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where A is a second order elliptic di�erential operator and B re
ects the boundaryconditions, see, e.g., [1, 2, 3, 21]. As usual, we study (1.1) in the weak formulationa(u; v) = (f; v); v 2 H1B(
); (1.2)where a(�; �) is the bilinear form induced by (1.1) and H1B(
) is a suitable subspace ofH1(
) which depends on the boundary conditions. On the one hand, computationalstudies indicate that in many cases adaptive schemes for (1.2) are indeed superior whencompared with nonadaptive methods. On the other hand, from a theoretical pointof view, a rigorous foundation for the use of adaptive algorithms is still in its infancy.However, this seems to be an important issue, especially since, in the realm of complexitytheory, theoretical results tend to be pessimistic [19]. In this note, we try to provide somearguments that justify the use of adaptive schemes for (1.2), at least for the special caseof the interface problem in two independent variables. The setting can be described asfollows. Let (r; �) be polar coordinates in R2 and let S be a segment of the disc of radiusr0 in R2 given by 0 < � < �M : Furthermore, let p be a function on S which is a functionof � alone. We assume that S is divided into sectors Si : �i�1 < � < �i; 1 � i � M ,in each of which p takes a positive constant value. Moreover, let there be given on Sa continuously di�erentiable, symmetric, positive de�nite second order matrix function(al;m(x))l;m=1;2; and a bounded nonnegative function a0(x): Then, the bilinear form a(�; �)is de�ned by a(u; v) = ZS( 2Xl;m=1 pal;mulvm + a0uv)dx; u; v 2 H10 (S);and, given f 2 L2(S); we study the problemZS( 2Xl;m=1 pal;mulvm + a0uv)dx = ZS fvdx; for all v 2 H10 (S): (1.3)It is well{known that (1.3) has a unique solution u 2 H10 (S): Equations of this formare clearly important in practice since a lot of problems in physics and mechanics aremodelled by (1.3); u may represent for instance a temperature or the displacement ofa membrane. According to the setting introduced above, we include here also the casethat the data, e.g., the heat conductivity, have discontinuities.In general, the numerical treatment of (1.2) (and therefore also of (1.3)) is performedby means of a Galerkin approach, i.e., the problem is projected onto an increasingsequence of linear approximation spaces such as usual �nite element spaces based onuniform grid re�nement, where we assume that the union of the linear spaces is dense inH1B(
). Since the approximation comes from linear spaces, the usual Galerkin approachcan be interpreted as some kind of linear approximation. It is well{known that the orderof approximation for linear methods to recover the solution u of (1.2) is determined bythe regularity of u in the usual Sobolev scale Hs(
); s � 1; see, e.g., [7, 20] for a furtherdiscussion. If the domain 
, the right{hand side f and the coe�cients of the operatorA are smooth, then this Sobolev regularity is su�ciently high so that linear methods2



are appropriate, see [14, 17]. The situation changes completely in the nonsmooth case,for then the Sobolev regularity decreases signi�cantly, see, e.g., [13], and the order ofconvergence for linear methods drops down. One possible remedy is to use adaptiveschemes. Then an underlying grid is re�ned only in regions where the approximationis still `far away' from the exact solution u. Therefore one does not use the wholelinear approximation spaces but only suitable parts, so that an adaptive scheme can beinterpreted as some kind of nonlinear approximation. In general, the order of convergencethat can be achieved by nonlinear methods is not determined by the Sobolev but bythe Besov regularity as we shall now explain. In nonlinear approximation, a functionF 2 Lp(Rd) is approximated by the elements of a nonlinear manifoldMn of dimensionn. We consider the error �n(F )Lp(Rd) := infG2Mn kF �GkLp(Rd): (1.4)In many cases, the following characterization holds:1Xn=1[ns=d�n(F )Lp(Rd)]� 1n <1() F 2 Bs�(L� (Rd)); � = (s=d+ 1=p)�1; (1.5)where Bs� (L�(Rd)) are the Besov spaces (see Section 2 for the de�nition of Besov spaces).In particular, (1.5) holds in the case of nonlinear wavelet approximation, see [10] fordetails. Let f�I ; I 2 D; � 2 	g be an orthonormal wavelet basis of L2(Rd) as describedin Section 2. Then, in nonlinear wavelet approximation, the nonlinear manifold Mnconsists of all functions G = X(I;�)2� aI;��Iwith � � D �	 of cardinality n:Having the characterization (1.5) in mind, it is now natural to ask the following ques-tion: what is the regularity of the solution u to (1.2) as measured in the speci�c scale ofBesov spaces Bs� (L� (
)); � = (s=d+1=p)�1, and does it have a higher smoothness orders when compared to the usual Sobolev scale Hs(
); s � 1? For then, adaptive schemescan indeed perform better than nonadaptive methods, in principle. (In this paper, weare primarily interested in the order of approximation with respect to L2. Thereforewe shall mainly be concerned with the speci�c scale Bs� (L�(
)); 1=� = s=d + 1=2.) In[4, 5, 6, 8] these questions have been studied for operators with smooth coe�cients inLipschitz domains. It has turned out that in many cases the smoothness index s forthe Besov scale Bs�(L� (
)); � = (s=d + 1=p)�1, is indeed much higher than the one forthe usual Sobolev scale Hs(
) so that adaptive methods are justi�ed. In this paper,we establish a similar result for the interface problem (1.3). Obviously, the smoothnessindex for the solution u to (1.3) in the usual Sobolev scale is at least one. However,since in our case the coe�cients are discontinuous at the interfaces � = �i; there is nohope to obtain a much high smoothness order, even for smooth right{hand sides, andlinear methods cannot perform satisfactorily. Therefore adaptive schemes based, e.g.,on local grid re�nement in the vicinity of the interfaces seem to be appropriate. As3



explained above, such an approach is justi�ed if the regularity in the speci�c Besov scaleis higher than the Sobolev regularity. As we shall see in Section 3, Theorem 3.1, thisis indeed the case. It turns out that the solution u is in fact contained in the Besovspaces Bs� (L�(S)); � = (s=2 + 1=2)�1; for all s < 2: The proof of Theorem 3.1 is basedon wavelet analysis, i.e., we use the fact that smoothness spaces can be characterizedby wavelet expansions. Therefore, in the next section, we brie
y summarize some of thebasic concepts used in wavelet analysis, and we focus on the characterizations of Besovspaces.2 Wavelets and Besov SpacesIn this section, we �rst recall some facts from wavelet analysis. Then we de�ne theBesov spaces and give their characterization in terms of wavelet decompositions.In general, a function  2 L2(R) is called an orthonormal wavelet if all its scaled,dilated and integer translated versions, j;k(�) := 2j=2 (2j � �k); j; k 2 Z; (2.1)form an orthonormal basis of L2(R):We shall only need the univariate family DN ; N =1; 2; : : : of compactly supported wavelets as constructed by I. Daubechies [9]. Thesmoothness of DN increases without bound as N tends to in�nity, as does the supportof DN . The wavelet DN has N vanishing moments, i.e.,ZR x�DN (x)dx = 0; � = 0; : : : ; N � 1: (2.2)With the aid of the univariate wavelets DN , multivariate orthonormal bases can beconstructed as follows. We �x an arbitrary value of N and let � = �N be the univariatescaling function which generates the wavelet  = DN . We de�ne  0 := � and  1 :=  .Further, let E denote the nontrivial vertices of the square [0; 1]d. Then, the set 	 of the2d � 1 functions  e(x1; : : : ; xd) := dYj=1 ej(xj); e 2 E; (2.3)generate by shifts and dilates an orthonormal (wavelet) basis for L2(Rd). Namely, letD := D(Rd) denote the set of dyadic cubes in Rd. Each cube I 2 D is of the formI = 2�jk + 2�j [0; 1]d with k 2 Zd, j 2 Z. The functions�I := �j;k := 2jd=2�(2j � �k); I = 2�jk + 2�j [0; 1]d; k 2 Zd; j 2 Z; � 2 	; (2.4)form an orthonormal basis for L2(Rd). Therefore, each F 2 L2(Rd) has the waveletdecomposition F = XI2DX�2	hF; �Ii�I : (2.5)4



We can also restrict the wavelet expansion (2.5) to those �I with jIj � 1. For this,we de�ne V0 to be the closure in L2(Rd) of the �nite linear combinations of the integershifts of the function �(x1) � � � �(xd) and let P0 be the orthogonal projector which mapsL2(Rd) onto V0. Then, for each F 2 L2(Rd), we haveF = P0(f) + XI2D+ X�2	hF; �Ii�I (2.6)with D+ the set of dyadic cubes with measure � 1.It is one of the most important features of wavelet analysis that wavelet expansionscan be used to characterize function spaces such as Besov spaces. Before we statea characterization result which is suitable for our purposes, let us brie
y recall thede�nition of Besov spaces. If h 2 Rd, we denote by 
h the set of all x 2 
 such thatthe line segment [x; x+ h] is contained in 
. The modulus of smoothness !r(F; t)Lp(
)of a function F 2 Lp(
), 0 < p � 1, is de�ned by!r(F; t)Lp(
) := supjhj�t k�rh(F; �)kLp(
rh); t > 0;with �rh the r{th di�erence with step h. For s > 0 and 0 < q; p � 1, the Besov spaceBsq(Lp(
)) is de�ned as the space of all functions F for whichjF jBsq(Lp(
)) := 8<: �R10 [t�s!r(F; t)Lp(
)]qdt=t�1=q ; 0 < q <1;supt�0 t�s!r(F; t)Lp(
); q =1 ; (2.7)is �nite with r := [s] + 1. Then, (2.7) is a semi{(quasi)norm for Bsq(Lp(
)). If we addkfkLp(
) to (2.7), we obtain a (quasi)norm for Bsq(Lp(
)).At least on all of Rd, the Besov spaces Bsq(Lp(Rd)) can be characterized by waveletcoe�cients, provided the parameters s and p satisfy certain restrictions. As alreadystated above, we are mainly interested in the spaces Bs� (L� (Rd)); � = (s=d + 1=2)�1:For this speci�c scale, the following result holds, see [12, 16, 18] for details.Proposition 2.1 Let � and  be in Cr(R), r > s. Then a function F is in the Besovspace Bs�(L� (Rd)); � = (s=d+ 1=2)�1, if and only if,F = P0(F ) + XI2D+ X�2	hF; �Ii�I (2.8)with kP0(F )kL� (Rd) + 0@ XI2D+ X�2	 jhF; �Iij�1A1=� <1 (2.9)and (2.9) provides an equivalent (quasi)norm for Bs� (L� (Rd)).5



3 Regularity in Besov SpacesAs explained above, the Sobolev regularity of the solution u to (1.3) will in general notbe very high. This di�culty is caused by the fact that we are dealing with nonsmoothcoe�cients. In this section, we prove the main result of this paper which says that, incontrary to the Sobolev regularity, the disontinuities of p do not diminish the regularityof u in the Besov scale Bs� (L� (
)); 1=� = s=2 + 1=2: As we shall see below, this is aconsequence of the fact that the discontinuities of p only occur on a `thin' set.Theorem 3.1 The solution u to (1.3) satis�esu 2 Bs�(L� (S)); 0 < s < 2; 1� = s2 + 12 : (3.1)Proof: We want to prove the theorem by using Proposition 2.1. To this end, we have toestimate the wavelet coe�cients of u. The �rst step is to extend u to all of R2: This isclearly possible since the domain is minimally smooth. We denote this extended versionalso by u. Since the functions � 2 	 are compactly supported, supp �I is contained ina cube Q(I) satisfying jQ(I)j <� jIj. (In this paper, ` <� ' indicates inequality up toconstant factors). Let � denote the set of all (I; �) 2 D+ such that Q(I) has a nontrivialintersection with S. Then, on S, u has an expressionu = P0u+ X(I;�)2�hu; �Ii�I : (3.2)Consequently, we have to show thatX(I;�)2� jhu; �Iij� <1: (3.3)Let � denote the skeleton produced by the interfaces, that is,� := @S N[i=1 Ji; Ji := f(r; �) 2 R2; � = �i; 0 � r � r0g: (3.4)We �x a re�nement level by de�ning the sets�j := f(I; �) 2 � j jIj = 2�2jg: (3.5)Then we collect all indices in �j for which the support of the corresponding waveletintersects the skeleton, �skelj := f(I; �) 2 �j j Q(I) \ � 6= ;g (3.6)and set �intj := �jn�skelj : (3.7)6



We treat the families f�skelj ; j � 1g and f�intj ; j � 1g separately and start with showingthat 1Xj=0 X(I;�)2�skelj jhu; �Iij� <1 (3.8)for all � as in the statement of the theorem. This can be performed by following thelines of the proof of Theorem 3.2 in [8]. We want to exploit the fact that not only theBesov spaces but also the Sobolev spaces can be characterized by wavelet expansions.Especially, a function F is contained in Hs(Rd) if and only ifkP0(F )kL2(Rd) + 0@ XI2D+ X�2	 22sjjhF; �Iij21A1=2 <1: (3.9)For the proof of (3.9) the reader is, e.g., referred to the book of Meyer [18]. If we useH�olders's inequality and the fact thatj�skelj j <� 2j ;we obtain X(I;�)2�skelj jhu; �Iij� <� 2j(1��=2)0B@ X(I;�)2�skelj jhu; �Iij21CA�=2<� 2j(1��=2)2�j� 0B@ X(I;�)2�skelj 22jjhu; �Iij21CA�=2 :Therefore, using H�older's inequality for another time yields1Xj=0 X(I;�)2�skelj jhu; �Iij� <� 0B@ 1Xj=0 X(I;�)2�skelj 22jjhu; �Iij21CA �2 0@ 1Xj=0 2j� 2j�2�� 1A 2��2 :Since u is contained in H1; the �rst sum is �nite by (3.9), and the second sum is �niteif and only if 1 � 2�2� � < 0; i.e., � > 32 ;which corresponds to s < 2:The treatment of the sets �intj is a little bit more involved. First of all, we haveto introduce the following function spaces. Let W0(S; p) be the set of all functionsv 2 H10 (S) which are continuous in S, which have all derivatives of order up to andincluding the third uniformly continuous in each region " < r < r0; �i�1 � � � �i, foreach " > 0; which satisfy rD2v �! 0 as r �! 0 for each second derivative D2v of v,and which satisfy the interface conditionsu(r; �i � 0) = u(r; �i + 0); 1 � i �M; (3.10)p(� � 0)u�(r; �i � 0) = p(� + 0); u�(r; �i + 0); 1 � i �M;7



for u = v and u = vr. We denote by W(S; p) the closure of W0(S; p) in H10 (S): Inaddition, let us consider the Sturm{Liouville problemp� 00 + p�� = 0; � 6= �i; (3.11)�(0) = �(�M) = 0;�(�i � 0) = �(�i + 0); 1 � i �M;p(�i � 0)� 0(�i � 0) = p(�i + 0)� 0(�i + 0); 1 � i �M:It is well{known that (3.11) has a countable number of eigenvalues �1 � �2 � :::; �l > 0:We denote the corresponding eigenfunctions by �n. Moreover, we set 
n = �1=2n ; vn =r
n�n(�), and we denote by #(r) a suitable C1 truncation function. Furthermore, letH(S; p) be the linear span of the funtion #vn with 
n < 1: The following theorem wasshown in [15]:Theorem 3.2 Let D(S; p) denote the set of all solutions u to (1.3) as f varies overL2(S): Then D(S; p) = H(S; p) +W(S; p):According to Theorem 3.2, u can be decomposed asu = u1 + u2; u1 2 H(S; p); u2 2 W(S; p): (3.12)We are left with showing 1Xj=0 X(I;�)2�intj jhu1; �Iij� <1 (3.13)and 1Xj=0 X(I;�)2�intj jhu2; �Iij� <1: (3.14)We start with establishing (3.14). Let �int;ij denote the set of all indices for which thesupport of the corresponding wavelet is contained in the sector Si,�int;ij := f(I; �) 2 �intj j Q(I) � Sig; i = 1; : : : ;M: (3.15)We may treat each of the sets �int;ij separately. Since u2 2 W(S; p) we haveu2jSi 2 H2(Si); i = 1; : : : ;M; (3.16)see again [15] for details. On Si, we have the embedding H2(Si) ,! Bs� (L� (Si)); 1=� =s=2+1=2; s < 2:Moreover, there exists a (nonlinear) extension operator ESi : Bs�(L� (Si))�! Bs�(L� (R2)), see [11]. Hence, if we apply Proposition 2.1 to the extended version ofu2jSi ; it follows that indeed 1Xj=0 X(I;�)2�int;ij jhu2; �Iij� <1;8



proving (3.14).It remains to study the part u1: Since H(S; p) is �nite dimensional, it is su�cient toestablish Besov regularity for each of the functions vn, i.e., we have to show that1Xj=0 X(I;�)2�int;ij jhvn; �Iij� <1 (3.17)holds for all vn 2 H(S; p) and all � as in the statement of the theorem. The maindi�culty is caused by the fact that a typical function vn is not contained in H2(Si) dueto singularities at the origin so that more subtle estimations are necessary. One possibleway is to use similar arguments as stated in [4]. Let�I := infx2Q(I) r(x) (3.18)denote the distance of the cube Q(I) to the origin. We cover the subset of the domainSi corresponding to �int;ij by layers of squares by de�ning the sets�int;ij;k := f(I; �) 2 �int;ij j k2�j � �I < (k + 1)2�jg: (3.19)Then one has j�int;ij;k j <� k: (3.20)Furthermore, by using polar coordinates, it is easy to check thatjvnjWm(L1(Q(I))) <� �
n�mI ; (3.21)so that a classical Whitney-type estimate yieldsjhvn; �Iij <� 2�j(m+1)jvnjWm(L1(Q(I)) (3.22)<� 2�j(m+1)�
n�mI :Hence, by combining (3.20) and (3.22) we obtainX(I;�)2�int;iJ jhvn; �Iij� <� 1Xk=1 X(I;�)2�int;ij;k 2�j(m+1)��(
n�m)�I<� 1Xk=1 k � 2�j(m+1)� (k � 2�j)(
n�m)�<� 2�j(1+
n)� 1Xk=1 k1+(
n�m)� :Choosing m large enough, the series involving k is �nite, therefore we are left with ageometric series which is clearly convergent for all � as in the statement of the theorem. 2Acknowledgment: The author would like to thank P. Oswald for drawing his attentionto the problems studied in this paper. 9
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