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1 INTRODUCTIONThe obje
tive of this paper is the 
onstru
tion of spe
i�
 kinds of multivariate s
alingfun
tions and wavelets. In general, a system f �g�2R of fun
tions in L2(IRd), where Ris some �nite set, is 
alled a system of (mother) wavelets, if all its dilated, translatedand s
aled versions, i.e., the set �j;k(x) := jdetM jj=2 (M jx� k); � 2 R; j 2 ZZ; k 2 ZZd; (1.1)forms a basis of L2(IRd): Here M denotes an expanding integer s
aling matrix, i.e.,all its eigenvalues have modulus larger than one. In general, a wavelet basis is 
on-stru
ted by means of a multiresolution analysis i.e., by a nested sequen
e fVjgj2ZZ ofshift{invariant 
losed subspa
es of L2(IRd) whose union is dense in L2(IRd) while theirinterse
tion is zero. As usual, we shall assume that ea
h of the Vj 's is spanned by thetranslates of a dilated version of one single fun
tion 
alled the generator (or the s
alingfun
tion) of the multiresolution analysis. It is well{known that almost all interestingproperties of the wavelet basis, e.g., its regularity, are already determined by the 
har-a
teristi
s of the generator. Consequently, the �rst step in the 
onstru
tion of a waveletbasis with spe
i�
 properties is to �nd a suitable s
aling fun
tion. The primary aim ofthis paper is the 
onstru
tion of (multivariate) interpolating s
aling fun
tions ', i.e.,we impose the 
ondition '(k) = Æ0;k for all k 2 ZZd: (1.2)A 
orresponding property 
an be transmitted to the resulting wavelet basis, see Se
tion5. For several reasons, s
aling fun
tions satisfying (1.2) have be
ome of in
reasing in-terest in the last few years. For instan
e, by using interpolating s
aling fun
tions andwavelets, it be
omes parti
ularly simple to 
ompute the 
oeÆ
ients of an asso
iatedwavelet expansion. This is espe
ially important for the treatment of nonlinear termsthat may arise when dealing with wavelet Galerkin methods, see e.g. [2℄. Moreover, theinterpolatory setting simpli�es the in
orporation of boundary 
onditions [1℄.For pra
ti
al reasons, we are in parti
ular interested in 
ompa
tly supported andsuÆ
iently smooth generators. Several examples of s
aling fun
tions satisfying theserequirements have been 
onstru
ted in the last years, see e.g. [6℄, [12℄, [15℄, [16℄ [17℄,[24℄ (this list is 
learly not 
omplete). The appli
ations to wavelet de
ompositions havebeen 
lari�ed in [13℄ and [14℄, see also [4℄. However, most of these approa
hes are basedon dyadi
 s
alings, i.e., they deal with the spe
i�
 
ase M = 2I: In 
ontrary to this,our aim was to �nd an approa
h whi
h works for an arbitrary s
aling matrix. This isimportant sin
e the number of wavelets that is needed is equal to jdetM j � 1, i.e., the
osts grow exponentially with respe
t to the spatial dimension in the dyadi
 
ase. Wetry to avoid this problem by using s
aling matri
es satisfying jdetM j = 2: Our work wasinspired by and is 
losely related to the work of Riemens
hneider and Shen [24℄. Theirapproa
h is based on box splines. Therefore, the theory presented in [24℄ is restri
tedto a very small 
lass of s
aling matri
es, see Se
tion 2. Consequently, it was one of ourgoals to �nd obje
ts that 
an play the role of the box spline in the general 
ase.2



This paper is organized as follows. In Se
tion 2, we explain the general setting ofinterpolatory s
aling fun
tions. We derive some ne
essary 
onditions on the symbol andgive an outline how s
aling fun
tions satisfying these 
onditions 
an be found. The ideais to 
onvolve some \
anoni
al" generators, whi
h are available for almost all s
alingmatri
es, by some suitable distribution. In Se
tion 3, we brie
y re
all a te
hnique toestimate the H�older{ and Sobolev{regularity of the resulting fun
tion, respe
tively. InSe
tion 4, we dis
uss some examples, and �nally, in Se
tion 5, we present the 
onstru
tionof an interpolatory wavelet basis.2 THE GENERAL SETTINGWe shall be 
on
erned with 
ompa
tly supported fun
tions � 2 L2(IRd) whi
h satisfy atwo{s
ale{relation�(x) = Xk2ZZd ak�(Mx� k); a = fakgk2ZZd 2 `2(ZZd); (2.1)where M is an expanding integer s
aling matrix. It is well{known that under somenatural 
onditions the generator � of a multiresolution analysis satis�es (2.1) with somesuitable sequen
e a = fakgk2ZZd: In the sequel, we will always assume that supp a :=fk 2 ZZd j ak 6= 0g is �nite and thatXk2ZZd ak = m; m := jdetM j; (2.2)holds. A fun
tion � satisfying (2.1) is often 
alled a re�nable fun
tion. To indi
ate thedependen
y on a and M , we will also use the term (a;M){re�nable. Applying Fouriertransform to (2.1) yieldŝ�(�) = 1ma(e�iM�T �)�̂(M�T �); � 2 IRd; (2.3)where the symbol a(z) is the Laurent polynomiala(z) := Xk2ZZd akzk; z 2 T d; (2.4)and T d 
learly denotes the d{dimensional torus, T d := fz 2 ICd j jzij = 1; 1 = 1; : : : ; dg:The aim of this paper is to 
onstru
t families of fundamental re�nable fun
tions ',i.e., we require that ' is an interpolating fun
tion in the sense that'(k) = Æ0;k; k 2 ZZd; (2.5)holds. We start this proje
t by deriving some ne
essary 
onditions on the symbol a(z)of ' whi
h are implied by (2.5). 3



By the Poisson summation formula, it is easy to 
he
k that (2.5) is equivalent withXk2ZZd '̂(� + 2�k) = 1; � 2 IRd: (2.6)Inserting (2.3) into (2.6) leads tom = X~�2RT a(�~�e�iM�T �); � 2 IRd; (2.7)where RT = f~�0; : : : ; ~�m�1g denotes a 
omplete set of representatives of ZZd=MTZZd and�~� is de�ned by �~� := e�i2�M�T ~�: (2.8)The ne
essary 
ondition (2.7) has some important 
onsequen
es for the subsymbolsa�(z) := Xk2ZZd a�+Mkzk; � 2 R; (2.9)where nowR is a 
omplete set of representatives of ZZd=MZZd: (Without loss of generality,we will always assume that �0 = ~�0 = 0 in the sequel. Furthermore, we shall use theabbreviation zM := (zM (1); � � � ; zM (d)); where M (j) denotes the j{th 
olumn of M).Lemma 2.1 Let ' be a 
ompa
tly supported fundamental re�nable fun
tion with symbola(z): Then 1 = a0(zM ): (2.10)Proof: Inserting the relation a(z) = X�2R z�a�(zM) (2.11)into eq. (2.7) we �nd with z = e�i�m = X~�2RT a(�~�e�i�) (2.12)= X~�2RT X�2R ��~� e�i�� Xk2ZZd a�+Mk(e�i2�M�T ~��Mke�i�Mk)= X~�2RT X�2R ��~� e�i�� Xk2ZZd a�+Mk(e�i2�~�ke�i�Mk)= X�2R0� X~�2RT ��~�1A e�i��a�(zM ):The above expression 
an be simpli�ed by employing the following fundamental lemmaproved by Chui and Li [3℄. 4



Lemma 2.2 Let �~� be de�ned by (2.8) ThenX~�2RT ��0~� ���00~� = m � Æ�0;�00; �0; �00 2 R: (2.13)The result now follows by using (2.13) with �00 = 0: 2The next 
laim is to �nd a pro
edure to 
onstru
t symbols a(z) su
h that the 
or-responding subsymbols a0(zM) satisfy (2.10). The idea is to start with a `ni
e', i.e.,suÆ
iently smooth re�nable and 
ompa
tly supported fun
tion � with symbol b(z): Inpra
ti
e, � 
ould be a box spline or a generalized 
ardinal B{spline as des
ribed below.Then one way to �nd solutions of (2.10) is to 
onvolve � with some suitable re�nableand 
ompa
tly supported distribution �, i.e., we de�ne ' by' := � � �: (2.14)Sin
e re�nability is preserved under 
onvolution, ' satis�es a two{s
ale{relation and itssymbol 
an be easily 
omputed as a(z) = 1mb(z)q(z); (2.15)where q(z) 
learly denotes the symbol of �:We have to �nd � in su
h a way that a0(zM )satis�es (2.10). As we shall now explain, this is possible if the translates of � are linearlyindependent, i.e.,Xk2ZZd �k�(x� k) = 0 implies �k = 0 for all k 2 ZZd; � 2 `(ZZd): (2.16)Lemma 2.3 Suppose that � has linearly independent translates. For some � 2 ZZd; let~q�(zM ) denote the solutions ofzM� = X�2R b�(zM)~q�(zM): (2.17)and let q(z) be de�ned by q(z) := X�2R z��~q�(zM): (2.18)Then the subsymbol a0(z) of a(z) := z�M�q(z)b(z) (2.19)satis�es (2.10).Proof: By Bezout's theorem, there exist solutions of (2.18) if the subsymbols b�(z); � 2R have no 
ommon zeros in (ICnf0g)d: It was shown by Jia and Mi

helli [20℄ that a
ompa
tly supported fun
tion � has linear independent translates if and only ifsupk2ZZd j�̂(� + 2�k)j > 0 for all � 2 ICd; (2.20)5



where �̂ denotes the Fourier{Lapla
e{Transform of �: Employing (2.3) and the relation(2.11) yields 0 < supk2ZZd 1m jX�2R e�iM�T (�+2�k)�b�(e�i�)�̂(M�T (� + 2�k))j;so that the subsymbols b�(z); � 2 R have indeed no 
ommon zeros in (ICnf0g)d. Itremains to show that a(z) de�ned by (2.19) satis�es (2.10). To this end, we use therelation z�a�(zM) = m�1 X~�2RT ���~� a(�~�z) (2.21)for � = 0 and obtain by (2.19),(2.18),(2.11) and Lemma 2.2a0(zM) = m�1 X~�2RT a(�~�z)= m�1 X~�2RT (�~�z)�M�q(�~�z)b(�~�z)= m�1 X~�2RT (�~�z)�M�0�X�02R ���0~� z��0 ~q�0((�~�z)M )1A � 0� X�002R ��00~� z�00b�00((�~�z)M)1A= m�1z�M� X�0;�002R0� X~�2RT ���0~� ��00~� 1A z��0z�00 ~q�0(zM)b�00(zM)= z�M� X�02R ~q�0(zM)b�0(zM ) = 1: 2On
e a suitable distribution is found, one still has to 
he
k that the resulting re�nablefun
tion is indeed fundamental (observe that 
ondition (2.10) is only ne
essary), and onehas to estimate its regularity. For the �rst task we use the following theorem proved in[23℄.Theorem 2.1 Suppose that a is a �nitely supported sequen
e satisfying a(1)=m. Ane
essary and suÆ
ient 
ondition for a 
ontinuous (a;M){re�nable fun
tion to be in-terpolatory is that the sequen
e Æ is the unique eigenve
tor of the operator(Wab)(l) = Xk2ZZd aMl�kbk; fbkgk2ZZd 2 `2(ZZd): (2.22)A method to estimate the regularity will be dis
ussed later.Before we 
an 
onstru
t examples for our approa
h, we have to 
larify how a suitablesuÆ
iently smooth and 
ompa
tly supported re�nable fun
tion � 
an be found. A goodstarting mask is essential for the su

ess of our purpose. For the 
aseM = 2I, one natural
hoi
e would be to use a box spline B( � jX�); X� = (x1; : : : ; x�); xl 2 ZZdnf0g; � � d;whi
h is de�ned by dB( � jX�)(�) = Yxl2X�  1 � e�ixl��ixl � � ! : (2.23)6



It is well{known that B( � jX�) is re�nable with respe
t to M = 2I. The resultingsymbol is a(z) = 2d�� �Yl=1(1 + zxl): (2.24)This approa
h was in detail dis
ussed in [24℄. However, for a more 
ompli
ated s
alingmatrix, it is in general not possible to �nd an asso
iated re�nable box spline. One hasto restri
t oneself to s
aling matri
es satisfyingMd = 2I; (2.25)see e.g. [7℄ for details. Matri
es satisfying (2.25) will be 
alled box spline matri
es inthe sequel. One way to handle the general 
ase is to repla
e the box spline by a so{
alledgeneralized 
ardinal B{spline as, e.g., studied in [7℄. This approa
h is based on self{aÆne latti
e tilings. We say that a set Q gives rise to a self{aÆne latti
e tiling if itsatis�es jQj = 1; IRd ' [k2ZZd(Q+ k); Q \ (Q+ k) ' ;; k 6= 0 ; (2.26)Q = m�1[i=0 M�1(Q+ �i) ; (2.27)where the union in (2.27) is assumed to be disjoint. Clearly, \'" means equality up tosets of measure zero. On
e a set of representatives is 
hosen, a 
orresponding self{aÆneset 
an be 
onstru
ted by a generalized iterated fun
tion system. More pre
isely, one
an use the following lemma, proved by Gr�o
henig and Mady
h [19℄.Lemma 2.4 Let f�0; : : : �m�1g be some enumeration of 
osets in ZZd=MZZd: If ~Q0 isany 
ompa
t set, then the sequen
e ~Q1; ~Q2; : : : de�ned by~QN+1 := m�1[i=0 M�1(�i + ~QN ) (2.28)
onverges in the metri
 ~%; de�ned by~%(P;Q) := maxf%(P;Q); %(Q;P )g (2.29)where %(P;Q) := supx2P infy2Q jx� yj :It is easy to 
he
k that the limit set Q satis�es the self{similarity relation (2.27), andthat the union in (2.27) is disjoint. Furthermore, it 
an be shown that if the limit set Qsatis�es jQj = 1; (2.30)then it gives rise to a self{aÆne latti
e tiling, i.e., (2.26) holds, see [19℄ for details. Itmay happen that the limit set has a larger measure. In general, one only knows that Q7



has integer measure and that it tiles IRd with respe
t to a subset of the latti
e ZZd, seeLagarias and Wang [22℄ and Gr�o
henig and Haas [18℄ for details. We want to presenta motivating two{dimensional spe
imen of a self{aÆne tile here. It is the so{
alledtwin{dragon{set whi
h is obtained by employing the s
aling matrixM =  1 �11 1 !.This 
ase was already studied in [19℄ and [5℄. The s
aling matrix satis�es jdetM j = 2and therefore ZZ2=MZZ2 
onsists of exa
tly two elements. It 
an be 
he
ked that the setMZZ2 is the so{
alled quin
unx grid �, i.e.,k = (k1; k2) 2 � if and only if k1 + k2 is even: (2.31)As mentioned above we always 
hoose �0 = 0. Some possible 
hoi
es �01; : : : ; �31 for these
ond representatives are given by�01 =  10 ! ; �11 =  0�1 ! ; �21 =  �10 ! and �31 =  01 ! : (2.32)Figure 1 shows the resulting self{aÆne tile obtained by taking �01 as the se
ond repre-sentative.
Figure 1Using the 
hara
teristi
 fun
tion �Q of a limit set Q obtained by employing Lemma 2.4,we now want to de�ne a generalized spline fun
tion. First of all, we infer from (2.27)that �Q(x) = m�1Xj=0 �Q(Mx� �j): (2.33)Now suppose we have K + 1 sets of representatives Ri = f�i0; : : : ; �im�1g; i = 0; : : : ;K;and let Qi denote the limit set asso
iated, in view of Lemma 2.4, with Ri. Then, for8



N0; : : : ; NK 2 IN let the generalized 
ardinal B{spline �N0;:::;NK be de�ned by�N0;:::;NK := �Q0 � : : : �Q0| {z }N0�times ��Q1 � : : : �Q1| {z }N1�times � : : : � �QK � : : : �QK| {z }NK�times : (2.34)Employing the fa
t that, a

ording to (2.33), ea
h �Qi is a re�nable fun
tion, it is easyto 
he
k that �N0;:::;NK satis�es a two{s
ale{relation similar to (2.33),�N0;:::;NK(x) = Xk2ZZd ak�N0;:::;NK(Mx� k) (2.35)with a(z) = m�(N0+:::+NK�1)aQ0(z)N0aQ1(z)N1 : : : aQK(z)NK : (2.36)Here aQi(z) denotes the symbol of �Qi whi
h, a

ording to (2.33), is given byaQi(z) = m�1Xj=0 z�ij ; z := e�i� :Sin
e all the fun
tions �Qi; i = 0; : : : ;K; are 
ompa
tly supported, �N0;:::;NK willalso be 
ompa
tly supported. Taking more 
onvolutors 
learly in
reases the smoothnessof the resulting spline. For a qualitative study, the reader is referred to [7℄. In order toobtain optimal smoothness, it is useful to work with di�erent sets of representatives.However, then one has to deal with some stability problems. In general, the translatesof a fun
tion � 2 L2(IRd) are said to be `2{stable if there exist 
onstants 
1; 
2 > 0 su
hthat 
1k�k`2 � k Xk2ZZd �k�(� � k)kL2(IRd) � 
2k�k`2 for all � 2 `2(ZZd): (2.37)If Q gives rise to a tiling, then the translates of �Q are orthonormal and thereforestable. (Moreover, they are also linearly independent, see [8℄ for details). This propertyis preserved if we take only 
onvolutions of �Q with itself, but it is a diÆ
ult task to
he
k stability and linear independen
e for 
onvolutions of di�erent fun
tions. For re
entresults on this topi
, the reader is referred to [9℄. One should furthermore observe thateven with 
onvolutions of �Q with itself the smoothness 
an be in
reased arbitrarily. Thereason is that � := �Q � �Q is already 
ontinuous and therefore also H�older 
ontinuous.(This is a 
onsequen
e of the re�nability of �; see [10℄ for details). Consequently, taking asuÆ
iently large number of 
onvolutions in
reases the de
ay of the 
orresponding Fouriertransform arbitrarily high. (This is the reason why we 
on
entrate on 
onvolutions ofone single fun
tion with itself in the examples in Se
tion 4).We also want to mention an interesting property of 
hara
teristi
 fun
tions of latti
etilings. Sin
e the translates of of �Q are orthonormal, it is easy to 
he
k that theauto
orrelation fun
tion �aut := �Q(�) � �Q(��) (2.38)is an interpolating re�nable fun
tion. Therefore the tiling approa
h provides us witha family of 
ontinuous fundamental fun
tions. Taking more 
onvolutions adds to the9



smoothness of the re�nable fun
tion but destroys the interpolation property, hen
e a
orre
tion term has to be 
onstru
ted.Although the tiling approa
h seems to be somewhat 
anoni
al, there are 
learly otherpossible ways to �nd smooth re�nable fun
tions whi
h 
an play the role of a box spline.In Se
tion 4, we shall also be 
on
erned with re�nable fun
tions stemming from theso{
alled Lapla
ian s
heme asso
iated with the symbolb(z) = (4 + z2 + z1 + z�12 + z�11 )=4: (2.39)Taking iterates of this mask produ
es a family of re�nable fun
tions with arbitrarilyhigh regularity. Again these fun
tions 
an be 
onverted to an interpolating family by
onvolving them with a suitable distribution, see Se
tion 4 for details.3 REGULARITYOn
e we have determined a symbol q(z) su
h that a(z) satis�es (2.10), we have to
ompute the 
orresponding re�nable fun
tion and to estimate its H�older{ and Sobolev{regularity, respe
tively. This 
an be done by a version of the usual Payley{Littlewood{te
hnique as dis
ussed, e.g., in [6℄, [24℄, [25℄, [26℄, [27℄. For reader's 
onvenien
e, webrie
y state the main ideas. By iterating (2.3) we obtain the following expression for'̂(�): '̂(�) = 1Yj=1m�1a(e�i(M�T )j�) = 1Yj=1m�1b(e�i(M�T )j�) 1Yj=1 q(e�i(M�T )j�): (3.1)To estimate the regularity of ', we have to determine the de
ay of '̂, i.e., the de
ay ofthe produ
ts at the right{hand side of (3.1). Indeed, let�p := supf� : ZIRd(1 + j�jp)�j'̂(�)jpd� <1g: (3.2)Then ' 2 C�1�"(IRd) and ' 2 H�2(IRd): To determine �1 and �2, respe
tively, for 'de�ned by (3.1), we divide IRd into disjoint pie
es Cn := (MT )nT dn(MT )n�1T d, T d :=[��; �℄d: We always assume that M l = rI for some l; r 2 IN and T d � MTT d whi
his true for most of the interesting examples of s
aling matri
es. Let us for the momentassume that we have already found a number � 2 IR su
h thatZCn j'̂(�)jpd� � C�n: (3.3)Then one easily 
he
ks thatZIRd(1 + j�jp)�d� � C 1Xn=1 rn(p�+logr(�)l);10



and the series on the right{hand side is �nite if and only if� < � logr(�)lp : (3.4)For simpli
ity, we shall denote all 
onstants by C in the sequel, although the value of Cmay 
hange. It turns out that in our 
ase � is determined by the spe
tral radius of thetransition operator 
orresponding to a(z): In general, let g(z) be a Laurent polynomialsatisfying g(1) = 1: We de�ne the operatorTgf := X~�2RT g(M�T (�+ 2�~�))f(M�T (�+ 2�~�)): (3.5)Following the lines of Riemens
hneider and Shen, one 
an 
he
k by indu
tion thatT ng (f) = Xk2ZZd f(M�T (�+ 2�k))'̂n(�+ 2�k); (3.6)where '̂n(�) := nYj=1 g((M�T )j�)�(MT )nT d; '̂0 = �T d: (3.7)It is easy to verify that (3.6) implies thatZT d jT ng f(�)jd� � ZIRd jf((M�T )n�)jj'̂n(�)jd�; (3.8)with equality if f and g are positive. Let us now furthermore suppose that g satis�esD�g(M�T 2�~�) = 0; j�j � �: (3.9)We de�ne the spa
e of trigonometri
 polynomialsV� := ff = Xjkj�N ake�ik�; D�f(0) = 0; j�j � �g: (3.10)For N large enough (depending onM), eq. (3.9) implies that V� is an invariant subspa
eof Tg: It turns out that the spe
tral radius of TgjV� 
an be used to determine the regularityof the asso
iated re�nable fun
tion g.Proposition 3.1 Suppose that g satis�es (3.9) and g � 0. Furthermore, let ~� denotethe spe
tral radius of TgjV�. For 'g de�ned by'̂g(�) := 1Yj=1 g((M�T )j�) (3.11)there exists for any given " > 0 a 
onstant C su
h thatZCn j'̂g(�)jd� � C(~�+ ")n: (3.12)11



Proof: The proof 
an be performed by following the lines of Riemens
hneider and Shen,so that we only sket
h the basi
 steps. It 
an be 
he
ked thatZT d jT ng f(�)jd� � C(~�+ ")njjf jjfor some suitable norm k � k on V� andZCn j'̂g(�)jd� � C ZCn j'̂n(�)jd�:The fun
tion f(�) = Pdn=1(1 � 
os(�n))� is 
ontained in V� and satis�es f � C for� 2 T dnM�TT d so that, by employing (3.8), we obtainZCn j'̂n(�)jd� � C�1 ZCn f((M�T )n�)j'̂n(�)jd� � C�1 Z(MT )nT d f((M�T )n�)j'̂n(�)d�= ZIRd f((M�T )n�)j'̂n(�)jd� = ZT d T ng f(�)d� � C(~�+ ")n: 2Proposition 3.1 
an now be applied to our interpolating re�nable fun
tions withg = m�1a(z), provided that a(z) � 0 whi
h gives an estimate for the H�older regularityof '. If a(z) � 0 does not hold, one 
an apply the proposition to the auto
orrelationfun
tion � = '(�) � '(��) whi
h gives an estimate for the Sobolev regularity of '. Byusing Sobolev embeddings, we also obtain an estimate for the H�older exponent.4 EXPLICIT CONSTRUCTIONSIn this se
tion we will expli
itly 
onstru
t di�erent families of interpolating re�nablefun
tions. The pro
edure des
ribed in the previous se
tions is valid for arbitrary dimen-sions and dilation matri
es. However we will 
on
entrate on two well{known dilationmatri
es with determinant �2. We start with a 
onstru
tion of a C1 example for thebox{spline matrix Mb =  1 11 �1 ! :However out main goal is to 
onstru
t smooth examples for the true quin
unx 
aseMq =  1 �11 1 ! :Families of interpolating re�nable fun
tions for these type of matri
es 
an already befound in [6℄, we will return to their 
onstru
tion later.The subgrid generated by both matri
es is the quin
unx grid � as de�ned in (2.31).Hen
e we 
an always 
hoose the representatives of ZZ2nMZZ2 asR = (�0 =  00 ! ; �1 =  10 ! ) :12



We will des
ribe two di�erent 
onstru
tion pro
edures, the �rst one is based on thetheory of self{aÆne tilings, the se
ond one is based on the te
hniques des
ribed in [5℄, ituses iterations of the Lapla
e s
heme. The regularity of the resulting re�nable fun
tionsis estimated.4.1 The q-Term Constru
tionThe 
onstru
tion of interpolating re�nable fun
tions in this se
tion is very mu
h basedon the same ideas as used in 
onstru
ting orthogonal wavelets: one starts with a promis-ing symbol b(z), whi
h leads to a smooth re�nable fun
tions but does not ful�ll theinterpolation 
ondition (2.10). Then one tries to 
onstru
t a 
orre
tion term q(z) su
hthat a(z) = 1mb(z)q(z) satis�es this 
ondition. Finally one has to 
he
k some regular-ity 
onditions, ensuring that a(z) a
tually leads to an interpolating fun
tion with somesmoothness.The pro
edure des
ribed in the previous se
tions pro
eeds as follows:� Choose a parti
ular mask. We always start with the mask of a B{spline of odddegree (N = 2l + 1) b(z) = 12N�1 (1 + z1)Nor with a symmetrized B-spline of even degreeb(z) = 12N�1 z�N=21 (1 + z1)N :We shall always interpret these masks in a multivariate setting, i.e., we are in-terested in multivariate fun
tions whi
h are (b;M){re�nable with respe
t to thes
aling matri
es introdu
ed above. From this point of view, it is easy to 
he
k thatour spe
i�
 
hoi
e 
orresponds to a re�nable fun
tion� = �Q � ::: � �Qwhi
h stems from N 
onvolutions of the generalized Haar fun
tion �Q or to ashifted and therefore symmetrized version of it. For Mb the set Q is simply aparallelepipedQ = f(x1; x2) j 0 � x2 < 1 ; 0 � x1 � x2 < 1 g, for Mq we obtain the twin{dragon{set as shown in Figure 1. The 
onvolutions in
rease the smoothness of there�nable fun
tions, see again [7℄ for details.� Compute the de
ompositionb(z) = b0(zM) + z�1b1(zM ) ;
ompare with (2.11). Determine 
orre
tion terms ~q0(z); ~q1(z) by 
hoosing anappropriate � and solvingzM� = b0(zM )~q0(zM) + b1(zM)~q1(zM ) ;
ompare with (2.17). We either 
hoose M� = (0; 0)T or M� = (2; 0)T .13



� Compute the 
orre
tion term q(z) byq(z) = ~q0(zM) + z��1 ~q1(zM)and put a(z) = z�M�b(z)q(z) ;
ompare with (2.18) and (2.19). A

ording to Se
tion 2, this mask ful�lls thene
essary 
ondition (2.10) for interpolation.� Che
k the regularity of the resulting re�nable fun
tion '. If ' is 
ontinuous andif the 
onditions of Theorem 2.1 are satis�ed, then ' is indeed a interpolatingre�nable fun
tion. For the box{spline matrixMb we 
an use the lazy 
he
k, whi
hasks to estimate the Hoelder{ or Sobolev{regularity by 
omputingBj = supjzj=1 j jYl=1 q(e�i(M�T )n�)j :ForMq we estimated the regularity by the eigenvalue te
hnique des
ribed in Se
tion3.Sin
eMb and Mq generate the same grid we 
an 
ompute the 
orre
tion terms ~q0(z) and~q1(z) simultaneously for both matri
es.For N = 2 we simply have b(z) = 12z�11 (1 + z1)2, hen
eb0(zM ) = 1 and b1(zM) = 12(z�21 + 1) :Choosing � = (0; 0)T allows the solution~q0(zM ) = 1 and ~q1(zM ) = 0:(Di�erent solutions are possible, e.g. ~q0(zM) = �z�21 ; q1(zM) = 2.) Putting bothparts together yields q(z) = 1 and a(z) = 12z�11 (1 + z1)2 : This is not surprisingsin
e this 
hoi
e for b(z) 
orresponds to the symbol of the auto
orrelation fun
tion ofthe 
hara
teristi
 fun
tion of the self{aÆne tile Q whi
h is automati
ally interpolating,
ompare with Se
tion 2.For N = 4 we obtainb0(zM) = 18(z�21 + 6 + z21) and b1(zM) = 12(z�21 + 1):Choosing e.g. � su
h that M� = (2; 0)T we have~q0(zM) = �2 and ~q1(zM) = 12 + 52z21;whi
h leads to q(z) = 12z�11 � 2 + 52z1:14



Again a more 
onvenient 
hoi
e is � = (0; 0)T , whi
h leads to~q0(zM ) = 2 ; ~q1(zM ) = �12(1 + z21) and q(z) = 2 � 12(z�11 + z1);hen
e a(z) = b(z)q(z) = �116 z�31 + 916z�11 + 1 + 916z1 � 116z31 :N = 2 ; M� = (0; 0)T N = 4 ; M� = (2; 0)T N = 4 ; M� = (0; 0)Tb0(zM) 1 18(z�21 + 6 + z21)b1(zM) 12(z�21 + 1) 12(z�21 + 1)~q0(zM ) 1 or �z�21 �2 2~q1(zM ) 0 or 2 0:5 + 2:5z21 �0:5(1 + z21)z�M�q(z) 1 0:5z�31 � 2:0z�21 + 2:5z�11 2� 0:5(z�11 + z1)a(z) 12z�11 (1 + z1)2 �116 z�31 + 916z�11 + 1 + 916z1 � 116z31N = 3 ; M� = (0; 0)T N = 6 ; M� = (0; 0)Tb0(zM) 1 132(6z�21 + 20 + 6z21)b1(zM) 12(z�21 + 1) 132(z�41 + 15z�21 + 15 + z21)~q0(zM) 1 or �z�21 18(3z�21 + 38 + 3z21)~q1(zM) 0 or 2 �94 (1 + z21)z�M�q(z) 1 18(3z�21 18z�11 + 38 � 18z1 + 3z21)a(z) 12z�11 (1 + z1)2 1256(3z�51 � 25z�31 + 150z�11 + 256 + 150z1 � 25z31 + 3z51)4.1.1 The Box{Spline MatrixThe regularity estimates di�er for the matri
esMb and Mq. For the matrixMb we usedthe representation of '̂(�) as an in�nite produ
t'̂(�) = 1Yj=1 1ma(e�i(M�T )j�) :Putting z = ei� and expressing q(z) as a trigonometri
 polynomial in � = (�1; �2)T allowsto estimate the de
ay rate of this in�nite produ
t fromBj = sup�2IR j jYn=1 q(e�i2�n�)j :15



Combining these values with the known de
ay rate for the B{spline produ
t of order Nwe obtain that ' 2 C� for � < N � 2� (ln(Bj)=(j ln(2:0)) :The following values were 
omputed with Maple.ln(Bj)=(j ln(2:0)) N=3 N=4 N=6j=1 1.5849 3.2927j=2 0.9251 1.3612 2.7925j=3 0.8747 1.3614 2.8071j=4 0.8634 1.2481 2.7758� 0.1366 0.7519 1.224The �{values are lower bounds for the Hoelder exponents of the related interpolatingre�nable fun
tions. In parti
ular starting with a B{spline of order six and 
hoosing the
orre
tion term as stated above yields a 
ontinuously di�erentiable fun
tion.4.1.2 The Quin
unx MatrixIn this 
ase the regularity estimates were obtained by the matrix{based te
hniques de-s
ribed in Se
tion 3. We present the results for N = 3; 4. For N = 3 the masks does nothave a positive symbol, hen
e the matrix 
orresponding to TgjV� has to be 
omputed forthe auto
orrelation fun
tion, i.e., with respe
t to g(z) = m�2ja(z)j2. The largest eigen-value whose 
orresponding eigenve
tor lies in the invariant subspa
e V� is � = 0:5858(
omputed with Maple). Sin
e we used the auto
orrelation fun
tion the Hoelder regu-larity is estimated by � < � ln(�)= ln(2:0) � 1 = �0:2285, hen
e we 
annot prove thatin this 
ase the re�nement equation has a 
ontinuous solution, whi
h is interpolating.All we 
an prove is that the solution lies in all Sobolev spa
es of order s < 0:7715.Due to symmetrization we obtain a positive symbol for N = 4. Hen
e we do notneed the auto
orrelation fun
tion. The four largest eigenvalues were 1:0; 0:79869; 0:5 +0:5i; 0:5 � 0:5i. Unfortunately, already the se
ond eigenvalue 
orresponds to an eigen-ve
tor in V�, whi
h yields � < �2 ln(0:7987)= ln(2:0) = 0:6485 : we obtain a 
ontinuousand interpolating re�nable fun
tion for the quin
unx matrix. The reader should observethat this fun
tion is already smoother than the auto
orrelation fun
tion �Q(�) � �Q(��)for whi
h � < 0:4764 holds.4.2 Bezout Constru
tionsFor the 
ompleteness of this exposition we in
lude a well{known short{
ut for 
on-stru
ting interpolating re�nable fun
tions for our spe
i�
 
hoi
e of matri
es, see [5℄.The interpolation 
ondition a0(zM) = Pk2MZZd akzk = 1 states, that the symbol a(z) mayhave no 
oeÆ
ients on MZZd ex
ept for k = (0; 0)T . The grid MZZd 
ontains gridpoints(i; j), where i+ j even, hen
e the interpolation 
ondition read asa0(zM) = 12( a(z) + a(�z) ) = 1 ;16




ompare with (2.21). Let us 
onsider masks who are symmetri
 in the sense that a(z)is a polynomial in 
os2(�1), resp. in (
os2(�1=2) + 
os2(�2=2))=2 (z = e�i�):a(z) = 2p(
os2(�1=2)) , resp. a(z) = 2p 
os2(�1=2) + 
os2(�2=2)2 ! :Then the ne
essary 
ondition 
an be rephrased as (x = 
os2(�1), resp. x = (
os2(�1=2)+
os2(�2=2))=2) p(x) + p(1 � x) = 1 :The 
onstru
tion now follows the �rst steps in 
onstru
ting orthogonal wavelets. Ifp is 
hosen as a pure power of x multiplied by a shifted 
orre
tion polynomial q, i.e.p(x) = xNq(1� x), then q(x) = N�1Xl=0  N + l� 1l ! xlis the unique polynomial of degree N � 1, su
h that p(x) + p(1� x) = 1 holds.To be more spe
i�
 let us re
onsider the symmetrized B{spline of order 2N , the
orresponding symbol obeys (z = e�i�; x = 
os2(�1=2))b(z) = 122N�1 �z�11 (1 + z1)2�N = 2 
os2N(�=2) = 2 xN :The above pro
edure for N = 2, i.e. the B{spline of order 4, yields the 
orre
tion termq(1� x) = 1 + 2(1� x) = 3� 2 
os2(�1=2) = 2� 
os(�1) = �0:5 z�11 + 2� 0:5 z1 :Hen
e we regain the examples of the previous se
tion for � = (0; 0)T . For the dilationmatrixMb we thus obtain a family with arbitrarily high regularity as N tends to in�nity.In order to 
onstru
t a family with arbitrary high regularity for the quin
unx dilationmatrixMq one has to start with the basi
 Lapla
e mask (x = (
os2(�1=2)+
os2(�2=2))=2)b(z) = (4 + z2 + z1 + z�12 + z�11 )=4 = 
os2(�1=2) + 
os2(�2=2) = 2x:The interpolation property of this mask was already observed in [11℄, its regularity wasestimated in [6℄. It yields a re�nable fun
tion with Hoelder exponent � > 0:61. Forhigher regularity one iterates the Lapla
e s
heme:bN(z) = 12N�1 �(4 + z2 + z1 + z�12 + z�11 )=4�N = 2xN :Let us 
hoose e.g. N = 3, then q(x) = 1 + 3y + 6y2. This yieldsp(x) = x3q(1� x) = x3(10 � 15x + 6x2)or equivalently a(z) = 2p(x) with x = (
os2(�1=2) + 
os2(�2=2))=2.The regularity of the related re�nable fun
tions was estimated in [6℄. We thus obtaina family with arbitrarily high regularity as N tends to in�nity for the dilation matrixMq.Remark 4.1 The Bezout te
hniques do not dire
tly extend to other dilation matri
es,hen
e the q-term 
onstru
tion is more general.17



5 WaveletsOn
e we have found an interpolating re�nable fun
tion, a 
orresponding wavelet basis
an be easily 
onstru
ted. There are a
tually two possibilities. One way is to 
onstru
ta 
lassi
al pre{wavelet basis. This 
an be done by performing a general pro
edure ase.g. explained in [21℄. One has to �nd an extension of the row (a�0(z); : : : ; a�m�1(z)) overT d whi
h is always possible if the underlying re�nable fun
tions has linear independenttranslates. (Observe that this 
ondition is satis�ed in our 
ase sin
e ' is fundamental).However, in the interpolating 
ase, there is another very natural method to 
onstru
ta generalized wavelet basis by using a di�erent s
alar produ
t. We only brie
y explainthe basi
 ideas, for the general setting, the reader is referred to Chui and Li [4℄. If ' isfundamental, it 
an be written as'(x) = '(Mx) + X�2Rnf0g Xk2ZZd '(k +M�1�)'(M(x� k)� �): (5.1)Therefore, by de�ning  �(x) := '(Mx� �); � 2 Rnf0g; (5.2)we obtain '(Mx) = '(x)� X�2Rnf0g Xk2ZZd '(k +M�1�) �(x� k): (5.3)Now we set Vj := 8<: Xk2ZZd 
k'(M j � �k) : f
kgk2ZZd 2 `1(ZZd)9=; ; (5.4)W �j := 8<: Xk2ZZd d�k �(M j � �k) : fd�kgk2ZZd 2 `1(ZZd)9=; ; (5.5)and obtain an dire
t sum de
ompositionVj+1 = Vj _+W �1j _+ � � � _+W �m�1j : (5.6)Therefore, the system f �g�2Rnf0g 
an be interpreted as a generalized wavelet basis.From the de�nition (5.2), it is 
lear that the interpolating property of the generator' 
arries over to the wavelet basis in the sense that �(k +M�1�) = Æk;0; (5.7)i.e., ea
h wavelet interpolates on a shifted grid. On the other hand, we have to pay forthis very 
onvenient property by the loss of vanishing moments.18
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