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1 IntroductionIn recent years, the construction of interpolating scaling functions has become a �eld ofincreasing importance. In general, a function � 2 L2(IRd) is called a scaling function ora re�nable function if it satis�es a two{scale{relation�(x) = Xk2ZZd ak�(Ax� k); a = fakgk2ZZd 2 `2(ZZd); (1.1)whereA is an expanding scaling matrix on ZZd. This means that A has integer entries andall its eigenvalues have modulus larger than one. Re�nable functions play an importantrole for the construction of a multiresolution analysis and an associated wavelet basis,see, e.g., the books of Chui [3], Daubechies [10], and Meyer [17]. They are also frequentlyused in computer aided geometric design in connection with subdivision algorithms, seeCavaretta, Dahmen, and Micchelli [2]. For several practical reasons, it is often convenientto work with interpolating scaling functions, i.e., in addition to (1.1) one requires that� is at least continuous and satis�es�(k) = �0;k; k 2 ZZd: (1.2)Furthermore, the function � should be su�ciently smooth and well{located. In recentstudies, several examples of re�nable functions satisfying these conditions have beenconstructed, see e.g. [9], [11], [12] and [18]. In this paper, we present a new approachwhich is based on the usual Lagrange interpolation by polynomials. Our method yieldscompactly supported functions and has the advantage that Strang{Fix conditions ofa certain order automatically hold. This is important since the Strang{Fix conditionsalways serve as indicators for a certain smoothness. The construction can be interpretedas one natural generalization of one{dimensional concepts, see Section 2 for details.This paper is organized as follows. In Section 2, we briey recall the setting ofinterpolating scaling functions. Moreover, we describe di�erent approaches to �nd in-terpolating re�nable functions in L2(IR) for scalings by powers of two and discuss theirpossible generalizations to arbitrary scaling matrices. In Section 3, we introduce gen-eralized Strang{Fix conditions which are suitable for our purposes. Furthermore, wedescribe an algorithm to �nd symbols satisfying these conditions. Section 4 is devotedto the construction of the associated scaling functions, and, �nally, in Section 5 wediscuss some examples to explain the applicability of our approach.For later use, let us �x some notation. Let q = jdetAj: Furthermore, letR = f�0; : : : ; �q�1g; RT = f~�0; : : : ; ~�q�1g (1.3)denote complete sets of representatives of ZZd=AZZd and ZZd=BZZd; B = AT ; respec-tively. Without loss of generality, we shall always assume that �0 = ~�0 = 0:2 The General Construction of Scaling FunctionsIn the sequel, we shall only consider compactly supported scaling functions. Moreover,we shall always assume that supp a := fk 2 ZZd j ak 6= 0g is �nite. We write B = AT2



and apply the Fourier transform to (1.1) to obtain�̂(!) = 1q Xk2ZZd ake�2�ihk;B�1!i�̂(B�1!): (2.4)By iterating (2.4) we obtain �̂(!) = 1Yj=1m(B�j!); (2.5)where the symbol m(!) is de�ned bym(!) := 1q Xk2ZZd ake�2�ihk;!i: (2.6)Equation (2.5) means that instead of trying to construct a re�nable function directlywe may also start with a symbol m(!): Then the question arises which conditions implythat �̂ in (2.5) is well{de�ned in L2(IRd) and has some additional desirable propertiessuch as su�cient smoothness. Moreover, for our purposes, we have to clarify how the in-terpolating property (1.2) can be guaranteed. Some su�cient conditions are summarizedin the following theorem which is due to Lemari�e in dimension 1 [15, 16] and extends tohigher dimensions without change.Theorem 2.1 Let m(!) be a trigonometric polynomial which satis�es(C1) m(0) = 1;(C2) m(!) � 0;(C3) P~�2RT m(! +B�1~�) = 1, where RT is de�ned in (1.3);(C4) m(!) satis�es Cohens's condition.Then m(!) is a symbol of an interpolating re�nable function �.Remark 2.1 i) Cohens's condition is a technical condition which requires the exis-tence of a compact set K which contains a neighborhood of the origin and satis�es{ Sl2ZZd(l +K) = IRd{ K T(l +K) ' ;; whenever l 6= 0;such that m(B�j!) 6= 0 for all ! 2 K and j � 1; j 2 ZZd:ii) (C1) is clearly necessary for the pointwise convergence of the right{hand side in(2.5). 3



iii) One may actually dispense with condition (C2). However, (C2) is convenient sinceit implies that �̂ 2 L1(IRd) by an argument similar to Theorem 2 in [5], in particular� is continuous. Moreover, (C2) makes it sometimes much simpler to check theinconvenient condition (C4). Furthermore, (C2) has to be imposed if one wants touse m(!) for the construction of orthonormal wavelets, see [10] for details.iv) Condition (C3) follows easily from (1.2) by combining the Poisson summationformula with (2.4), see, e.g., [9, 16, 18] for details.In general, one wants to �nd scaling functions with a certain smoothness. To this end,one often requires that the Strang{Fix conditions are satis�ed, i.e.,(C5)  @@!!lm(B�1~�) = 0 for all jlj � L� 1 and all ~� 2 RTnf0g:In dimension 1, (C5) implies a factorizationm(!) =  1 + e�2�i!2 !L b(!); (2.7)and in this case such a factorization is a necessary condition for � 2 Hs; s > L. In themultivariate case, the relations between Strang{Fix conditions and regularity are not soeasy, but (C5) always serves as an indicator for regularity. For a further discussion ofthis topic, the reader is referred to [8].In this paper we derive an algorithm for the construction of symbols satisfying (C1){(C5). To understand the underlying idea, we briey recall the univariate situation.There one has to �nd a non{negative trigonometric polynomial m(!) satisfyingm(!) +m(! + 1=2) = 1; (2.8)m(l)(1=2) = 0; 0 � l � 2L � 1 : (2.9)To our knowledge, there exist �ve di�erent approaches to solve this problem.I. A substitution y = sin2(�!) leads to the Bezout problem(1 � y)LP (y) + yLP (1� y) = 1;which can be solved explicitly. The solutions are of the formP (y) = PL(y) + yLR(1=2 � y);where R is an odd polynomial andPL(y) = L�1Xk=0  L� 1 + kk !yk:This method was derived by I. Daubechies [10].4



II. Make the ansatz m(!) = 1 � cL Z !0 sin2L�1(2�!)d!and choose cL such that m(1=2) = 0 [16, 17].III. The conditions (2.8) and (2.9) give 2L linear equations for the coe�cients of m,which can be solved directly.IV. The simplest solution is cos2(�!) + sin2(�!) = 1:Take the (2L � 1){th power of this equation and rearrange the terms in a cleverway. This yields the solution PL described in I., see [19, 16].V. Let `n(x); n = �L;�L + 1; : : : ; L � 1; denote the fundamental Lagrange interpo-lation polynomials on the nodes �L; : : : ; L� 1, i.e., `n(k) = �k;n. Thenm(!) = 12 + 12 L�1Xn=�L `n(�1=2)e�2�i(2n+1)!is a solution of (2.8) and (2.9) [14].In dimension d = 1 these approaches are equivalent, because the trigonometric poly-nomial of minimal degree satisfying the conditions (2.8,2.9) is unique. The result ofthese methods are the Daubechies polynomials, compare with [10].It seems quite natural to ask if one of these approaches can be generalized to higherdimensions and to arbitrary scaling matrices. The �rst method is not suitable sincein higher dimensions one does not necessarily have a canonical factorization. For thethird method, the technical di�culties increase alarmingly. There has already been asuccessful attempt to generalize the fourth method, see [11] for details. In this paper,we focus on the last approach. We show that this method can indeed be generalizedin a natural way to a large class of scaling matrices. The second method clearly alsohas some potential since it avoids the factorization problem and will be studied in aforthcoming paper.In contrast to the one-dimensional situation, in higher dimensions the approachesIV. and V. do not seem to be equivalent and produce di�erent interpolating scalingfunctions.3 The Strang{Fix ConditionsWe �rst establish the connection between Lagrange interpolation and the Strang{Fixconditions in higher dimensions.We say that a symbol m(!) satis�es the Strang{Fix conditions with respect to a setof polynomials �, if (D = @@! )(p(D)m)(B�1~�) = 0 for all p 2 �; ~� 2 RTnf0g: (3.10)5



First we explain a general method for the construction of symbols satisfying generalStrang{Fix conditions, which is based on the usual Lagrange interpolation by polynomi-als. This is a natural generalization of the �fth method described in the previous section.For any subset T � ZZd, �T will always denote a �nite{dimensional subspace of poly-nomials such that the Lagrange interpolation problem with respect to T is uniquelysolvable. This means that for all k 2 T there exists a unique pk 2 �T such thatpk(j) = �j;k; for all j 2 T : (3.11)Consequently every p 2 �T can be written asp(x) = Xk2T p(k)pk(x): (3.12)Under this standing hypothesis we show the following theorem.Theorem 3.1 Let P be a subspace of �T satisfying(1) If p 2 P; then p (c(Ax+ �)) 2 �T for c 2 IC; � 2 R;(2) p(0) = 0 for all p 2 P.Then the symbol m(!) de�ned bym(!) = 1q + 1q Xk2T X�2Rnf0gpk(�A�1�)e�2�ihAk+�;!i (3.13)satis�es (C1), (C3), and the Strang{Fix conditions (3.10) with respect to P:Proof: Since ~� ! e�2�ih�;B�1~�i is a character of the Abelian group ZZd=BZZd, a well{known lemma about character sums says that1q X~�2RT e�2�ih�;B�1~�i = 0 if � 2 Rnf0g: (3.14)Conditions (C1) and (C3) follow easily. Let us �rst verify (C3):X~�2RT m(! +B�1~�) = 1 + 1q X~�2RT Xk2T X�2Rnf0gpk(�A�1�)e�2�ihAk+�;!+B�1 ~�i= 1 + 1q Xk2T X�2Rnf0g0@ X~�2RT e�2�ih�;B�1~�i1A pk(�A�1�)e�2�ihAk+�;!i= 1 + Xk2T X�2Rnf0g��;0pk(�A�1�)e�2�ihAk+�;!i = 1 :Furthermore, for ~� 6= 0 we obtain the Strang{Fix conditions of order 1 as followsm(B�1~�) = 1q + 1q X�2Rnf0ge�2�ih�;B�1~�i Xk2T pk(�A�1�) = 1q + 1q X�2Rnf0ge�2�ih�;B�1~�i:6



Applying (3.14) with B replaced by A gives for ~� 6= 0m(B�1~�) = 1q + 1q X�2Rnf0ge�2�ih�;B�1~�i = 0:Consequently from (C3) with ! = 0 we have m(0) = 1, and (C1) is shown.It remains to check the Strang{Fix conditions of higher order. We obtain(p(D)m)(!) = 1q Xk2T X�2Rnf0gpk(�A�1�)(p(D)e�2�ihAk+�;�i)(!)= 1q X�2Rnf0gXk2T pk(�A�1�)p(�2�i(Ak + �))e�2�ihAk+�;!i ;and therefore(p(D)m)(B�1~�) = 1q X�2Rnf0gXk2T pk(�A�1�)p(�2�i(Ak + �))e�2�ihAk+�;B�1 ~�i= 1q X�2Rnf0g e�2�ih�;B�1~�i Xk2T pk(�A�1�)p(�2�i(Ak + �)):By hypothesis (1), p(�2�i(A �+�)) 2 �T , therefore the interpolation property (3.12)and hypothesis (2) imply thatXk2T pk(�A�1�)p(�2�i(Ak + �)) = p(�2�i(A �+�))j�A�1� = p(0) = 0: 2Remark 3.1 If P is spanned by a set of monomials, then condition (1) may be replacedby(1') whenever p 2 P, then p(Ax+ �) 2 �T ; � 2 R;and we may only consider spaces of real polynomials.Since Lagrange interpolation on general sets of nodes in IRd is far from understood,see [1, 4] for contributions, we restrict ourselves to very simple sets with additionalsymmetry. Let T consist of all lattice points in a cube in IRd, i.e., for L 2 IN anda 2 ZZd we setT = TL;a := fk 2 ZZd : ai � ki � L+ ai; i = 1; : : : ; dg = (a+ [0; L]d) \ ZZd: (3.15)The Lagrange interpolation problem is always unisolvable on T by the polynomial sub-space �T = spanfxk; k 2 ZZd; kkk1 � Lg : (3.16)The fundamental Lagrange interpolants are simply tensor products of the univariateLagrange polynomials and can be written explicitly aspk(x) = `k1(x1)`k2(x2) � � � `kd(xd); `ki(xi) := L+aiYn=ai;n6=ki xi � nki � n : (3.17)This leads to the following corollary. 7



Corollary 3.1 Let T and �T be de�ned by (3.15) and (3.16), respectively. Then m(!)de�ned by (3.13) satis�es the Strang{Fix conditions with respect to �T : In particular,the usual Strang{Fix conditions of order L+ 1 are satis�ed.Proof: We apply Theorem 3.1 to the subspace~�T := spanfxk j k 2 ZZd; 1 � kkk1 � Lg: (3.18)24 Interpolating Scaling FunctionsIn this section, we show that under certain conditions m(!) de�ned by (3.13), (3.15) and(3.16) is indeed a natural candidate for a symbol of an interpolating re�nable function.Theorem 4.1 Assume that the scaling matrix A satis�es one of the following condi-tions:i) jdetAj is odd;ii) jdetAj is even and ZZd=AZZd is a cyclic group of order jdetAj.Then Ta;L de�ned by (3.15) can be chosen such that the symbol m(!) in (3.13) and(3.16) is real{valued and satis�es (C1), (C3), and the Strang{Fix conditions with respectto �Ta;L .Proof: It was already shown in Theorem 3.1 and Corollary 3.1 that m(!) satis�es (C1),(C3), and the Strang{Fix conditions with respect to �Ta;L : To obtain a real symbol, Thas to satisfy additional symmetry conditions. This is where the form of the dilationmatrix comes into play. The trigonometric polynomial m(!) is real{valued if and onlyif the coe�cients ak, see (2.6), satisfyaAk+� = a�Ak��; k 2 ZZd; � 2 R:If we write the representative �� as �� = �0 +Ak� for �; �0 2 R and suitable k� 2 ZZd,then this condition reduces topk(�A�1�) = aAk+� = a�Ak�� = p�k+k� (�A�1�0) (4.19)for k 2 T and � 2 R. Thus k 2 T if and only if �k + k� 2 T , or in other wordsT = �T + k� for all � 2 R : (4.20)If some k�'s were distinct, then T would have to be symmetric about two points, which isimpossible for a �nite set. To avoid this, we choose an appropriate set of representatives.By [13], Lemma 15.4, there exists a basis fei; i = 1; : : : ; dg for ZZd and integers qi, suchthat fqiei; i = 1; : : : ; dg is a basis for AZZd and jQdi=1 qij = jdetAj.8



If jdetAj is odd, then all qi's are odd. Thus we can choose R to be symmetric aboutthe origin as R = f� = dXi=1 liei;��qi2 � � li � �qi2 �g:If � 2 R, then �� 2 R and thus k� = 0 for all � 2 R. Choosing T = [�L;L]d \ ZZd, we�nd that pk(x) = p�k(�x) and therefore condition (4.19) is satis�ed. By constructionthe associated trigonometric polynomial is real-valued.If jdetAj is even, then in general we cannot choose a symmetric R and the aboveconstruction does not work. However, if q is even and if ZZd=AZZd is a cyclic group, thenthe construction goes through. For in this case q1 = q and qi = 1 for i = 2; : : : ; d, andwe chose R = f� = je1; j = 0; : : : ; q � 1g :Then �je1 = (q � j)e1 � qe1 and � = k� = �qA�1e1 2 ZZd is independent of �. Thesymmetry T = �T + � can be achieved by the choiceT = dYi=1[�L+ �i � �i2 ; L+ �i + �i2 ] \ ZZd ;where �i = 0, if �i is even, and �i = 1, if �i is odd. Then the trigonometric polyno-mial associated to T by (3.13) is real-valued, satis�es (C1), (C3), and the Strang{Fixconditions with respect to �T . 25 ExamplesSo far, we have shown that the symbols de�ned by (3.13) are good candidates for symbolsof interpolating re�nable functions. They satisfy the Strang{Fix conditions and (C1)and (C3) hold. Moreover, under certain restrictions, the symbols are also real. In thissection we construct some symbols explicitly for two important dilation matrices indimension 2. For these examples we show that all necessary conditions are satis�ed andobtain a smoothness estimate for the scaling function.Example 5.1 Let us �rst consider A =  1 �11 1 !. Then q = 2 and a set of represen-tatives is given by �0 = 0; �1 = �10�: Obviously �A�1�10� = ��1=21=2 � and T needs to besymmetric about (�1=2; 1=2). This is the case for T = [�L;L� 1]� [�L+ 1; L] \ ZZ2.Let `n denote the basic Lagrange interpolating polynomial for n 2 f�L;�L+1; ::; L�1gand ~̀n is the basic Lagrange interpolating polynomial for n 2 f�L + 1;�L + 2; ::; Lg,then ~̀n+1(1=2) = `n(�1=2). WithqL(x) := L�1Xn=�L `n(�1=2)e�2�inx ; (5.21)9



we obtain for m corresponding to (3.13)m(!) = 12 + 12 Xk2T pk(�A�1�1)e�2�ihAk+�1 ;!i= 12 + 12e�2�i!1 Xk2T pk(�1=2; 1=2)e�2�ihk;B!i= 12 + 12e�2�i!1 L�1Xk1=�L LXk2=�L+1 `k1(�1=2)~̀k2 (1=2)e�2�ik1(!1+!2)e�2�ik2(!2�!1)= 12 + 12e�2�i!1 0@ L�1Xk1=�L `k1 (�1=2)e�2�ik1(!1+!2)1A �0@e�2�i(!2�!1) L�1Xk2=�L ~̀k2+1(1=2)e�2�ik2(!2�!1)1A= 12 + 12e�2�i!2qL(!1 + !2)qL(!2 � !1)= 12 + 12e�2�i(!1+!2)=2qL(!1 + !2)e�2�i(!2�!1)=2qL(!2 � !1): (5.22)It follows from Corollary 3.1 that m satis�es the Strang{Fix conditions with respect to�T , and in particular, the usual Strang{Fix conditions of order 2L are satis�ed.To show that m is always non{negative, we note that�(!) = 12 + 12e�2�i! L�1Xn=�L `n(�1=2)e�2�i2n! = 12 + 12e�2�i!qL(2!)is a trigonometric polynomial of order 2L � 1 which satis�es (2.8) and (2.9). Since thispolynomial is uniquely determined, see for instance [10], it coincides with Daubechies'solution �(!) = cos2L �!PL�1k=0 �L�1+kk � sin2k(�!). This implies that jqL(!)j � 1 ande��i!qL(!) = 1 if and only if ! 2 2ZZ and e��i!qL(!) = �1, if and only if ! 2 1 + 2ZZ.Consequently, m(!) � 12 � 12 sup!2IR jqL(!)j2 � 0 is non-negative.To check Cohen's condition, we need to know the zeros of m. m(!) = 0, if and onlyif e��i(!1+!2)qL(!1+!2) = �1 and e��i(!2�!1)qL(!2�!1) = �1, which is the case, if andonly if (!1; !2) 2 (�1=2; 1=2) +AZZ2. It is well-known that a trigonometric polynomialwith such a zero set satis�es Cohen's condition, see e.g. [7].For L = 2 we obtain explicitlyq2(x) = 116 ��e4�ix + 9e2�ix + 9� e�2�ix� ; (5.23)and the nonvanishing coe�cients of the resulting mask, see Figure 1, can be computedas follows.a(0;0) = 12; (5.24)10



a(1;0) = a(0;1) = a(�1;0) = a(0;�1) = 81512 ;a(3;0) = a(0;3) = a(�3;0) = a(0;�3) = 1512 ;a(2;1) = a(1;2) = a(�1;2) = a(�2;1) = a(�2;�1) = a(�1;�2) = a(1;�2) = a(2;�1) = � 9512 :The corresponding symbol m(!1; !2) is depicted in Figure 2.Figure 1: coe�cient mask (L = 2): Figure 2: symbol m(!1; !2)
It remains to estimate the smoothness of the resulting re�nable function. For � 2Hs�1, it is su�cient to establish an estimate of the form�̂(!) = 1Yj=1m(B�j!) � C(1 + k!k)�s�� for some � > 0: (5.25)To compute the in�nite product in (5.25), we want to use a suitable factorization, i.e.,we try to �nd a symbol b(!) such thatm(!) = b(!)c(!); (5.26)where c(!) is some `nice' trigonometric series which tends to increase the decay. Wechoose c(!) =  sin2(�(!1 + !2)) + sin2(�(!2 � !1))2(sin2(�!1) + sin2(�!2)) !2 : (5.27)The decay of the corresponding in�nite product has been computed by Cohen andDaubechies [6]: 1Yj=1 c(B�j!) �M(1 + k!k)�4: (5.28)11



It remains to estimate 1Yj=1 b(B�j!) = 1Yj=1 m(B�j!)c(B�j!) : (5.29)Setting bn(!) := b(!)b(B!) � � � b(Bn�1!)�n := sup! bn(!);standard computations show that1Yj=1 b(B�j!) � N(1 + k!k) 2 log �nn log 2 ;and therefore �̂(!) � C(1 + k�k)�4+ 2 log �nn log 2 :The value �n can be estimated numerically by plotting the regularity function bn. Asan example, Figure 3 displays b3. It turns out that �3 � 5, and therefore� 2 Hs; s < 3� 2 log �33 log 2 � 1:452:Figure 4 shows the resulting interpolating re�nable function.Figure 3: regularity function b3(!) Figure 4: scaling function '(x):
Remark 5.1 If we perform a similar calculation as in Example 1 for L = 1; we obtainthe mask a(0;1) = a(1;0) = a(�1;0) = a(0;�1) = 18 ; a(0;0) = 12 :This mask has also been studied in [6]. 12



Example 5.2 For the second example, let us consider the matrixA =  1 �11 2 !. Thismatrix arises from the similarity matrix  3=2 p3=2�p3=2 3=2 ! on the hexagonal latticespanned by (1; 0) and (1=2;p3=2) by a coordinate transform to ZZ2.In this case, q = 3 and a canonical symmetric set of representatives according toTheorem 4.1 is given by R = f�00�; �01�; � 0�1�g: To apply the construction from above, wehave to choose the set T symmetric with respect to the origin. We choose L = 2: Thenm(!) = 13 + 13 X�2Rnf0ge�2�ih�;!i Xk2T pk(�A�1�)e�2�ihk;B!i= 13 + 13e�2�i!2P(01)(B!) + 13e2�i!2P( 0�1)(B!):With �A�1�01� = ��1=31=3�; � A�1� 0�1� = �1=31=3�; the polynomials P(01) and P( 0�1) can beeasily computed. We obtainP(01)(x; y) = �29e2�ix + 89 � 19e�2�ix��29e2�iy + 89 � 19e�2�iy� ;P( 0�1)(x; y) = ��19e2�ix + 89 + 29e�2�ix���19e2�iy + 89 + 29e�2�iy� ; (5.30)and therefore the nonvanishing coe�cients of m(!) are given bya(0;0) = 13;a(0;4) = a(0;�4) = 1243 ;a(�2;2) = a(2;0) = a(2;�2) = a(�2;0) = � 2243 ;a(0;�2) = a(0;2) = 4243 ;a(�1;3) = a(1;2) = a(�1;�2) = a(1;�3) = � 8243 ;a(�1;0) = a(1;�1) = a(�1;1) = a(1;0) = 16243 ;a(0;1) = a(0;�1) = 64243 :Acknowledgement: The authors thank Josip Derado for helping them to produce thepictures.References[1] C. de Boor and A. Ron, The least solution of the polynomial interpolation problem,Math. Z. 210 (1992), 347{378. 13
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