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 � Rd; (1.1)u = 0 on @
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has become a �eld of increasing importance [1, 7]. The general idea of adaptive schemesis to improve the performance of the numerical algorithm by using nonuniform gridor space re�nements, respectively, i.e., the underlying approximation space is re�nedonly in regions where the current approximation is still `far away' from the exact solu-tion u to (1.1). Although this strategy seems to be very plausible at �rst glance, theprincipal question arises if an adaptive scheme indeed provides some gain of e�ciencywhen compared with uniform (nonadaptive) methods. It turns out that the answer tothis question is related with the regularity properties of the solution u in (1.1) as weshall now explain very briey. In general, an adaptive scheme can be interpreted assome kind of nonlinear approximation. It can be shown that for a function F in L2(
)the order of approximation that can be achieved by a nonlinear wavelet method is de-termined by its regularity in the specifc scale Bs� (L� (
)); 1=� = s=d + 1=2; of Besovspaces (see, e.g., [12, 22] for the de�nition and the main properties of Besov spaces).For a detailed description of these fundamental relationships and of its consequences fornumerical schemes, the reader is referred, e.g., to [6, 10, 11]. In contrary to this, thee�ciency of uniform methods is determined by the regularity of F in the usual Sobolevscale Hs(
). Therefore the following question arises: Does the solution u to (1.1) havea higher regularity in the scale Bs� (L�(
)); 1=� = s=d+ 1=2; of Besov spaces comparedto the corresponding Sobolev scale? For then, adaptive algorithms can indeed performbetter than uniform schemes, at least in principle.Quite recently, several results in this direction have been shown [2, 3, 4, 5, 8, 16].It has turned out that for many important cases the Besov regularity of the solutionu is high enough to justify the use of adaptive schemes. The deepest results wereobtained for problems on general Lipschitz domains where the Sobolev regularity de-creases signi�cantly due to singularities near the boundary [8]. This note can be in-terpreted as a continuation of the above studies. We shall be concerned with an im-portant special case, i.e., with the 2D{Stokes problem. Let 
 be a bounded, simplyconnected, polygonal domain in R2: Then, given a vector �eld f 2 H�1(
)2 and a func-tion g 2 L2;0(
) := fq 2 L2(
) : R
 q(x)dx = 0g, one has to determine the velocityu 2 H10 (
)2 and the pressure p 2 L2;0(
) such that�4u+rp = f in 
; (1.2)�r � u = g in 
:In the mixed formulation, the problem reads as follows: �nd a pair (u; p) 2 H10 (
)2 �L2;0(
) such that a(u; v) + b(v; p) = hf; vi for all v 2 H10 (
)2;b(u; q) = hg; qi for all q 2 L2;0(
); (1.3)where a(u; v) := (ru;rv) = 2Xi;j=1 Z
 @ui@xj (x) @vi@xj (x)dx;b(v; q) := �(r � v; q) = � 2Xi=1 Z
 q(x) @@xivi(x)dx:2



For further information concerning the theory and the numerical treatment of the Stokesequations, the reader is referred, e.g., to Girault and Raviart [14] and to Teman [21].The main result of this paper shows that the Besov regularity of u and p, respectively,is again much higher than the Sobolev regularity, so that the use of adaptive schemesis completely justi�ed. More precisely, it turns out that under some further technicalconditions u and p have the optimal regularity in the interesting Besov scale, i.e., forf 2 Hm(
)2; g 2 Hm+1(
); one has u 2 Bs�(L� (
))2; s < m+ 2; p 2 Bs� (L�(
)); s <m+ 1; 1=� = s=2 + 1=2:2 A New Regularity TheoremOur aim is to investigate the dependence of the regularity of the pair (u; p) in thescale Bs� (L� (
)); 1=� = s=2 + 1=2; of Besov spaces on the smoothness of f and g andon the shape of the domain 
: Before we can state our main result, some prepara-tions are necessary. Let the segments of @
 be denoted by �l; �l open, l = 1; : : : ; N;numbered in positive orientation. Furthermore, let Sl denote the endpoint of �l. Letus now suppose that f 2 Hm(
)2 and g 2 Hm+1(
) for some m 2 N. By usingthe regularity theory for smooth domains, see, e.g., [18] for details, we �rst observethat u 2 Hm+2(~
)2; p 2 Hm+1(~
) for any subdomain ~
 of 
 with smooth bound-ary not containing a vertex of 
. Then the well{known embeddings of Besov spacesH�(
) = B�2 (L2(
)) ,! Bs� (L� (
)); s < �; � < 2; give the estimatesu 2 Bs�(L� (~
))2; 1=� = s=2 + 1=2; s < m+ 2; (2.1)p 2 Bs� (L� (~
)); 1=� = s=2 + 1=2; s < m+ 1:Therefore it remains to study the regularity of u and p near the vertices. By the usualdecomposition technique using suitable C1 truncation functions, it turns out that u andp can be written as u = uI + uB; uB = NXl=1 ul; (2.2)p = pI + pB; pB = NXl=1 pl; (2.3)where the functions ul and pl are supported in the neighbourhood of the vertex Sl andare solutions to a modi�ed Stokes problem, see Osborn [20] for details. Since (u; p)equals (ul; pl) in the vicinity of Sl, we see that the study of p and u near the vertex Sl isreduced to the study of the Stokes problem in a sector. Therefore the remaining resultsin this paper will all be stated for the Stokes equation in a sector.We need some further notations. By a change of coordinates, we may assume thatthe vertex Sl is placed at 0 and that one of the sides of the corresponding sector V lies onthe positive x1{axis. Let ! denote the measure of the interior angle of V . Furthermore,let �j denote one of the roots of the transcendental equationv(z) := sinh2(z2!) � z2 sin2(!) = 0; (2.4)3



which lie in the upper half plane. Moreover, mj is de�ned to be the order of �j as azero of v(z): Finally, we de�ne the weighted Sobolev space Wm;�(V ) to be the set of allfunctions for which the following norm is �nite:kwkWm;�(V ) := mX�=0 ZV r��2(m��)(Xj�j=� jD�wj2)dx; r := (x21 + x22)1=2: (2.5)Then the main result reads as follows.Theorem 2.1 Suppose that f 2 Wm;00 (V )2; g 2 Wm+1;00 (V ) and that no �j lies on theline =z = m + 1 in the complex plane. Let (u; p) denote the solution to the Stokesproblem �4u+rp = f in V; (2.6)�r � u = g in V:Then u 2 Bs� (L�(V ))2; for all s < m+ 2; 1=� = s=2 + 1=2;p 2 Bs� (L�(V )); for all s < m+ 1; 1=� = s=2 + 1=2:Proof: The proof is based on the following characterization of the solution space to (2.6)which was derived by Osborn [20]. Similar results have also been obtained by Grisvard[15] and Kondrat'ev [17].Theorem 2.2 Suppose that the conditions of Theorem 2.1 are satis�ed. Let (r; �) denotepolar coordinates in V . Then u and p have expansions u = uR+ uS, p = pR+ pS , whereuR 2 Wm+2;00 (V )2; pR 2 Wm+1;0(V ) anduS = X0<=�j<m+1mj�1Xl=0 Cuj;l(�)r�i�j logl(r); (2.7)pS = X0<=�j<m+1mj�1Xl=0 Cpj;l(�)r�i�j�1 logl(r); (2.8)where Cuj;l(�) and Cpj;l(�) are C1 functions of �:We have to establish Besov regularity for uR; uS; pR and pS. The functions uR and pRcan be treated as above by using suitable embeddings. It remains to study the singularparts uS and pS . It turns out that these parts, although not very smooth in the usualSobolev scale, have arbitrary high regularity in the speci�c scale of Besov spaces we areinterested in.Theorem 2.3 Suppose that the conditions of Theorem 2.1 are satis�ed. Then for thefunctions uS and pS according to (2.7) and (2.8), respectively, the following holds:uS 2 Bs� (L� (V ))2; 1=� = s=2 + 1=2; for all s > 0;pS 2 Bs� (L� (V )); 1=� = s=2 + 1=2; for all s > 0:4



By employing Theorem 2.3 which will be proved in Section 3, the result follows.2Remark 2.1 The reader should observe that, in contrary to the usual Sobolev regularity,the Besov regularity of u and p is independent of the shape of the domain and dependsonly on the smoothness of the functions f and g.3 Proof of Theorem 2.3The proof can be performed by employing the ideas developed in [4]. We shall brieydiscuss the most important steps. We only present the arguments for the function pSaccording to (2.8), the function uS can be treated analogously. It is su�cient to establishBesov regularity for a function h(r; �) of the formh(r; �) = C(�)r�i�1 logl(r); (3.1)where C(�) is a C1 function and =() > 0: We want to use the fact that function spacessuch as Besov spaces can be characterized by wavelet expansions. Let 	 be the set of2d�1 functions built in the usual way by tensor products from the univariate, compactlysupported, orthonormal Daubechies wavelets, see [9, 19]. Then the functions�I := �j;k := 2jd=2�(2j � �k); I = 2�jk + 2�j [0; 1]d; k 2 Zd; j 2 Z; � 2 	; (3.2)form an orthonormal basis for L2(Rd): If the functions � 2 	 are su�ciently smooth(which can always be achieved, see [9] for details), then a function F is in the Besovspace B�� (L� (Rd)); 1=� = �=d + 1=2; if and only ifkP0(F )kL� (Rd) + 0@X�2	 XI2D+ jhF; �Iij�1A1=� <1; (3.3)where D+ denotes the set of all dyadic cubes of measure < 1 and P0 is a projector ontoa suitable subspace of L2(Rd); see, e.g., [19] for the case � > 1 and [13] for the generalcase. According to (3.3), we have to estimate the wavelet coe�cients of a function h ofthe form (3.1). By employing a suitable extension technique, we may view h(�; r) as afunction on all of R2, see [4] for details. It can be shown that for this extended functionthe term kP0(h)kL� (Rd) is always �nite, see [8]. Therefore it remains to estimate thesecond term in (3.3), i.e., we have to show thatX(I;�)2� jhh; �I ij� <1; (3.4)where � denotes the set of all pairs (I; �); I 2 D+; � 2 	 for which Q(I) \ V 6= ;:Here Q(I) denotes a suitable cube which contains the support of �I : Let us start byestimating one wavelet coe�cient. By using the vanishing moment property of wavelets,see again [9] for details, and employing a classical Whitney{type estimate for the error5



of approximation by polynomials on cubes, it turns out that there exists a polynomialPI of total degree < n such thatjhh; �Iij � kh� PIkL2(Q(I))k�IkL2(Q(I)) (3.5)<� jQ(I)j(n+1)=2jhjWn(L1(Q(I)))<� 2�j(n+1)jhjWn(L1(Q(I))):(By ` <� ' we clearly indicate inequality up to constants). Now we have to sum theseexpressions. First, we �x a re�nement level j by considering the set�j := f(I; �) 2 � j jIj = 2�2jg: (3.6)For each level, we cover V by layers, i.e., we de�ne�j;k := f(I; �) 2 �j j k2�j � �I < (k + 1)2�jg; (3.7)where �I denotes the distance of the cube Q(I) to zero,�I := infx2Q(I) r(x):We �rst consider the sets�oj := �jn�j;c; �j;c := f(I; �) 2 �j j �I < c2�jg (3.8)for some suitable constant c and estimate jhjWn(L1(Q(I))) for a typical cube Q(I); (I; �) 2�oj : By using polar coordinates and Leibniz' rule, we obtain for j�j = n on Q(I)jD�hj <� nX�=0 r�(n��)j ddr!� (r�i�1 logl(r))j<� nX�=0 r�(n��) �X�=0 r=�1�(���) j ddr!� logl(r)j<� r�n+=�1 min(n;l�1)X�=0 j logl��(r)j<� r�n+=�1��for some suitable small � > 0: HencejhjWn(L1(Q(I))) <� �=�n�1��I for (I; �) 2 �oj : (3.9)Furthermore, one has j�j;kj <� k (3.10)6
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