Besov Regularity for the Stokes Problem

Stephan Dahlke*
Institut fur Geometrie
und Praktische Mathematik
RWTH Aachen
Templergraben 55
52056 Aachen

Germany

Abstract

This paper is concerned with regularity estimates for the solutions to the Stokes
problem in polygonal domains in R?. Especially, we derive regularity results in
specific scales of Besov spaces which arise in connection with adaptive numerical
schemes. The proofs of the main results are based on representations of the solution
spaces which were given by Osborn [20] and on characterizations of Besov spaces
by wavelet expansions.
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1 Introduction

In recent years, much effort has been spent to design and to analyze adaptive schemes
for the numerical treatment of elliptic boundary value problems of the form

Lu = f on QcCRY (1.1)
u = 0 on 09,

where L denotes a second order elliptic differential operator and € is a Lipschitz do-
main. Especially, the investigation of adaptive algorithms based on wavelet expansions
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has become a field of increasing importance [1, 7]. The general idea of adaptive schemes
is to improve the performance of the numerical algorithm by using nonuniform grid
or space refinements, respectively, i.e., the underlying approximation space is refined
only in regions where the current approximation is still ‘far away’ from the exact solu-
tion u to (1.1). Although this strategy seems to be very plausible at first glance, the
principal question arises if an adaptive scheme indeed provides some gain of efficiency
when compared with uniform (nonadaptive) methods. It turns out that the answer to
this question is related with the regularity properties of the solution w in (1.1) as we
shall now explain very briefly. In general, an adaptive scheme can be interpreted as
some kind of nonlinear approzimation. It can be shown that for a function F in Ly(Q)
the order of approximation that can be achieved by a nonlinear wavelet method is de-
termined by its regularity in the specifc scale B:(L,(Q)), 1/7 = s/d + 1/2, of Besov
spaces (see, e.g., [12, 22] for the definition and the main properties of Besov spaces).
For a detailed description of these fundamental relationships and of its consequences for
numerical schemes, the reader is referred, e.g., to [6, 10, 11]. In contrary to this, the
efficiency of uniform methods is determined by the regularity of F' in the usual Sobolev
scale H?(2). Therefore the following question arises: Does the solution u to (1.1) have
a higher regularity in the scale B*(L.(Q)), 1/7 = s/d + 1/2, of Besov spaces compared
to the corresponding Sobolev scale? For then, adaptive algorithms can indeed perform
better than uniform schemes, at least in principle.

Quite recently, several results in this direction have been shown [2, 3, 4, 5, 8, 16].
It has turned out that for many important cases the Besov regularity of the solution
u is high enough to justify the use of adaptive schemes. The deepest results were
obtained for problems on general Lipschitz domains where the Sobolev regularity de-
creases significantly due to singularities near the boundary [8]. This note can be in-
terpreted as a continuation of the above studies. We shall be concerned with an im-
portant special case, i.e., with the 2D-Stokes problem. Let  be a bounded, simply
connected, polygonal domain in R?. Then, given a vector field f € H~*(02)? and a func-
tion g € Lao(Q) :={q € L2(Q) : [y q(x)dz = 0}, one has to determine the velocity
u € Hi()? and the pressure p € Ly o(£2) such that

—Au+Vp = f infQ, (1.2)
—V-u = g in .

In the mized formulation, the problem reads as follows: find a pair (u,p) € Hj(2)? x
L20(92) such that

a(u,v) + blv,p) = (f,v) for all v € H}(Q)?, (1.3)
b(u, q) = (g,q)  forall g€ Lyo(0), '
where
8u 81}
= (Vu, V) ‘ “(x)d
a(u,v) u, Vv) ]Z:I/ 6:1;] 6:1;] (x)dx,

b(v,q) == —(V-v,q) Z/ 6:1:2 (x)dx.



For further information concerning the theory and the numerical treatment of the Stokes
equations, the reader is referred, e.g., to Girault and Raviart [14] and to Teman [21].

The main result of this paper shows that the Besov regularity of « and p, respectively,
is again much higher than the Sobolev regularity, so that the use of adaptive schemes
is completely justified. More precisely, it turns out that under some further technical
conditions u and p have the optimal regularity in the interesting Besov scale, i.e., for
fe Q)2 ge H"(Q), one has u € B5(L.(Q))?, s <m+2, pe B(L(Q)), s <
m+1, 1/7=s/2+1/2.

2 A New Regularity Theorem

Our aim is to investigate the dependence of the regularity of the pair (u,p) in the
scale B2(L-(Q)), 1/7 = s/2 + 1/2, of Besov spaces on the smoothness of f and ¢ and
on the shape of the domain €). Before we can state our main result, some prepara-
tions are necessary. Let the segments of Q) be denoted by I';, I'; open, [ = 1,..., N,
numbered in positive orientation. Furthermore, let 5; denote the endpoint of I';. Let
us now suppose that f € H™(Q)? and g € H™(Q) for some m € N. By using
the regularity theory for smooth domains, see, e.g., [18] for details, we first observe

that w € H™?(Q)%, p € H™(Q) for any subdomain Q of © with smooth bound-
ary not containing a vertex of ). Then the well-known embeddings of Besov spaces

H*(Q2) = BY(La(2)) — B:(L,(Q)), s < a, T <2, give the estimates
ue B(L(Q)?  1/r=5/241/2, s<m+2, (2.1)

peBLQ), 1/r=s/2+1/2 s<m+]1.
Therefore it remains to study the regularity of w and p near the vertices. By the usual
decomposition technique using suitable '*° truncation functions, it turns out that u and
p can be written as

N

u = ur+ug, uB:Zul, (2.2)
=1
N

p = p1+ps; pB =Y PIs (2.3)
=1

where the functions u; and p; are supported in the neighbourhood of the vertex 5; and
are solutions to a modified Stokes problem, see Osborn [20] for details. Since (u,p)
equals (uy, pr) in the vicinity of S}, we see that the study of p and u near the vertex S is
reduced to the study of the Stokes problem in a sector. Therefore the remaining results
in this paper will all be stated for the Stokes equation in a sector.

We need some further notations. By a change of coordinates, we may assume that
the vertex 5; is placed at 0 and that one of the sides of the corresponding sector V' lies on
the positive x;—axis. Let w denote the measure of the interior angle of V. Furthermore,
let A; denote one of the roots of the transcendental equation

v(z) 1= sinh?(z%w) — 2% sin*(w) = 0, (2.4)
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which lie in the upper half plane. Moreover, m; is defined to be the order of A; as a
zero of v(z). Finally, we define the weighted Sobolev space W”*(V') to be the set of all
functions for which the following norm is finite:

Jeollwee vy Z e ey, = b (29)

Iul

Then the main result reads as follows.

Theorem 2.1 Suppose that f € Wi*(V)?2, g € WS (V) and that no A; lies on the
line Sz = m + 1 in the complex plane. Let (u,p) denote the solution to the Stokes
problem

—Au+Vp = f inV, (2.6)
—V.-u = g V.

Then

u€ BXL(V))? forall s<m+2, 1/7=s/2+1/2,
p€ B(L(V)), forall s<m+1, 1/r=s/24+1/2.

Proof: The proof is based on the following characterization of the solution space to (2.6)
which was derived by Osborn [20]. Similar results have also been obtained by Grisvard
[15] and Kondrat’ev [17].

Theorem 2.2 Suppose that the conditions of Theorem 2.1 are satisfied. Let (r,0) denote
polar coordinates in V.. Then u and p have expansions uw = ug + us, p = pr + ps, where

up € WSHH’O(V)Q, PR € Wm"'l’O(V) and

mj—1

Uug = Z Z C;fl(@)r_Mﬂ logl(r), (2.7)

0<IN,<m+1 =0

mj—1

ps = > > R0 og!(r), (2.8)

0<SA;<m+1 =0
where C¥(0) and CF,(0) are C* functions of 0.

We have to establish Besov regularity for ur, ug, pr and ps. The functions ur and pr
can be treated as above by using suitable embeddings. It remains to study the singular
parts us and pg. It turns out that these parts, although not very smooth in the usual
Sobolev scale, have arbitrary high regularity in the specific scale of Besov spaces we are
interested in.

Theorem 2.3 Suppose that the conditions of Theorem 2.1 are satisfied. Then for the
functions ug and ps according to (2.7) and (2.8), respectively, the following holds:

us € BX(L,(V))?, 1/t =5/2+1/2, forall s >0,

ps € BS(L.(V)), 1/t =5/2+1/2, forall s> 0.



By employing Theorem 2.3 which will be proved in Section 3, the result follows.
O

Remark 2.1 The reader should observe that, in contrary to the usual Sobolev reqularity,
the Besov reqularity of u and p is independent of the shape of the domain and depends
only on the smoothness of the functions f and g.

3 Proof of Theorem 2.3

The proof can be performed by employing the ideas developed in [4]. We shall briefly
discuss the most important steps. We only present the arguments for the function pg
according to (2.8), the function ug can be treated analogously. It is sufficient to establish
Besov regularity for a function h(r,6) of the form

h(r,0) = C(0)r=" " log'(r), (3.1)

where C'(0) is a O™ function and J(v) > 0. We want to use the fact that function spaces
such as Besov spaces can be characterized by wavelet expansions. Let W be the set of
29 —1 functions built in the usual way by tensor products from the univariate, compactly
supported, orthonormal Daubechies wavelets, see [9, 19]. Then the functions

nr ="Mk = 2jd/277(2j ) _k)v I = Z_jk + Z_j[ov 1]d7 ke Zdv.j S Z777 S \Ilv (32)

form an orthonormal basis for Ly(R?). If the functions € ¥ are sufficiently smooth
(which can always be achieved, see [9] for details), then a function F' is in the Besov

space BS(L,(RY)),1/7 = o/d +1/2, if and only if

1/r
1o (F) 1. ety + (Z > |<Fﬂ71>|7) < 00, (3.3)

neW JeD+

where DT denotes the set of all dyadic cubes of measure < 1 and P, is a projector onto
a suitable subspace of Ly(R?), see, e.g., [19] for the case 7 > 1 and [13] for the general
case. According to (3.3), we have to estimate the wavelet coefficients of a function h of
the form (3.1). By employing a suitable extension technique, we may view h(,r) as a
function on all of R?, see [4] for details. It can be shown that for this extended function
the term ||FPy(h)|[1, (rey is always finite, see [8]. Therefore it remains to estimate the
second term in (3.3), i.e., we have to show that

> b)) < oo, (3.4)

(Im)eA

where A denotes the set of all pairs (I,n), I € D, n € ¥ for which Q(I) NV #£ 0.
Here Q)(I) denotes a suitable cube which contains the support of n;. Let us start by
estimating one wavelet coefficient. By using the vanishing moment property of wavelets,
see again [9] for details, and employing a classical Whitney-type estimate for the error
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of approximation by polynomials on cubes, it turns out that there exists a polynomial
Pr of total degree < n such that

|(hy 1) 1A = Prllz.@ayplinillz.m) (3.5)

QD" 2| Bl 0(1)))

2770 by (@)

AR ZANRTAY

(By ¢ < 7 we clearly indicate inequality up to constants). Now we have to sum these
expressions. First, we fix a refinement level 5 by considering the set

Aje=AIm) e A ] =27}, (3.6)
For each level, we cover V' by layers, i.e., we define
N = A(Lm) € Ay | k277 < ép < (k+1)2773, (3.7)

where 07 denotes the distance of the cube Q([) to zero,

6r:= inf )
d xelg(f)r(x)
We first consider the sets
A= ANAjo, Ajei={(I,n) € Aj | 6 <277} (3.8)

for some suitable constant ¢ and estimate |A|wn (1. (1)) for a typical cube Q(1), (1,n) €
A2. By using polar coordinates and Leibniz’ rule, we obtain for |3] = n on Q(I)

$ —(n—v d ' —iy—
P s X () )

v=0
n v d K
Xt 3t () o)
v=0 ©u=0 r
min(n,/—1)
S T Y log™(r)]

v=0
—n4+{y—1—¢
<

for some suitable small ¢ > 0. Hence

[hlwn(iaiouy S 87777170 for (1) € A, (3.9)

Furthermore, one has

Aju| < K (3.10)



so that, by combining (3.5), (3.9) and (3.10), we obtain

PRI DR DR A

(I,n)EA? k=k1 (I,n)€A;

< i k- 2‘j(”+1)7(k . 2—1’)(%—71—1—5)7

~ k:kl
< 9il=etSy)T i St (3.11)
k=k1

where k; depends on the constant ¢ in (3.8). If we choose n large enough, the sum
involving k is clearly finite. Summing over all refinement levels we are left with a
geometric series which is convergent if we choose € < 3+ which is clearly possible.

It remains to study the sets A;.. It follows from (2.8) that h € H?*(V), for some
sufficiently small s. Using this fact and following the lines of the proof of Theorem 3.2
in [8], we obtain the condition

—2s7/(2—7) <0
which is clearly satisfied. The theorem is proved. a
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