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Abstract
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1 INTRODUCTION

The objective of this paper is the construction of specific kinds of multivariate scaling
functions and wavelets. In general, a system {1"},er of functions in L,(IR?), where R
is some finite set, is called a system of (mother) wavelets, if all its dilated, translated
and scaled versions, i.e., the set

Le(e) = |det MPPy(MPz —k),  peR, jeZ, keZ (1.1)

forms a basis of Ly(IR"). Here M denotes an expanding integer scaling matrix, i.e.,
all its eigenvalues have modulus larger than one. In general, a wavelet basis is con-
structed by means of a multiresolution analysis i.e., by a nested sequence {V;};cz of
shift-invariant closed subspaces of Lg(le) whose union is dense in Lg(le) while their
intersection is zero. As usual, we shall assume that each of the V;’s is spanned by the
translates of a dilated version of one single function called the generator (or the scaling
function) of the multiresolution analysis. It is well-known that almost all interesting
properties of the wavelet basis, e.g., its regularity, are already determined by the char-
acteristics of the generator. Consequently, the first step in the construction of a wavelet
basis with specific properties is to find a suitable scaling function. The primary aim of
this paper is the construction of (multivariate) interpolating scaling functions ¢, i.e.,
we impose the condition

o(k)=60r  forall ke Z” (1.2)

A corresponding property can be transmitted to the resulting wavelet basis, see Section
5. For several reasons, scaling functions satisfying (1.2) have become of increasing in-
terest in the last few years. For instance, by using interpolating scaling functions and
wavelets, it becomes particularly simple to compute the coefficients of an associated
wavelet expansion. This is especially important for the treatment of nonlinear terms
that may arise when dealing with wavelet Galerkin methods, see e.g. [2]. Moreover, the
interpolatory setting simplifies the incorporation of boundary conditions [1].

For practical reasons, we are in particular interested in compactly supported and
sufficiently smooth generators. Several examples of scaling functions satisfying these
requirements have been constructed in the last years, see e.g. [6], [12], [15], [16] [17],
[24] (this list is clearly not complete). The applications to wavelet decompositions have
been clarified in [13] and [14], see also [4]. However, most of these approaches are based
on dyadic scalings, i.e., they deal with the specific case M = 2[. In contrary to this,
our aim was to find an approach which works for an arbitrary scaling matrix. This is
important since the number of wavelets that is needed is equal to |det M| — 1, i.e., the
costs grow exponentially with respect to the spatial dimension in the dyadic case. We
try to avoid this problem by using scaling matrices satisfying | det M| = 2. Our work was
inspired by and is closely related to the work of Riemenschneider and Shen [24]. Their
approach is based on box splines. Therefore, the theory presented in [24] is restricted
to a very small class of scaling matrices, see Section 2. Consequently, it was one of our
goals to find objects that can play the role of the box spline in the general case.



This paper is organized as follows. In Section 2, we explain the general setting of
interpolatory scaling functions. We derive some necessary conditions on the symbol and
give an outline how scaling functions satisfying these conditions can be found. The idea
is to convolve some “canonical” generators, which are available for almost all scaling
matrices, by some suitable distribution. In Section 3, we briefly recall a technique to
estimate the Holder— and Sobolev—regularity of the resulting function, respectively. In
Section 4, we discuss some examples, and finally, in Section 5, we present the construction
of an interpolatory wavelet basis.

2 THE GENERAL SETTING

We shall be concerned with compactly supported functions ¢ € Lg(le) which satisfy a
two—scale—relation

da)= D apd(Me —k), a={a}ezs € L(Z"), (2.1)

ke Z®

where M is an expanding integer scaling matrix. It is well-known that under some
natural conditions the generator ¢ of a multiresolution analysis satisfies (2.1) with some
suitable sequence a = {ay},cze. In the sequel, we will always assume that supp a :=

{k € Z" | a), # 0} is finite and that
Y ay=m, m:=|det M|, (2.2)
ke Z*

holds. A function ¢ satisfying (2.1) is often called a refinable function. To indicate the
dependency on a and M, we will also use the term (a, M)-refinable. Applying Fourier
transform to (2.1) yields

A 1

HE) = —ale™™MTHM T, fe R, (23)
where the symbol a(z) is the Laurent polynomial
a(z) = Y apz*, 2T (2.4)
kez

and T clearly denotes the d-dimensional torus, 7% := {z €@ | || =1, 1 = 1,...,d}.
The aim of this paper is to construct families of fundamental refinable functions ¢,
i.e., we require that ¢ is an interpolating function in the sense that

o(k) = oy, ke Z°, (2.5)

holds. We start this project by deriving some necessary conditions on the symbol a(z)
of ¢ which are implied by (2.5).



By the Poisson summation formula, it is easy to check that (2.5) is equivalent with

ST op(E+2mk) =1, &< Rr (2.6)

kez?
Inserting (2.3) into (2.6) leads to
m = Z a(@;e_iM_Tg), €€ le, (2.7)
pERT

where RT = {po, ..., pm—1} denotes a complete set of representatives of Z*/MT Z" and
(; is defined by

G = M, (2.8)

The necessary condition (2.7) has some important consequences for the subsymbols

GP(Z) = Z a/)-I-Mkav p e Rv (29)

keZz?

where now R is a complete set of representatives of Z% /M Z". (Without loss of generality,
we will always assume that pg = (50 = 0 in the sequel. Furthermore, we shall use the
d

abbreviation M := (ZM(l), e M )), where M) denotes the j—th column of M).

Lemma 2.1 Let ¢ be a compactly supported fundamental refinable function with symbol
a(z). Then
1 = ao(zM). (2.10)

Proof: Inserting the relation

a(z) = Zzpap(zM) (2.11)

pER

into eq. (2.7) we find with z = ¢7%

mo= Y alGe) (2.12)

pERT
= Y D ey %+Mk(e_iZWM_Tﬁ'Mke_ing)
P
peRT pER keZz?
_ Z Zgge—ifp Z ap+Mk(€—i27r/3ke—i£Mk)
peRT pER keZz?
— Z (Z (g) e_ifpap(zM).
pER \peRT

The above expression can be simplified by employing the following fundamental lemma

proved by Chui and Li [3].



Lemma 2.2 Let (; be defined by (2.8) Then

Z C,?/Cﬁ_p“ =M Oy i, o, p" € R. (2.13)
pERT
The result now follows by using (2.13) with p” = 0. O

The next claim is to find a procedure to construct symbols a(z) such that the cor-
responding subsymbols ag(2*) satisfy (2.10). The idea is to start with a ‘nice’, i.e.,
sufficiently smooth refinable and compactly supported function ¢ with symbol b(z). In
practice, ¢ could be a box spline or a generalized cardinal B—spline as described below.
Then one way to find solutions of (2.10) is to convolve ¢ with some suitable refinable
and compactly supported distribution 7, i.e., we define ¢ by

0= P *. (2.14)

Since refinability is preserved under convolution, @ satisfies a two—scale-relation and its
symbol can be easily computed as

a(z) = —b(2)q(2), (2.15)

where q(z) clearly denotes the symbol of . We have to find 5 in such a way that ag(z™)
satisfies (2.10). As we shall now explain, this is possible if the translates of ¢ are linearly
independent, i.e.,

> Mplx —k)=0 implies Ay =0 forall ke Z* Xel(Z. (2.16)

ke Z®

Lemma 2.3 Suppose that ¢ has linearly independent translates. For some o € Z°, let
G,(zM) denote the solutions of

M= Z;%bp(ZM)Qp(ZM)- (2.17)
and let q(z) be defined by
o(z) = 3 (M), (2.15)

pER
Then the subsymbol ao(z) of
a(z) := 27 Mo(2)b(2) (2.19)
satisfies (2.10).
Proof: By Bezout’s theorem, there exist solutions of (2.18) if the subsymbols b,(z), p €

R have no common zeros in (@'\{0})¢. Tt was shown by Jia and Micchelli [20] that a
compactly supported function ¢ has linear independent translates if and only if

sup |qAb(§ +27k)| > 0 for all € eq@?, (2.20)

keZz?



where qAb denotes the Fourier-Laplace—Transform of ¢. Employing (2.3) and the relation
(2.11) yields

0 < sup — S T MTHER Y () G(MT(E + 2mk)),

kezd Tt ,eR

so that the subsymbols b,(2), p € R have indeed no common zeros in (@'\{0})%. Tt
remains to show that a(z) defined by (2.19) satisfies (2.10). To this end, we use the
relation

Lay(M) =m™ Y Gra(Ge) (2.21)

pERT

for p =0 and obtain by (2.19),(2.18),(2.11) and Lemma 2.2
ao(z") = m™ Y a(G2)

pERT
= m! Z (¢52) ™M q(¢2)b(¢52)
pERT
s o (g i) (5 )
FERT p'ER p"ER
= iy Me Z (Z gﬁ_plgs)”) Z_pIZPIIQP’(ZM)bP”(ZM)
p'p"€R \peRT
= MO S (MM = 1.

p'€R
O
Once a suitable distribution is found, one still has to check that the resulting refinable
function is indeed fundamental (observe that condition (2.10) is only necessary), and one
has to estimate its regularity. For the first task we use the following theorem proved in

[23].

Theorem 2.1 Suppose that a is a finitely supported sequence satisfying a(1)=m. A
necessary and sufficient condition for a continuous (a, M)-refinable function to be in-
terpolatory is that the sequence ¢ is the unique eigenvector of the operator

= Z aMl_kbk, {bk}kezd € Ez(Zd) (222)

kezZ?

A method to estimate the regularity will be discussed later.

Before we can construct examples for our approach, we have to clarify how a suitable
sufficiently smooth and compactly supported refinable function ¢ can be found. A good
starting mask is essential for the success of our purpose. For the case M = 21, one natural
choice would be to use a box spline B( - |X,), X, = («',...,2"), z' € Z"\{0}, v > d,
which is defined by l

— _ g
B( - X)) =TI (167) . (2.23)

.
dex, \ -



It is well-known that B( - |X,) is refinable with respect to M = 2[. The resulting

symbol is

a(z) =27 TI(1 + =), (2.24)

=1

This approach was in detail discussed in [24]. However, for a more complicated scaling
matrix, it is in general not possible to find an associated refinable box spline. One has
to restrict oneself to scaling matrices satisfying

M? =21, (2.25)

see e.g. [7] for details. Matrices satisfying (2.25) will be called box spline matrices in
the sequel. One way to handle the general case is to replace the box spline by a so—called
generalized cardinal B—spline as, e.g., studied in [7]. This approach is based on self-
affine lattice tilings. We say that a set () gives rise to a self-affine lattice tiling if it
satisfies

Ql=1, R'~ |J(Q+k), Qn(Q+k =0, k+0, (2.26)

kez
0=U M@+ . (2.27)

where the union in (2.27) is assumed to be disjoint. Clearly, “~” means equality up to
sets of measure zero. Once a set of representatives is chosen, a corresponding self-affine
set can be constructed by a generalized iterated function system. More precisely, one
can use the following lemma, proved by Grochenig and Madych [19].

Lemma 2.4 Let {po,...pn-1} be some enumeration of cosets in ZUMZ. If Qq is
any compact set, then the sequence (Q1,Q)a, ... defined by

Qnr = ij M~ (pi + Qn) (2.28)

converges in the metric ¢, defined by

o(P, Q) :=max{o(P,Q),e(Q, P)} (2.29)

where
o(P,Q) :=sup inf |z — y|
rEP YEQ

It is easy to check that the limit set ) satisfies the self-similarity relation (2.27), and
that the union in (2.27) is disjoint. Furthermore, it can be shown that if the limit set Q)
satisfies

QI =1, (2.30)

then it gives rise to a self-affine lattice tiling, i.e., (2.26) holds, see [19] for details. It
may happen that the limit set has a larger measure. In general, one only knows that ()



has integer measure and that it tiles IR? with respect to a subset of the lattice Z?, see
Lagarias and Wang [22] and Grochenig and Haas [18] for details. We want to present
a motivating two—dimensional specimen of a self-affine tile here. It is the so—called
1 -1
11
This case was already studied in [19] and [5]. The scaling matrix satisfies |det M| = 2
and therefore Z* /M Z* consists of exactly two elements. It can be checked that the set
M Z? is the so—called quincunx grid T, i.e.,

twin—dragon—set which is obtained by employing the scaling matrix M =

k= (ki,k) €T ifand only if ky + Ky is even. (2.31)

As mentioned above we always choose po = 0. Some possible choices p{,..., p? for the
second representatives are given by

,0?2((1))7 ,01:(_(1)), ,0?:(_01) and /ffz(?)- (2.32)

Figure 1 shows the resulting self-affine tile obtained by taking p as the second repre-
sentative.

Figure 1

Using the characteristic function ¢ of a limit set () obtained by employing Lemma 2.4,
we now want to define a generalized spline function. First of all, we infer from (2.27)
that

Xalr) = T xalMr — p)) (2:33)

Now suppose we have K + 1 sets of representatives R; = {p4,....p. |}, 1 =0,..., K,
and let (); denote the limit set associated, in view of Lemma 2.4, with R;. Then, for



No,...,Ng € IN let the generalized cardinal B—spline ¢n,, . n, be defined by

ONo Nie "= X0 ¥+~ XQo ¥ Xy * - XOr ¥+ % XOQp * -+ XOx - (2.34)
—_—
No—times Ni—times Ny —times

Employing the fact that, according to (2.33), each Y, is a refinable function, it is easy
to check that ¢n, .. n, satisfies a two—scale-relation similar to (2.33),
Doy Nie(X) = D @by, N (M — k) (2.35)
kez?
with
_(NO+...+NK_1)QQ0(Z)Noan(Z)Nl s aQK(Z)NK . (236)

Here ag,(z) denotes the symbol of xg, which, according to (2.33), is given by

a(z)=m

m—1 ; )
ag,(z)= > | zi=e¥
7=0

Since all the functions yg,, ¢ = 0,..., K, are compactly supported, ¢n,, . n, will
also be compactly supported. Taking more convolutors clearly increases the smoothness
of the resulting spline. For a qualitative study, the reader is referred to [7]. In order to
obtain optimal smoothness, it is useful to work with different sets of representatives.
However, then one has to deal with some stability problems. In general, the translates
of a function ¢ € Lg(le) are said to be fa—stable if there exist constants ¢1, ¢y > 0 such
that

alMe <Y Md(- = Bl myy < c2llMle, for all A € ((Z7). (2.37)

kezZ?

If @ gives rise to a tiling, then the translates of x¢ are orthonormal and therefore
stable. (Moreover, they are also linearly independent, see [8] for details). This property
is preserved if we take only convolutions of y¢o with itself, but it is a difficult task to
check stability and linear independence for convolutions of different functions. For recent
results on this topic, the reader is referred to [9]. One should furthermore observe that
even with convolutions of yg with itself the smoothness can be increased arbitrarily. The
reason is that ¢ := x¢ * x¢ 1s already continuous and therefore also Holder continuous.
(This is a consequence of the refinability of ¢, see [10] for details). Consequently, taking a
sufficiently large number of convolutions increases the decay of the corresponding Fourier
transform arbitrarily high. (This is the reason why we concentrate on convolutions of
one single function with itself in the examples in Section 4).

We also want to mention an interesting property of characteristic functions of lattice
tilings. Since the translates of of yg are orthonormal, it is easy to check that the
autocorrelation function

Gaut = X (+) * xo(—) (2.38)

is an interpolating refinable function. Therefore the tiling approach provides us with
a family of continuous fundamental functions. Taking more convolutions adds to the



smoothness of the refinable function but destroys the interpolation property, hence a
correction term has to be constructed.

Although the tiling approach seems to be somewhat canonical, there are clearly other
possible ways to find smooth refinable functions which can play the role of a box spline.
In Section 4, we shall also be concerned with refinable functions stemming from the
so—called Laplacian scheme associated with the symbol

b(z) = (4—|—22—|—21—|—22_1—|—21_1)/4. (2.39)

Taking iterates of this mask produces a family of refinable functions with arbitrarily
high regularity. Again these functions can be converted to an interpolating family by
convolving them with a suitable distribution, see Section 4 for details.

3 REGULARITY

Once we have determined a symbol ¢(z) such that a(z) satisfies (2.10), we have to
compute the corresponding refinable function and to estimate its Holder— and Sobolev—
regularity, respectively. This can be done by a version of the usual Payley—Littlewood—
technique as discussed, e.g., in [6], [24], [25], [26], [27]. For reader’s convenience, we
briefly state the main ideas. By iterating (2.3) we obtain the following expression for

H6): ) .
= 1:[ m ™ a(e” it H m~b(e i 1:[ (3.1)

To estimate the regularity of o, we have to determine the decay of ¢, i.e., the decay of
the products at the right—hand side of (3.1). Indeed, let

wpi=suple [ (L4 1E)°

P(E)|PdE < oo} (3.2)

Then ¢ € C*=(IR?) and ¢ € H"(IR?). To determine x; and r,, respectively, for o
defined by (3.1), we divide IR? into disjoint pieces C,, := (MT)"T\(MT)y"=17? T? .=
[—7, 7]%. We always assume that M' = rI for some [,r € IN and T* C MTT? which
is true for most of the interesting examples of scaling matrices. Let us for the moment
assume that we have already found a number A € IR such that

J.

G(E)PdE < CA™. (3.3)

Then one easily checks that

[t lgpyrde < € Y pniesron o,
R n=1

10



and the series on the right-hand side is finite if and only if

< —M. (3.4)
P
For simplicity, we shall denote all constants by C' in the sequel, although the value of C'
may change. It turns out that in our case X is determined by the spectral radius of the
transition operator corresponding to a(z). In general, let g(z) be a Laurent polynomial
satisfying g(1) = 1. We define the operator

1,7 = Y g(M" (-4 2mp)) f(M (- 4 275). (3.5)

pERT

Following the lines of Riemenschneider and Shen, one can check by induction that

Tr(f) = Y F(MTT( 4 2mk))fu(- + 2mk), (3.6)
where .
@n(€) = l:[ (MY )X uryra,  Po = e (3.7)

It is easy to verify that (3.6) implies that

[omrede < [ 1y

@a(&)]dE, (3.8)
with equality if f and g are positive. Let us now furthermore suppose that ¢ satisfies

DM T2mp) =0, 18] <. (3.9)
We define the space of trigonometric polynomials

Vo= {f = Y ae ™, DAf0) =0, 3] < u}. (3.10)

[kl <N

For N large enough (depending on M), eq. (3.9) implies that V), is an invariant subspace
of T,. It turns out that the spectral radius of T} |y, can be used to determine the regularity
of the associated refinable function g.

Proposition 3.1 Suppose that g satisfies (3.9) and g > 0. Furthermore, let X denote
the spectral radius of Ty|v,. For ¢, defined by

Byl 1= ﬁg<<M—T>f-> (3.11)

there exists for any given ¢ > 0 a constant C such that

J.

2o(E)1dE < C(A+e)". (3.12)

11



Proof: The proof can be performed by following the lines of Riemenschneider and Shen,
so that we only sketch the basic steps. It can be checked that

L)l < e+ el
for some suitable norm || - || on V,, and
L 1e0lde < € [ Ipag)lac.

The function f(¢) = S%_,(1 — cos(&,))* is contained in V, and satisfies f > ' for
£ € T\M~-TT? so that, by employing (3.8), we obtain

L lea@lde < c7 [Tyl 6)lde < 07 Ty

(MT)nTd
= [ AT el = [ T (e < OO+ )

O

Proposition 3.1 can now be applied to our interpolating refinable functions with

g = m~ta(z), provided that a(z) > 0 which gives an estimate for the Holder regularity

of . If a(z) > 0 does not hold, one can apply the proposition to the autocorrelation

function ¢ = p(-) * ¢(—-) which gives an estimate for the Sobolev regularity of ¢. By
using Sobolev embeddings, we also obtain an estimate for the Holder exponent.

4 EXPLICIT CONSTRUCTIONS

In this section we will explicitly construct different families of interpolating refinable
functions. The procedure described in the previous sections is valid for arbitrary dimen-
sions and dilation matrices. However we will concentrate on two well-known dilation
matrices with determinant 2. We start with a construction of a C'' example for the

box—spline matrix
11
o (1)

However out main goal is to construct smooth examples for the true quincunx case

1 -1
w-(17)

Families of interpolating refinable functions for these type of matrices can already be
found in [6], we will return to their construction later.

The subgrid generated by both matrices is the quincunx grid T as defined in (2.31).
Hence we can always choose the representatives of Z*\M Z* as

o= (2) - (1))

12



We will describe two different construction procedures, the first one is based on the
theory of self-affine tilings, the second one is based on the techniques described in [5], it
uses iterations of the Laplace scheme. The regularity of the resulting refinable functions
is estimated.

4.1 The g-Term Construction

The construction of interpolating refinable functions in this section is very much based
on the same ideas as used in constructing orthogonal wavelets: one starts with a promis-
ing symbol b(z), which leads to a smooth refinable functions but does not fulfill the
interpolation condition (2.10). Then one tries to construct a correction term ¢(z) such
that a(z) = Lb(z)q(z) satisfies this condition. Finally one has to check some regular-
ity conditions, ensuring that a(z) actually leads to an interpolating function with some
smoothness.

The procedure described in the previous sections proceeds as follows:

e Choose a particular mask. We always start with the mask of a B—spline of odd
degree (N =2[+ 1)

b(z) = ey (L+ 20

or with a symmetrized B-spline of even degree

I
b(z) = gm0+ )Y

We shall always interpret these masks in a multivariate setting, i.e., we are in-
terested in multivariate functions which are (b, M)-refinable with respect to the
scaling matrices introduced above. From this point of view, it is easy to check that
our specific choice corresponds to a refinable function

¢ = Xo ¥ o % Xg

which stems from N convolutions of the generalized Haar function x, or to a
shifted and therefore symmetrized version of it. For M, the set @) is simply a
parallelepiped

Q =H(r1,29) |0 <29 < 1,0 < 2 —ay <1}, for M, we obtain the twin—
dragon—set as shown in Figure 1. The convolutions increase the smoothness of the
refinable functions, see again [7] for details.

e Compute the decomposition
b(z) = bo(z") + 20 (M)

compare with (2.11). Determine correction terms ¢o(z), ¢i(z) by choosing an
appropriate « and solving

M= bo(2M)do(=M) + b (M) a (M)
compare with (2.17). We either choose Ma = (0,0)T or Ma = (2,0)7.

13



e Compute the correction term ¢(z) by
9(z) = qo(z") + 27" q(M)

and put

a() = = MB)g(2)
compare with (2.18) and (2.19). According to Section 2, this mask fulfills the
necessary condition (2.10) for interpolation.

o Check the regularity of the resulting refinable function ¢. If ¢ is continuous and
if the conditions of Theorem 2.1 are satisfied, then ¢ is indeed a interpolating
refinable function. For the box—spline matrix M, we can use the lazy check, which
asks to estimate the Hoelder— or Sobolev—regularity by computing

J
— —T\n
B; = sup |] q(e”™™ "),

lzI=1 =1

For M, we estimated the regularity by the eigenvalue technique described in Section

3.

Since My and M, generate the same grid we can compute the correction terms go(z) and
¢1(z) simultaneously for both matrices.
For N = 2 we simply have b(z) = %Zfl(l + z1)?, hence

1
bo(zM)zl and bl(zM)25(2f2—|—1) )

Choosing a = (0,0)T allows the solution
Go(z") =1 and q(z")=0.

(Different solutions are possible, e.g. Go(2™) = —2z7* | @(#M) = 2.) Putting both
parts together yields ¢(z) = 1 and a(z) = %Zfl(l + z1)* . This is not surprising
since this choice for b(z) corresponds to the symbol of the autocorrelation function of
the characteristic function of the self-affine tile () which is automatically interpolating,
compare with Section 2.

For N = 4 we obtain

1 1
bo(zM) = g(zfz +6+ Zf) and bl(zM) = 5(21_2 +1).

Choosing e.g. a such that Ma = (2,0)T we have
~ M ~ M 1 5 2
Go(z")=—-2 and @)= 5 + 371

which leads to | .
q(z) = 521_1 —24 521.

14



Again a more convenient choice is a = (0,0)7, which leads to

. . 1 1
qo(zM) =2, ql(zM) = —5(1 + Zf) and ¢(z)=2-— 5(21 by z1),
h
ence L 9 -
a(z) = b(z)q(z) = 16 1 16 a1+ 167 " 167
N=2, Ma=(0,00T |N=4, Ma=(2,00 | N=4, Ma=(0,0)
ZM) 1 é(zfz—l—(i—l—zf)
1) G G
ZM) 1 or —z;° -2 2
ZM) 0 or 2 0.5+ 2.527 —0.5(1 + 27)
“Mag(z) |1 05277 — 20277 4+ 25271 [ 2—0.5(27" + 21)
a(z) 2o (L4 21)” o ties L4 pn— s
N=3, Ma=(0,007 | N=6, Ma=(0,0)7
o(2M) 1 (6277 + 20 + 627)
(M) 2+ Sz + 15277 4+ 15 + 27)
NO(ZM) 1 or —z;° é(i’) + 38 4 327)
qu(ZM) 0 or 2 _9(1 + 27)
Meg(zy |1 £(327 71821 + 38 — 182 + 327)
a(z) 1 (1 2)? (3217 — 25277 4 15027 + 256 + 15021 — 2527 + 327)
4.1.1 The Box—Spline Matrix

The regularity estimates differ for the matrices M, and M,. For the matrix M, we used
the representation of ¢(¢£) as an infinite product

= I,

1
m

(&1, fg)T allows

Putting 2 = ¢ and expressing ¢(z) as a trigonometric polynomial in £ =
to estimate the decay rate of this infinite product from

j o
sup | [T a(e™79)].

¢ER 5=

B, =
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Combining these values with the known decay rate for the B—spline product of order NV
we obtain that

we C% for B<N—2—(In(B;)/(jIn(2.0)) .

The following values were computed with Maple.

| In(B,)/(jIn(2.0)) | N=3 | N=4 | N=6 |
j=1 1.5849 | 3.2927
' 0.9251 | 1.3612 | 2.7925
0.8747 | 1.3614 | 2.8071
0.8634 | 1.2481 | 2.7758

[ 0.1366 | 0.7519 | 1.224 |

ST ST S
Il
RS I W)

<l

The F—values are lower bounds for the Hoelder exponents of the related interpolating
refinable functions. In particular starting with a B—spline of order six and choosing the

correction term as stated above yields a continuously differentiable function.

4.1.2 The Quincunx Matrix

In this case the regularity estimates were obtained by the matrix—based techniques de-
scribed in Section 3. We present the results for N = 3,4. For N = 3 the masks does not
have a positive symbol, hence the matrix corresponding to 7|y, has to be computed for
the autocorrelation function, i.e., with respect to g(z) = m™%|a(2)|?. The largest eigen-
value whose corresponding eigenvector lies in the invariant subspace V, is A = 0.5858
(computed with Maple). Since we used the autocorrelation function the Hoelder regu-
larity is estimated by 8 < —In(A)/In(2.0) — 1 = —0.2285, hence we cannot prove that
in this case the refinement equation has a continuous solution, which is interpolating.
All we can prove is that the solution lies in all Sobolev spaces of order s < 0.7715.

Due to symmetrization we obtain a positive symbol for N = 4. Hence we do not
need the autocorrelation function. The four largest eigenvalues were 1.0,0.79869,0.5 +
0.52,0.5 — 0.5:. Unfortunately, already the second eigenvalue corresponds to an eigen-
vector in V,,, which yields # < —21In(0.7987)/1In(2.0) = 0.6485 : we obtain a continuous
and interpolating refinable function for the quincunx matrix. The reader should observe
that this function is already smoother than the autocorrelation function xg(-) * xo(—-)

for which g < 0.4764 holds.

4.2 Bezout Constructions

For the completeness of this exposition we include a well-known short—cut for con-

structing interpolating refinable functions for our specific choice of matrices, see [5].

My = > apzF =1 states, that the symbol a(z) may
keM z¢

have no coefficients on M Z? except for k = (0,0)T. The grid MZ* contains gridpoints
(1,7), where i 4+ j even, hence the interpolation condition read as

w(M) = S(a(z) +a(-2)) = 1,

The interpolation condition ag(z
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compare with (2.21). Let us consider masks who are symmetric in the sense that a(z)
is a polynomial in cos?(£;), resp. in (cos?(£;/2) + cos?(£2/2))/2 (2 = e™%):

a(z) = 2p(cos?(£,/2)) . resp. a(z) = 2p (COSQ(&/?) ; cos2(52/2)) '

Then the necessary condition can be rephrased as (z = cos*(&;), resp. @ = (cos*(&/2) +
cos?(£2/2))/2)

ple) +p(l—z)=1.
The construction now follows the first steps in constructing orthogonal wavelets. If
p is chosen as a pure power of x multiplied by a shifted correction polynomial ¢, i.e.

p(z) = 2Vq(1 — z), then
N-1
N+1-1
q(x) = Z ( i ) @'
I=
is the unique polynomial of degree N — 1, such that p(x) 4+ p(1 — ) = 1 holds.

To be more specific let us reconsider the symmetrized B-spline of order 2N, the
corresponding symbol obeys (z = ¢7%, x = cos?(£;/2))

1 _ N
b(z) = N1 (211(1 —|—21)2) = 2C082N(§/2) = 22N .
The above procedure for N = 2, i.e. the B-spline of order 4, yields the correction term
gl —2) = 14+2(1—2) = 3—2cos’(&/2) = 2—cos(&) = —0527'+2—-0.5 2 .

Hence we regain the examples of the previous section for a = (0,0)7. For the dilation
matrix My, we thus obtain a family with arbitrarily high regularity as NV tends to infinity.

In order to construct a family with arbitrary high regularity for the quincunx dilation
matrix M, one has to start with the basic Laplace mask (z = (cos?(£;/2)+cos?(£2/2))/2)

b(z) = (A4+z+z1+2  +270)/4 = cos®(£1/2) + cos*(£,/2) = 2.

The interpolation property of this mask was already observed in [11], its regularity was
estimated in [6]. It yields a refinable function with Hoelder exponent o > 0.61. For
higher regularity one iterates the Laplace scheme:

1 N
bN(Z) = SNoi ((4—|—22—|—21—|—22_1—|—21_1)/4) = 22V,

Let us choose e.g. N = 3, then ¢(x) = 1 + 3y + 6y*. This yields
p(x) = 2°¢(1 — x) = 2°(10 — 152 + 627%)

or equivalently a(z) = 2p(x) with = (cos?(£1/2) + cos?*(£2/2))/2.

The regularity of the related refinable functions was estimated in [6]. We thus obtain
a family with arbitrarily high regularity as N tends to infinity for the dilation matrix
M,.
Remark 4.1 The Bezout techniques do not directly extend to other dilation matrices,
hence the g-term construction is more general.
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5 Wavelets

Once we have found an interpolating refinable function, a corresponding wavelet basis
can be easily constructed. There are actually two possibilities. One way is to construct
a classical pre-wavelet basis. This can be done by performing a general procedure as
e.g. explained in [21]. One has to find an extension of the row (a,,(2),...,a,,_,(z)) over
T which is always possible if the underlying refinable functions has linear independent
translates. (Observe that this condition is satisfied in our case since ¢ is fundamental).
However, in the interpolating case, there is another very natural method to construct
a generalized wavelet basis by using a different scalar product. We only briefly explain
the basic ideas, for the general setting, the reader is referred to Chui and Li [4]. If ¢ is
fundamental, it can be written as

ple) =pMz)+ Y. > @b+ M p)p(M(x —k)—p). (5.1)

peR\{0} ke z¢

Therefore, by defining

VP(x) = p(Mz —p),  pec R\{0}, (5.2)

we obtain

(M) =p(x) = >, D elh+ M p)’(x— k). (5.3)

peR\{0} ke z*

Now we set

V, = { Z ckc,o(Mj c—k): Acrtpem € KOO(Zd)} , (5.4)

kezZ?

Wi = { D (M —k) s {di} ez € ﬁoo(Zd)}a (5.5)

kezd
and obtain an direct sum decomposition
Vigr = ViAW 4 fWwim (5.6)

Therefore, the system {t)*},cp\ (o} can be interpreted as a generalized wavelet basis.
From the definition (5.2), it is clear that the interpolating property of the generator
@ carries over to the wavelet basis in the sense that

YOk + M~ p) = o, (5.7)

i.e., each wavelet interpolates on a shifted grid. On the other hand, we have to pay for
this very convenient property by the loss of vanishing moments.
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