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Abstract

We present a new method to construct interpolating refinable functions in
higher dimensions. The approach is based on the solutions to specific Lagrange
interpolation problems by polynomials and applies to a large class of scaling ma-
trices. The resulting scaling functions automatically satisfy certain Strang-Fix
conditions. Several examples are discussed.
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1 Introduction

In recent years, the construction of interpolating scaling functions has become a field of
increasing importance. In general, a function ¢ € LQ(Rd) is called a scaling function or
a refinable function if it satisfies a two-scale—relation

da) = Y apd(Ar—k),  a={ar}yezs € L(Z"), (1.1)

keZ?

where A is an expanding scaling matrix on Z®. This means that A has integer entries and
all its eigenvalues have modulus larger than one. Refinable functions play an important
role for the construction of a multiresolution analysis and an associated wavelet basis,
see, e.g., the books of Chui [3], Daubechies [10], and Meyer [17]. They are also frequently
used in computer aided geometric design in connection with subdivision algorithms, see
Cavaretta, Dahmen, and Micchelli [2]. For several practical reasons, it is often convenient
to work with interpolating scaling functions, i.e., in addition to (1.1) one requires that
¢ is at least continuous and satisfies

(k) = bos, ke (1.2)

Furthermore, the function ¢ should be sufficiently smooth and well-located. In recent
studies, several examples of refinable functions satisfying these conditions have been
constructed, see e.g. [9], [11], [12] and [18]. In this paper, we present a new approach
which is based on the usual Lagrange interpolation by polynomials. Our method yields
compactly supported functions and has the advantage that Strang—Fix conditions of
a certain order automatically hold. This is important since the Strang—Fix conditions
always serve as indicators for a certain smoothness. The construction can be interpreted
as one natural generalization of one-dimensional concepts, see Section 2 for details.

This paper is organized as follows. In Section 2, we briefly recall the setting of
interpolating scaling functions. Moreover, we describe different approaches to find in-
terpolating refinable functions in Ly(IR) for scalings by powers of two and discuss their
possible generalizations to arbitrary scaling matrices. In Section 3, we introduce gen-
eralized Strang—Fix conditions which are suitable for our purposes. Furthermore, we
describe an algorithm to find symbols satisfying these conditions. Section 4 is devoted
to the construction of the associated scaling functions, and, finally, in Section 5 we
discuss some examples to explain the applicability of our approach.

For later use, let us fix some notation. Let ¢ = | det A|. Furthermore, let

R = {po, ce 7pq—1}7 RT == {ﬁo, ce ,ﬁq_l} (13)

denote complete sets of representatives of Z*/AZ® and Z*/BZ", B = A", respec-
tively. Without loss of generality, we shall always assume that py = pg = 0.

2 The General Construction of Scaling Functions

In the sequel, we shall only consider compactly supported scaling functions. Moreover,
we shall always assume that supp a := {k € Z% | a # 0} is finite. We write B = AT



and apply the Fourier transform to (1.1) to obtain

A

Z ag e—27rz (k,B~1w qb(

q keZ?

By iterating (2.4) we obtain
H (B~ w),

where the symbol m(w) is defined by

:_Za€27rzkw

keZd

(2.4)

(2.5)

(2.6)

Equation (2.5) means that instead of trying to construct a refinable function directly
we may also start with a symbol m(w). Then the question arises which conditions imply
that qAb in (2.5) is well-defined in Ly(/R?) and has some additional desirable properties
such as sufficient smoothness. Moreover, for our purposes, we have to clarify how the in-
terpolating property (1.2) can be guaranteed. Some sufficient conditions are summarized
in the following theorem which is due to Lemarié in dimension 1 [15, 16] and extends to

higher dimensions without change.

Theorem 2.1 Let m(w) be a trigonometric polynomial which satisfies

(C1) m(0)=1;
(C2) m(w) > 0;

(C3) X m(w+ B71p) =1, where RT is defined in (1.3);

pERT

(C4) m(w) satisfies Cohens’s condition.

Then m(w) is a symbol of an interpolating refinable function ¢.

Remark 2.1 i) Cohens’s condition is a technical condition which requires the exis-
tence of a compact set K which contains a neighborhood of the origin and satisfies

— Upeze(l + K) = IR
- KN+ K) ~0, whenever [ £ 0,

such that

m(B7w)£0 forall weK and j>1,5€ Z"

ii) (C1) is clearly necessary for the pointwise convergence of the right-hand side in

(2.5).



iii) One may actually dispense with condition (C2). However, (C2) is convenient since
it implies that ¢ € Ly (IR?) by an argument similar to Theorem 2 in [5], in particular
¢ is continuous. Moreover, (C2) makes it sometimes much simpler to check the
inconvenient condition (C4). Furthermore, (C2) has to be imposed if one wants to
use m(w) for the construction of orthonormal wavelets, see [10] for details.

iv) Condition (C3) follows easily from (1.2) by combining the Poisson summation
formula with (2.4), see, e.g., [9, 16, 18] for details.

In general, one wants to find scaling functions with a certain smoothness. To this end,
one often requires that the Strang—Fiz conditions are satisfied, i.e.,

!
(C5) (ai) m(B™'p) =0 forall |[|<L—1 andall pe RT\{0}.
w

In dimension 1, (C5) implies a factorization

(i) = (ﬂ)%w (27)

and in this case such a factorization is a necessary condition for ¢ € H®, s > L. In the
multivariate case, the relations between Strang—Fix conditions and regularity are not so
easy, but (CH) always serves as an indicator for regularity. For a further discussion of
this topic, the reader is referred to [8].

In this paper we derive an algorithm for the construction of symbols satisfying (C1)-
(C5). To understand the underlying idea, we briefly recall the univariate situation.
There one has to find a non—negative trigonometric polynomial m(w) satisfying

m(w) +m(w+1/2) = 1, (2.8)
m(1/2) = 0, 0<I<2L—1. (2.9)

To our knowledge, there exist five different approaches to solve this problem.
I. A substitution y = sin*(7w) leads to the Bezout problem
(1=y)"Ply) +y"PL—y) =1,
which can be solved explicitly. The solutions are of the form
P(y) = Pu(y) +y"R(1/2 —y),
where R is an odd polynomial and

Pr(y) = Li (L_; +k)yk-

k=0

This method was derived by 1. Daubechies [10].
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II. Make the ansatz .
m(w) =1— cL/ sinzL_l(wa)dw
0

and choose ¢, such that m(1/2) =0 [16, 17].

III. The conditions (2.8) and (2.9) give 2L linear equations for the coefficients of m,
which can be solved directly.

IV. The simplest solution is
COSz(ﬂ'w) + sinz(mu) =1.

Take the (2L — 1)-th power of this equation and rearrange the terms in a clever
way. This yields the solution Pj, described in 1., see [19, 16].

V. Let l,(z),n ==L, —L+1,...,L — 1, denote the fundamental Lagrange interpo-
lation polynomials on the nodes —L,..., L — 1, i.e., {,,(k) = ;. Then

11 2mi(2n4+1)w
= l(—1/2)e2milent
REDNASIE

n_—L
is a solution of (2.8) and (2.9) [14].

In dimension d = 1 these approaches are equivalent, because the trigonometric poly-
nomial of minimal degree satisfying the conditions (2.8,2.9) is unique. The result of
these methods are the Daubechies polynomials, compare with [10].

It seems quite natural to ask if one of these approaches can be generalized to higher
dimensions and to arbitrary scaling matrices. The first method is not suitable since
in higher dimensions one does not necessarily have a canonical factorization. For the
third method, the technical difficulties increase alarmingly. There has already been a
successful attempt to generalize the fourth method, see [11] for details. In this paper,
we focus on the last approach. We show that this method can indeed be generalized
in a natural way to a large class of scaling matrices. The second method clearly also
has some potential since it avoids the factorization problem and will be studied in a
forthcoming paper.

In contrast to the one-dimensional situation, in higher dimensions the approaches
IV. and V. do not seem to be equivalent and produce different interpolating scaling
functions.

3 The Strang—Fix Conditions

We first establish the connection between Lagrange interpolation and the Strang—Fix
conditions in higher dimensions.

We say that a symbol m(w) satisfies the Strang—Fixz conditions with respect to a set
of polynomials 11, if (D = %)

(p(D)ym)(B™'p) =0 forall pell, je RM\{0}. (3.10)
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First we explain a general method for the construction of symbols satisfying general
Strang—Fix conditions, which is based on the usual Lagrange interpolation by polynomi-
als. This is a natural generalization of the fifth method described in the previous section.
For any subset 7 C Z%, 117 will always denote a finite-dimensional subspace of poly-
nomials such that the Lagrange interpolation problem with respect to 7 is uniquely
solvable. This means that for all k& € T there exists a unique p; € Il such that

pk(]) = 0}k, forall j€T7T. (3‘11)

Consequently every p € Il can be written as

p(z) = plk)pi(). (3.12)

keT
Under this standing hypothesis we show the following theorem.
Theorem 3.1 Let P be a subspace of Il satisfying
(1) If p € P, then p(c(Ax+p)) € Uy forc e, p € R;
(2) p(0) =0 for allp € P.
Then the symbol m(w) defined by
m(w) = ! + ! oY (AT p)er AR (3.13)
9 9 keT per\{0}
satisfies (C1), (C3), and the Strang—Fiz conditions (3.10) with respect to P.
Proof: Since p — e~ 277877 is a character of the Abelian group Z%/BZ?, a well-
known lemma about character sums says that
! o e FeBTD — o if p e R\{0}. (3.14)
q peERT
Conditions (C1) and (C3) follow easily. Let us first verify (C3):
Somlet B = 142 X Y g AT ikesn

pERT q FERT keT peR\{0}

— 1 _I_ l Z Z ( Z e—?ﬂi(p,B_lﬁ>) pk(_A—lp)e—QWi<Ak+p,w>

©keT per\{0} \peRT

= 14 Z Z 5p70pk(_A_lp)€_27ri<Ak+p7w> - 1.
keT peR\{0}

Furthermore, for p # 0 we obtain the Strang—Fix conditions of order 1 as follows

1 1 o1 1 1 1.
m(B™'p) = -+ - Z e 2mi(p, B7H5) Z pr(—A7p) = — 4 - Z e 2mi(p,B715)
9 49 ,er\{0} kET 9 9 per\{o}



Applying (3.14) with B replaced by A gives for p # 0
11 o ml1s
m(B7'p) = —+—- 3 e BT
T 9 emfo}

Consequently from (C3) with w = 0 we have m(0) = 1, and (C1) is shown.
It remains to check the Strang—Fix conditions of higher order. We obtain

(p(D)m)(w) = —Z > pe(=ATp)(p(D)e A ()

q keT pER\{0}

= Z Zpk QWZ(Ak ‘|‘,0)) 27ri(Ak-|-p,w)7
q pER\{0} keT

and therefore

D 1 -2 =15
(p(DYym)(B~p) = = > > pu(— (—2mi( Ak + p))e 2milAk+nB™5)
9 per\{0} keT
1 1
= = 3 TETR S (= (—2mi(Ak + p)).
? peRr\{0) heT

By hypothesis (1), p(—2mi(A-+p)) € Il7, therefore the interpolation property (3.12)
and hypothesis (2) imply that
> (= (=2mi(Ak + p)) = p(=2mi(A - +p))|-a-1, = p(0) = 0.
keT
O

Remark 3.1 If P is spanned by a set of monomials, then condition (1) may be replaced
by
(1°) whenever p € P, then p(Ax + p) € Il1, p € R,

and we may only consider spaces of real polynomials.

Since Lagrange interpolation on general sets of nodes in IR? is far from understood,
see [1, 4] for contributions, we restrict ourselves to very simple sets with additional
symmetry. Let 7 consist of all lattice points in a cube in IR?, i.e., for L € IN and
a € Z" we set

T=Tpw:={keZ: a;<ki<L+a; i=1,....dy=(a+][0,L])Yn 2z (3.15)

The Lagrange interpolation problem is always unisolvable on T by the polynomial sub-
space

Iy = span{z*, k€ Z% ||kl < L}. (3.16)
The fundamental Lagrange interpolants are simply tensor products of the univariate
Lagrange polynomials and can be written explicitly as

L .
ta g

pk(l') :gkl(xl)&w(x?)"'gkd(xd)v gkz(xl) = H L.

n=a;nEk; n

(3.17)

This leads to the following corollary.



Corollary 3.1 Let T and Il be defined by (3.15) and (3.16), respectively. Then m(w)
defined by (3.13) satisfies the Strang—Fiz conditions with respect to . In particular,
the usual Strang—Fix conditions of order L + 1 are satisfied.

Proof: We apply Theorem 3.1 to the subspace

Il :=span{e® | ke Z¢, 1 < ||k||. <L}. (3.18)

4 Interpolating Scaling Functions

In this section, we show that under certain conditions m(w) defined by (3.13), (3.15) and
(3.16) is indeed a natural candidate for a symbol of an interpolating refinable function.

Theorem 4.1 Assume that the scaling matriz A satisfies one of the following condi-
tions:

i) |det A| is odd;
it) | det A| is even and Z*JAZ" is a cyclic group of order | det Al.

Then T, defined by (3.15) can be chosen such that the symbol m(w) in (3.13) and
(3.16) is real-valued and satisfies (C1), (C3), and the Strang—Fix conditions with respect
tollr, .

Proof: It was already shown in Theorem 3.1 and Corollary 3.1 that m(w) satisfies (C1),
(C3), and the Strang-Fix conditions with respect to Il ;. To obtain a real symbol, T
has to satisfy additional symmetry conditions. This is where the form of the dilation
matrix comes into play. The trigonometric polynomial m(w) is real-valued if and only
if the coefficients ay, see (2.6), satisfy

AAktp = Q—Ak—p> k€ Zd? p e R.

If we write the representative —p as —p = p’ + Ak, for p,p' € R and suitable k, € Z*,
then this condition reduces to

Pe(—=ATp) = aary, = Tar—y = pogn, (AT (4.19)
for k€T and p € R. Thus k € T if and only if =k + k, € T, or in other words
T=-T+k, forallpe R. (4.20)

If some k,’s were distinct, then 7 would have to be symmetric about two points, which is
impossible for a finite set. To avoid this, we choose an appropriate set of representatives.
By [13], Lemma 15.4, there exists a basis {e;,i = 1,...,d} for Z* and integers ¢;, such
that {ge;,i = 1,...,d} is a basis for AZ* and |T[%, ¢| = | det Al.
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If | det A| is odd, then all ¢;’s are odd. Thus we can choose R to be symmetric about
the origin as

== Fre-[2] <1< 2]

If p € R, then —p € R and thus k, = 0 for all p € R. Choosing T = [—L, L]* N Z*, we
find that pg(z) = p_x(—x) and therefore condition (4.19) is satisfied. By construction
the associated trigonometric polynomial is real-valued.

If | det A] is even, then in general we cannot choose a symmetric R and the above
construction does not work. However, if ¢ is even and if Z%/AZ? is a cyclic group, then
the construction goes through. For in this case ¢y = ¢ and ¢; =1 for 1 = 2,...,d, and
we chose

R:{pzjelv.]:()vvq_l}
Then —je; = (¢ — j)er — qey and k = k, = —qA~'e; € Z* is independent of p. The
symmetry 7 = —7T 4 & can be achieved by the choice

d
Ki — € Ki + €

L
2’+2

Inz*,

where ¢, = 0, if k; is even, and ¢ = 1, if k; is odd. Then the trigonometric polyno-
mial associated to T by (3.13) is real-valued, satisfies (C1), (C3), and the Strang—Fix

conditions with respect to Il.
O

5 Examples

So far, we have shown that the symbols defined by (3.13) are good candidates for symbols
of interpolating refinable functions. They satisfy the Strang-Fix conditions and (C1)
and (C3) hold. Moreover, under certain restrictions, the symbols are also real. In this
section we construct some symbols explicitly for two important dilation matrices in
dimension 2. For these examples we show that all necessary conditions are satisfied and
obtain a smoothness estimate for the scaling function.

Example 5.1 Let us first consider A = 1 _1 . Then ¢ = 2 and a set of represen-
tatives is given by pg = 0,p1 = ((1)) Obviously —A~! ((1)) = (_11/22) and 7 needs to be

symmetric about (—1/2,1/2). This is the case for T = [~L, L — 1] x [-L + 1, L] N Z*.
Let /,, denote the basic Lagrange interpolating polynomial for n € {—L,—L+41,..,L—1}
and /, is the basic Lagrange interpolating polynomial for n € {—L +1,—L 4+ 2,... L},
then £,41(1/2) = £,(—1/2). With

Z lo(—1/2)e e (5.21)

n=—1L



we obtain for m corresponding to (3.13)

1 .
) = L+ IS eyt
keT
1 .
- - —27r2w1 Z pk 1/27 1/2)6—27r2(k,Bw>
2 2 keT
1 1 . . ” ”
— 5 + 56—27r2w1 Z Z gkl (_1/2)£k2 (1/2)6—27r2 1(w1—|—w2)€—27r2 2 (wa—w1)

ki=—L ko=—L+1

L1,
— = —2miw { 1 2 —2miky (w1 +wz) | |
5 —I— ( Z w(—1/2)

ki=—L

L-1
(6—27ri(w2—w1) Z £k2+1(1/2)6—27rik2(w2—w1))

ko=—1L
1 1 — 27w
= 57T5¢ *qr(wi + w2)qr(ws — wi)
11 » ;
_ 5 + 56—27r2(w1—|—w2)/2qL(w1 + w2)€_27m(w2_W1)/ZQL(w2 _ wl)- (522)

It follows from Corollary 3.1 that m satisfies the Strang—Fix conditions with respect to
[T, and in particular, the usual Strang—Fix conditions of order 21, are satisfied.
To show that m is always non—negative, we note that

1 1 1 :
M(w) — 5 —27r2w Z E 1/2 —27mi2nw — 5 _I_ 56_27”(”(][/(2(4))
n=—1L

is a trigonometric polynomial of order 2L — 1 which satisfies (2.8) and (2.9). Since this
polynomial is uniquely determined, see for instance [10], it coincides with Daubechies’
solution p(w) = cos?’ mw Y87 (L ;"'k) sin?*(7w). This implies that |qz(w)| < 1 and
e ™ qr(w) = 1 if and only 1fw € 27 and e ™ qp(w) = —1, if and only if w € 1 + 27Z.
Consequently, m(w) > 1 — 2 sup,cg |qr(w)]* > 0 is non-negative.

To check Cohen’s condition, we need to know the zeros of m. m(w) = 0, if and only
if e_”(‘”l""*’?)q,;(wl +wy) = +£1 and e_”(‘”2_‘”1)qL(w2 —wi) = F1, which is the case, if and
only if (wy,wy) € (£1/2,1/2) + AZZ*. Tt is well-known that a trigonometric polynomial
with such a zero set satisfies Cohen’s condition, see e.g. [7].

For I = 2 we obtain explicitly

1

o (_647rix 4962 4 g e—27rix) 7 (5.23)

q(x) =

and the nonvanishing coefficients of the resulting mask, see Figure 1, can be computed
as follows.

a(070) —_= — (524)
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81

Qo) = A1) = A(-10) = A1) = 75
1
As0) = @03) = A(=30) = Ao-3) = 7151
9
A1 = 402 = A-12) = A=21) T G(=2-1) = €(-1,-2) = 0(1,-2) = d2-) = T o

The corresponding symbol m(wy,ws) is depicted in Figure 2.

Figure 2: symbol m(wy,ws)

Figure 1: coefficient mask (L = 2):
1
512
—9 —9 03
512 512
—9 81 —9 07
512 512 512
.
sz o 1 30 stz y e R
i S
-9 81 -9 S O i 0‘0‘0}’&}
512 512 52 . s ;WWM iR
z iy
=9 =9 Qi
512 512 K i
512

It remains to estimate the smoothness of the resulting refinable function. For ¢ €
H*=! it is sufficient to establish an estimate of the form

qg(w) = 1:[ m(B_jw) <Ol +||wl)™ for some ¢ > 0. (5.25)

To compute the infinite product in (5.25), we want to use a suitable factorization, i.e.,
we try to find a symbol b(w) such that

m(w) = b(w)c(w), (5.26)

where ¢(w) is some ‘nice’ trigonometric series which tends to increase the decay. We
choose

o(w) = siHQ(W(w? —Iz—wz)) + si‘nz(w(wg —wy)) ? ‘ (5.27)
2(sin*(mwq) + sin*(7wwz))
The decay of the corresponding infinite product has been computed by Cohen and
Daubechies [6]:
II c(B7w) < M(1 + ||lw|))™*. (5.28)

J=1
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It remains to estimate

fj[lb(B—fw) — 1:2[1 Zf_;]j)) (5.29)
Setting
by(w) = b(w)b(Bw)---b(B" 'w)

standard computations show that

2log Bn

H (B™w) < N(L+ ||wl)) s,

and therefore
log Bn

dw) < C(L+ gy
The value (3, can be estimated numerically by plotting the regularity function b,. As

an example, Figure 3 displays b3. It turns out that #3 <5, and therefore

21
pe H’, s<3-— 0 0

~ 1.452.
3log 2

Figure 4 shows the resulting interpolating refinable function.

Figure 3: regularity function bs(w) Figure 4: scaling function p(z):

Remark 5.1 If we perform a similar calculation as in Fxample 1 for L = 1, we obtain
the mask

Q(p,1) = G(1,0) = G(-1,0) = Q(0,—1) = ga Q(p,0) = 5

This mask has also been studied in [6].
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Example 5.2 For the second example, let us consider the matrix A = bl ) . This

12
3/2 V/3/2

matrix arises from the similarity matrix ( _V3j2 32
spanned by (1,0) and (1/2,v/3/2) by a coordinate transform to Z>.

In this case, ¢ = 3 and a canonical symmetric set of representatives according to
Theorem 4.1 is given by R = {(8), ((1)), (_Oj} To apply the construction from above, we
have to choose the set T symmetric with respect to the origin. We choose L = 2. Then

11

) on the hexagonal lattice

m(w) = 4= Z e—27ri(p,w> Z pk(_A—lp)e—ZWi(k,Bw>
33 pER\{0} keT
_ 1_|_1 —27riw2P (B )_I_l 27r2w2P (B )
- 373" Rt (o) 7
. —1/(0 1/3 —1{0 1/3 .
leﬁh —A 1(1) = —(1%)7‘ —A 1(_1) = (1%), the polynomials P((l)) and P(—Ol) can be
easily computed. We obtain
2 o5 2 .
Po — = 2mizx —27rm’) (_ 27y - —27r2y)
©)(@y) <9€ + 3¢ + 7
Ploy(z,y) = ( : 2””+ +3 ‘2““’)( L 27”y+ - ‘27”?1’) (5.30)
(2N 9 9 9 C
and therefore the nonvanishing coefficients of m(w) are given by
1
A(,0) = g?
1
a0,4) = Q0,—4) = E?
2
a(— = a = U(9 _9y = d(_ R
(—2,2) (2,0) = Q(2,-2) = A(_2,0) SYEL
JR— JR— 4 .
Ao,—2)y — 0Q(o,2) — 243’
_ _ _ __ 8.
a(-1,3) — 4dQ,2) = 4(-1,-2) — 4(1,-3) = 243"
JR— JR— JR— JR— 16 .
a(-1,00 = 4@,-1) = 4(-1,1) = 4Q,0) = 243’
B 64
o1y = Q-1 = 243

Acknowledgement: The authors thank Josip Derado for helping them to produce the
pictures.
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