manifolds are derived from a global problem with a unique solution. Therefore, all
the properties of the family {W;(w,x)| (w,z) € A} are hidden in the manifold W}, and
the globalization problem corresponds to the study of this huge object. This study is
performed in two directions. First of all, we try to describe in more detail the general
properties of invariant manifolds for hyperbolic fixed points in Banach spaces. Secondly,
we try to extract more information from the special structure of the Banach space we
are working with. A combination of both directions yields the main result of this section
which says that there is no arbitrariness along the strongly stable manifolds, even not
for the generalized stable manifolds, i.e., for u1 <0, o > 0 and y € W} (w,z) we have
T,W: (w,2) =V (w,y).

To derive the properties of invariant manifolds, one has to study the proofs of the
corresponding existence theorems. There are more or less two basic approaches. The
first one, derived by Irwin (1972), is not suitable for our purpose. The second one is
the more geometric approach developed by Hirsch and Pugh (1970) called the graph
transform method. As we will see, this geometric method can be used to prove our
result. In Section 4.1, we will state its main properties.

4.1 The Graph Transform Method

Let £ be a Banach space, T' an isomorphism with invariant subspaces Ky, F,. Fur-
thermore, let f : F — F be a global Lipschitz map with f(0) = 0. We want to find
invariant manifolds for f tangent to K that can be represented as the graphs of func-
tions h: Fy — Fs. To this end, let g : E; — FE3, ¢g(0) = 0 be a Lipschitz map. Under
quite natural assumptions, f(graph ¢) is again the graph of a Lipschitz map I';g. It can
be checked that

[pgle) = (ma0 f o (id.g)) o (w1 0 f o (id,g)) " (x) (4.33)

Obviously, graph g represents the desired invariant manifold if

I'rg(x) = g(=).
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Under certain conditions, the map g — I';¢ will be a well-defined contraction in a specific
function space which implies the existence and uniqueness of the invariant manifold.

By this method it is only possible to find unstable manifolds since they behave in
general as attractors. Therefore, a proof of the central Theorem 3.2 has to be performed
by applying the graph transform method to f~'. In our case, the setting is always
chosen in such a way that this process converges. A direct application of the graph
transform 'z would yield a different proof of Theorem 3.6 without the inversion process
described in Section 3.2. Both approaches produce the same objects. Because of these
observations, it would have been also possible to set up the investigations systematically
on the unstable manifolds. However, this would yield some unexpected difficulties. For
instance, it would be harder to describe the relations to Carverhill’s results since by his
approach it is only possible to construct stable manifolds.

As stated above, the graph transform can be interpreted as a geometric approach.
One might think that a method that takes more advantage of the dynamical properties
of the points in the invariant manifolds could be more powerful since the dynamic of an
attractor might be more important than its geometric structure. However, it seems that
this is not the case. For instance, the deep results of Pugh and Shub (1989) are only
available by using the graph transform method.

We want to use the graph transform method to treat functions in Banach spaces of
sections. Especially, we are interested in the class of functions G : B — B; which
induce mappings

Glw,z): Vuu(w,x) — Vj(w,x)

such that
g(S)(wv J}) = (wv g(wv J})U(w, x)) .

Such a function will be called ponctual in the sequel. The remainder of this section
is devoted to the properties of the graph transform method in the space of ponctual
functions. We will only state the basic results needed in the following section, for the
proofs and more detailed informations the reader is referred to Dahlke (1989).

Lemma 4.1 i) With respect to a suitable metric, the set
P:={G € C%B} B)| G is ponctual, G(0) =0,Lip G < 1} is a closed subset of
{GeCBy, B G(0)=0,Lip G <1}.

ii) The graph transform Uz with respect to F maps P into itself.
Lemma 4.2 Let G € P. Then
graph(LzG(O(w, z))) = Fun(graph G(w, z)) .

Furthermore, one has the following lemma which describes the behaviour of the deriva-
tives of ponctual maps.

Lemma 4.3 Let G € P and suppose that G is differentiable at 0.

i) If DoG(w,2) =0, then Dol'sG(O(w, z)) = 0.
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ii) If |DoG| > 0, then |Dol'£G| < | DoG|.

We will finish this section with a short
Proof of Lemma 3.3:

As indicated above, the invariant manifold W}, can be obtained by applying the graph
transform method to F~' in the space {G € C°(B;,B})| G(0) = 0,Lip G < 1}. The
graph transform is a contractive mapping in this space, see e.g. Dahlke (1988) for details.
However, since by Lemma 4.1 the space P is a closed and invariant subset, the fixed
point necessarily lies in this set. a

4.2 A Globalization Theorem

So far, the whole construction was based on a given cocycle p(n,w, x). This cocycle was
constructed by means of a measurable mapping

Y: Y —s Dif’(M),

compare with Section 2. To show the main result of this section, we need a condition
on the distribution ) of T. Since the proof is based on the graph transform method, we
have formulated this result for the families of unstable manifolds.

Theorem 4.1 Suppose that the conditions of Theorem 3.6 hold. Let p11, s € R be dis-
joint from all intervals [A; — a,A; + a] and suppose that ju < 0 < py. If

supp Q C Diff (M) is compact, then there evists a set A C A C T, v(A) = 1 such
that for (w,z),(w,y) € A

y € W:;(w,:z;) N B(x, B(w,x)) implies TyW:fl (w,z) = VM“1 (w,y) ,

where B(w,x) denotes a function constructed by means of Corollary 3.1 for the family
of unstable manifolds.

Proof: We have to show that

Exp, (W (w,x)) is locally the graph of a C'—map L(w,y) : Vi (w,y) = V(w,y)
satisfying DoL(w,y) = 0.

We want to prove this fact by using the properties of the graph transform method de-
scribed in Section 4.1. The proof consists of the following three steps.

Claim 1: For n be sufficiently large we consider in T,(_, .,y M the coordinate system
that is obtained by a parallel translation of the spaces V' (0 _,(w,z)) and V; (0_,(w,z))
from ¢(—n,w, ) to p(—n,w,y). We show that Exp;(l_nM’y)(W;‘l (O_,(w,x)))is the graph
of a mapping Z(O_,(w,y)) with respect to this coordinate system and we estimate its
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Lipschitz constant.

Claim 2: We show that the facts proved in claim 1 also imply that Exp;1 (Wi (0 n(w,)))

(—n,w,y)

is the graph of a Lipschitz map K(O_,(w,y)) : V (O_,(w,y)) — V; (O_,(w,y)) and
we estimate once again its Lipschitz constant. To show this part of the proof, we need

the compactness of supp ) which yields a certain continuity of the Oseledec spaces.

Claim 3: The mappings K(O_,(w,y)) are composed to a global function £ in the space
P. We show that the invariance of the family {W} (w, )| (w,z) € A} implies that the
derivative of £ at the zero section increases. Therefore, by Lemma 4.3, it has to be zero
which yields the desired tangentiality.

Once again, the proof is based on several very technical lemmata. For the proof of these
lemmata, the reader is referred to Dahlke (1989) and to Section 4.3, respectively.

Proof of Claim 1: First of all, we have to construct appropriate neighbourhoods
U(O_p(w,x)) in V1 (O_,(w,z)) having the property that Lip H(O_,(w,2))|v(@_(wae))
is sufficiently small and that Exp;(l_mw’l,)cp(—n,w,y) = (n,H(O_,(w,z))(n)) for some
n € U(O_,(w,)). Clearly, H(w,z) denotes the function V! (w,z) — V* (w,x) which
determines the unstable manifolds, see Section 3.

It can be checked that the functions involved in the construction of the invariant

manifolds can be modified in such a way that
|DH(S) — DH(S)| <|S — S|~ . (4.34)

This is because the proof of Lemma 3.2 shows that the function D(w, x, €) can be chosen
such that
Lipl' |\ DF e <p forp>0, 0<a<l (4.35)

(We have only restricted ourselves to the case a = %, p = 1 to avoid unnecessary technical
difficulties). Eq. (4.35) implies that DF is also Lipschitz continuous with the same
constants «, p, and it can be checked that this Lipschitz continuity carries over to the
resulting invariant manifold, see Dahlke (1989) for details.
Eq. (4.34) implies
| DeH(w, 2)|(we) < €0
which means that
Lip, |(w7$)H(w7x)|B(O,R(W,l’)) < R(w, )
for some suitable function R. According to Lemma 3.1, we therefore obtain for the
original Riemannian metric

Llp” ||H(w7 x)|B(0,R(w,x)C(w,ac,e)—1) S T.C(w7 x, G)R(w, x)oz . (436)

We want to define R(w, x) in such a way that it tends to zero along the backward orbit
@(—n,w,x), but this convergence has to be slowly enough to make sure that

Exp;1 yp(=n,w,y) = (1, H(O_n(w, z))(n)) for somen € B(0, R(O_,(w,2))C(O_p(w,z), )™,

(=n,w,o
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for then the desired neighbourhoods are given by
V(O (w,)) 1= B0, RO, (w,2))C(O_n(w,),c) ) .
To find the function R, observe first that for some & = (, H(w, z)(7))
€l < Rlw,)C w2, )~ (1—cos((w, )} implies ]| < R(w,x)Cw,e, )", (4.37)

i.e., £ € graph H(w, ¥)|B(0,R(ww)C(we)-1)> see the proof of Lemma 4.7 for details. Once
again, Y(w, x) denotes the angle between V! (w,x) and V? (w,x). We set

RO_,(w,z)) := 2vy(w,2)C(O_,(w,x),€)(1 — Cos(¢(®_n(w,:1;)))_%6(_(“2"'5)”)(4.38)

1 O_(wy @) 1 (—(rtirn
= 2y(w,2)C(O_y(w,z),€)272 sin(W) e(—(uate)n)

where 7 is a function defined according to Corollary 3.1 for the unstable manifolds. Then
we obtain (for simplicity, we will sometimes use the abbreviations z, := ¢(—n,w, x), y, :=

P(—n,w,y))

[Expz, () d

< v

Ty Yn)

w, z)el

pate)n)

(
(

2_%[R(®_n(w,x))C((D_n(w,x),c)_lsin(w)] :
so that (4.37) implies
Exp; (yn) = (7, H(O_,(w, x))(n)) for some n € B(0, R(O_,(w,z))C(O_p(w,x),¢)7").

By using Lemma 3.4, the special form of the function R(w,x) enables us to estimate the
Lipschitz constant of H uniformly for all points in the backward orbit. We obtain

Lip; | H(O-n(w, ))|B0,rc-1) < 1C(O_p(w, 7), €) R(O_p(w, 2))"

a ®—n 9 _ _
< 2, 2 OO, 2), ) sin O o (o
S 2%7“’)/((4), $)a0(w, z, é)l—l—oze((l—l—oz)en)]‘4(6)_71(&)7 l’), 6)—06(—(M2+E)an)
< Z%T’y(w, 2)"Clw, z, 6)1""“6((1""“)5”)2\4(@, x, 6)_ae(ea”)e(_(“2+e)a”)
< ¢yel-ma=(ia)n)

where ¢; depends on (w, ), but not on the other points in the backward orbit.

After these preliminaries, we are now ready to prove the claim. Let P(x,,y,) denote
the parallel translation from z,, to y, along the unique shortest geodesic. We want to
show: For n > N(w,z,y) sufficiently large there exist neighbourhoods U, of Exp;'(y.)
in T,,, M and V,, of 0 in P(z,,y,)V:(©_,(w,x)) such that

Exp,, o Exp,, (graph H(O_,(w,z)) N U,,) (4.39)

30



is the graph of a function
Z(O-n(w,y) : Vi — P, yn)V, (On(w,2))

satisfying
Lip Z(O_ (1)) < cpel~(iza=(itam

The modification of H(O_,(w,x)) described in (4.39) can be interpreted as a genera-
lized graph transform. The properties of such a transform needed for our purpose are
summarized in the following lemma. The proof is more or less straightforward and can

be found e.g. in Dahlke (1989).

Lemma 4.4 Let F and F' be Banach spaces with decompositions £ = E1 @ F,, F =
F1 & Fy and equipped with the corresponding maz-norms. Furthermore, let T : E — F
be an isomorphism satisfying T(E1) = Fi, T(Fy) = Fy and let f: FE DU — F be a
Lipschitz map. Suppose that Lip(T — f) < ( is sufficiently small. Then, for a Lipschitz
map g: E1 DV — Fy with Lip g <k <1, f(graphg) is also the graph of a Lipschitz
map Usg: Fy DW — Fy with Lip Urg < (| Ta||k + O — )~ .

We want to use this Lemma 4.4 for the special case
E=T, M, By = V(0 ,(w, ), By =V; (0, (w, 7)),
F=1T, M, By = P(xn, yn) Vi (O, (w, ), Fy= P(2,,y.)V; (O_p(w, 7)),
f= Exp;n1 oExp, , T = Pz, yn).

The following lemma ensures that it is indeed possible to satisfy the conditions of Lemma
4.4 with these objects. Its proof is based on local coordinates and can be found in Dahlke

(1989).

Lemma 4.5 Let M be a compact Riemannian manifold with Levi-Civita connection.
Then there exists a constant ¢ such that for all x,y € M with d(x,y) sufficiently small

Lip{(Exp," o Exp, — P(x,9))|B02d@y)} < cd(z,y) .

However, we have to take into account the fact that Lemma 4.5 is stated in terms of
the Riemannian metric whereas Lemma 4.4 is based on the max-norms induced by the
decompositions. Let ||| - |||+, denote the max-norm on T, M, then

B < e, < Al ;
2 (1 —cos(Y(O_,(w,))))?

compare with the proof of Lemma 4.7. Therefore, by using the fact that the parallel

: (4.40)

translation preserves the angles between subspaces, we get

2ed(xy, yn)
(1= cos(t(O (e, )}

Lipy y{Expy, 0 Exp,, — P(2n, ¥n))|B2d(nwm)} <

< 2ey(w, x)elm 2t 9= 5 gin(
< eyl 2)M(w, 2, ) el
< 036(—%@71) )

31



Consequently, since ||Ti|| = ||Tz|| = 1, we obtain by Lemma 4.4 that for n sufficiently
large the transformation described in (4.39) gives rise to a function

Z(O-n(w,y) s Vi — P, yn)V0 (On(w, 2))

satisfying

Lip Z(©_n(w,y)) < (

This finishes the proof of claim 1.

cle(_(ﬂ'?a_(l-l'a)e)n) _|_ 036(_“‘277‘) )

1 — czel=#2m)

Proof of Claim 2: Later on, we want to use the properties of the graph transform
method described in Section 4.1. To do that, the local mappings Z have to be extended to
the whole spaces P(2,, y,) V! (O_,(w, x)). However, by using e.g. suitable C'*°—functions
it is easy to see that there exist mappings

J(O_,(w,y)) : P(:z;n,yn)vuul(@_n(w,x)) — P(xn,yn)le(G_n(w,x))
and appropriate neighbourhoods W, C V,, such that

L(O-n(w, )i, = T (O, v,
and
Llp j(®_n(w,y)) S 026(_(%‘«20‘—(14-&)6)71) )

We want to show that graphJ(0_,(w,y)) can be interpreted as the graph of a func-
tion K(O_,(w,y)) : Vi (O_,(w,y)) — V;(0_,(w,y)). To this end, we will use the

following lemma which will be proved in Section 4.3.

Lemma 4.6 Let E be a finite-dimensional Banach space equipped with a scalar product
(-,-) and associated norm || - ||. Suppose that E possesses decompositions £ = Ei &
By, E=F, @ Fy with norms || - ||%, || - || on B, Fiyi = 1,2, and let || - ||, || - |7 denote
the associated max-norms. Let gg : Ey — Iy be a Lipschitz map with Lip g5 < 6 < 1.
Suppose that for o sufficiently small

max(|| Pg, = Pr ||, | Ps, = Prll) < e

where Pg,, Pr, 1 = 1,2, denote the projections onto the corresponding subspaces. Then
there exists a function
gr : F1 — F2

such that
i) graph gr = graph gg,
i) Lip .97 < (c1(E)ex(E)o+ 6)(1 — er(E)ea(E)o) ter(E)er(F)ea( E)ea( F),
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where the constants ¢;(E),¢;(F),i = 1,2, are defined by

1
— < < eV
el < el < @l
1
< < cy(F .
el < 1el < caPlele
We want to apply this lemma to the case
E=T, M, By = Plaq,y)Vi(0-u(w,2)), By = Plaw,y) V3 (O-n(w,2). - lle = [l [llsn
By = Vi (0 n(w,y)), Fy = V2 (0-(w,y)), 1117 =1+ lo—n(wu-

The constants describing the relations of the different norms are given by (3.6) and
(4.40). Therefore, using Lemma 4.6, Lemma 3.1 and Lemma 3.4, we deduce that there
exist functions

K(O-n(w,y)) = Vi (0n(w,y)) — Vi (O_n(w,y))

such that
graphK(O_,(w,y)) = graphJ (0 _,(w,y))
and
Lib) 1o o KO a(w,1)) < [2(1 = cos(i:(O (e, 2)))) 2 a(O (w0, ) + cpel-Ure=(r42)n)
11— 2(1 = cos((O_n(w, 2))))Fo(O (0, )] (1.41)

2r(1 = cos((On(w, 2))))7C(On(w, ). ©)]
< 25 M(w, 2, €) L™ o(O_,(w, y)) + coel~(rza=(+a)m)]
[l =25 M(w, 2, 6) el p(O (w, )] 125 M (w0, 2, €) el C w0, y, )l
< [e40(0_, (w, y))e(en) + 026(—(u2a—(1+a)e)n)]
(1= cs0(O—n(w,y))el ™M) ez e
From (4.41) we observe that we have reduced our problem to the study of the function

0. This is performed by estimating the distance between the corresponding subspaces.
In general, the distance between two subspaces is defined by

dist(Eq, Fy) :=max(  sup inf |[E—n|, sup inf || —7n]]) . (4.42)
¢€By [lgl|=17€"2 n€By |nl|=1¢€Fn

The relations between distances and norms of projections are clarified by the following
lemma which will also be proved in Section 4.3.

Lemma 4.7 Let E be a finite dimensional vector space with scalar product that possesses
the decompositions £ = K1 ® Fy, E=F, & F,, dimF; =dim F; = d. Let o denote the
angle between Ey and Fo and let 3 denote the angle between Fy and F. Then
2d% (dist( By, I7y) + dist(Fy, Fy))

(1 - cosoz)%(l — cosﬁ)%

HPEl_PFlH <
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In our case we therefore obtain

Q(Q—n((ﬂ,y)) < CG[diSt(Vﬁ(@—N(wvy))vP(xmyn)vil(@—n(wvx)))
+dist(V:1(®_n(way))vP(xnvyn)vil(e)—n(wvx)))]
M(w,z, ) " M(w,y, ) tel)

For a further estimation of the distances, we have to invoke the compactness condition
on supp @, for then one has the following lemma which will once again be proved later.

Lemma 4.8 Suppose that the conditions of Theorem 4.1 are satisfied . Then there exists
a set A C Av(AN) = 1, such that for every (w,x) € A the following holds: For every
y € Wi (w,2)N B(x, B(w,)) there exists a function N(x,,y,) and a number b > 0 such
that

dist(V;‘l (O-n(w,y)), Py, yn)vuul (O_n(w, 2)))
dist(le (O-n(w,y)), Py, yn)vjl (O_n(w, 2)))

N(2py Y )d(20, y0)',
N(2py Y )d(20, y0)',

IA A

and

—_

N(xn—l—ma yn—l—m) S N(l’n, yn)e 25m) .

Lemma 4.8 yields

o(O-n(w,y)) < 2N (2, yu)d(@n,ya) e
cr[2N(z, y)e(2en)7(w7 x)be(—(uz-l-E))bn)]e(Zen)

epel~luzb=(4=b)c)n)

IA A A

so that we finally obtain

Y

Llp| |® ( )K(@_n(w7y)) S [096(_(“’26_(5_17)5)77‘)_I_cze(_(“2a_(1+a)5)n)][1_cge(_(“2b_(5_b)5)n)]_1056(2577‘)
(4.43)
and the proof of claim 2 is finished.

Proof of Claim 3: For ¢ > 0 sufficiently small, formula (4.43) implies that

lim Lip, |®_n(w7y)lC(®_n(w,y)) =0. (4.44)

n—0oo

Therefore, we can find a number M(w, z,y) € N such that
Lip . L, K(O_a(w,y)) <1 forn> M(w,z,y) .
Consequently, if we define the mapping £: B, — B} by

(@0, K(O_,(w,y))o(@, 7)) if (0, 2)=0_,(w,y) and n> M (w, z,y)

(LS (@, 5;);:{ o 0) (4.45)

otherwise ,
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then £ € P, compare with Section 4.1, and ['zL is well-defined. Let us study the graph
transform of £ in more detail. First of all, Lemma 4.2 implies that

graph(I'z£(0(©, 7)) = Flo5 (graph L£(©, 7)) .

Let ¢ € graph K(O_,.(w,y)), |{lo_,(wy) sufficiently small and n > M(w,z,y). Then the
definition of K implies that

Fo_w)(&) = fo_uww(§) = fo_uwy o Expy o Exp,, (1)
for some suitable n € graph H(O_, (w, x)). Employing (3.8) yields

Fo_pwy(&) = Exp,' o¢(1,9_,(w),-)oExp, oExp,' oExp, (1)

= Exp;n1 o Exp;nl_1 op(l,¥_p(w),-)o Expl,n(n) )

—1

o Exp,

—1

Consequently, since Exp, (graph H(w,z)) = W} (w, z) and the family {W} (w, z)|(w, z) €
A} is invariant with respect to p, we obtain

FG)_n(w,y)(f) = EXp;nl_l © Expxn_l(C)
for some ¢ € graph H(O_(,—1)(w, x)) and therefore
Fo (&) € graph K(O_,—1)(w,y)) -

Consequently, for n > M(w,z,y) and sufficiently small neighbourhoods Ug_, (u,y) C
Vi (O_n(w,y)) we can deduce that

FT'C(@—N (wv y))|U®_n(w,y) = 'C(@—n (wv y))|U®_n(u},y) )

and hence

Dol' s L(O_,(w,y)) = Do L(O_,,(w,y)) -

Therefore, employing the definition (4.45) of £, we obtain that the application of the
graph transform to £(©, ) increases its derivative at 0, i.e.,

We want to prove that this fact carries over to the global mapping £. Eq. (4.44) implies
that for all ¢ > 0 there exists § > 0 such that

[£(w,2)(§) — DoL(@, 2)¢|(a,5) < €l€l(z,a) for [¢]as)
which shows that £ is differentiable at 0 and
DoL(S)(@,3) = (@0, DoL(&, 7)o (@, T)) .
The derivative can be estimated by

|DoL| = |Sl|1p |DoL(S)| < sup sup |DoL(©, @ )| &.7) lo(@, :1;)|((;,@,) < sup |D0£((Ij,§})|(@@) )
S|<1

IS|<1 (@,%) (@)
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Furthermore, one has

where 75 z),%(a,s) denote the linear operators introduced at the end of the proof of

Theorem 3.1. Combining (4.48), (4.46) and (4.47) we obtain

(@.2)
i.e., the derivative is indeed increasing, which implies by Lemma 4.3 that

D()E:O

and therefore

DoK(O_,(w,y)) =0 for n > M(w,x,y) .

We have shown that for n sufficiently large the function K(©_,(w,y)) is tangent to
Vi (O_,(w,y)). However, an application of Lemma 4.3 yields

Dol'2L(O—p(w,y)) =0
so that
Dol L(w,y) = 0.

If we now use Lemma 4.2 and take into account the definition of the functions K(0O_,(w,y))
(they are nothing else but the original local manifolds considered in another coordinate
system), then the invariance of the family {W} (w,z)|(w,2) € A} with respect to ¢
implies that

Vi (w,y) = Ty(EXpy{graph I"2L(w,y) N U(w,y)}) =T,W; (w,x),

where Uy, ) is a suitable neighbourhood in T, M. The theorem is proved. O

Remark 4.1

i) A similar result can be shown for the stable manifolds by mimicking the proof of

Theorem 4.1 for F~! instead of F.

ii) As mentioned above, it was shown by Carverhill (1985) that for y < 0 the stochastic
stable manifolds give rise to a foliation. In a weaker sense, this result can be
derived by applying a version of Theorem 4.1 for F~! to the case p; = g < 0.
Then we obtain that the strongly stable manifolds can be glued together for all
points (w,x) € A. However, Carverhill’s results can be shown easier by using the
dynamical characterization according to Corollary 3.1.

36



4.3 Proof of the Lemmata 4.6—4.8
Proof of Lemma 4.6

Let us start by showing i). We have to prove that Pg, |graph . is a bijection, for then
gr := Pr, o (P, |graph gE)_l does the job. First we show that Pp, |graph ,, 18 injective.
For two points &, € E; we obtain

1Pr (&, 98(8)) — Pr(nygs(m)lle = 1P, (& 98(8)) — (n,98(m)))|E
—|Pr, — Pe|lell(& 98(8) — (n,92(n))|&
> |l€ = nlle — a(E)ea(E)oll(€, 9u(8)) — (1, 98(m) || e

Since

16, 98(8)) = (0, 95(0)lls = max(|[§ —nl[z, lge(§) — gu(n)llE) = 1€ — nllz

it follows that

1Pr, (€ 95(€)) = Pr(n,95m)l|e 2 (1 — er(E)ea(E)o)[I(§, 95(£)) — (0, 95(n)ll e

which shows that Pp |graph 4, 18 indeed injective and

Lipy 15 (Prilgraph 4,) " < (1= ei(E)ea(E)e)™" .

It remains to show that Pp, |graph 4, 18 onto. We will use the following fact which can

be proved easily by using standard arguments.

Suppose that F is a complete metric space, B a Banach space, and f: F — B a
bijection whose inverse is Lipschitz. If a mapping ¢ : F — B is Lipschitz-close to f,
i.e., Lip(f — ¢) < ¢ sufficiently small, then ¢ is onto.

Obviously, Pr, o Pg, |grapth is a bijection whose inverse is Lipschitz, and we have

HPFl o PEI(f?.gE(f)) - PFl(f?.gE(f)) - (PFI o PEl(nng(n)) - PF1(7779E(77)))HE
< || Pr el Pe, — Prlell(& 96(8) = (1. 98()|| s
< (L+ |1Pe, — Prle)l|Pe, — Prllell(€ 98(8) — (n,95(n)le -

Therefore
Llp|| ||E(PF1 - PFl o PE1)|graph 9B < (1 + cl(E)CQ(E)Q)Cl(E)CQ(E)Q ’

and the result follows by the fact stated above.
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Now let us attack ii). So far, we have shown that gr = Pg, o (Pg |graph gE)_l is a

well-defined map. To estimate its Lipschitz constant, we first observe that
Lipj .95 < Lipy 1, ((Pr, — Pg,) o (Pr |graph gE)_l) + Lipy 1, (P, o (Pry |graph gE)_l)

< a(E)e(E)o(l — er(E)ea(E)e)™" + Lip 15 (P lgraph ) - (1 = c1(E)ey(E)o)™h .
Therefore, since
1P, (€, 92(6) =P, (n, g2 (m)l|e = llg8(§)—gz(n)llz < 8l[E—nllz < 8|[(£, 98(E))—(n, gu(n))||e
we obtain

Lipy 1,97 < (ai(E)ez(E)e +d)(1 — ci(E)ea(E)o)™t .
This yields
Lip .97 < (e1(B)ea(E)o + 8)(1 — er(E)ea( E)o) ™ er(E)es( B)er(F)eo(F)

and the lemma is proved. a
Proof of Lemma 4.7:

It is sufficient to show

i) |(Pg, — Pr )| < ||€]|dist( Ey, FY)

—= for £ € Fi,

(1 —cosa)z

dzdist( E,. F
Hf” 15 ( 271 2) fOI’ 5 c FQ.

(1 —cosa)?

i) ||(Pg, — Pr)é|| <

This can be seen as follows. Define a new scalar product on £ by

< 5777 ZFi= <PF1§7 PF177> +<PF2§7 PF277> (449)
and let |- |p denote the norm associated with < -,- > . We will prove below that
1€]]
< 4.50
e < -8 (450)
Definition (4.49) and Eq. (4.50) imply that
1P &l < (L —cosB)72|iEll,  [[Préll < (1 —cosB)72|<]] - (4.51)
Therefore, by combining i), ii) and (4.51) we obtain
1(Pe, = Pr )¢l = [[(Pe, = Pry)(Pr (§) + Pr, ()]

< NP, = Pr)(Pr () + 1(Pe, = Pr)(Pr, (€))]]
|| Pe, €]|dist(Ey, Fy) || P, || d2dist( By, Fy)
(1—cosoz)% (1 —cosoz)%
HfHdiStl(EhFl) _ HfHd%dilst(Ezan) 1
(1 —cosa)z(l —cosf3)z (1 —cosa)z(l —cosf3)2
[€1|2d% (dist(Fy, Fy) + dist(Ey, %))
(1—Cosﬁ)%(1—coso¢)% '

IA
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Let us carry on by proving i). Let PEL1 denote the orthogonal projection onto F;. Since
forn € E,

s s 1)l (Prns Py ([Pl
Pzl = Pz alllal - [Pg il
we obtain
1P, 7]l < cosally]| .
Therefore
nl* = 1ln = Pgnll* + 1Pg,nll* < lln — Pgnll* + cos ally||*,
so that

— pL

(1 - Cosoz)% '

Using this expression we obtain for every £ € Fy,||¢]| =1

1(Pe, — Pr)éll = [[Pe & —¢]

[(Pe,€ — &) — Py, (Pe,§ = Ol
(1—cosoz)%

|1 Pe,§ — & — Pis, P, &+ Pl
(1—cosoz)%

1Pg,€ = £l

(1—cosoz)%

= (inf [l€ = nl)(1 = cosa)?

dist(Ey, )

(1 — cos oz)%

IA

Y

and i) is shown.

Next we attack ii). We may define a scalar product < -, > similar to (4.49) but with
Fy, By instead of Fy, Fy. Then the associated norm |- |g satisfies

P

(1 —cosoz)% '

(4.52)

Now, let {n;}i=1,.4 denote an orthonormal basis in F; and let £ € Fy, ||€|| = 1. Then we
obtain for any arbitrary element ( € F,

d d
(PEI _PFl)(f):PEl(f):Z<77i75>E77i:Z<77i7§—5>E77i7
=1 =1
and hence

d d
I(Po, = Pe)@IF < Y1 < mis¢ =€ > P < o mlblc — €l < di¢ —
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Therefore, by invoking (4.52) we can conclude that

(s, = Pr )] < d(jnf [[(=€])(1—cosa)™® < d=(_sup inf [[(—¢])(1—cos )75

EERy [lell=1 ¢EFz
proving ii).

veey

{nj}j=1,..m be an orthonormal basis of Fy. Then one has for { = Zle a;&; + Z;n:l b;n;

d m d m d m
ElF =< D ai& + D bmy, Y aili + D by >p=_ai + ) b;
=1 7=1 =1 7=1 =1 7=1
and therefore
d m d m d m
1P =D a? + D02+ 203 aibi, > byny) = €5 + 203 @ik, D bjny) -
=1 7=1 =1 7=1 =1 7=1
Since
d m d m
— (> @i, Y bimg) < cos Bl > aiil||| Y bin;ll
=1 7=1 =1 7=1
this yields

€2 < JIE)? 4 2cos B3 a?)E (D b2z

=1 =

d m
1€][* + cos B(D_al 4+ > b%)

=1 7=1

< J€ll* + cos BlEl

IA

and the lemma is proved. a
Proof of Lemma 4.8:

The proof is based on the following general theorem.

Theorem 4.2 Let X be a metric space with diam X <1 and let H be a Hilbert space.

Furthermore, let {T;(x)},i =0,1,2,..., & € X be sequences of bounded linear operators
Ti(x): H— H. We set

T7(x):=Ty(x)o...oTy(x) . (4.53)

For some ¢ > 1 and 7y < 75 let A5, ;, C X denole the set of points for which there
exists a decomposition

H = FEi(x) & Ey(x)
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such that

ce™ V|| for € € By(x), (4.54)
TLeRm|E| for € € By(a). (4.55)

177 ()¢
77 ()¢

If there exists a number a > 0 such that

<
>

|77 () = T™ ()| < e V(. y) (4.56)

then

172

dist( B1(x), Er(y)) < 327 d(x, y)n=a

with ay > max(7, a).

Under additional orthogonality assumptions, this theorem was proved by Brin and Kifer
(1987). However, it can be checked that these additional assumptions are in fact not
necessary.

We want to apply Theorem 4.2 to the case

X = (2n,yn), H=T,M,
Ti(ya) = G 0Te(=L0_(yn(w.y)) oL,
Ti(x,) = [Z+11 0 P(it14n, Yiv14n) 0 Tp(—1, @ (i4n) ( ) 0 P(Yitns Titn) 0 L
Ey(yn) = Vi(O_u(w,y)), Ea(yn) = Vi (0-n(w,y)),
Ey(en) = Prn,yn)V, (O-n(w,z)),  Ex(wn) = Pen,yn)V,; (0_n(w, 2)),

where [; denotes a linear isometry T, M — T, M. First of all, we have to establish

Yn+:

(4.54) and (4.55). We will only prove (4.55) for the point y, in detail, the remaining
cases can be treated analogously. Formula (3.23) implies for n € V2 (@n(w, z))

HUH < A(wv €, 6 /“Ll)HTw(n,w,x)S‘Q(nvwv _)—lnHemn = A(w, Z, €, Ml)HTw(mw,x)S‘o(_nv 1971((“))7 ')UHGMH .
This yields for £ € V? (w, v)

€]l < A(O—n(w, ), €, )| Toip(—n, w, )€™
and therefore
[T p(=n,w0,2)Ell 2 AOnfw, @), € p0) e IENl = Al €, ) T |
However, for ¢ sufficiently small, a similar estimate is valid for g7 < g —2p, p > ¢, i.e.,
ITe(=n,w, 2)¢l] 2 Alw, @, €, fu) T eTBFM g > Aw, 2, e, fun) el g
Using this expression and setting

¢ = maX(A((a—n(w?x)véle)?A(@ (w l‘) ¢ /jbl)vA(®—n(w7y)767/11)7A(G)—n(wvy)vev/ll))v
= M, T2 1= —(Ml - P)a
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we obtain for { € V;? (O_,(w,y))

177 (y)€ll = N 0 To(=1 O (ugny (@, ) 0 L 0 L' 0 Tp( =1, O (mo1my(w, y)) 0
[m—l ©0...0 T@(_lv ®—n(w7 y))f”
= HTS‘Q(_L ®—(m+n)(w7 y)) 0...0 T@(_lv ®—n(w7 y))f”

= T~ (m + 1), 0w, )]
sentrH g

Vv

It remains to prove (4.56). To this end, we want to use the following estimate which
was in a similar form proved by Brin and Kifer (1987).

dist(T'o(—m, O_,(w, ), Te(—m,0_,(w,y))) < e™d(xn, yn) (4.57)

for some appropriate a > 0, where for some diffeomorphism f € Diff*(M)

- TSI it max(d(z, y).d(/(x), F(4))) > R.
dist(Taf 1] >"{ \Zof = P(f(y). f(x)) 0 Tyf o Pla,y)]| else.

Clearly, R denotes the radius of injectivity of M. Observe that this result of Brin and
Kifer only holds if supp @ is compact, so that eq. (4.57) is exactly the part of the proof
where our compactness assumption is needed. Eq. (4.57) implies

1T (yn) = T™ (@)l = ki o To(=(m+1),0_u(w,y) = 241 © P(Tmintts Ymonti)
OTS‘Q(_(m + 1)7 ®—n(w7 J})) o P(ynv xn)”

< | dist(To(—(m + 1), 0_n(w,y)), To(—(m +1),0_,(w, 2)))
S ea(m+1)d($n, yn)7
so that (4.56) is satisfied and the result follows from Theorem 4.2. O
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