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Abstract

This paper is concerned with the Besov regularity of the solutions to interface
problems in a segment S of the unit disk in R%. We investigate the smoothness of
the solutions as measured in the specific scale BZ(L,(S5)), 1/7 = s/241/p, of Besov
spaces which determines the order of approximation that can be achieved by adap-
tive and nonlinear numerical schemes. The proofs are based on representations of
the solution spaces which were derived by Kellogg [15] and on characterizations of
Besov spaces by wavelet expansions.
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1 Introduction

In recent years, the use of adaptive schemes has become a widespread strategy in nu-
merical analysis. In particular, adaptive algorithms have been successfully implemented
for the numerical treatment of boundary value problems of the form

Au = f on QCRY (1.1)
Bu = ¢ on 09,
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where A is a second order elliptic differential operator and B reflects the boundary
conditions, see, e.g., [1, 2, 3, 21]. As usual, we study (1.1) in the weak formulation

a(u,v) = (f,v), v e HE(9), (1.2)

where a(-,-) is the bilinear form induced by (1.1) and HE(2) is a suitable subspace of
H'(€) which depends on the boundary conditions. On the one hand, computational
studies indicate that in many cases adaptive schemes for (1.2) are indeed superior when
compared with nonadaptive methods. On the other hand, from a theoretical point
of view, a rigorous foundation for the use of adaptive algorithms is still in its infancy.
However, this seems to be an important issue, especially since, in the realm of complexity
theory, theoretical results tend to be pessimistic [19]. In this note, we try to provide some
arguments that justify the use of adaptive schemes for (1.2), at least for the special case
of the interface problem in two independent variables. The setting can be described as
follows. Let (r,6) be polar coordinates in R* and let S be a segment of the disc of radius
ro in R? given by 0 < 0 < 0y;. Furthermore, let p be a function on S which is a function
of # alone. We assume that S is divided into sectors 5; : 0,1 <8 < 6;, 1 <1 < M,
in each of which p takes a positive constant value. Moreover, let there be given on §
a continuously differentiable, symmetric, positive definite second order matrix function
(@1m(2))1,m=1,2, and a bounded nonnegative function ag(x). Then, the bilinear form «a(-, -)

is defined by

2
alu,v) = /( > pamuvy + auv)dr, u,v € Hy(S),
s

{,m=1

and, given f € Ly(9), we study the problem

2
/( Z DAL UV + aguv)de = / fvdx, forall ve Hy(S). (1.3)
s s

{,m=1

It is well-known that (1.3) has a unique solution u € Hj(S). Equations of this form
are clearly important in practice since a lot of problems in physics and mechanics are
modelled by (1.3); u may represent for instance a temperature or the displacement of
a membrane. According to the setting introduced above, we include here also the case
that the data, e.g., the heat conductivity, have discontinuities.

In general, the numerical treatment of (1.2) (and therefore also of (1.3)) is performed
by means of a Galerkin approach, i.e., the problem is projected onto an increasing
sequence of linear approximation spaces such as usual finite element spaces based on
uniform grid refinement, where we assume that the union of the linear spaces is dense in
Hg(Q). Since the approximation comes from linear spaces, the usual Galerkin approach
can be interpreted as some kind of linear approximation. It is well-known that the order
of approximation for linear methods to recover the solution u of (1.2) is determined by
the regularity of v in the usual Sobolev scale H*(Q2), s > 1, see, e.g., [7, 20] for a further
discussion. If the domain €2, the right—hand side f and the coefficients of the operator
A are smooth, then this Sobolev regularity is sufficiently high so that linear methods



are appropriate, see [14, 17]. The situation changes completely in the nonsmooth case,
for then the Sobolev regularity decreases significantly, see, e.g., [13], and the order of
convergence for linear methods drops down. One possible remedy is to use adaptive
schemes. Then an underlying grid is refined only in regions where the approximation
is still ‘far away’ from the exact solution u. Therefore one does not use the whole
linear approximation spaces but only suitable parts, so that an adaptive scheme can be
interpreted as some kind of nonlinear approximation. In general, the order of convergence
that can be achieved by nonlinear methods is not determined by the Sobolev but by
the Besov regularity as we shall now explain. In nonlinear approximation, a function
F € L,(RY) is approximated by the elements of a nonlinear manifold M,, of dimension
n. We consider the error

Un(F)Lp(Rd) = Gléfjl\ﬁ HF — GHLp(Rd)‘ (14)

In many cases, the following characterization holds:

S0, (F)pyma] < 00 = F & BALRY), 7 = (s/d+1/p)",  (15)

n=1

where B:(L,(R?)) are the Besov spaces (see Section 2 for the definition of Besov spaces).
In particular, (1.5) holds in the case of nonlinear wavelet approximation, see [10] for
details. Let {n;, I € D,n € ¥} be an orthonormal wavelet basis of Lo(R?) as described
in Section 2. Then, in nonlinear wavelet approximation, the nonlinear manifold M,,

G = Z arqni

(Im)eA

consists of all functions

with A C D x ¥ of cardinality n.

Having the characterization (1.5) in mind, it is now natural to ask the following ques-
tion: what is the regularity of the solution u to (1.2) as measured in the specific scale of
Besov spaces B:(L,(Q2)), 7 = (s/d+1/p)~", and does it have a higher smoothness order
s when compared to the usual Sobolev scale H*(§), s > 1?7 For then, adaptive schemes
can indeed perform better than nonadaptive methods, in principle. (In this paper, we
are primarily interested in the order of approximation with respect to L,. Therefore
we shall mainly be concerned with the specific scale B:(L.(Q)), 1/7 = s/d +1/2.) In
[4, 5, 6, 8] these questions have been studied for operators with smooth coefficients in
Lipschitz domains. It has turned out that in many cases the smoothness index s for
the Besov scale B:(L,(Q)), 7 = (s/d + 1/p)~', is indeed much higher than the one for
the usual Sobolev scale H*()) so that adaptive methods are justified. In this paper,
we establish a similar result for the interface problem (1.3). Obviously, the smoothness
index for the solution u to (1.3) in the usual Sobolev scale is at least one. However,
since in our case the coefficients are discontinuous at the interfaces = 6;, there is no
hope to obtain a much high smoothness order, even for smooth right-hand sides, and
linear methods cannot perform satisfactorily. Therefore adaptive schemes based, e.g.,
on local grid refinement in the vicinity of the interfaces seem to be appropriate. As



explained above, such an approach is justified if the regularity in the specific Besov scale
is higher than the Sobolev regularity. As we shall see in Section 3, Theorem 3.1, this
is indeed the case. It turns out that the solution w is in fact contained in the Besov
spaces B¥(L.(S)),7 = (s/2 +1/2)7!, for all s < 2. The proof of Theorem 3.1 is based
on wavelet analysis, 1.e., we use the fact that smoothness spaces can be characterized
by wavelet expansions. Therefore, in the next section, we briefly summarize some of the
basic concepts used in wavelet analysis, and we focus on the characterizations of Besov
spaces.

2 Wavelets and Besov Spaces

In this section, we first recall some facts from wavelet analysis. Then we define the
Besov spaces and give their characterization in terms of wavelet decompositions.

In general, a function ¢» € Ly(R) is called an orthonormal wavelet if all its scaled,
dilated and integer translated versions,

V() =202 —k),  jkEL, (2.1)

form an orthonormal basis of Ly(R). We shall only need the univariate family Dy, N =
1,2,... of compactly supported wavelets as constructed by I. Daubechies [9]. The
smoothness of Dy increases without bound as N tends to infinity, as does the support
of Dy. The wavelet Dy has N vanishing moments, i.e.,

/RxﬁDN(x)dx 0, G=0,....N—1. (2.2)

With the aid of the univariate wavelets Dy, multivariate orthonormal bases can be
constructed as follows. We fix an arbitrary value of N and let ¢ = ¢ be the univariate
scaling function which generates the wavelet 1» = Dy. We define ¢° := ¢ and ! := .
Further, let £ denote the nontrivial vertices of the square [0, 1]¢. Then, the set ¥ of the
24 — 1 functions

d
V(y, .. xg) = H;/)eﬂ(:zjj), e€ k., (2.3)

generate by shifts and dilates an orthonormal (wavelet) basis for Ly(R?). Namely, let
D := D(R?) denote the set of dyadic cubes in R?. Each cube I € D is of the form
I =277k +277[0,1]* with k € Z%, j € Z. The functions

nr-="mnk = 2jd/277(2j ) _k)v I = Z_jk + Z_j[ov 1]d7 k€ Zdv.j S Z777 S \Ilv (24)

form an orthonormal basis for Ly(R?). Therefore, each I € Lo(R?) has the wavelet
decomposition

=2 > (Fnm (2.5)

IeD nevw



We can also restrict the wavelet expansion (2.5) to those n; with |[I] < 1. For this,
we define Vj to be the closure in LQ(Rd) of the finite linear combinations of the integer
shifts of the function ¢(xy)--- ¢(xq) and let Fy be the orthogonal projector which maps
Ly(R?) onto Vp. Then, for each F' € Ly(RY), we have

F=P)+ > > (Fonr (2.6)

IeDt nevw

with Dt the set of dyadic cubes with measure < 1.

It is one of the most important features of wavelet analysis that wavelet expansions
can be used to characterize function spaces such as Besov spaces. Before we state
a characterization result which is suitable for our purposes, let us briefly recall the
definition of Besov spaces. If h € R?, we denote by 1), the set of all z € Q such that
the line segment [z, x 4+ A] is contained in ). The modulus of smoothness w,.(F, 1), ()
of a function F' € L,(22), 0 < p < oo, is defined by

wT’(F7t)Lp(Q) = upt HAZ(F7 ')HLP(QTh)7 t > 07

S
[h|<

with A} the r—th difference with step h. For s > 0 and 0 < ¢,p < oo, the Besov space
B(L,(Q2)) is defined as the space of all functions F for which

0ol 1/
(Joo = wr(F. ) @tdt/t) ™, 0 < g < oo,

(2.7)
SUP¢>0 t_sz(Fv t)Lp(Q)7 qg=00,

|FlBs(np(0)) = {

is finite with r := [s] + 1. Then, (2.7) is a semi—(quasi)norm for B;(L,(2)). If we add
1 fllz,) to (2.7), we obtain a (quasi)norm for B7(L,(Q)).

At least on all of R?, the Besov spaces B;(Lp(Rd)) can be characterized by wavelet
coefficients, provided the parameters s and p satisfy certain restrictions. As already
stated above, we are mainly interested in the spaces B:(L,(R%)), 7 = (s/d + 1/2)7%.
For this specific scale, the following result holds, see [12, 16, 18] for details.

Proposition 2.1 Let ¢ and ¢ be in C"(R), r > s. Then a function F' is in the Besov
space B(L.(R?Y)), 7= (s/d+1/2)7', if and only if,

F=P(F)+ > S (Fom (2.8)

IeD+ nevw

with

1/r
1o (F) 1. ety + (Z > KF, 771>|T) < 00 (2.9)

IeDt nevw

and (2.9) provides an equivalent (quasi)norm for B:(L.(R?)).



3 Regularity in Besov Spaces

As explained above, the Sobolev regularity of the solution u to (1.3) will in general not
be very high. This difficulty is caused by the fact that we are dealing with nonsmooth
coefficients. In this section, we prove the main result of this paper which says that, in
contrary to the Sobolev regularity, the disontinuities of p do not diminish the regularity

of u in the Besov scale B*(L.(Q)), 1/7 = s/2 4+ 1/2. As we shall see below, this is a

consequence of the fact that the discontinuities of p only occur on a ‘thin’ set.

Theorem 3.1 The solution u to (1.3) satisfies

1
uwe B(L.(S)), 0<s<2, == . (3.1)
T

[N

s
5 +
Proof: We want to prove the theorem by using Proposition 2.1. To this end, we have to
estimate the wavelet coefficients of u. The first step is to extend u to all of R%. This is
clearly possible since the domain is minimally smooth. We denote this extended version
also by u. Since the functions n € ¥ are compactly supported, supp n; is contained in
a cube Q([I) satisfying |Q(I)] < |I|. (In this paper, © < 7 indicates inequality up to
constant factors). Let I' denote the set of all (1,7) € D such that (/) has a nontrivial
intersection with S. Then, on S, u has an expression

u= Pyu+ Z {(w,nr)nr. (3.2)

(Im)er

Consequently, we have to show that

> Wwm)|” < oo (3.3)

(I,m)er
Let ¥ denote the skeleton produced by the interfaces, that is,

N
Y i=085 U i,  Ji=A{(r,0) € R? 0=0;, 0<r<rg}. (3.4)

We fix a refinement level by defining the sets
Aj=A{(Lg) €T || =274}, (3.5)

Then we collect all indices in A; for which the support of the corresponding wavelet
intersects the skeleton,

AP = A € Ay 1 QU)N T # 0} (3.6)

and set

A= AN (3.7)



We treat the families {A;kel,j > 1} and {A;”t,j > 1} separately and start with showing
that

SO ) < 38)

=0 skel
J (I,U)EA] €

for all 7 as in the statement of the theorem. This can be performed by following the
lines of the proof of Theorem 3.2 in [8]. We want to exploit the fact that not only the
Besov spaces but also the Sobolev spaces can be characterized by wavelet expansions.
Especially, a function F' is contained in H*(R?) if and only if

1/2
1 Po(E)]| 1, mey + ( > D 2L, 771>|2) < oo. (3.9)

IeDt nevw

For the proof of (3.9) the reader is, e.g., referred to the book of Meyer [18]. If we use
Holders’s inequality and the fact that

|A;kel| 5 2]7
we obtain
T/2
Z |<u777[>|7— S 2j(1_7/2) Z |<u777[>|2
(Im)eAJskel (Im)eAJskel
T/2
< 20 [ g
(Im)eAJskel
Therefore, using Holder’s inequality for another time yields
o] o] % o] 257—
- . . 247
> Nwanlm < (X2 > 2Y[wanl® (Z 2 2”)
7=0 (Im)ensket 7=0 (In)eAsket J=0

Since u is contained in H', the first sum is finite by (3.9), and the second sum is finite

if and only if
2T

2—7

1 —

3
<0, ie, T>-,
1. T 2

which corresponds to s < 2.

The treatment of the sets A;”t is a little bit more involved. First of all, we have
to introduce the following function spaces. Let Wy(S,p) be the set of all functions
v € H(S) which are continuous in S, which have all derivatives of order up to and
including the third uniformly continuous in each region ¢ < r < rg, 6,1 < 8 < 8, for
each ¢ > 0, which satisfy rD*v — 0 as r — 0 for each second derivative D?*v of v,
and which satisfy the interface conditions

u(r,0;, —0) = wu(r,6;+0), 1<i <M, (3.10)
p(0 — 0)ug(r,0, —0) = p(0+0),ug(r,0;, +0), 1<i:<M,

7



for v = v and v = v,. We denote by W(S,p) the closure of Wy(S,p) in Hi(S). In

addition, let us consider the Sturm—Liouville problem

pl"+pX = 0, 0#£6;, (3.11)
¢(0) = ¢(0n) =0,
¢(0;—0) = ¢(#:;+0), 1<i<M,
p(0: —0)('(0; —0) = p(0; +0)¢'(0; +0), 1<i< M.

It is well-known that (3.11) has a countable number of eigenvalues A\; < Xy < ...\ > 0.
We denote the corresponding eigenfunctions by (,. Moreover, we set v, = A2 v, =
r7(,(0), and we denote by ¥(r) a suitable C* truncation function. Furthermore, let
H(S,p) be the linear span of the funtion Jv, with v, < 1. The following theorem was
shown in [15]:

Theorem 3.2 Let D(S,p) denote the set of all solutions u to (1.3) as f varies over
Ly(S). Then
D(S,p) = H(S,p) + W(S5,p).

According to Theorem 3.2, u can be decomposed as
U = uy + us, uy € H(S,p), uz € W(S,p). (3.12)
We are left with showing

S % el <oo (313

and

) [z )" < 0. (3.14)

We start with establishing (3.14). Let A;m’i denote the set of all indices for which the
support of the corresponding wavelet is contained in the sector S,

int,i e mn o
AP ={(ILn) e AT QU)C S}, i=1,..., M. (3.15)
We may treat each of the sets A;m’i separately. Since uz € W(S, p) we have

s € H*(S)), i=1,..., M, (3.16)

Uz

see again [15] for details. On S;, we have the embedding H*(S;) — B*(L,(S;)), 1/7 =
s/241/2, s < 2. Moreover, there exists a (nonlinear) extension operator Es, : B(L.(S;))
— B:(L.(R?)), see [11]. Hence, if we apply Proposition 2.1 to the extended version of
usls,, it follows that indeed

Z |{ua,n1) | < o0,

( ) Aznt 7



proving (3.14).
It remains to study the part uy. Since H(S, p) is finite dimensional, it is sufficient to
establish Besov regularity for each of the functions v,, i.e., we have to show that

S Y el < (3.17)

j=0 int,i
(I,n)EAJ

holds for all v, € H(S,p) and all 7 as in the statement of the theorem. The main
difficulty is caused by the fact that a typical function v, is not contained in H?*(\S;) due
to singularities at the origin so that more subtle estimations are necessary. One possible
way is to use similar arguments as stated in [4]. Let

o7 1= $€igfj)r(:1;) (3.18)

denote the distance of the cube Q(7) to the origin. We cover the subset of the domain
S; corresponding to A}m’Z by layers of squares by defining the sets

AT = (L) € APV k27 < 6y < (k4 1)277 ) (3.19)

Then one has

AV <k (3.20)
Furthermore, by using polar coordinates, it is easy to check that
[onlwm @y 087 (3.21)
so that a classical Whitney-type estimate yields

277 ol n (3.22)

2—j(m+1)5?n—m‘

[{on, )| <
S

Hence, by combining (3.20) and (3.22) we obtain

Z |<Un7 77[>|T S Z 2—](m+1)75§%z—m)7—

(Ivn)eAiJntﬂl k=1 (Ivn)eAjtlktJ

< f: L 2—j(m+1)7(k . 2—1)(Wn—m)7
k=1

< 9—i(1+vn)7 f: Ll (m—m)T
k=1

Choosing m large enough, the series involving k is finite, therefore we are left with a

geometric series which is clearly convergent for all 7 as in the statement of the theorem. O
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