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1 INTRODUCTIONThe objetive of this paper is the onstrution of spei� kinds of multivariate salingfuntions and wavelets. In general, a system f �g�2R of funtions in L2(IRd), where Ris some �nite set, is alled a system of (mother) wavelets, if all its dilated, translatedand saled versions, i.e., the set �j;k(x) := jdetM jj=2 (M jx� k); � 2 R; j 2 ZZ; k 2 ZZd; (1.1)forms a basis of L2(IRd): Here M denotes an expanding integer saling matrix, i.e.,all its eigenvalues have modulus larger than one. In general, a wavelet basis is on-struted by means of a multiresolution analysis i.e., by a nested sequene fVjgj2ZZ ofshift{invariant losed subspaes of L2(IRd) whose union is dense in L2(IRd) while theirintersetion is zero. As usual, we shall assume that eah of the Vj 's is spanned by thetranslates of a dilated version of one single funtion alled the generator (or the salingfuntion) of the multiresolution analysis. It is well{known that almost all interestingproperties of the wavelet basis, e.g., its regularity, are already determined by the har-ateristis of the generator. Consequently, the �rst step in the onstrution of a waveletbasis with spei� properties is to �nd a suitable saling funtion. The primary aim ofthis paper is the onstrution of (multivariate) interpolating saling funtions ', i.e.,we impose the ondition '(k) = Æ0;k for all k 2 ZZd: (1.2)A orresponding property an be transmitted to the resulting wavelet basis, see Setion5. For several reasons, saling funtions satisfying (1.2) have beome of inreasing in-terest in the last few years. For instane, by using interpolating saling funtions andwavelets, it beomes partiularly simple to ompute the oeÆients of an assoiatedwavelet expansion. This is espeially important for the treatment of nonlinear termsthat may arise when dealing with wavelet Galerkin methods, see e.g. [2℄. Moreover, theinterpolatory setting simpli�es the inorporation of boundary onditions [1℄.For pratial reasons, we are in partiular interested in ompatly supported andsuÆiently smooth generators. Several examples of saling funtions satisfying theserequirements have been onstruted in the last years, see e.g. [6℄, [12℄, [15℄, [16℄ [17℄,[24℄ (this list is learly not omplete). The appliations to wavelet deompositions havebeen lari�ed in [13℄ and [14℄, see also [4℄. However, most of these approahes are basedon dyadi salings, i.e., they deal with the spei� ase M = 2I: In ontrary to this,our aim was to �nd an approah whih works for an arbitrary saling matrix. This isimportant sine the number of wavelets that is needed is equal to jdetM j � 1, i.e., theosts grow exponentially with respet to the spatial dimension in the dyadi ase. Wetry to avoid this problem by using saling matries satisfying jdetM j = 2: Our work wasinspired by and is losely related to the work of Riemenshneider and Shen [24℄. Theirapproah is based on box splines. Therefore, the theory presented in [24℄ is restritedto a very small lass of saling matries, see Setion 2. Consequently, it was one of ourgoals to �nd objets that an play the role of the box spline in the general ase.2



This paper is organized as follows. In Setion 2, we explain the general setting ofinterpolatory saling funtions. We derive some neessary onditions on the symbol andgive an outline how saling funtions satisfying these onditions an be found. The ideais to onvolve some \anonial" generators, whih are available for almost all salingmatries, by some suitable distribution. In Setion 3, we briey reall a tehnique toestimate the H�older{ and Sobolev{regularity of the resulting funtion, respetively. InSetion 4, we disuss some examples, and �nally, in Setion 5, we present the onstrutionof an interpolatory wavelet basis.2 THE GENERAL SETTINGWe shall be onerned with ompatly supported funtions � 2 L2(IRd) whih satisfy atwo{sale{relation�(x) = Xk2ZZd ak�(Mx� k); a = fakgk2ZZd 2 `2(ZZd); (2.1)where M is an expanding integer saling matrix. It is well{known that under somenatural onditions the generator � of a multiresolution analysis satis�es (2.1) with somesuitable sequene a = fakgk2ZZd: In the sequel, we will always assume that supp a :=fk 2 ZZd j ak 6= 0g is �nite and thatXk2ZZd ak = m; m := jdetM j; (2.2)holds. A funtion � satisfying (2.1) is often alled a re�nable funtion. To indiate thedependeny on a and M , we will also use the term (a;M){re�nable. Applying Fouriertransform to (2.1) yieldŝ�(�) = 1ma(e�iM�T �)�̂(M�T �); � 2 IRd; (2.3)where the symbol a(z) is the Laurent polynomiala(z) := Xk2ZZd akzk; z 2 T d; (2.4)and T d learly denotes the d{dimensional torus, T d := fz 2 ICd j jzij = 1; 1 = 1; : : : ; dg:The aim of this paper is to onstrut families of fundamental re�nable funtions ',i.e., we require that ' is an interpolating funtion in the sense that'(k) = Æ0;k; k 2 ZZd; (2.5)holds. We start this projet by deriving some neessary onditions on the symbol a(z)of ' whih are implied by (2.5). 3



By the Poisson summation formula, it is easy to hek that (2.5) is equivalent withXk2ZZd '̂(� + 2�k) = 1; � 2 IRd: (2.6)Inserting (2.3) into (2.6) leads tom = X~�2RT a(�~�e�iM�T �); � 2 IRd; (2.7)where RT = f~�0; : : : ; ~�m�1g denotes a omplete set of representatives of ZZd=MTZZd and�~� is de�ned by �~� := e�i2�M�T ~�: (2.8)The neessary ondition (2.7) has some important onsequenes for the subsymbolsa�(z) := Xk2ZZd a�+Mkzk; � 2 R; (2.9)where nowR is a omplete set of representatives of ZZd=MZZd: (Without loss of generality,we will always assume that �0 = ~�0 = 0 in the sequel. Furthermore, we shall use theabbreviation zM := (zM (1); � � � ; zM (d)); where M (j) denotes the j{th olumn of M).Lemma 2.1 Let ' be a ompatly supported fundamental re�nable funtion with symbola(z): Then 1 = a0(zM ): (2.10)Proof: Inserting the relation a(z) = X�2R z�a�(zM) (2.11)into eq. (2.7) we �nd with z = e�i�m = X~�2RT a(�~�e�i�) (2.12)= X~�2RT X�2R ��~� e�i�� Xk2ZZd a�+Mk(e�i2�M�T ~��Mke�i�Mk)= X~�2RT X�2R ��~� e�i�� Xk2ZZd a�+Mk(e�i2�~�ke�i�Mk)= X�2R0� X~�2RT ��~�1A e�i��a�(zM ):The above expression an be simpli�ed by employing the following fundamental lemmaproved by Chui and Li [3℄. 4



Lemma 2.2 Let �~� be de�ned by (2.8) ThenX~�2RT ��0~� ���00~� = m � Æ�0;�00; �0; �00 2 R: (2.13)The result now follows by using (2.13) with �00 = 0: 2The next laim is to �nd a proedure to onstrut symbols a(z) suh that the or-responding subsymbols a0(zM) satisfy (2.10). The idea is to start with a `nie', i.e.,suÆiently smooth re�nable and ompatly supported funtion � with symbol b(z): Inpratie, � ould be a box spline or a generalized ardinal B{spline as desribed below.Then one way to �nd solutions of (2.10) is to onvolve � with some suitable re�nableand ompatly supported distribution �, i.e., we de�ne ' by' := � � �: (2.14)Sine re�nability is preserved under onvolution, ' satis�es a two{sale{relation and itssymbol an be easily omputed as a(z) = 1mb(z)q(z); (2.15)where q(z) learly denotes the symbol of �:We have to �nd � in suh a way that a0(zM )satis�es (2.10). As we shall now explain, this is possible if the translates of � are linearlyindependent, i.e.,Xk2ZZd �k�(x� k) = 0 implies �k = 0 for all k 2 ZZd; � 2 `(ZZd): (2.16)Lemma 2.3 Suppose that � has linearly independent translates. For some � 2 ZZd; let~q�(zM ) denote the solutions ofzM� = X�2R b�(zM)~q�(zM): (2.17)and let q(z) be de�ned by q(z) := X�2R z��~q�(zM): (2.18)Then the subsymbol a0(z) of a(z) := z�M�q(z)b(z) (2.19)satis�es (2.10).Proof: By Bezout's theorem, there exist solutions of (2.18) if the subsymbols b�(z); � 2R have no ommon zeros in (ICnf0g)d: It was shown by Jia and Mihelli [20℄ that aompatly supported funtion � has linear independent translates if and only ifsupk2ZZd j�̂(� + 2�k)j > 0 for all � 2 ICd; (2.20)5



where �̂ denotes the Fourier{Laplae{Transform of �: Employing (2.3) and the relation(2.11) yields 0 < supk2ZZd 1m jX�2R e�iM�T (�+2�k)�b�(e�i�)�̂(M�T (� + 2�k))j;so that the subsymbols b�(z); � 2 R have indeed no ommon zeros in (ICnf0g)d. Itremains to show that a(z) de�ned by (2.19) satis�es (2.10). To this end, we use therelation z�a�(zM) = m�1 X~�2RT ���~� a(�~�z) (2.21)for � = 0 and obtain by (2.19),(2.18),(2.11) and Lemma 2.2a0(zM) = m�1 X~�2RT a(�~�z)= m�1 X~�2RT (�~�z)�M�q(�~�z)b(�~�z)= m�1 X~�2RT (�~�z)�M�0�X�02R ���0~� z��0 ~q�0((�~�z)M )1A � 0� X�002R ��00~� z�00b�00((�~�z)M)1A= m�1z�M� X�0;�002R0� X~�2RT ���0~� ��00~� 1A z��0z�00 ~q�0(zM)b�00(zM)= z�M� X�02R ~q�0(zM)b�0(zM ) = 1: 2One a suitable distribution is found, one still has to hek that the resulting re�nablefuntion is indeed fundamental (observe that ondition (2.10) is only neessary), and onehas to estimate its regularity. For the �rst task we use the following theorem proved in[23℄.Theorem 2.1 Suppose that a is a �nitely supported sequene satisfying a(1)=m. Aneessary and suÆient ondition for a ontinuous (a;M){re�nable funtion to be in-terpolatory is that the sequene Æ is the unique eigenvetor of the operator(Wab)(l) = Xk2ZZd aMl�kbk; fbkgk2ZZd 2 `2(ZZd): (2.22)A method to estimate the regularity will be disussed later.Before we an onstrut examples for our approah, we have to larify how a suitablesuÆiently smooth and ompatly supported re�nable funtion � an be found. A goodstarting mask is essential for the suess of our purpose. For the aseM = 2I, one naturalhoie would be to use a box spline B( � jX�); X� = (x1; : : : ; x�); xl 2 ZZdnf0g; � � d;whih is de�ned by dB( � jX�)(�) = Yxl2X�  1 � e�ixl��ixl � � ! : (2.23)6



It is well{known that B( � jX�) is re�nable with respet to M = 2I. The resultingsymbol is a(z) = 2d�� �Yl=1(1 + zxl): (2.24)This approah was in detail disussed in [24℄. However, for a more ompliated salingmatrix, it is in general not possible to �nd an assoiated re�nable box spline. One hasto restrit oneself to saling matries satisfyingMd = 2I; (2.25)see e.g. [7℄ for details. Matries satisfying (2.25) will be alled box spline matries inthe sequel. One way to handle the general ase is to replae the box spline by a so{alledgeneralized ardinal B{spline as, e.g., studied in [7℄. This approah is based on self{aÆne lattie tilings. We say that a set Q gives rise to a self{aÆne lattie tiling if itsatis�es jQj = 1; IRd ' [k2ZZd(Q+ k); Q \ (Q+ k) ' ;; k 6= 0 ; (2.26)Q = m�1[i=0 M�1(Q+ �i) ; (2.27)where the union in (2.27) is assumed to be disjoint. Clearly, \'" means equality up tosets of measure zero. One a set of representatives is hosen, a orresponding self{aÆneset an be onstruted by a generalized iterated funtion system. More preisely, onean use the following lemma, proved by Gr�ohenig and Madyh [19℄.Lemma 2.4 Let f�0; : : : �m�1g be some enumeration of osets in ZZd=MZZd: If ~Q0 isany ompat set, then the sequene ~Q1; ~Q2; : : : de�ned by~QN+1 := m�1[i=0 M�1(�i + ~QN ) (2.28)onverges in the metri ~%; de�ned by~%(P;Q) := maxf%(P;Q); %(Q;P )g (2.29)where %(P;Q) := supx2P infy2Q jx� yj :It is easy to hek that the limit set Q satis�es the self{similarity relation (2.27), andthat the union in (2.27) is disjoint. Furthermore, it an be shown that if the limit set Qsatis�es jQj = 1; (2.30)then it gives rise to a self{aÆne lattie tiling, i.e., (2.26) holds, see [19℄ for details. Itmay happen that the limit set has a larger measure. In general, one only knows that Q7



has integer measure and that it tiles IRd with respet to a subset of the lattie ZZd, seeLagarias and Wang [22℄ and Gr�ohenig and Haas [18℄ for details. We want to presenta motivating two{dimensional speimen of a self{aÆne tile here. It is the so{alledtwin{dragon{set whih is obtained by employing the saling matrixM =  1 �11 1 !.This ase was already studied in [19℄ and [5℄. The saling matrix satis�es jdetM j = 2and therefore ZZ2=MZZ2 onsists of exatly two elements. It an be heked that the setMZZ2 is the so{alled quinunx grid �, i.e.,k = (k1; k2) 2 � if and only if k1 + k2 is even: (2.31)As mentioned above we always hoose �0 = 0. Some possible hoies �01; : : : ; �31 for theseond representatives are given by�01 =  10 ! ; �11 =  0�1 ! ; �21 =  �10 ! and �31 =  01 ! : (2.32)Figure 1 shows the resulting self{aÆne tile obtained by taking �01 as the seond repre-sentative.
Figure 1Using the harateristi funtion �Q of a limit set Q obtained by employing Lemma 2.4,we now want to de�ne a generalized spline funtion. First of all, we infer from (2.27)that �Q(x) = m�1Xj=0 �Q(Mx� �j): (2.33)Now suppose we have K + 1 sets of representatives Ri = f�i0; : : : ; �im�1g; i = 0; : : : ;K;and let Qi denote the limit set assoiated, in view of Lemma 2.4, with Ri. Then, for8



N0; : : : ; NK 2 IN let the generalized ardinal B{spline �N0;:::;NK be de�ned by�N0;:::;NK := �Q0 � : : : �Q0| {z }N0�times ��Q1 � : : : �Q1| {z }N1�times � : : : � �QK � : : : �QK| {z }NK�times : (2.34)Employing the fat that, aording to (2.33), eah �Qi is a re�nable funtion, it is easyto hek that �N0;:::;NK satis�es a two{sale{relation similar to (2.33),�N0;:::;NK(x) = Xk2ZZd ak�N0;:::;NK(Mx� k) (2.35)with a(z) = m�(N0+:::+NK�1)aQ0(z)N0aQ1(z)N1 : : : aQK(z)NK : (2.36)Here aQi(z) denotes the symbol of �Qi whih, aording to (2.33), is given byaQi(z) = m�1Xj=0 z�ij ; z := e�i� :Sine all the funtions �Qi; i = 0; : : : ;K; are ompatly supported, �N0;:::;NK willalso be ompatly supported. Taking more onvolutors learly inreases the smoothnessof the resulting spline. For a qualitative study, the reader is referred to [7℄. In order toobtain optimal smoothness, it is useful to work with di�erent sets of representatives.However, then one has to deal with some stability problems. In general, the translatesof a funtion � 2 L2(IRd) are said to be `2{stable if there exist onstants 1; 2 > 0 suhthat 1k�k`2 � k Xk2ZZd �k�(� � k)kL2(IRd) � 2k�k`2 for all � 2 `2(ZZd): (2.37)If Q gives rise to a tiling, then the translates of �Q are orthonormal and thereforestable. (Moreover, they are also linearly independent, see [8℄ for details). This propertyis preserved if we take only onvolutions of �Q with itself, but it is a diÆult task tohek stability and linear independene for onvolutions of di�erent funtions. For reentresults on this topi, the reader is referred to [9℄. One should furthermore observe thateven with onvolutions of �Q with itself the smoothness an be inreased arbitrarily. Thereason is that � := �Q � �Q is already ontinuous and therefore also H�older ontinuous.(This is a onsequene of the re�nability of �; see [10℄ for details). Consequently, taking asuÆiently large number of onvolutions inreases the deay of the orresponding Fouriertransform arbitrarily high. (This is the reason why we onentrate on onvolutions ofone single funtion with itself in the examples in Setion 4).We also want to mention an interesting property of harateristi funtions of lattietilings. Sine the translates of of �Q are orthonormal, it is easy to hek that theautoorrelation funtion �aut := �Q(�) � �Q(��) (2.38)is an interpolating re�nable funtion. Therefore the tiling approah provides us witha family of ontinuous fundamental funtions. Taking more onvolutions adds to the9



smoothness of the re�nable funtion but destroys the interpolation property, hene aorretion term has to be onstruted.Although the tiling approah seems to be somewhat anonial, there are learly otherpossible ways to �nd smooth re�nable funtions whih an play the role of a box spline.In Setion 4, we shall also be onerned with re�nable funtions stemming from theso{alled Laplaian sheme assoiated with the symbolb(z) = (4 + z2 + z1 + z�12 + z�11 )=4: (2.39)Taking iterates of this mask produes a family of re�nable funtions with arbitrarilyhigh regularity. Again these funtions an be onverted to an interpolating family byonvolving them with a suitable distribution, see Setion 4 for details.3 REGULARITYOne we have determined a symbol q(z) suh that a(z) satis�es (2.10), we have toompute the orresponding re�nable funtion and to estimate its H�older{ and Sobolev{regularity, respetively. This an be done by a version of the usual Payley{Littlewood{tehnique as disussed, e.g., in [6℄, [24℄, [25℄, [26℄, [27℄. For reader's onveniene, webriey state the main ideas. By iterating (2.3) we obtain the following expression for'̂(�): '̂(�) = 1Yj=1m�1a(e�i(M�T )j�) = 1Yj=1m�1b(e�i(M�T )j�) 1Yj=1 q(e�i(M�T )j�): (3.1)To estimate the regularity of ', we have to determine the deay of '̂, i.e., the deay ofthe produts at the right{hand side of (3.1). Indeed, let�p := supf� : ZIRd(1 + j�jp)�j'̂(�)jpd� <1g: (3.2)Then ' 2 C�1�"(IRd) and ' 2 H�2(IRd): To determine �1 and �2, respetively, for 'de�ned by (3.1), we divide IRd into disjoint piees Cn := (MT )nT dn(MT )n�1T d, T d :=[��; �℄d: We always assume that M l = rI for some l; r 2 IN and T d � MTT d whihis true for most of the interesting examples of saling matries. Let us for the momentassume that we have already found a number � 2 IR suh thatZCn j'̂(�)jpd� � C�n: (3.3)Then one easily heks thatZIRd(1 + j�jp)�d� � C 1Xn=1 rn(p�+logr(�)l);10



and the series on the right{hand side is �nite if and only if� < � logr(�)lp : (3.4)For simpliity, we shall denote all onstants by C in the sequel, although the value of Cmay hange. It turns out that in our ase � is determined by the spetral radius of thetransition operator orresponding to a(z): In general, let g(z) be a Laurent polynomialsatisfying g(1) = 1: We de�ne the operatorTgf := X~�2RT g(M�T (�+ 2�~�))f(M�T (�+ 2�~�)): (3.5)Following the lines of Riemenshneider and Shen, one an hek by indution thatT ng (f) = Xk2ZZd f(M�T (�+ 2�k))'̂n(�+ 2�k); (3.6)where '̂n(�) := nYj=1 g((M�T )j�)�(MT )nT d; '̂0 = �T d: (3.7)It is easy to verify that (3.6) implies thatZT d jT ng f(�)jd� � ZIRd jf((M�T )n�)jj'̂n(�)jd�; (3.8)with equality if f and g are positive. Let us now furthermore suppose that g satis�esD�g(M�T 2�~�) = 0; j�j � �: (3.9)We de�ne the spae of trigonometri polynomialsV� := ff = Xjkj�N ake�ik�; D�f(0) = 0; j�j � �g: (3.10)For N large enough (depending onM), eq. (3.9) implies that V� is an invariant subspaeof Tg: It turns out that the spetral radius of TgjV� an be used to determine the regularityof the assoiated re�nable funtion g.Proposition 3.1 Suppose that g satis�es (3.9) and g � 0. Furthermore, let ~� denotethe spetral radius of TgjV�. For 'g de�ned by'̂g(�) := 1Yj=1 g((M�T )j�) (3.11)there exists for any given " > 0 a onstant C suh thatZCn j'̂g(�)jd� � C(~�+ ")n: (3.12)11



Proof: The proof an be performed by following the lines of Riemenshneider and Shen,so that we only sketh the basi steps. It an be heked thatZT d jT ng f(�)jd� � C(~�+ ")njjf jjfor some suitable norm k � k on V� andZCn j'̂g(�)jd� � C ZCn j'̂n(�)jd�:The funtion f(�) = Pdn=1(1 � os(�n))� is ontained in V� and satis�es f � C for� 2 T dnM�TT d so that, by employing (3.8), we obtainZCn j'̂n(�)jd� � C�1 ZCn f((M�T )n�)j'̂n(�)jd� � C�1 Z(MT )nT d f((M�T )n�)j'̂n(�)d�= ZIRd f((M�T )n�)j'̂n(�)jd� = ZT d T ng f(�)d� � C(~�+ ")n: 2Proposition 3.1 an now be applied to our interpolating re�nable funtions withg = m�1a(z), provided that a(z) � 0 whih gives an estimate for the H�older regularityof '. If a(z) � 0 does not hold, one an apply the proposition to the autoorrelationfuntion � = '(�) � '(��) whih gives an estimate for the Sobolev regularity of '. Byusing Sobolev embeddings, we also obtain an estimate for the H�older exponent.4 EXPLICIT CONSTRUCTIONSIn this setion we will expliitly onstrut di�erent families of interpolating re�nablefuntions. The proedure desribed in the previous setions is valid for arbitrary dimen-sions and dilation matries. However we will onentrate on two well{known dilationmatries with determinant �2. We start with a onstrution of a C1 example for thebox{spline matrix Mb =  1 11 �1 ! :However out main goal is to onstrut smooth examples for the true quinunx aseMq =  1 �11 1 ! :Families of interpolating re�nable funtions for these type of matries an already befound in [6℄, we will return to their onstrution later.The subgrid generated by both matries is the quinunx grid � as de�ned in (2.31).Hene we an always hoose the representatives of ZZ2nMZZ2 asR = (�0 =  00 ! ; �1 =  10 ! ) :12



We will desribe two di�erent onstrution proedures, the �rst one is based on thetheory of self{aÆne tilings, the seond one is based on the tehniques desribed in [5℄, ituses iterations of the Laplae sheme. The regularity of the resulting re�nable funtionsis estimated.4.1 The q-Term ConstrutionThe onstrution of interpolating re�nable funtions in this setion is very muh basedon the same ideas as used in onstruting orthogonal wavelets: one starts with a promis-ing symbol b(z), whih leads to a smooth re�nable funtions but does not ful�ll theinterpolation ondition (2.10). Then one tries to onstrut a orretion term q(z) suhthat a(z) = 1mb(z)q(z) satis�es this ondition. Finally one has to hek some regular-ity onditions, ensuring that a(z) atually leads to an interpolating funtion with somesmoothness.The proedure desribed in the previous setions proeeds as follows:� Choose a partiular mask. We always start with the mask of a B{spline of odddegree (N = 2l + 1) b(z) = 12N�1 (1 + z1)Nor with a symmetrized B-spline of even degreeb(z) = 12N�1 z�N=21 (1 + z1)N :We shall always interpret these masks in a multivariate setting, i.e., we are in-terested in multivariate funtions whih are (b;M){re�nable with respet to thesaling matries introdued above. From this point of view, it is easy to hek thatour spei� hoie orresponds to a re�nable funtion� = �Q � ::: � �Qwhih stems from N onvolutions of the generalized Haar funtion �Q or to ashifted and therefore symmetrized version of it. For Mb the set Q is simply aparallelepipedQ = f(x1; x2) j 0 � x2 < 1 ; 0 � x1 � x2 < 1 g, for Mq we obtain the twin{dragon{set as shown in Figure 1. The onvolutions inrease the smoothness of there�nable funtions, see again [7℄ for details.� Compute the deompositionb(z) = b0(zM) + z�1b1(zM ) ;ompare with (2.11). Determine orretion terms ~q0(z); ~q1(z) by hoosing anappropriate � and solvingzM� = b0(zM )~q0(zM) + b1(zM)~q1(zM ) ;ompare with (2.17). We either hoose M� = (0; 0)T or M� = (2; 0)T .13



� Compute the orretion term q(z) byq(z) = ~q0(zM) + z��1 ~q1(zM)and put a(z) = z�M�b(z)q(z) ;ompare with (2.18) and (2.19). Aording to Setion 2, this mask ful�lls theneessary ondition (2.10) for interpolation.� Chek the regularity of the resulting re�nable funtion '. If ' is ontinuous andif the onditions of Theorem 2.1 are satis�ed, then ' is indeed a interpolatingre�nable funtion. For the box{spline matrixMb we an use the lazy hek, whihasks to estimate the Hoelder{ or Sobolev{regularity by omputingBj = supjzj=1 j jYl=1 q(e�i(M�T )n�)j :ForMq we estimated the regularity by the eigenvalue tehnique desribed in Setion3.SineMb and Mq generate the same grid we an ompute the orretion terms ~q0(z) and~q1(z) simultaneously for both matries.For N = 2 we simply have b(z) = 12z�11 (1 + z1)2, heneb0(zM ) = 1 and b1(zM) = 12(z�21 + 1) :Choosing � = (0; 0)T allows the solution~q0(zM ) = 1 and ~q1(zM ) = 0:(Di�erent solutions are possible, e.g. ~q0(zM) = �z�21 ; q1(zM) = 2.) Putting bothparts together yields q(z) = 1 and a(z) = 12z�11 (1 + z1)2 : This is not surprisingsine this hoie for b(z) orresponds to the symbol of the autoorrelation funtion ofthe harateristi funtion of the self{aÆne tile Q whih is automatially interpolating,ompare with Setion 2.For N = 4 we obtainb0(zM) = 18(z�21 + 6 + z21) and b1(zM) = 12(z�21 + 1):Choosing e.g. � suh that M� = (2; 0)T we have~q0(zM) = �2 and ~q1(zM) = 12 + 52z21;whih leads to q(z) = 12z�11 � 2 + 52z1:14



Again a more onvenient hoie is � = (0; 0)T , whih leads to~q0(zM ) = 2 ; ~q1(zM ) = �12(1 + z21) and q(z) = 2 � 12(z�11 + z1);hene a(z) = b(z)q(z) = �116 z�31 + 916z�11 + 1 + 916z1 � 116z31 :N = 2 ; M� = (0; 0)T N = 4 ; M� = (2; 0)T N = 4 ; M� = (0; 0)Tb0(zM) 1 18(z�21 + 6 + z21)b1(zM) 12(z�21 + 1) 12(z�21 + 1)~q0(zM ) 1 or �z�21 �2 2~q1(zM ) 0 or 2 0:5 + 2:5z21 �0:5(1 + z21)z�M�q(z) 1 0:5z�31 � 2:0z�21 + 2:5z�11 2� 0:5(z�11 + z1)a(z) 12z�11 (1 + z1)2 �116 z�31 + 916z�11 + 1 + 916z1 � 116z31N = 3 ; M� = (0; 0)T N = 6 ; M� = (0; 0)Tb0(zM) 1 132(6z�21 + 20 + 6z21)b1(zM) 12(z�21 + 1) 132(z�41 + 15z�21 + 15 + z21)~q0(zM) 1 or �z�21 18(3z�21 + 38 + 3z21)~q1(zM) 0 or 2 �94 (1 + z21)z�M�q(z) 1 18(3z�21 18z�11 + 38 � 18z1 + 3z21)a(z) 12z�11 (1 + z1)2 1256(3z�51 � 25z�31 + 150z�11 + 256 + 150z1 � 25z31 + 3z51)4.1.1 The Box{Spline MatrixThe regularity estimates di�er for the matriesMb and Mq. For the matrixMb we usedthe representation of '̂(�) as an in�nite produt'̂(�) = 1Yj=1 1ma(e�i(M�T )j�) :Putting z = ei� and expressing q(z) as a trigonometri polynomial in � = (�1; �2)T allowsto estimate the deay rate of this in�nite produt fromBj = sup�2IR j jYn=1 q(e�i2�n�)j :15



Combining these values with the known deay rate for the B{spline produt of order Nwe obtain that ' 2 C� for � < N � 2� (ln(Bj)=(j ln(2:0)) :The following values were omputed with Maple.ln(Bj)=(j ln(2:0)) N=3 N=4 N=6j=1 1.5849 3.2927j=2 0.9251 1.3612 2.7925j=3 0.8747 1.3614 2.8071j=4 0.8634 1.2481 2.7758� 0.1366 0.7519 1.224The �{values are lower bounds for the Hoelder exponents of the related interpolatingre�nable funtions. In partiular starting with a B{spline of order six and hoosing theorretion term as stated above yields a ontinuously di�erentiable funtion.4.1.2 The Quinunx MatrixIn this ase the regularity estimates were obtained by the matrix{based tehniques de-sribed in Setion 3. We present the results for N = 3; 4. For N = 3 the masks does nothave a positive symbol, hene the matrix orresponding to TgjV� has to be omputed forthe autoorrelation funtion, i.e., with respet to g(z) = m�2ja(z)j2. The largest eigen-value whose orresponding eigenvetor lies in the invariant subspae V� is � = 0:5858(omputed with Maple). Sine we used the autoorrelation funtion the Hoelder regu-larity is estimated by � < � ln(�)= ln(2:0) � 1 = �0:2285, hene we annot prove thatin this ase the re�nement equation has a ontinuous solution, whih is interpolating.All we an prove is that the solution lies in all Sobolev spaes of order s < 0:7715.Due to symmetrization we obtain a positive symbol for N = 4. Hene we do notneed the autoorrelation funtion. The four largest eigenvalues were 1:0; 0:79869; 0:5 +0:5i; 0:5 � 0:5i. Unfortunately, already the seond eigenvalue orresponds to an eigen-vetor in V�, whih yields � < �2 ln(0:7987)= ln(2:0) = 0:6485 : we obtain a ontinuousand interpolating re�nable funtion for the quinunx matrix. The reader should observethat this funtion is already smoother than the autoorrelation funtion �Q(�) � �Q(��)for whih � < 0:4764 holds.4.2 Bezout ConstrutionsFor the ompleteness of this exposition we inlude a well{known short{ut for on-struting interpolating re�nable funtions for our spei� hoie of matries, see [5℄.The interpolation ondition a0(zM) = Pk2MZZd akzk = 1 states, that the symbol a(z) mayhave no oeÆients on MZZd exept for k = (0; 0)T . The grid MZZd ontains gridpoints(i; j), where i+ j even, hene the interpolation ondition read asa0(zM) = 12( a(z) + a(�z) ) = 1 ;16



ompare with (2.21). Let us onsider masks who are symmetri in the sense that a(z)is a polynomial in os2(�1), resp. in (os2(�1=2) + os2(�2=2))=2 (z = e�i�):a(z) = 2p(os2(�1=2)) , resp. a(z) = 2p os2(�1=2) + os2(�2=2)2 ! :Then the neessary ondition an be rephrased as (x = os2(�1), resp. x = (os2(�1=2)+os2(�2=2))=2) p(x) + p(1 � x) = 1 :The onstrution now follows the �rst steps in onstruting orthogonal wavelets. Ifp is hosen as a pure power of x multiplied by a shifted orretion polynomial q, i.e.p(x) = xNq(1� x), then q(x) = N�1Xl=0  N + l� 1l ! xlis the unique polynomial of degree N � 1, suh that p(x) + p(1� x) = 1 holds.To be more spei� let us reonsider the symmetrized B{spline of order 2N , theorresponding symbol obeys (z = e�i�; x = os2(�1=2))b(z) = 122N�1 �z�11 (1 + z1)2�N = 2 os2N(�=2) = 2 xN :The above proedure for N = 2, i.e. the B{spline of order 4, yields the orretion termq(1� x) = 1 + 2(1� x) = 3� 2 os2(�1=2) = 2� os(�1) = �0:5 z�11 + 2� 0:5 z1 :Hene we regain the examples of the previous setion for � = (0; 0)T . For the dilationmatrixMb we thus obtain a family with arbitrarily high regularity as N tends to in�nity.In order to onstrut a family with arbitrary high regularity for the quinunx dilationmatrixMq one has to start with the basi Laplae mask (x = (os2(�1=2)+os2(�2=2))=2)b(z) = (4 + z2 + z1 + z�12 + z�11 )=4 = os2(�1=2) + os2(�2=2) = 2x:The interpolation property of this mask was already observed in [11℄, its regularity wasestimated in [6℄. It yields a re�nable funtion with Hoelder exponent � > 0:61. Forhigher regularity one iterates the Laplae sheme:bN(z) = 12N�1 �(4 + z2 + z1 + z�12 + z�11 )=4�N = 2xN :Let us hoose e.g. N = 3, then q(x) = 1 + 3y + 6y2. This yieldsp(x) = x3q(1� x) = x3(10 � 15x + 6x2)or equivalently a(z) = 2p(x) with x = (os2(�1=2) + os2(�2=2))=2.The regularity of the related re�nable funtions was estimated in [6℄. We thus obtaina family with arbitrarily high regularity as N tends to in�nity for the dilation matrixMq.Remark 4.1 The Bezout tehniques do not diretly extend to other dilation matries,hene the q-term onstrution is more general.17



5 WaveletsOne we have found an interpolating re�nable funtion, a orresponding wavelet basisan be easily onstruted. There are atually two possibilities. One way is to onstruta lassial pre{wavelet basis. This an be done by performing a general proedure ase.g. explained in [21℄. One has to �nd an extension of the row (a�0(z); : : : ; a�m�1(z)) overT d whih is always possible if the underlying re�nable funtions has linear independenttranslates. (Observe that this ondition is satis�ed in our ase sine ' is fundamental).However, in the interpolating ase, there is another very natural method to onstruta generalized wavelet basis by using a di�erent salar produt. We only briey explainthe basi ideas, for the general setting, the reader is referred to Chui and Li [4℄. If ' isfundamental, it an be written as'(x) = '(Mx) + X�2Rnf0g Xk2ZZd '(k +M�1�)'(M(x� k)� �): (5.1)Therefore, by de�ning  �(x) := '(Mx� �); � 2 Rnf0g; (5.2)we obtain '(Mx) = '(x)� X�2Rnf0g Xk2ZZd '(k +M�1�) �(x� k): (5.3)Now we set Vj := 8<: Xk2ZZd k'(M j � �k) : fkgk2ZZd 2 `1(ZZd)9=; ; (5.4)W �j := 8<: Xk2ZZd d�k �(M j � �k) : fd�kgk2ZZd 2 `1(ZZd)9=; ; (5.5)and obtain an diret sum deompositionVj+1 = Vj _+W �1j _+ � � � _+W �m�1j : (5.6)Therefore, the system f �g�2Rnf0g an be interpreted as a generalized wavelet basis.From the de�nition (5.2), it is lear that the interpolating property of the generator' arries over to the wavelet basis in the sense that �(k +M�1�) = Æk;0; (5.7)i.e., eah wavelet interpolates on a shifted grid. On the other hand, we have to pay forthis very onvenient property by the loss of vanishing moments.18
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