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1 IntroductionOne important aspect of the study of a dynamical system is the description of its in-variant sets. In accordance with this philosophy, it is the aim of this paper to constructinvariant manifolds for speci�c dynamical systems arising from random di�eomorphisms.Roughly speaking, we present a generalization of results developed by Pesin (1976),(1977a), (1977b). In the fundamental �rst paper, Pesin (1976) proved the existence ofstable manifolds for di�eomorphisms on compact Riemannian manifolds. The basic toolfor the construction is the multiplicative ergodic theorem proved by Oseledec (1968).One part of this theorem states the existence of appropriate subbundles of the tangentbundle of the manifold under consideration (Oseledec spaces). The stable manifoldsare obtained by "pulling down" appropriate parts of these subbundles to the manifold.Therefore, the resulting invariant families of submanifolds can be interpreted as thenonlinear analoga of the Oseledec spaces.During the last few years, it has turned out that the multiplicative ergodic theoremremains valid in much more general situations, see e.g. Boxler (1989) and Carverhill(1985) for details. Therefore, it seems plausible that Pesin's results also permit furthergeneralizations. This program is carried out in this paper. The generalizations areconcerned with the following points.� Instead of one di�eomorphism we study the dynamic of products of random dif-feomorphisms.� We construct (generalized) stable and unstable manifolds with respect to almostarbitrary parameters disjoint from the Lyapunov spectrum.� We construct nonlinear analoga to each of the Oseledec spaces itself (Oseledecmanifolds).� We consider the globalization problem, i.e., we try to establish the connectionsbetween the generalized stable manifolds of points from di�erent orbits.The multiplicative ergodic theorem is used to obtain an appropriate splitting of thetangent spaces. In principle, it is possible to obtain similar results for systems havinganother spectral decomposition. For instance, we could study systems to which thedynamical spectral theory of Sacker and Sell (1978) applies. However, in our setting,we would have to restrict ourselves to systems on compact probability spaces to applythis spectral theory which is very restrictive. Since this assumption is not needed forthe spectral theory of Oseledec, the multiplicative ergodic theorem seems to be moresuitable for what we have in mind.This paper is organized as follows. In Section 2, we brie
y recall the concept of ran-dom di�eomorphisms and state a version of the multiplicative ergodic theorem which isappropriate for our purpose. Section 3 is devoted to invariant families of local manifolds.In Section 3.1, we construct measurable families of local stable manifolds. The idea isto reduce the problem of �nding an invariant family of submanifolds to the problem ofconstructing an invariant manifold for a mapping in a Banach space of sections of an2



appropriate �bre bundle having a hyperbolic �xed point. Furthermore, we show thatfor special parameters our construction yields strongly stable manifolds having a speci�cdynamical characterization. In Section 3.2 we construct unstable and Oseledec mani-folds by using a similar technique. Section 3.3 is devoted to the proof of some technicallemmata. In Section 4 we study the globalization problem. It is a well-known fact thatthe strongly stable manifolds give rise to a global foliation. For the generalized stablemanifolds also considered here this is not necessarily true, but we can show that at leastalong the smaller strongly stable manifolds the generalized stable manifolds of di�erentorbits are tangent to the same spaces. A similar result holds for the unstable manifolds.We have stated this result in the stochastic setting, but to our knowledge a result ofthis type is new even for the deterministic case (which is clearly a special case of ourconstruction). The proof of this result is based on several technical lemmata which areproved in Section 4.3 and on a speci�c construction principle for invariant manifolds inBanach spaces which is explained in Section 4.1.The investigations in this paper where at least partially inspired by the work of Fathiet al. (1983). They give a new proof of Pesin's stable manifold theorem by means ofthe reduction idea sketched above. The results presented here are also closely relatedto the work of Carverhill (1985) and Boxler (1989) on stochastic 
ows. By using aquite di�erent method, they show the existence of strongly stable manifolds and centermanifolds, respectively. In Section 3, we will study the relations of their work to ourapproach. Furthermore, there are relations to the work of Pugh and Shub (1989). Usingmethods similar to ours, they also give a new proof of Pesin's stable manifold theoremand use it to show the existence of ergodic attractors and the absolute continuity ofthe stable foliation. Moreover, they give sharp di�erentiability estimates and generalizePesin's results to arbitrary parameters, e.g., they also study point two of our program.However, their work is restricted to the deterministic case, and they have no resultsconcerning the globalization problem for arbitrary parameters.2 The SettingIn this section, we brie
y recall the concept of random di�eomorphisms and multi-plicative ergodic theory. Let M be a compact Riemannian manifold equipped with theLevi-Civita connection, and let Di�2(M) denote the set of C2�di�eomorphisms of M .Furthermore, let (
;A; P ) be a probability space and f�ngn2Z be a stationary and er-godic sequence of random variables with values in a measurable space (Y;Y). Withoutloss of generality, we may assume that 
 = Y Z. On Y Z, we de�ne the shift#n(!)(�) := !(�+ n); n 2 Z:# is a measure preserving map and one has �n = �0 � #n: For some measurable mapping� : Y �! Di�2(M) we set'(n; !; �) := 8><>: �n(!) ��n�1(!) � : : : ��1(!) : n > 0Id : n = 0��1n+1(!) ���1n+2(!) � : : : ���1�1(!) ���10 (!) : n < 0; (2.1)3



where �n(!) := �(�n(!)) = �(�0 � #n(!)). It is easy to check that ' de�nes a cocyclewith respect to #n, i.e.,'(n+m;!; �) = '(n; #m(!); �) � '(m;!; �) for all m;n 2 Z: (2.2)This cocycle gives rise to a linear skew-product 
ow �n de�ned by�n : 
�M �! 
�M (2.3)(!; x) 7�! (#n(!); '(n; !; x)) :The compactness of M implies that ' possesses an invariant measure � on 
 �M ,i.e., �n(�) = � for all n 2 Z and �
(�) = P;where �
 denotes the canonical projection onto the �rst factor. For details, the readeris referred e.g. to Crauel (1990). One way to describe the dynamic of a cocycle ' isgiven by the famous multiplicative ergodic theorem which says that almost everywherewith respect to � the di�erential of ' possesses a well-de�ned asymptotic behaviour.Furthermore, it ensures the existence of appropriate invariant subbundles of the tangentbundle TM of M .Theorem 2.1 (Multiplicative ergodic theorem of Oseledec)Let ' be a cocycle on M with ergodic invariant measure � on 
�M . Suppose thatZ
�M hlog+ kT'(1; !; x)k+ log+ k(T'(1; !; x))�1ki d�(!; x) <1: (2.4)Then there exists a �n�invariant set � � 
 �M with �(�) = 1 such that for somereal numbers f�igi=1;:::;r with �1 < : : : < �r and some integers fdigi=1;:::;r satisfyingPri=1 di = d = dim(M) the following holds.i) There exists a measurable splittingTxM = E1(!; x)� : : :�Er(!; x); dimEi(!; x) = di;on � which is invariant with respect to �n in the sense thatEi(�n(!; x)) = T'(n; !; x)Ei(!; x) :ii) For all � in Ei(!; x)nf0g one has��(!; x; �) := limn!�1 1n log kT'(n; !; x)�k = �i :The numbers f�igi=1;:::;r are called the Lyapunov exponents, and the set of pairsf�i; digi=1;:::;r is called the Lyapunov spectrum of the cocycle '. For further informa-tion concerning random dynamical systems and multiplicative ergodic theory, the readeris referred e.g. to Arnold and Crauel (1991).4



3 Local Invariant Manifolds3.1 Local Stable ManifoldsIn our setting, a local stable manifold with respect to a parameter � 2 R consistsof an invariant family of immersed C1�submanifolds tangent to the spaces V s� (!; x) :=��i<�Ei(!; x): Observe that it is not necessary to assume that � < 0: (Stable manifoldswith respect to parameters � > 0 are sometimes called center stable manifolds orpseudo stable manifolds, see e.g. Abraham and Robbin (1967) or Pugh and Shub(1989)). The main result of this section shows the existence of such families under certainintegrability conditions on the functionsG(!) := supx2M kT'(1; !; x)k; H(!) := supx2M kT 2'(1; !; x)k : (3.1)To simplify the terminology, we will sometimes not distinguish between invariant mani-folds and invariant families of submanifolds. As stated above, we proceed by transform-ing the problem to a global situation in an appropriate Banach space. To do that , westart by lifting the cocycle locally to the tangent spaces by means of the exponentialmapping. These local lifts give rise to a mapping in a Banach space of sections of anappropriate �bre bundle. It can be shown that this mapping can be approximated in acertain sense by the di�erential of the cocycle. By using speci�c measurable norms, thezero section of the bundle is converted into a hyperbolic �xed point and we can applywell-known results concerning invariant manifolds of these points. Each invariant mani-fold with respect to this �xed point corresponds to a family of local stable manifoldsfor the original cocycle. This technique was �rst used by Hirsch and Pugh (1970) toconstruct invariant manifolds on hyperbolic sets. Further generalizations were given byFathi et al. (1983).The construction depends on some parameters that will be �xed once and for all. Wechoose an arbitrary small number a > 0 and construct stable manifolds for parameters �disjoint from all intervalls [�i�a; �i+a]. For that purpose, we have to �x a Riemannianmetric on M and to construct a suitable C1 function g associated with this metric.Furthermore, we have to �x a parameter � which controls the exponential growth rate ofsome speci�c functions. In principle, the resulting manifolds can depend on the choice ofa; � and g. For � < 0, it can be shown that this dependence is ameliorated in a certainsense, see Corollary 3.1 below.Theorem 3.1 (Local stable manifolds)Let a 2 R+; � 2 R be some �xed numbers such that � =2 [�i � a; �i + a] for all �i andconsider the associated splittingV s� (!; x) := M�i<�Ei(!; x); V u� (!; x) := M�i>�Ei(!; x) : (3.2)Suppose that E log+(G(!)) <1; E log+(H(!)) <1: (3.3)5



Then there exists an invariant set � � � such that �(�) = 1, a measurable function� : ��N �! (0;1) and a family fW s�(!; x)j(!; x) 2 �g of immersed C1�submanifoldssuch thati) '(m;!; �)(W s�(!; x)TB(x; �(!; x; n))) �W s�(�m(!; x)) for all 0 � m � n;ii) x 2 W s�(!; x) and TxW s�(!; x) = V s� (!; x) :Remark 3.1i) Clearly, B(x; �(!; x; n)) denotes the ball of radius �(!; x; n) at x.ii) The �rst statement clari�es the meaning of invariance in our setting, whereas thesecond one expresses the fact that the manifolds have indeed the desired tangen-tiality.iii) The integrability conditions are needed to prove Lemma 3.2. Without this lemma,one can still prove the existence of invariant manifolds, but their size can no longerbe controlled.Proof of Theorem 3.1:First of all, we de�ne a new metric on the tangent spaces of M which depends on ! andis adapted to the Oseledec spaces. We setj�j(!;x) := 1Xi=0 e(�(�i+a)n)kT'(n; !; x)�k+ 1Xn=1 e((�i�a)n)kT'(�n; !; x)�k for � 2 Ei(!; x);j�j(!;x) := maxi j�ij(!;x) for � = rXi=1 �i; �i 2 Ei(!; x) : (3.4)A metric of this form is sometimes called a Lyapunov metric. For later use, we haveto clarify the relations between this new metric and the original Riemannian metric.Furthermore, we have to study the behaviour of the di�erential of the cocycle withrespect to the Lyapunov metric. Concerning the �rst point, we have the followinglemma which will be proved in Section 3.3.Lemma 3.1 For all � > 0 there exists a measurable function C(!; x; �) satisfyingC(�n(!; x); �) � C(!; x; �)e(�jnj) for all n 2 Z (3.5)and r�1k�k � j�j(!;x) � C(!; x; �)k�k: (3.6)The norm of the di�erential can be estimated as follows.e(�i+a)j�j(!;x) � jT'(1; !; x)�j�(!;x) � e(�i�a)j�j(!;x) for � 2 Ei(!; x); (3.7)e(�(�i�a))j�j�(!;x) � j(T'(1; !; x))�1�j(!;x) � e(�(�i+a))j�j�(!;x) for � 2 Ei(�(!; x)) :6



We will only prove the �rst inequality in detail. By using the de�nition of �n in (2.3)and the cocycle property (2.2) of ' we obtainjT'(1; !; x)�j�(!;x) = 1Xn=0 e(�(�i+a)n)kT'(n;�(!; x))T'(1; !; x)�k+ 1Xn=1 e((�i�a)n)kT'(�n;�(!; x))T'(1; !; x)�k= 1Xn=0 e(�(�i+a)n)kTx('(n; #(!); �) � '(1; !; �))�k+ 1Xn=1 e((�i�a)n)kTx('(�n; #(!); �) � '(1; !; �))�k= 1Xn=0 e(�(�i+a)n)kT'(n+ 1; !; x)�k+ 1Xn=1 e((�i�a)n)kT'(�(n� 1); !; x)�k= e(�i+a) 1Xn=0 e(�(�i+a)(n+1))kT'(n+ 1; !; x)�k+e(�i�a) 1Xn=1 e((�i�a)(n�1))kT'(�(n� 1); !; x)�k� e(�i+a)j�j(!;x):The remaining estimates can be proved analogously.Next claim is to lift the underlying cocycle locally to the tangent spaces by means ofthe exponential mapping, i.e., we de�ne for a su�ciently small neighbourhood U(!; x)of 0x in TxMf(!;x) : TxM � U(!;x) �! T'(1;!;x)M (3.8)� 7�! Exp�1'(1;!;x) � '(1; !; �) � Expx(�) :These mappings have to be modi�ed in such a way that they are de�ned on the wholetangent plane. This is performed by composing them in an appropriate way with thedi�erential of '. More precisely, one has the following lemma which will also be provedin Section 3.3.Lemma 3.2 For all �; � > 0 there exists on a �n�invariant set �;� � �; �(�) = 1 afunction D(!; x; �) such that the mappingF(!;x) : TxM �! T'(1;!;x)M (3.9)� 7�! T'(1; !; x)� + (f(!;x) � T'(1; !; x))(�) � g( ~r2k�k22r2D(!; x; �)2 )is well-de�ned and satis�es 7



a) Lipj j(F(!;x) � T'(1; !; x)) < �;b) F(!;x)(�) = f(!;x)(�) for j�j(!;x) � D(!; x; �);c) D(�n(!; x); �) � D(!; x; �)e(��jnj) for all n 2 Z;d) Lip 12j jDF(!;x) < 1;where g denotes a suitable C1�function and ~r is a constant depending only on thegeometry of M .Now we want to collect all the mappings F(!;x) to one global function in an appropriateBanach space. To this end, let us consider the measurable �bre bundle(
�M;
 � TM;�) with �(!; �) := (!; �M�); (3.10)where �M denotes the canonical projection from TM onto M . According to Lemma 3.2we will henceforth consider the subbundle(�; ��1(�); �):The Banach space we want to deal with consists of bounded sections of (�; ��1(�); �):Each section S is of the form S(!; x) = (!; �(!; x));so that we may de�ne the Banach space B byB := fS j jSj = sup(!;x)2� j�(!; x)j(!;x) <1g: (3.11)Theorem 2.1 immediately implies that B possesses a splittingB = B1 �B2 � : : :�Br;where Bi := fS 2 Bj�(!; x) 2 Ei(!; x) for all (!; x) 2 �g:We set Bs� := M�i<�Bi; Bu� := M�i>�Bi : (3.12)The mapping F(!;x) as well as the di�erential of ' admit a certain continuation to thespace B. Indeed, we may de�neF : B �! B (3.13)(FS)(!; x) = (!;F��1(!;x)�(��1(!; x)));T : B �! B (3.14)(T S)(!; x) = (!; T'(1;��1(!; x))�(��1(!; x))):Now we are able to apply existence theorems concerning invariant manifolds in Banachspaces to F and T . More precisely, we want to use the following version of the stablemanifold theorem proved by Irwin (1972). 8



Theorem 3.2 Let T be an isomorphism of a Banach space E with invariant subspacesE1 and E2 such that E = E1 � E2, we de�ne Ti = T jEi. Suppose that kT1k < kT�12 k�1and let � be such that kT1k < � < kT�12 k�1. Let f : E ! E be a (global) Lipschitz mapsuch that f(0) = 0 and Lip(f � T ) = l < min(�� kT1k; kT�12 k�1 � �): Then the setWs� := fx 2 Ej supn�0 k��nfn(x)k <1gis the graph of a Lipschitz map g : E1 ! E2, with Lip(g) < 1. Moreover, Lip(f jWs�) �kT1k+ l; which implies that ��nfn(x)! 0 for n!1 if x 2 Ws�:To apply Theorem 3.2 it is su�cient to checka) T is an isomorphism,b) jT jBs�j � e(�k+a) < e� < e(�k+1�a) � jT �1jBu�j�1 where �k := max�i<� �i,c) F � T is a Lipschitz map with Lip(F � T ) � �; � su�ciently small.For then, the conditions of Theorem 3.2 are satis�ed with � = e�. Eq. (3.7) yieldsjT jBij = supS2Bi;jSj=1 sup(!;x) jT'(1;��1(!; x))�(��1(!; x))j(!;x)� supS2Bi;jSj=1 sup(!;x)(e(�i+a)j�(��1(!; x))j��1(!;x))� e(�i+a);which implies that T is bounded. The boundedness of the inverse (T �1S)(!; x) =(!; (T'(1; !; x))�1�(�(!; x))) can be proved analogously, so that a) is shown. Statementb) follows from the estimatesjT jBs�j � max�i<� jT jBij � max�i<� e(�i+a) � e(�k+a); jT �1jBu� j � max�i>� e(�(�i�a)) � e(�(�k+1�a)):Finally, c) is a consequence of Lemma 3.2 a):j(F � T )S � (F � T ) ~Sj � � sup(!;x) j�(��1(!; x))� ~�(��1(!; x))j��1(!;x) � �jS � ~Sj:Therefore, we can use Theorem 3.2 to deduce that the setWs� := fS 2 Bj supn�0 je(��n)FnSj <1gis the graph of a function G : Bs� ! Bu� satisfying G(0) = 0 and Lip G < 1.It can be checked that the global mapping G gives rise to local mappings G(!; x)of the tangent spaces into themselves. The desired local manifolds are determined byG(!; x), i.e., they can be obtained by simply applying the exponential map to the graphof G(!; x). To carry out this construction, we want to use the following lemma whichwill be proved in Section 4.1. 9



Lemma 3.3 G induces a family of mappingsG(!; x) : V s� (!; x) �! V u� (!; x)such that G(S)(!; x) = (!;G(!; x)�(!; x)):Using the functions G(!; x) we de�neW s�(!; x) := Expxf� 2 graph G(!; x)j j�j(!;x) � D(!; x; �)g : (3.15)We have to verify that these objects satisfy the conditions i) and ii). Let us start byproving i). To this end, it is su�cient to construct the measurable function � in such away that for all m � nz 2 W s�(!; x)\B(x; �(!; x; n))) jF�m�1(!;x)�: : :�F(!;x)�Exp�1x (z)j�m(!;x) � D(�m(!; x); �):(3.16)This can be seen as follows. For z 2 W s�(!; x); z = Expx(�) we de�ne��(!;x)(~!; ~x) := ( (~!; �) if (~!; ~x) = (!; x);(~!; 0) otherwise : (3.17)Obviously, ��(!;x) 2 graph G, and since graph G is invariant with respect to F it followsthat Fm��(!;x) 2 graph G. Therefore, sinceFm��(!;x) = �F�m�1(!;x)�:::�F(!;x)(�)�m(!;x) ; (3.18)we obtain F�m�1(!;x) � : : : � F(!;x)(�) 2 graph G(�m(!; x)):Hence, by using Eq. (3.16), Lemma 3.2 b), Eq. (3.8) and the cocycle property (2.2), wegetD(�m(!; x); �)� jF�m�1(!;x) � : : : � F(!;x)(�)j�m(!;x)= jf�m�1(!;x) � : : : � f(!;x)(�)j�m(!;x)= jExp�1'(1;#m�1(!);'(m�1;!;x)) � '(1; #m�1(!); �) � Exp'(m�1;!;x)�Exp�1'(1;#m�2(!);'(m�2;!;x)) � : : : � '(1; !; �) � Expx(�)j�m(!;x)= jExp�1'(m;!;x)�'(1; #m�1(!); �)�'(1; #m�2(!); �)�: : :�'(1; !; �)�Expx(�)j�m(!;x)= jExp�1'(m;!;x) � '(m;!; �)(z)j�m(!;x);which implies that '(m;!; z) 2 W s�(�m(!; x)):10



Let us de�ne the function �(!; x; n) as follows:�(!; x; n) :=( C(!; x; �)�1D(!; x; �)e(��n) if e(�k+a) + � � 1;(e(�k+a) + �)�nC(!; x; �)�1D(!; x; �)e(��n) otherwise : (3.19)We will only discuss the second case in detail, the �rst case can be studied analogously.Suppose that z 2 W s�(!; x); d(x; z) � �(!; x; n): Then, by employing Theorem 3.2,Lemma 3.1 and Lemma 3.2 we obtainjF�m�1(!;x) � : : : � F(!;x)(�)j�m(!;x) = jFm��(!;x)j� (e(�k+a) + �)mj��(!;x)j= (e(�k+a) + �)mj�j(!;x)� (e(�k+a) + �)mC(!; x; �)d(x; z)� (e(�k+a) + �)nC(!; x; �)�(!; x; n)� D(!; x; �)e(��n)� D(�m(!; x); �);and i) is proved. It remains to prove ii). To this end, we want to use the followingtheorem.Theorem 3.3 Suppose that the conditions of Theorem 3.2 are satis�ed. Furthermore,suppose that f is a C1�map and that Lip(f � T ) is su�ciently small. Then g is also aC1� map, and if Df(0) = T; then Dg(0) = 0.For � � 1, the proof of Theorem 3.3 was also given by Irwin (1972). However, it iseasy to prove the theorem in its full generality by using the graph transform methoddescribed in Section 4, see e.g. Dahlke (1988) for details. To apply Theorem 3.3, weintroduce the mappingDF(S) : B �! BDF(S)( ~S)(!; x) = (!;D�(��1(!;x))F��1(!;x)~�(��1(!; x))):Lemma 3.2 d) implies thatjF(S+ ~S)�F(S)�DF(S) ~Sj � sup(!;x) j~�(��1(!; x))j 12��1(!;x)j~�(��1(!; x))j��1(!;x) � j ~Sj 32 ;which shows that DF(S) is indeed the derivative of F . Furthermore, since T0Expx = Id,we obtainDF(0)S(!; x) = (!;D0F��1(!;x)�(��1(!; x)))= (!;D0(Exp�1x � '(1; #�1(!); �) � Exp'(�1;!;x))�(��1(!; x)))= (!; T'(1;��1(!; x))�(��1(!; x)));11



which implies that DF(0) = T . Therefore, it follows from Theorem 3.3 that G is C1and DG = 0, and hence, by employing the continuous linear operatorsi(!;x) : V s� (!; x) �! Bs� �(!;x) : Bu� �! V u� (!; x)� 7�! ��(!;x) S 7�! �(!; x)we obtain that each local map G(!; x) is C1 and satis�es D0G(!; x) = 0, i.e., G(!; x) istangent to V s� . 2Remark 3.2i) The proof of Theorem 3.1 shows that, in principle, similar results can be obtainedfor dynamical systems on non-compact manifolds. However, in this case, onehas to assume the existence of an invariant measure. Furthermore, the radius ofinjectivity of the manifold under consideration has to be di�erent from zero.ii) To be on safe side and to obtain a C1� family of submanifolds, we have assumedthat �(!) 2 Di�2(M). As one would expect, the smoothness of the submanifoldsW s�(!; x) increases with the smoothness of the cocycle '. In fact, it can be checkedthat if �(!) 2 Di�r(M), then the W s�(!; x) are Cr�1. In the deterministic case,sharper results are available. For instance, it can be shown that for a Cr+��di�eomorphism the strongly stable manifolds are also Cr+�, provided that r+� >1, see Pugh and Shub (1989) for details. Under some additional conditions, asimilar result holds for the generalized stable manifolds.iii) The set Ws� is also invariant with respect to F�1 . This is a consequence of itsdynamical characterization according to Theorem 3.2. Using this property, it canbe checked that the family fW s�(!; x)j(!; x) 2 �g is also backward invariant in thesense stated in part i) of Theorem 3.1.According to Theorem 2.1, the distribution formed by the subspaces V s� (!; x) is mea-surable, i.e., it is given by a measurable mapping into the corresponding Grassmannbundle overM . The local stable manifoldsW s�(!; x) can be interpreted as the nonlinearanaloga of the spaces V s� (!; x). Consequently, they are measurable in a similar sense.Theorem 3.4 Let C0(V s� ; V u� ) denote the measurable bundle over � whose �ber with re-spect to (!; x) consists of the continuous functions from V s� (!; x) into V u� (!; x), equippedwith the topology of uniform convergence on compact sets. Then the mapping� �! C0(V s� ; V u� )(!; x) 7�! G(!; x)provides a measurable section of this bundle.Proof: Let B(M) denote the Borel ��algebra of M . It can be checked that the subsetBm := fS 2 Bj S is A
B(M);A
 B(TM)�measurableg12



forms a closed subspace of B, see e.g. Dahlke (1989) for details. Analogously to B, Bmcan be decomposed as Bm = Bsm;�MBum;�;where Bsm;� := fS 2 Bmj �(!; x) 2 V s� (!; x)g;Bum;� := fS 2 Bmj �(!; x) 2 V u� (!; x)g:Therefore, the construction of Theorem 3.1 can also be performed for the space Bm,which implies that the setWsm;� := fS 2 Bmj supn�0 je(��n)FnSj <1gis the graph of a Lipschitz map Gm : Bsm;� ! Bum;�: Once again, Gm induces local mapsGm(!; x), and it can be checked that they coincide with the mappings G(!; x), see againDahlke (1989) for details. We want to use the following theorem.Theorem 3.5 Let (X;A) be a measurable space and M;N separable and metrizableC1� manifolds. Let C0(M;N) denote the space of continuous functions from M intoN , equipped with the topology of uniform convergence on compact sets. Furthermore, letmap(X;M) and map(X;N) denote the space of all mappings from X into M and N ,respectively. To an arbitrary function f : X ! C0(M;N) we associate the mappingJ : map(X;M) ! map(X;N)J(�)(x) = f(x)�(x):If J maps measurable functions into measurable functions, then f is measurable.For the case that X is a polish space with Borel ��algebra this theorem was provedby Fathi et al. (1983). However, it can be checked that this assumption is in fact notnecessary, see Dahlke (1989).Consider the sets V s := [(!;x)2�(f!g � V s� (!; x)) � 
� TM;V u := [(!;x)2�(f!g � V u� (!; x)) � 
� TM:Since the spaces V s� (!; x) and V u� (!; x) depend measurable on (!; x), it follows that thebundles V s and V u are measurable trivial, i.e., there exist measurable mappingsT s : V s �! ��Rk; k = dimV s� (!; x);T u : V u �! ��Rd�k:13



Using the �rst trivialization, the space Bsm;� can be identi�ed with the set M(�;Rk)of measurable functions from � into Rk. The space Bum;� can be treated similarly.Therefore, Gm induces mappingsG : � �! C0(Rk;Rd�k)(!; x) 7�! G(!; x):However, since J de�ned byJ :M(�;Rk) �! M(�;Rd�k)J(�)(!; x) 7�! G(!; x)(�(!; x))is well-de�ned, i.e., maps measurable functions into measurable functions, Theorem 3.5implies that the mapping (!; x) 7! G(!; x) is measurable. 2Remark 3.3 We have not used the space Bm in the proof of Theorem 3.1 since it wassometimes convenient to use the functions ��(!;x): However, without further assumptionson the space (
;A) it is not a priori clear that these sections are measurable.If we choose � < 0, then a little bit more can be said about the structure of the resultingstable manifolds, for then, the points in W s�(!; x) possess a dynamical characterization.By using a quite di�erent approach, a result of this type was proved before by Carverhill(1985).Corollary 3.1 (Strongly stable manifolds)Let � < 0 and � su�ciently small. Then there exist measurable functions �(!; x); 
(!; x)such thatz 2 W s�(!; x) \B(x; �(!; x)) if and only ifz 2 B(x; �(!; x)) and d('(n; !; x); '(n; !; z)) � 
(!; x)e((���)n) for all n 2 N:Proof: It is su�cient to showa) z 2 W s�(!; x) =) jExp�1'(n;!;x)('(n; !; z))j�n(!;x) � (e(�k+a) + �)njExp�1x (z)j(!;x);b) z 2 W s�(!; x)(= jExp�1'(n;!;x)('(n; !; z))j�n(!;x) � e(�n)D(!; x; �) :This can be seen as follows. Suppose that a) and b) hold. By means of Lemma 3.1 theseimplications can be easily transformed to the original Riemannian metric. We obtain~a) z 2 W s�(!; x) =) d('(n; !; x); '(n; !; z)) � rC(!; x; �)(e(�k+a) + �)nd(x; z);~b) z 2 W s�(!; x)(= d('(n; !; x); '(n; !; z)) � D(!; x; �)C(!; x; �)�1e((���)n) :14



Therefore, if we de�ne�(!; x) := D(!; x; �)rC(!; x; �)2 ; 
(!; x) := D(!; x; �)C(!; x; �) ;then ~a) yields for z 2 W s�(!; x)\B(x; �(!; x)) and � small enough since e(�k+a)+ � < e�d('(n; !; x); '(n; !; z)) � rC(!; x; �)(e(�k+a) + �)nd(x; z)� rC(!; x; �)e((���)n) D(!; x; �)rC(!; x; �)2� D(!; x; �)C(!; x; �)e((���)n)= 
(!; x)e((���)n);and the other implication is a direct consequence of ~b).Let us carry on by proving a). Since � < 0 we may choose � small enough such thate(�k+a) + � < e� � e�� :Suppose that z 2 W s�(!; x); z = Expx(�). Then Theorem 3.2 and Lemma 3.2 implyjF�n�1(!;x)�: : :�F(!;x)(�)j�n(!;x) � (e(�k+a)+�)nj�j(!;x) � e(��n)D(!; x; �) � D(�n(!; x); �):Therefore, we obtain(e(�k+a) + �)njExp�1x (z)j(!;x) � jF�n�1(!;x) � : : : � F(!;x)(�)j�n(!;x)= jf�n�1(!;x) � : : : � f(!;x)(�)j�n(!;x)= jExp�1'(n;!;x)('(n; !; z))j�n(!;x);and a) is shown. It remains to prove b). We have to show that � 2 graph G(!; x), i.e.,��(!;x) 2 graph G: To do that, we want to use the dynamical characterization of the setWs� according to Theorem 3.2. By employing once again the fact that e(�n)D(!; x; �) �e(��n)D(!; x; �) � D(�n(!; x); �) we obtainjF�n�1(!;x) � : : : � F(!;x)(�)j�n(!;x) = jExp�1'(n;!;x)'(n; !; z)j�n(!;x)and thereforeje(��n)Fn��(!;x)j = e(��n)jExp�1'(n;!;x)'(n; !; z)j�n(!;x) � D(!; x; �) <1:The Corollary is proved. 2From the construction of the spaces V s� (!; x); it is clear that V s�1(!; x) � V s�2(!; x) if�1 < �2. Since we have interpreted the manifolds W s�(!; x) as the nonlinear analoga ofthe spaces V s� (!; x), they should behave in a similar way. Indeed, one has the following15



Corollary 3.2 Let the numbers �1; : : : ; �r�1 be chosen such that�1 + a < �1 < �2 � a < �2 + a < : : : < �r�1 < �r � a :Then W s�1(!; x) � W s�2(!; x) � : : : �W s�r�1(!; x) :Proof: The dynamical characterization of the set Ws� implies that it is su�cient toshow that the conditions of the Theorems 3.2 and 3.3 are satis�ed simultaneously for all�i; i = 1; : : : ; r � 1. However, this can be easily checked by using the de�nition of theLyapunov metric in Eq. (3.4) and the fact that the constant � may be chosen arbitrarysmall. 23.2 Unstable and Oseledec ManifoldsFrom our point of view, an invariant family of C1�submanifolds W u� (!; x) is called afamily of unstable manifolds if each W u� (!; x) is tangent to V u� (!; x): In principle, theexistence of such a family can be shown by mimicking the proof of Theorem 3.1 with'(�1; !; x) instead of '(1; !; x). However, this could e.g. produce a di�erent functionD(!; x; �) which would be very unconvenient in the following. As we will see, it isnecessary for our purpose to �x all the functions and parameters that are used once andfor all. Therefore, we will prove the existence of the unstable families by employing thesetting of Theorem 3.1.Theorem 3.6 Suppose that the conditions of Theorem 3.1 are satis�ed. Then thereexists a set � � � such that �(�) = 1, a measurable function � : � �N ! (0;1) anda family fW u� (!; x)j(!; x) 2 �g of immersed C1�submanifolds such thati) '(�m;!; �)(W u� (!; x) \B(x; �(!; x; n))) � W u� (��m(!; x)) for m � n;ii) x 2 W u� (!; x)and TxW u� (!; x) = V u� (!; x):Proof: We want to apply the Theorems 3.2 and 3.3 to F�1 and T �1. It can be checkedthat LipF�1 � (jT �1j�1 � Lip(T � F))�1 (3.20)and thereforeLip(F�1 � T �1) � jT �1jLip(T � F)(jT �1j�1 � Lip(T �F))�1 :Hence, we are able to ful�l the conditions of Theorem 3.2 by choosing the parameter �in Lemma 3.2 su�ciently small. Once again, Lemma 3.3 implies the existence of localfunctions H(!; x) which determine the unstable manifolds. By construction, one hasF�1(S)(!; x) = (!;F�1(!;x)�(�(!; x))):16



Therefore, it remains to show that there exists a function L(!; x; �) satisfyingL(�n(!; x); �) � L(!; x)e(��jnj); n 2 Z;and F�1��1(!;x)(�) = f�1��1(!;x)(�) for j�j(!;x) � L(!; x; �);for then, after settingW u� (!; x) := Expxf� 2 graph H(!; x)j j�j(!;x) < L(!; x; �)gthe function � can be obtained by following the lines of the construction of the function �in Theorem 3.1. The function L can be generated from the function D. By constructionjF�1��1(!;x)(�)j��1(!;x) � D(��1(!; x); �)implies F�1��1(!;x)(�) = f�1��1(!;x)(�) :Furthermore, one hasjF�1��1(!;x)(�)j��1(!;x)�LipF�1��1(!;x)j�j(!;x)� [jT'(1;��1(!; x))�1j�1 � Lip(F��1(!;x) � T'(1;��1(!; x)))]�1j�j(!;x)� (e(�1+a) � �)�1j�j(!;x) ;compare with (3.20). Therefore, by settingL(!; x; �) := D(!; x; �)e(��)(e(�1+a) � �)it follows for j�j(!;x) � L(!; x; �)jF�1��1(!;x)(�)j��1(!;x) � (e(�1+a) � �)�1j�j(!;x) � D(!; x; �)e�� � D(��1(!; x); �):Finally, since F is Lipschitz-close to T , F�1 is C1 which implies that W u� (!; x) is C1. 2So far, we have constructed stable and unstable manifolds associated with appropriateparameters �. Our construction shows that this parameter can in fact be chosen almostarbitrary, so that it seems natural to try to intersect the stable and unstable manifoldswith respect to di�erent parameters to obtain invariant manifolds tangent to the Oseledecspaces Ei(!; x) themselves. The following theorem shows that these so-called Oseledecmanifolds really exist.Theorem 3.7 Suppose that the conditions of Theorem 3.1 are satis�ed and that thenumber �1 < �2 are disjoint from all intervals [�i � a; �i + a]. We setV s�1(!; x) := M�i<�1 Ei(!; x); V c�1;�2(!; x) := M�1<�i<�2 Ei(!; x); V u�2(!; x) := M�i>�2 Ei(!; x) :Then there exists a set � � � such that �(�) = 1, a measurable function � : ��N�N!(0;1) and a family fW c�1 ;�2(!; x)j(!; x) 2 �g of immersed C1�submanifolds such that17



i) '(n; !; �)(W c�1;�2(!; x) \B(x; �(!; x;N;M))) �W c�1;�2(�n(!; x)) for n � N;'(�m;!; �)(W c�1;�2(!; x) \B(x; �(!; x;N;M))) � W c�1;�2(��m(!; x)) for m �M;ii) x 2 W c�1;�2(!; x) and TxW c�1;�2(!; x) = V c�1;�2(!; x):Proof: Once again, the proof can be performed by using global results on invariantmanifolds in Banach spaces. Consider the splittingBs�1 := M�i<�1Bi; Bc�1;�2 := M�1<�1<�2Bi; Bu�2 := M�2<�iBi:If we set �m := max�i<�1f�ig; �n := max�i<�2f�ig, then we obtain by Eq. (3.7)jT jBs�1 j � e(�m+a) < e�1 < e(�m+1�a) � jT �1jBc�1;�2 j�1 (3.21)� jT jBc�1;�2 j � e(�n+a) < e�2 < e(�n+1�a) � jT �1jBu�2 j�1 :We want to use the following theorem on invariant manifolds.Theorem 3.8 Let T be an isomorphism of a Banach space E with invariant subspacesE1; E2 and E3 such that E = E1 �E2 � E3, we de�ne Ti = T jEi. Suppose thatkT1k < kT�12 k�1 � kT2k < kT�13 k�1and let � and ~� be such thatkT�13 k�1 > � > kT2k; kT1k�1 > ~� > kT�12 k:Let f : E ! E be a (global) Lipschitz map such that f(0) = 0 andLip(f � T ) = k < min(kT�13 k�1 � �; �� kT2k);Lip(f�1 � T�1) = ~k < min(kT1k�1 � ~�; ~�� kT�12 k):Then the setWc�;~� := fx 2 Ej supn�0 k��nfn(x)k <1^ supn�0 k~��nf�n(x)k <1gis the graph of a Lipschitz map g : E2 ! E1�E3 with Lip(g) < 1. Furthermore, if f isa C1�map and k; ~k su�ciently small, then g is C1, and if Df(0) = T , then Dg(0) = 0.A proof of this theorem can be found e.g. in Dahlke (1989). If we choose the parameter �in Lemma 3.2 su�ciently small, then it follows by (3.21) that the conditions of Theorem3.8 are satis�ed which implies by Lemma 3.3 the existence of suitable functionsC(!; x) : V c�1;�2(!; x) �! V s�1(!; x)� V u�2(!; x):Therefore, we may setW c�1;�2(!; x) := Expxf� 2 graph C(!; x)j j�j(!;x) < min(D(!; x; �); L(!; x; �))gand proceed as in the proofs of the Theorems 3.1 and 3.6. 218



Remark 3.4 In the case of one vanishing Lyapunov exponent we obtain for �1 =�b; �2 = b the so-called center manifolds. For stochastic 
ows on Rd, and by usinga quite di�erent method, the existence of center manifolds was established by Boxler(1989). Clearly, this non-compact case can also be treated in the way suggested here,see Remark 3.2. On Rd equipped with the canonical connection we obtainf(!;x)(�) = Exp�1'(1;!;x) � '(1; !; �) � Expx(�) = '(1; !; x+ �) � '(1; !; x) := ~'(1; !; x; �):Let us furthermore de�ne�(1; !; �) = '(1; !; x+ �)� '(1; !; x)� T'(1; !; x)(�):In Boxler (1989), the center manifolds are obtained under boundedness conditions onthe derivatives of �. Each point y in the resulting manifold possesses a dynamicalcharacterization of the formlim supn!+1 1n log k ~'(n; !; x; y)k � �; lim infn!�1 1n log k ~'(n; !; x; y)k � �� (3.22)for some su�ciently small �. This result can be obtained in our setting as follows.Suppose that kD�(1; !; �)k � �rC(�(!; x); �):Thenjf(!;x)(�)�T'(1; !; x)��(f(!;x)(�)�T'(1; !; x)�)j�(!;x)�C(�(!; x); �)k�(1; !; �)��(1; !; �)k��rk� � �k � �j� � �j(!;x):Therefore, for � su�ciently small, we can use Theorem 3.7 to obtain the center manifoldsas graphs of the mappingsC(!; x) : E0(!; x) �! V s�b(!; x)� V ub (!; x):Every point � 2 graph C(!; x) satis�esF�n�1(!;x) � : : : � F(!;x)(�) = f�n�1(!;x) � : : : � f(!;x)(�) = ~'(n; !; x; �) :Hence Lemma 3.1 and Theorem 3.2 yieldk ~'(n; !; x; �)k � rj ~'(n; !; x; �)j�n(!;x)� rjF�n�1(!;x) � : : : � F(!;x)(�)j�n(!;x)� r(LipFjWsb )nj�j(!;x)� r(jT jBsb + �)nj�j(!;x)� rC(!; x; �)(ea + �)nk�k;and therefore 1n log k ~'(n; !; x; �)k � log(ea + �) + 1n log(rC(!; x; �)k�k) ;which means that in the forward direction our construction also gives rise to a dynamicalcharacterization of the form (3.22) with � = log(ea+ �). The backward direction can betreated analogously. 19



3.3 Proof of the Lemmata 3.1 and 3.2Proof of Lemma 3.1First of all, it can be checked that for all � disjoint from the Lyapunov spectrum and� > 0 su�ciently small there exists a function A(!; x; �; �) satisfyingkT'(n; !; x)�k � A(!; x; �; �)k�ke(�n) for all � 2 V s� (!; x); n � 0; (3.23)kT'(�n; !; x)�k � A(!; x; �; �)k�ke(��n) for all � 2 V u� (!; x); n � 0; (3.24)A(�n(!; x); �; �) � A(!; x; �; �)e(�jnj) ; n 2 Z : (3.25)For deterministic systems, the existence of such a function was established by Fathi etal. (1983). However, their proof immediately carries over to the stochastic situationsince it is only based on Theorem 2.1 and Hadamard's inequality. Using (3.23), (3.24)and the de�nition of the Lyapunov metric in (3.4) we obtain for �i 2 Ei(!; x)j�j(!;x) �  A(!; x; �; �i + a2) +A(!; x; �; �i � a2)1 � e(�a2 ) ! k�kwhich implies for � = Pri=1 �ij�j(!;x) = maxi j�ij(!;x) � maxi  A(!; x; �; �i + a2) +A(!; x; �; �i � a2)1� e(�a2 ) k�ik! : (3.26)The expression on the right-hand side can be estimated further by employing the angle �(!; x) between two subspaces V s� (!; x) and V u� (!; x) which is de�ned bycos( �(!; x)) := sup( jh�; �ijk�k k�k j � 2 V s� (!; x); � 2 V u� (!; x)) ; (3.27)where � is disjoint from the Lyapunov spectrum. The asymptotic behaviour of such anangle is described by the following lemma which is a generalization of the correspondingdeterministic result of Pesin (1976), see Dahlke (1989) for details.Lemma 3.4 For every � > 0 there exists a measurable function M(!; x; �) on � suchthat M(!; x; �; �) � sin( �(!; x)2 ); (3.28)M(�n(!; x); �; �) � M(!; x; �; �)e(��jnj) for all n 2 Z: (3.29)The norm of one component �i can be estimated from above byk�ik � r�1Yj=1(1 � cos( �j+a(!; x)))� 12k�k; (3.30)20



see the proof of Lemma 4.7 for details. Therefore, combining (3.30) and (3.28) we obtaink�ik � 2 1�r2 r�1Yj=1 sin( �j+a(!; x)2 )�1k�k � 2 1�r2 r�1Yj=1M(!; x; �; �j + a)�1k�k ;so that, by inserting this expression into (3.26), we see thatC(!; x; �):= 2 1�r21� e�a2 �maxi (A(!; x; �r ; �i + a2)+A(!; x; �r ; �i � a2))�r�1Yj=1M(!; x; �r ; �j+a)�1(3.31)does the job sinceC(�n(!; x); �)= 2 1�r21�e�a2 �maxi (A(�n(!; x); �r ; �i+ a2)+A(�n(!; x); �r ; �i� a2))�r�1Yj=1M(�n(!; x); �r ; �j+a)�1� 2 1�r21�e�a2 �maxi (A(!; x; �r ; �i+ a2)+A(!; x; �r ; �i� a2))� e( �r jnj)r�1Yj=1M(!; x; �r ; �j+a)�1e( �r jnj)� C(!; x; �)e(�jnj): 2Proof of Lemma 3.2:Essentially, this lemma is the generalization to the stochastic situation of a correspondingdeterministic result proved by Fathi et al. (1983). In Dahlke (1989) a detailed descriptionof this generalization is given, so we will be brief and restrict ourselves to the presentationof the main ideas. For further information, the reader is referred to Fathi et al. (1983)and Dahlke (1989).Let (Ui;  i)i=1;:::;m be a �xed �nite atlas of M and let ~r > 0 be a su�ciently smallnumber less than the radius of injectivity such that for x 2 M the ball B(x; ~r) liesstrictly inside a domain Ui(x). This is always possible by Lebesque's covering lemma, seee.g. Walters (1982) for details. First step is to show that for all ~� there exist functionsE(!; ~�); I(!; ~�) such that for all (!; x) in a set � � �; �(�) = 1 the mapping f(!;x) iswell-de�ned for � 2 TxM with k�k � ~rE(!; ~�) and satis�eskD�f(!;x) �D�f(!;x)k � I(!;~�)k� � �k :Furthermore, we want to show that E and I can be chosen such thatE(#n(!); ~�) � E(!; ~�)e(�~�jnj)I(#n(!); ~�) � I(!; ~�)e(~�jnj)for all n 2 Z. Moreover, the function E(!; ~�) has to satisfy E(!; ~�) � 1: However, theconstruction presented below provides this property in a natural way.21



From the estimated('(1; !; x); '(1; !; y)) � sup~x2M kT'(1; !; ~x)kd(x; y) � G(!)d(x; y) � max(G(!); 1)d(x; y)we see that f(!;x) is well-de�ned for all � 2 TxM with k�k � ~r(max(1; G(!)))�1 and thatthere exist charts (Ui;  i); (Uj;  j) such that Expx(�) 2 Ui; '(1; !;Expx(�)) 2 Uj : Byemploying this fact, a long-winded, but standard computation using local coordinatesshows thatkD�f(!;x)�D�f(!;x)k�c[(max(1; G(!)))2+max(1; G(!))+max(1;H(!))]k���k=:J(!)k���k;where c only depends on the geometry of M . Let us now consider e.g. the term~G(!) := cmax(1; G(!)) in more detail. Our integrability assumptions clearly implythat E log ~G(!) < 1: Therefore, since the shift by # is measure-preserving, we obtainby Birkho�'s ergodic theorem thatlimn!1 1n n�1Xj=0 log ~G(#j(!)) exists P � a.e.;and hence limn!�1 1jnj log ~G(#n(!)) = 0 P � a.e.:Consequently, for every ~� > 0 there exists a number N(!) such that~G(#n(!)) � e(~�jnj) for jnj � N(!):The other terms can be estimated analogously, so that we have established the existenceof a measurable function ~J(!) satisfyingJ(#n(!)) � ~J(!)e(~�jnj) for all n 2 Z; ! 2 
1; 
1 � 
; P (
1) = 1:An application of Lemma 1.1.1 in Pesin (1976) yields the existence of a function I(!; ~�)satisfying J(!) � I(!; ~�); (3.32)I(#n(!); ~�) � I(!; ~�)e(~�jnj); n 2 Z; ! 2 
1:The function E(!; ~�) can be constructed analogously with respect to a set 
2. Therefore,by setting � := ((
1 \ 
2)�M) \ �we have proved our �rst claim.After these preliminaries, we are now ready to prove the estimates stated in Lemma3.2. We set for k�k � ~rE(!; ~�)h(!;x)(�) := f(!;x)(�) � T'(1; !; x)�:22



Next we choose a C1�function g(t) in such a way thatg(t) = ( 1 if t � ~r2=20 if t � ~r2 :Then, using g and an appropriate function K(!; x; ~�) � 1 which will be constructedbelow the mapping H(!;x)(�) := h(!;x)(�)g  k�k2E2(!; ~�)K2(!; x; ~�)!is well-de�ned for all � 2 TxM: (In the sequel, we will sometimes drop the arguments!; x and ~�.) We will proceed as follows. First of all, we show that for �; � 2 TxMi) kH(�) �H(�)k � b1JKE�1k� � �kii) kD�H �D�Hk � b2JK 12E� 52k� � �k 12with some constants b1; b2. Next step is to rewrite these inequalities in terms of theLyapunov metric. From the resulting estimates the function K(!; x; ~�) can be derived.Finally, an appropriate modi�cation of K(!; x; ~�) gives rise to the function D(!; x; �).We only want to show ii) in detail. Statement i) can be proved analogously. First ofall, it is easy to check that for k�k � ~rE(!; ~�)K(!; x; ~�)�) kh(!;x)(�)k � ~r2J(!; ~�)K(!; x; ~�)2;�) kD�h(!;x)k � ~rJ(!; ~�)K(!; x; ~�),
) Lip h(!;x) � ~rJ(!; ~�)K(!; x; ~�),�) Lip 12Dh(!;x) � (2~r) 12J(!; ~�)K(!; x; ~�) 12 .We have to studyD�H(!;x)(�) = D�  h(!;x)(�)g( k � k2E2K2 )! (�) = 2E2K2 g0( k�k2E2K2 )h(�)h�; �i+g( k�k2E2K2 )D�h(�) :We want to estimate these two terms separately. To do that, we have to distinguishbetween the following cases.- �; � 2 B(0; ~rEK),- � 2 B(0; ~rEK); � =2 B(0; ~rEK);- �; � =2 B(0; ~rEK): 23



We will only study the �rst case in detail. Using �) and �), the second term can beestimated as follows.kg( k�k2E2K2 )D�h� g( k�k2E2K2 )D�hk � kD�hkjg( k�k2E2K2 )� g( k�k2E2K2 )j+ kD�h�D�hk� ~rJK Lip 12 g j k�k2E2K2 � k�k2E2K2 j 12 + (2~r) 12JK 12k� � �k 12� ~rJK Lip 12 g j(k�k + k�k)(k�k � k�k)EK EK j 12 + (2~r) 12JK 12k� � �k 12� ~rJK Lip 12 g (2~r) 12 k� � �k 12(EK) 12 + (2~r) 12JK 12 k� � �k 12� JK 12E 12 [~rLip 12 g (2~r) 12 + (2~r) 12 ]k� � �k 12 :The treatment of the �rst term is a little bit more involved. We getkg0( k�k2E2K2 ) 2E2K2h(�)h�; �i � g0( k�k2E2K2 ) 2E2K2h(�)h�; �ik� max jg0jk 2E2K2h(�)h�; �i � 2E2K2h(�)h�; �ik+ k 2E2K2h(�)h�; �ikjg0( k�k2E2K2 )� g0( k�k2E2K2 )j :The right-hand side can be estimated further by using the following facts which will beproved below.a) k2E�2K�2h(�)h�; �i � 2E�2K�2h(�)h�; �ik � (2~r) 52JK 12E�2k� � �k 12 ;b) k2E�2K�2h(�)h�; �ik � 4~r3JKE�2;for k�k; k�k � ~rEK. Using a) and b), we obtainkg0( k�k2E2K2 ) 2E2K2h(�)h�; �i � g0( k�k2E2K2 ) 2E2K2h(�)h�; �ik� max jg0j (2~r) 52E2 JK 12k� � �k 12 + 4~r3JKE2 Lip 12 g0 j k�k2E2K2 � k�k2E2K2 j 12� JK 12E 52 [max jg0j(2~r) 52 + 4~r3(2~r) 12Lip 12 g0]k� � �k 12 ;so that, by combining the estimates of both terms, we �nally getkD�H(!;x) �D�H(!;x)k � b2JK 12E 52 k� � �k 12as stated in ii).Let us carry on by proving a) and b). Combining �), 
) and the fact that k�k � ~rEKwe obtain for an arbitrary � 2 TxMkh(�)h�; �i � h(�)h�; �ik � kh(�) � h(�)kk�kk�k+ kh(�)kjh� � �; �ij� ~rJKk� � �kk�kk�k+ ~r2JK2k� � �kk�k� 2~r2JK2k� � �kk�k;24



and thereforek 2E2K2h(�)h�; �i � 2E2K2h(�)h�; �ik � 4~r2JE2 (2~rK) 12k� � �k 12 = (2~r) 52JK 12E2 k� � �k 12proving a). Statement b) follows immediately from the estimatesk 2E2K2h(�)h�; �ik � 4~r2JE2 k�k � 4~r2JE2 (~rK) � 4~r3JKE2 :Now let us return to our original goal. Using Lemma 3.1, the statements i) and ii) canbe transformed to the Lyapunov metric as followsiii) jH(!;x)(�) �H(!;x)(�)j�(!;x) � rb1e~�C(!; x;~�)JKE�1j� � �j(!;x);iv) jD�H(!;x) �D�H(!;x)j�(!;x) � r 32 b2e~�C(!; x;~�)JK 12E� 52 j� � �j 12(!;x).From iii) and iv) we can guess how to choose the functions K(!; x; ~�) and D(!; x; �). Weset K(!; x; ~�) := min E5r3b2e2~�C(!; x;~�)2J2 ; �Erb1e~�C(!; x; ~�)J ; 1! :Then (3.32) and Lemma 3.1 imply thatK(�n(!; x); ~�) � K(!; x; ~�)e�9~�jnj :K(!; x; ~�) can now be used to construct the function D(!; x; �). We de�ne for ~� = �10D(!; x; �) := ~rE(!; ~�)K(!; x; ~�)2 12 r :Then D(!; x; �) satis�es D(�n(!; x); �) � D(!; x; �)e(��jnj);i.e., statement c) in Lemma 3.2 is proved. It is easy to see that for this choice of D(!; x; �)the other statements of Lemma 3.2 also hold. Property a) is a consequence of iii) sinceLipj j(F(!;x) � T'(1; !; x)) = Lipj j  (f(!;x) � T'(1; !; x))g( ~r2k � k22r2D(!; x; �)2 )!= Lipj j  (f(!;x) � T'(1; !; x))g( k � k2E2K2 )!= Lipj jH(!;x) � � :d) follows from iv) in a similar way. It remains to check b). However, using (3.6) weobserve that j�j(!;x) � D(!; x; �) impliesk�k2E�2K�2 � ~r22�1and therefore g( k�k2E2K2 ) = 1 : 225



4 The Globalization ProblemIn Section 3 we have constructed local invariant manifolds with respect to almost arbi-trary parameters disjoint from the Lyapunov spectrum. It seems natural to ask if theselocal objects can be "glued together" to well-de�ned global foliations. It was shown byPesin (1977a) and Carverhill (1985) that this globalization procedure can be carried outfor strongly stable manifolds, i.e., for � < 0 the local stable manifolds give rise to inte-gral manifolds of the distribution V s� (!; x), see also Ruelle (1979). However, the proofsare always based on the dynamical characterization of the local manifolds as describedin Corollary 3.1. For � > 0, such a dynamical characterization does no longer hold, sothat this case is much more complicated. Without a dynamical characterization, thestructure of the local stable manifolds can depend e.g. on the chosen parameters and onthe C1�function. Similar problems occur already for the construction of deterministiccenter manifolds, see e.g. Carr (1981) for details.Nevertheless, even for � > 0; the construction is by no means arbitrary since thelocal manifolds are derived from a global problem with a unique solution. Therefore, allthe properties of the family fW s�(!; x)j (!; x) 2 �g are hidden in the manifold Ws�; andthe globalization problem corresponds to the study of this huge object. This study isperformed in two directions. First of all, we try to describe in more detail the generalproperties of invariant manifolds for hyperbolic �xed points in Banach spaces. Secondly,we try to extract more information from the special structure of the Banach space weare working with. A combination of both directions yields the main result of this sectionwhich says that there is no arbitrariness along the strongly stable manifolds, even notfor the generalized stable manifolds, i.e., for �1 < 0; �2 > 0 and y 2 W s�1(!; x) we haveTyW s�2(!; x) = V s�2(!; y):To derive the properties of invariant manifolds, one has to study the proofs of thecorresponding existence theorems. There are more or less two basic approaches. The�rst one, derived by Irwin (1972), is not suitable for our purpose. The second one isthe more geometric approach developed by Hirsch and Pugh (1970) called the graphtransform method. As we will see, this geometric method can be used to prove ourresult. In Section 4.1, we will state its main properties.4.1 The Graph Transform MethodLet E be a Banach space, T an isomorphism with invariant subspaces E1; E2: Fur-thermore, let f : E ! E be a global Lipschitz map with f(0) = 0: We want to �ndinvariant manifolds for f tangent to E1 that can be represented as the graphs of func-tions h : E1 ! E2: To this end, let g : E1 ! E2; g(0) = 0 be a Lipschitz map. Underquite natural assumptions, f(graph g) is again the graph of a Lipschitz map �fg: It canbe checked that �fg(x) = (�2 � f � (id; g)) � (�1 � f � (id; g))�1(x) : (4.33)Obviously, graph g represents the desired invariant manifold if�fg(x) = g(x):26



Under certain conditions, the map g 7! �fg will be a well-de�ned contraction in a speci�cfunction space which implies the existence and uniqueness of the invariant manifold.By this method it is only possible to �nd unstable manifolds since they behave ingeneral as attractors. Therefore, a proof of the central Theorem 3.2 has to be performedby applying the graph transform method to f�1. In our case, the setting is alwayschosen in such a way that this process converges. A direct application of the graphtransform �F would yield a di�erent proof of Theorem 3.6 without the inversion processdescribed in Section 3.2. Both approaches produce the same objects. Because of theseobservations, it would have been also possible to set up the investigations systematicallyon the unstable manifolds. However, this would yield some unexpected di�culties. Forinstance, it would be harder to describe the relations to Carverhill's results since by hisapproach it is only possible to construct stable manifolds.As stated above, the graph transform can be interpreted as a geometric approach.One might think that a method that takes more advantage of the dynamical propertiesof the points in the invariant manifolds could be more powerful since the dynamic of anattractor might be more important than its geometric structure. However, it seems thatthis is not the case. For instance, the deep results of Pugh and Shub (1989) are onlyavailable by using the graph transform method.We want to use the graph transform method to treat functions in Banach spaces ofsections. Especially, we are interested in the class of functions G : Bu� �! Bs� whichinduce mappings G(!; x) : V u� (!; x) �! V s� (!; x)such that G(S)(!; x) = (!;G(!; x)�(!; x)) :Such a function will be called ponctual in the sequel. The remainder of this sectionis devoted to the properties of the graph transform method in the space of ponctualfunctions. We will only state the basic results needed in the following section, for theproofs and more detailed informations the reader is referred to Dahlke (1989).Lemma 4.1 i) With respect to a suitable metric, the setP := fG 2 C0(Bu�; Bs�)j G is ponctual; G(0) = 0; Lip G � 1g is a closed subset offG 2 C0(Bu�; Bs�)j G(0) = 0; Lip G � 1g:ii) The graph transform �F with respect to F maps P into itself.Lemma 4.2 Let G 2 P . Thengraph(�FG(�(!; x))) = F(!;x)(graph G(!; x)) :Furthermore, one has the following lemma which describes the behaviour of the deriva-tives of ponctual maps.Lemma 4.3 Let G 2 P and suppose that G is di�erentiable at 0.i) If D0G(!; x) = 0, then D0�FG(�(!; x)) = 0:27



ii) If jD0Gj > 0, then jD0�FGj < jD0Gj:We will �nish this section with a shortProof of Lemma 3.3:As indicated above, the invariant manifold Ws� can be obtained by applying the graphtransform method to F�1 in the space fG 2 C0(Bs�; Bu�)j G(0) = 0; Lip G � 1g: Thegraph transform is a contractive mapping in this space, see e.g. Dahlke (1988) for details.However, since by Lemma 4.1 the space P is a closed and invariant subset, the �xedpoint necessarily lies in this set. 24.2 A Globalization TheoremSo far, the whole construction was based on a given cocycle '(n; !; x). This cocycle wasconstructed by means of a measurable mapping� : Y �! Di�2(M);compare with Section 2. To show the main result of this section, we need a conditionon the distribution Q of �. Since the proof is based on the graph transform method, wehave formulated this result for the families of unstable manifolds.Theorem 4.1 Suppose that the conditions of Theorem 3.6 hold. Let �1; �2 2 R be dis-joint from all intervals [�i � a; �i + a] and suppose that �1 < 0 < �2. Ifsupp Q � Di�2(M) is compact, then there exists a set ~� � � � �; �(~�) = 1 suchthat for (!; x); (!; y) 2 ~�y 2 W u�2(!; x) \B(x; �(!; x)) implies TyW u�1(!; x) = V u�1(!; y) ;where �(!; x) denotes a function constructed by means of Corollary 3.1 for the familyof unstable manifolds.Proof: We have to show thatExp�1y (W u�1(!; x)) is locally the graph of a C1�map L(!; y) : V u�1(!; y) ! V s�1(!; y)satisfying D0L(!; y) = 0:We want to prove this fact by using the properties of the graph transform method de-scribed in Section 4.1. The proof consists of the following three steps.Claim 1: For n be su�ciently large we consider in T'(�n;!;y)M the coordinate systemthat is obtained by a parallel translation of the spaces V u�1(��n(!; x)) and V s�1 (��n(!; x))from '(�n; !; x) to '(�n; !; y). We show that Exp�1'(�n;!;y)(W u�1(��n(!; x))) is the graphof a mapping I(��n(!; y)) with respect to this coordinate system and we estimate its28



Lipschitz constant.Claim 2: We show that the facts proved in claim1 also imply that Exp�1'(�n;!;y)(W u�1(��n(!; x)))is the graph of a Lipschitz map K(��n(!; y)) : V u�1(��n(!; y)) ! V s�1 (��n(!; y)) andwe estimate once again its Lipschitz constant. To show this part of the proof, we needthe compactness of supp Q which yields a certain continuity of the Oseledec spaces.Claim 3: The mappings K(��n(!; y)) are composed to a global function L in the spaceP . We show that the invariance of the family fW u�1(!; x)j (!; x) 2 �g implies that thederivative of L at the zero section increases. Therefore, by Lemma 4.3, it has to be zerowhich yields the desired tangentiality.Once again, the proof is based on several very technical lemmata. For the proof of theselemmata, the reader is referred to Dahlke (1989) and to Section 4.3, respectively.Proof of Claim 1: First of all, we have to construct appropriate neighbourhoodsU(��n(!; x)) in V u�1(��n(!; x)) having the property that Lip H(��n(!; x))jU(��n(!;x))is su�ciently small and that Exp�1'(�n;!;x)'(�n; !; y) = (�;H(��n(!; x))(�)) for some� 2 U(��n(!; x)): Clearly, H(!; x) denotes the function V u�1(!; x) �! V s�1(!; x) whichdetermines the unstable manifolds, see Section 3.It can be checked that the functions involved in the construction of the invariantmanifolds can be modi�ed in such a way thatjDH(S) �DH( ~S)j � jS � ~Sj� : (4.34)This is because the proof of Lemma 3.2 shows that the function D(!; x; �) can be chosensuch that Lip�j jDF(!;x) < � for � > 0; 0 < � < 1: (4.35)(We have only restricted ourselves to the case � = 12 ; � = 1 to avoid unnecessary technicaldi�culties). Eq. (4.35) implies that DF is also Lipschitz continuous with the sameconstants �; �, and it can be checked that this Lipschitz continuity carries over to theresulting invariant manifold, see Dahlke (1989) for details.Eq. (4.34) implies jD�H(!; x)j(!;x) � j�j�(!;x)which means that Lipj j(!;x)H(!; x)jB(0;R(!;x)) � R(!; x)�for some suitable function R. According to Lemma 3.1, we therefore obtain for theoriginal Riemannian metricLipk kH(!; x)jB(0;R(!;x)C(!;x;�)�1) � rC(!; x; �)R(!; x)� : (4.36)We want to de�ne R(!; x) in such a way that it tends to zero along the backward orbit'(�n; !; x), but this convergence has to be slowly enough to make sure thatExp�1'(�n;!;x)'(�n; !; y) = (�;H(��n(!; x))(�)) for some � 2 B(0; R(��n(!; x))C(��n(!; x); �)�1);29



for then the desired neighbourhoods are given byU(��n(!; x)) := B(0; R(��n(!; x))C(��n(!; x); �)�1) :To �nd the function R, observe �rst that for some � = (�;H(!; x)(�))k�k � R(!; x)C(!; x; �)�1(1�cos( (!; x))) 12 implies k�k � R(!; x)C(!; x; �)�1; (4.37)i.e., � 2 graph H(!; x)jB(0;R(!;x)C(!;x;�)�1), see the proof of Lemma 4.7 for details. Onceagain,  (!; x) denotes the angle between V u�1(!; x) and V s�1(!; x). We setR(��n(!; x)) := 2
(!; x)C(��n(!; x); �)(1� cos( (��n(!; x)))� 12 e(�(�2+�)n)(4.38)= 2
(!; x)C(��n(!; x); �)2� 12 sin( (��n(!; x))2 )�1e(�(�2+�)n)where 
 is a function de�ned according to Corollary 3.1 for the unstable manifolds. Thenwe obtain (for simplicity, we will sometimes use the abbreviations xn := '(�n; !; x); yn :='(�n; !; y))kExp�1xn (yn)k = d(xn; yn)� 
(!; x)e(�(�2+�)n)= 2� 12 [R(��n(!; x))C(��n(!; x); �)�1 sin( (��n(!; x))2 )] ;so that (4.37) impliesExp�1xn (yn) = (�;H(��n(!; x))(�)) for some � 2 B(0; R(��n(!; x))C(��n(!; x); �)�1):By using Lemma 3.4, the special form of the function R(!; x) enables us to estimate theLipschitz constant of H uniformly for all points in the backward orbit. We obtainLipk kH(��n(!; x))jB(0;RC�1) � rC(��n(!; x); �)R(��n(!; x))�� 2�2 r
(!; x)�C(��n(!; x); �))1+� sin( (��n(!; x))2 )��e(�(�2+�)�n)� 2�2 r
(!; x)�C(!; x; �)1+�e((1+�)�n)M(��n(!; x); �)��e(�(�2+�)�n)� 2�2 r
(!; x)�C(!; x; �)1+�e((1+�)�n)M(!; x; �)��e(��n)e(�(�2+�)�n)� c1e(�(�2��(1+�)�)n) ;where c1 depends on (!; x), but not on the other points in the backward orbit.After these preliminaries, we are now ready to prove the claim. Let P (xn; yn) denotethe parallel translation from xn to yn along the unique shortest geodesic. We want toshow: For n � N(!; x; y) su�ciently large there exist neighbourhoods Uxn of Exp�1xn (yn)in TxnM and Vyn of 0 in P (xn; yn)V u�1(��n(!; x)) such thatExp�1yn � Expxn(graph H(��n(!; x)) \ Uxn) (4.39)30



is the graph of a functionI(��n(!; y)) : Vyn �! P (xn; yn)V s�1(��n(!; x))satisfying Lip I(��n(!; y)) � c2e(�(�2��(1+a)�)n) :The modi�cation of H(��n(!; x)) described in (4.39) can be interpreted as a genera-lized graph transform. The properties of such a transform needed for our purpose aresummarized in the following lemma. The proof is more or less straightforward and canbe found e.g. in Dahlke (1989).Lemma 4.4 Let E and F be Banach spaces with decompositions E = E1 � E2; F =F1�F2 and equipped with the corresponding max-norms. Furthermore, let T : E �! Fbe an isomorphism satisfying T (E1) = F1; T (E2) = F2 and let f : E � U ! F be aLipschitz map. Suppose that Lip(T � f) � ` is su�ciently small. Then, for a Lipschitzmap g : E1 � V �! E2 with Lip g � k < 1 , f(graphg) is also the graph of a Lipschitzmap �fg : F1 � W �! F2 with Lip �fg � (kT2kk + `)(kT�11 k�1 � `)�1 :We want to use this Lemma 4.4 for the special caseE = TxnM; E1 = V u�1(��n(!; x)); E2 = V s�1(��n(!; x));F = TynM; F1 = P (xn; yn)V u�1(��n(!; x)); F2 = P (xn; yn)V s�1(��n(!; x));f = Exp�1yn � Expxn; T = P (xn; yn):The following lemma ensures that it is indeed possible to satisfy the conditions of Lemma4.4 with these objects. Its proof is based on local coordinates and can be found in Dahlke(1989).Lemma 4.5 Let M be a compact Riemannian manifold with Levi-Civita connection.Then there exists a constant c such that for all x; y 2 M with d(x; y) su�ciently smallLipf(Exp�1y � Expx � P (x; y))jB(0;2d(x;y))g � cd(x; y) :However, we have to take into account the fact that Lemma 4.5 is stated in terms ofthe Riemannian metric whereas Lemma 4.4 is based on the max-norms induced by thedecompositions. Let jjj � jjjxn denote the max-norm on TxnM , thenk�k2 � jjj�jjjxn � k�k(1 � cos( (��n(!; x)))) 12 ; (4.40)compare with the proof of Lemma 4.7. Therefore, by using the fact that the paralleltranslation preserves the angles between subspaces, we getLipjjj jjjfExp�1yn � Expxn � P (xn; yn))jB(0;2d(xn;yn))g � 2cd(xn; yn)(1 � cos( (��n(!; x)))) 12� 2c
(!; x)e(�(�2+�)n)2� 12 sin( (��n(!; x))2 )�1� 2 12 c
(!; x)M(!; x; �)�1e(��2n)� c3e(��2n) :31



Consequently, since kT1k = kT2k = 1, we obtain by Lemma 4.4 that for n su�cientlylarge the transformation described in (4.39) gives rise to a functionI(��n(!; y)) : Vyn �! P (xn; yn)V s�1(��n(!; x))satisfying Lip I(��n(!; y)) �  c1e(�(�2��(1+�)�)n) + c3e(��2n)1� c3e(��2n) ! :This �nishes the proof of claim 1.Proof of Claim 2: Later on, we want to use the properties of the graph transformmethod described in Section 4.1. To do that, the local mappings I have to be extended tothe whole spaces P (xn; yn)V u�1(��n(!; x)):However, by using e.g. suitableC1�functionsit is easy to see that there exist mappingsJ (��n(!; y)) : P (xn; yn)V u�1(��n(!; x)) �! P (xn; yn)V s�1(��n(!; x))and appropriate neighbourhoods Wyn � Vyn such thatI(��n(!; y))jWyn = J (��n(!; y))jWynand Lip J (��n(!; y)) � c2e(�(�2��(1+�)�)n) :We want to show that graphJ (��n(!; y)) can be interpreted as the graph of a func-tion K(��n(!; y)) : V u�1(��n(!; y)) �! V s�1(��n(!; y)). To this end, we will use thefollowing lemma which will be proved in Section 4.3.Lemma 4.6 Let E be a �nite-dimensional Banach space equipped with a scalar producth�; �i and associated norm k � k: Suppose that E possesses decompositions E = E1 �E2; E = F1 � F2 with norms k � kiE; k � kiF on Ei; Fi; i = 1; 2; and let k � kE; k � kF denotethe associated max-norms. Let gE : E1 �! E2 be a Lipschitz map with Lip gE � � � 1.Suppose that for % su�ciently smallmax(kPE1 � PF1k; kPE2 � PF2k) < % ;where PEi; PFi ; i = 1; 2; denote the projections onto the corresponding subspaces. Thenthere exists a function gF : F1 �! F2such thati) graph gF = graph gE;ii) Lipk kF gF � (c1(E)c2(E)%+ �)(1� c1(E)c2(E)%)�1c1(E)c1(F )c2(E)c2(F );32



where the constants ci(E); ci(F ); i = 1; 2; are de�ned by1c1(E)k�kE � k�k � c2(E)k�kE ;1c1(F )k�kF � k�k � c2(F )k�kF :We want to apply this lemma to the caseE = TynM; E1 = P (xn; yn)V u�1(��n(!; x)); E2 = P (xn; yn)V s�1(��n(!; x)); k � kE = jjj � jjjyn;F1 = V u�1(��n(!; y)); F2 = V s�1(��n(!; y)); k � kF = j � j��n(!;y):The constants describing the relations of the di�erent norms are given by (3.6) and(4.40). Therefore, using Lemma 4.6, Lemma 3.1 and Lemma 3.4, we deduce that thereexist functions K(��n(!; y)) : V u�1(��n(!; y)) �! V s�1(��n(!; y))such that graphK(��n(!; y)) = graphJ (��n(!; y))andLipj j��n(!;y)K(��n(!; y)) � [2(1� cos( (��n(!; x))))� 12%(��n(!; y)) + c2e(�(�2��(1+�)�)n)]�[1� 2(1 � cos( (��n(!; x))))� 12%(��n(!; y))]�1 (4.41)�[2r(1� cos( (��n(!; x))))� 12C(��n(!; y); �)]� [2 12M(!; x; �)�1e(�n)%(��n(!; y)) + c2e(�(�2��(1+�)�)n)]�[1� 2 12M(!; x; �)�1e(�n)%(��n(!; y))]�12 12 rM(!; x; �)�1e(�n)C(!; y; �)e(�n)� [c4%(��n(!; y))e(�n) + c2e(�(�2��(1+�)�)n)]�[1� c4%(��n(!; y))e(�n)]�1c5e(2�n) :From (4.41) we observe that we have reduced our problem to the study of the function%: This is performed by estimating the distance between the corresponding subspaces.In general, the distance between two subspaces is de�ned bydist(E1; E2) := max( sup�2E1;k�k=1 inf�2E2 k� � �k; sup�2E2;k�k=1 inf�2E1 k� � �k) : (4.42)The relations between distances and norms of projections are clari�ed by the followinglemma which will also be proved in Section 4.3.Lemma 4.7 Let E be a �nite dimensional vector space with scalar product that possessesthe decompositions E = E1�E2; E = F1� F2; dimE1 = dimF1 = d: Let � denote theangle between E1 and E2 and let � denote the angle between F1 and F2. ThenkPE1 � PF1k � 2d 12 (dist(E1; F1) + dist(E2; F2))(1 � cos�) 12 (1 � cos�) 12 :33



In our case we therefore obtain%(��n(!; y)) � c6[dist(V u�1(��n(!; y)); P (xn; yn)V u�1(��n(!; x)))+dist(V s�1(��n(!; y)); P (xn; yn)V s�1(��n(!; x)))]M(!; x; �)�1M(!; y; �)�1e(2�n) :For a further estimation of the distances, we have to invoke the compactness conditionon supp Q, for then one has the following lemma which will once again be proved later.Lemma 4.8 Suppose that the conditions of Theorem 4.1 are satis�ed . Then there existsa set ~� � �; �(~�) = 1, such that for every (!; x) 2 ~� the following holds: For everyy 2 W u�2(!; x)\B(x; �(!; x)) there exists a function N(xn; yn) and a number b > 0 suchthat dist(V u�1(��n(!; y)); P (xn; yn)V u�1(��n(!; x))) � N(xn; yn)d(xn; yn)b;dist(V s�1(��n(!; y)); P (xn; yn)V s�1(��n(!; x))) � N(xn; yn)d(xn; yn)b;and N(xn+m; yn+m) � N(xn; yn)e(2�m) :Lemma 4.8 yields%(��n(!; y)) � c7[2N(xn; yn)d(xn; yn)b]e(2�n)� c7[2N(x; y)e(2�n)
(!; x)be(�(�2+�))bn)]e(2�n)� c8e(�(�2b�(4�b)�)n)so that we �nally obtainLipj j��n(!;y)K(��n(!; y)) � [c9e(�(�2b�(5�b)�)n)+c2e(�(�2��(1+�)�)n)][1�c9e(�(�2b�(5�b)�)n)]�1c5e(2�n);(4.43)and the proof of claim 2 is �nished.Proof of Claim 3: For � > 0 su�ciently small, formula (4.43) implies thatlimn!1 Lipj j��n(!;y)K(��n(!; y)) = 0 : (4.44)Therefore, we can �nd a numberM(!; x; y) 2 N such thatLipj j��n(!;y)K(��n(!; y)) < 1 for n �M(!; x; y) :Consequently, if we de�ne the mapping L : Bu�1 �! Bs�1 by(LS)(~!; ~x):=((~!;K(��n(!; y))�(~!; ~x)) if (~!; ~x)=��n(!; y) and n�M(!; x; y)(~!; 0) otherwise ; (4.45)34



then L 2 P , compare with Section 4.1, and �FL is well-de�ned. Let us study the graphtransform of L in more detail. First of all, Lemma 4.2 implies thatgraph(�FL(�(~!; ~x))) = F(~!;~x)(graph L(~!; ~x)) :Let � 2 graph K(��n(!; y)); j�j��n(!;y) su�ciently small and n > M(!; x; y): Then thede�nition of K implies thatF��n(!;y)(�) = f��n(!;y)(�) = f��n(!;y) � Exp�1yn � Expxn(�)for some suitable � 2 graph H(��n(!; x)): Employing (3.8) yieldsF��n(!;y)(�) = Exp�1yn�1 � '(1; #�n(!); �) � Expyn � Exp�1yn � Expxn(�)= Exp�1yn�1 � Expxn�1 � Exp�1xn�1 � '(1; #�n(!); �) � Expxn(�) :Consequently, since Expx(graphH(!; x)) = W u�1(!; x) and the family fW u�1(!; x)j(!; x) 2�g is invariant with respect to ', we obtainF��n(!;y)(�) = Exp�1yn�1 � Expxn�1(�)for some � 2 graph H(��(n�1)(!; x)) and thereforeF��n(!;y)(�) 2 graph K(��(n�1)(!; y)) :Consequently, for n � M(!; x; y) and su�ciently small neighbourhoods U��n(!;y) �V u�1(��n(!; y)) we can deduce that�FL(��n(!; y))jU��n(!;y) = L(��n(!; y))jU��n(!;y) ;and hence D0�FL(��n(!; y)) = D0L(��n(!; y)) :Therefore, employing the de�nition (4.45) of L, we obtain that the application of thegraph transform to L(~!; ~x) increases its derivative at 0, i.e.,jD0�FL(~!; ~x)j(~!;~x) � jD0L(~!; ~x)j(~!;~x) : (4.46)We want to prove that this fact carries over to the global mapping L: Eq. (4.44) impliesthat for all ~� > 0 there exists ~� > 0 such thatjL(~!; ~x)(�)�D0L(~!; ~x)�j(~!;~x) � ~�j�j(~!;~x) for j�j(~!;~x) < ~�which shows that L is di�erentiable at 0 andD0L(S)(~!; ~x) = (~!;D0L(~!; ~x)�(~!; ~x)) :The derivative can be estimated byjD0Lj = supjSj�1 jD0L(S)j � supjSj�1 sup(~!;~x) jD0L(~!; ~x)j(~!;~x)j�(~!; ~x)j(~!;~x) � sup(~!;~x) jD0L(~!; ~x)j(~!;~x) :(4.47)35



Furthermore, one hasjD0�FL(~!; ~x)j(~!;~x) = jD0(�(~!;~x) � �FL � i(~!;~x))j(~!;~x) � jD0(�FL)j; (4.48)where �(~!;~x); i(~!;~x) denote the linear operators introduced at the end of the proof ofTheorem 3.1. Combining (4.48), (4.46) and (4.47) we obtainjD0�FLj � sup(~!;~x) jD0�FL(~!; ~x)j(~!;~x) � sup(~!;~x) jD0L(~!; ~x)j(~!;~x) � jD0Lj;i.e., the derivative is indeed increasing, which implies by Lemma 4.3 thatD0L = 0and therefore D0K(��n(!; y)) = 0 for n �M(!; x; y) :We have shown that for n su�ciently large the function K(��n(!; y)) is tangent toV u�1(��n(!; y)): However, an application of Lemma 4.3 yieldsD0�mFL(�m�n(!; y)) = 0so that D0�nFL(!; y) = 0:If we now use Lemma4.2 and take into account the de�nition of the functionsK(��n(!; y))(they are nothing else but the original local manifolds considered in another coordinatesystem), then the invariance of the family fW u�1(!; x)j(!; x) 2 �g with respect to 'implies thatV u�1(!; y) = Ty(Expyfgraph �nFL(!; y) \ U(!;y)g) = TyW u�1(!; x);where U(!;y) is a suitable neighbourhood in TyM . The theorem is proved. 2Remark 4.1i) A similar result can be shown for the stable manifolds by mimicking the proof ofTheorem 4.1 for F�1 instead of F .ii) As mentioned above, it was shown by Carverhill (1985) that for � < 0 the stochasticstable manifolds give rise to a foliation. In a weaker sense, this result can bederived by applying a version of Theorem 4.1 for F�1 to the case �1 = �2 < 0:Then we obtain that the strongly stable manifolds can be glued together for allpoints (!; x) 2 ~�: However, Carverhill's results can be shown easier by using thedynamical characterization according to Corollary 3.1.36



4.3 Proof of the Lemmata 4.6{4.8Proof of Lemma 4.6Let us start by showing i). We have to prove that PF1 jgraph gE is a bijection, for thengF := PF2 � (PF1 jgraph gE )�1 does the job. First we show that PF1 jgraph gE is injective.For two points �; � 2 E1 we obtainkPF1(�; gE(�)) � PF1(�; gE(�))kE � kPE1((�; gE(�)) � (�; gE(�)))kE�kPF1 � PE1kEk(�; gE(�))� (�; gE(�))kE� k� � �kE � c1(E)c2(E)%k(�; gE(�)) � (�; gE(�))kE:Since k(�; gE(�))� (�; gE(�))kE = max(k� � �kE; kgE(�) � gE(�)kE) = k� � �kEit follows thatkPF1(�; gE(�)) � PF1(�; gE(�))kE � (1 � c1(E)c2(E)%)k(�; gE(�))� (�; gE(�))kEwhich shows that PF1 jgraph gE is indeed injective andLipk kE(PF1 jgraph gE )�1 � (1 � c1(E)c2(E)%)�1 :It remains to show that PF1 jgraph gE is onto. We will use the following fact which canbe proved easily by using standard arguments.Suppose that E is a complete metric space, B a Banach space, and f : E �! B abijection whose inverse is Lipschitz. If a mapping g : E �! B is Lipschitz-close to f ,i.e., Lip(f � g) � ` su�ciently small, then g is onto.Obviously, PF1 � PE1jgraphgE is a bijection whose inverse is Lipschitz, and we havekPF1 � PE1(�; gE(�)) � PF1(�; gE(�))� (PF1 � PE1(�; gE(�))� PF1(�; gE(�)))kE� kPF1kEkPE1 � PF1kEk(�; gE(�)) � (�; gE(�))kE� (1 + kPE1 � PF1kE)kPE1 � PF1kEk(�; gE(�)) � (�; gE(�))kE :ThereforeLipk kE (PF1 � PF1 � PE1)jgraph gE � (1 + c1(E)c2(E)%)c1(E)c2(E)% ;and the result follows by the fact stated above.37



Now let us attack ii). So far, we have shown that gF = PF2 � (PF1 jgraph gE)�1 is awell-de�ned map. To estimate its Lipschitz constant, we �rst observe thatLipk kEgF � Lipk kE((PF2 � PE2) � (PF1 jgraph gE )�1) + Lipk kE(PE2 � (PF1 jgraph gE )�1)� c1(E)c2(E)%(1 � c1(E)c2(E)%)�1 + Lipk kE (PE2jgraph gE ) � (1� c1(E)c2(E)%)�1 :Therefore, sincekPE2(�; gE(�))�PE2(�; gE(�))kE = kgE(�)�gE(�)kE � �k���kE � �k(�; gE(�))�(�; gE(�))kEwe obtain Lipk kEgF � (c1(E)c2(E)%+ �)(1� c1(E)c2(E)%)�1 :This yieldsLipk kF gF � (c1(E)c2(E)%+ �)(1� c1(E)c2(E)%)�1c1(E)c2(E)c1(F )c2(F ) ;and the lemma is proved. 2Proof of Lemma 4.7:It is su�cient to showi) k(PE1 � PF1)�k � k�kdist(E1; F1)(1 � cos�) 12 for � 2 F1,ii) k(PE1 � PF1)�k � k�kd 12dist(E2; F2)(1 � cos�) 12 for � 2 F2.This can be seen as follows. De�ne a new scalar product on E by< �; � >F := hPF1�; PF1�i + hPF2�; PF2�i (4.49)and let j � jF denote the norm associated with < �; � >F : We will prove below thatj�jF � k�k(1 � cos�) 12 : (4.50)De�nition (4.49) and Eq. (4.50) imply thatkPF1�k � (1 � cos �)� 12k�k; kPF2�k � (1 � cos�)� 12k�k : (4.51)Therefore, by combining i), ii) and (4.51) we obtaink(PE1 � PF1)�k = k(PE1 � PF1 )(PF1(�) + PF2 (�))k� k(PE1 � PF1 )(PF1(�))k+ k(PE1 � PF1)(PF2(�))k� kPF1�kdist(E1; F1)(1� cos�) 12 + kPF2�kd 12dist(E2; F2)(1 � cos�) 12� k�kdist(E1; F1)(1� cos�) 12 (1 � cos�) 12 + k�kd 12dist(E2; F2)(1� cos�) 12 (1 � cos �) 12� k�k2d 12 (dist(E1; F1) + dist(E2; F2))(1 � cos �) 12 (1� cos�) 12 :38



Let us carry on by proving i). Let P?E1 denote the orthogonal projection onto E1: Sincefor � 2 E2 cos� � jhP?E1�; �ijkP?E1�kk�k � hP?E1�; P?E1�ikP?E1�kk�k = kP?E1�k2kP?E1�kk�kwe obtain kP?E1�k � cos�k�k :Therefore k�k2 = k� � P?E1�k2 + kP?E1�k2 � k� � P?E1�k2 + cos�k�k2;so that k�k � k� � P?E1�k(1 � cos�) 12 :Using this expression we obtain for every � 2 F1; k�k = 1k(PE1 � PF1)�k = kPE1� � �k� k(PE1� � �) � P?E1(PE1� � �)k(1 � cos�) 12� kPE1� � � � P?E1PE1� + P?E1�k(1 � cos�) 12� kP?E1� � �k(1 � cos�) 12= ( inf�2E1 k� � �k)(1� cos�)� 12� dist(E1; F1)(1 � cos�) 12 ;and i) is shown.Next we attack ii). We may de�ne a scalar product < �; � >E similar to (4.49) but withE1; E2 instead of F1; F2: Then the associated norm j � jE satis�esj�jE � k�k(1� cos�) 12 : (4.52)Now, let f�igi=1;:::d denote an orthonormal basis in E1 and let � 2 F2; k�k = 1: Then weobtain for any arbitrary element � 2 E2(PE1 � PF1)(�) = PE1(�) = dXi=1 < �i; � >E �i = dXi=1 < �i; � � � >E �i ;and hencek(PE1 � PF1)(�)k2 � dXi=1 j < �i; � � � >E j2 � dXi=1 j�ij2Ej� � �j2E � dj� � �j2E :39



Therefore, by invoking (4.52) we can conclude thatk(PE1�PF1)(�)k � d 12 ( inf�2E2 k���k)(1�cos�)� 12 � d 12 ( sup�2F2;k�k=1 inf�2E2 k���k)(1�cos �)� 12proving ii).It remains to show (4.50). To this end, let f�igi=1;:::;d be an orthonormal basis of F1 andf�jgj=1;:::;m be an orthonormal basis of F2. Then one has for � =Pdi=1 ai�i +Pmj=1 bj�jj�j2F =< dXi=1 ai�i + mXj=1 bj�j ; dXi=1 ai�i + mXj=1 bj�j >F= dXi=1 a2i + mXj=1 b2jand thereforek�k2 = dXi=1 a2i + mXj=1 b2j + 2h dXi=1 ai�i; mXj=1 bj�ji = j�j2F + 2h dXi=1 ai�i; mXj=1 bj�ji :Since �h dXi=1 ai�i; mXj=1 bj�ji � cos�k dXi=1 ai�ikk mXj=1 bj�jkthis yields j�j2F � k�k2 + 2 cos �( dXi=1 a2i ) 12 ( mXj=1 b2j ) 12� k�k2 + cos �( dXi=1 a2i + mXj=1 b2j)� k�k2 + cos �j�j2F ;and the lemma is proved. 2Proof of Lemma 4.8:The proof is based on the following general theorem.Theorem 4.2 Let X be a metric space with diam X � 1 and let H be a Hilbert space.Furthermore, let fTi(x)g; i = 0; 1; 2; : : : ; x 2 X be sequences of bounded linear operatorsTi(x) : H �! H: We set Tm(x) := Tm(x) � : : : � T0(x) : (4.53)For some & > 1 and �1 < �2 let �&;�1;�2 � X denote the set of points for which thereexists a decomposition H = E1(x)� E2(x)40



such that kTm(x)�k � &e�1(m+1)k�k for � 2 E1(x); (4.54)kTm(x)�k � &�1e�2(m+1)k�k for � 2 E2(x): (4.55)If there exists a number a > 0 such thatkTm(x)� Tm(y)k � ea(m+1)d(x; y) (4.56)then dist(E1(x); E1(y)) � 3&2e(�2��1)d(x; y) �1��2�1�a1with a1 > max(�1; a):Under additional orthogonality assumptions, this theorem was proved by Brin and Kifer(1987). However, it can be checked that these additional assumptions are in fact notnecessary.We want to apply Theorem 4.2 to the caseX = (xn; yn); H = TynM;Ti(yn) = I�1i+1 � T'(�1;��(i+n)(!; y)) � Ii;Ti(xn) = I�1i+1 � P (xi+1+n; yi+1+n) � T'(�1;��(i+n)(!; x)) � P (yi+n; xi+n) � Ii;E1(yn) = V u�1(��n(!; y)); E2(yn) = V s�1(��n(!; y));E1(xn) = P (xn; yn)V u�1(��n(!; x)); E2(xn) = P (xn; yn)V s�1(��n(!; x));where Ii denotes a linear isometry TynM ! Tyn+iM . First of all, we have to establish(4.54) and (4.55). We will only prove (4.55) for the point yn in detail, the remainingcases can be treated analogously. Formula (3.23) implies for � 2 V s�1(�n(!; x))k�k � A(!; x; �; �1)kT'(n;!;x)'(n; !; �)�1�ke�1n = A(!; x; �; �1)kT'(n;!;x)'(�n; #n(!); �)�ke�1n :This yields for � 2 V s�1(!; x)k�k � A(��n(!; x); �; �1)kTx'(�n; !; �)�ke�1nand thereforekT'(�n; !; x)�k � A(��n(!; x); �; �1)�1e(��1n)k�k � A(!; x; �; �1)�1e(�(�1+�)n)k�k :However, for � su�ciently small, a similar estimate is valid for ~�1 � �1 � 2�; � � �, i.e.,kT'(�n; !; x)�k � A(!; x; �; ~�1)�1e(�(~�1+�)n)k�k � A(!; x; �; ~�1)�1e(�(�1��)n)k�k:Using this expression and setting& := max(A(��n(!; x); �; �1); A(��n(!; x); �; ~�1); A(��n(!; y); �; �1); A(��n(!; y); �; ~�1));�1 := ��1; �2 := �(�1 � �); 41



we obtain for � 2 V s�1(��n(!; y))kTm(yn)�k = kI�1m+1 � T'(�1;��(m+n)(!; y)) � Im � I�1m � T'(�1;��(m�1+n)(!; y)) �Im�1 � : : : � T'(�1;��n(!; y))�k= kT'(�1;��(m+n)(!; y)) � : : : � T'(�1;��n(!; y))�k= kT'(�(m+ 1);��n(!; y))�k� &�1e�2(m+1)k�k:It remains to prove (4.56). To this end, we want to use the following estimate whichwas in a similar form proved by Brin and Kifer (1987).dist(T'(�m;��n(!; x)); T'(�m;��n(!; y))) � eamd(xn; yn) (4.57)for some appropriate a > 0, where for some di�eomorphism f 2 Di�2(M)dist(Txf; Tyf):=( kTxfk+ kTyfk if max(d(x; y); d(f(x); f(y))) > R;kTxf � P (f(y); f(x)) � Tyf � P (x; y)k else:Clearly, R denotes the radius of injectivity of M . Observe that this result of Brin andKifer only holds if supp Q is compact, so that eq. (4.57) is exactly the part of the proofwhere our compactness assumption is needed. Eq. (4.57) implieskTm(yn)� Tm(xn)k = kI�1m+1 � T'(�(m+ 1);��n(!; y))� I�1m+1 � P (xm+n+1; ym+n+1)�T'(�(m+ 1);��n(!; x)) � P (yn; xn)k� kI�1m+1kdist(T'(�(m+ 1);��n(!; y)); T'(�(m+ 1);��n(!; x)))� ea(m+1)d(xn; yn);so that (4.56) is satis�ed and the result follows from Theorem 4.2. 2Acknowledgements. This work is part of the author's Ph.-D. thesis which has beenachieved in collaboration with H.F. M�unzner and L. Arnold. The author takes advantageof this publication to warmly thank H.F. M�unzner for numerous inspiring, motivatingand encouraging discussions and L. Arnold for drawing his attention to this �eld ofmathematics and for constantly supporting him.ReferencesAbraham, R., and Robbin, J. (1967). Transversal Mappings and Flows, W.A. Ben-jamin, Inc., New York{Amsterdam.Arnold, L., and Crauel, H. (1991). Random dynamical systems. In Arnold, L., Crauel,H., and Eckmann, J.-P. (eds.), Lyapunov Exponents, Proceedings, Oberwolfach1990, Lecture Notes in Mathematics 1486, Springer, Berlin, pp. 1{22.Boxler, P. (1989). A stochastic version of center manifold theory, Probab. Th. Rel.Fields 83, 505{545. 42
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