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Abstract

In this note, we describe a program which can be used to estimate
the Holder regularity of refinable functions. The regularity estimates
are carried out by means of the refinement mask. The theoretical
background is briefly explained and a detailed description how to in-
stall and to use the program is given.
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1 Introduction

We shall be concerned with the estimation of the Holder regularity of refin-
able functions. These functions play an important role in wavelet analysis
and in CAGD. In many cases, they are not known analytically so that the
smoothness analysis has to be carried out by means of the refinement mask.
This important problem has attracted a lot of scientists in the last few years.
The first results in this direction were given by I. Daubechies [2, 3] by de-
riving pointwise decay estimates for the Fourier transform of the refinable
function under consideration. To this end, certain infinite products derived
from the refinement mask have to be studied. Sharper results are available
by using Littlewood—Paley techniques. This approach has been carried out
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by T. Eirola [4] for the univariate case and by L. Villemoes [8] for the general
case, respectively. It turns out that the spectral radius of a certain matrix
associated with the given refinement mask has to be computed, see Section 2
for details. Since then, many other contributions to this problem have been
given, see, e.g., [1, 6, 7]. We want to point out that this list is by no means
complete.

The objective of this paper is to explain and to discuss a program which
can be used to treat the regularity problem. This program can be viewed
as a realization of a condensed version of the approach given by Villemoes
[8]. Our aim was neither to provide new theoretical insights nor to develop a
commercial code. Nevertheless we wanted to write a program which is easy
to install and to handle and is hopefully usefull for people working in any
field related to wavelet analysis. Therefore we did focus on easy handling by
e.g. including a graphical front end, then on speed.

This paper is organized as follows. In Section 2, we briefly recall the
theoretical background as far as it is needed for our purposes. Then, in
Section 3, we give a description of our program. First of all, in Subsection
3.1, we explain how to install it. Then, in Subsection 3.2, we illustrate how
to use the program. A detailed description of the necessary steps is given.
We finish we some remarks on the data organization, on trouble shooting
and modification of the code in the Subsections 3.3, 3.4, and 3.5 respectively.

The program can obtained from the IGPM-homepage. Go to
http://www.igpm.rwth-aachen.de/barinka/mattoys/soft.html and fol-
low the instructions there. If you have any further problems or suggestions,
please contact A. Barinka, barinkaQigpm.rwth-aachen.de.

2 Theoretical Background

We want to estimate the Holder regularity of refinable functions. In general,
a function ¢ is called a refinable function or a scaling function if it satisfies a
two—scale-relation with mask a := {ay }reza € (2,

¢(x) = Y axp(Mx — k), (1)

keZd

where M is an expanding integer scaling matrix, i.e., all its eigenvalues have
modulus larger than one. We shall always assume that supp a := {k €



Z? | ay # 0} is finite. The symbol of ¢ is defined by
1 .
m(w) = - > age” TR g = | det M. (2)
1 yeza

Let us assume that the Strang—Fiz—conditions of order L are satisfied, i.e.,

!
(ai) m(M™Tp)=0 forall |l|<L andall pe R"N{0}, (3)
w

where RT denotes a complete set of representatives of Z?/M7TZ<¢. We want
to determine the Holder regularity of ¢,

o :=sup{a: ¢ € C}.

It is well-known that o™ > kg,p, Where kg, 1s defined by

Feup 1= SUP{# : /Rd(1 + w])*|d(w)dw < oo} (4)

Our program can be used to estimate kg from below. We employ the
following result which was developed by L. Villemoes [§], see also [1, 4, 6].

Theorem 2.1 For an integer L, let

Vi i={v ¢ EO(Zd) : Z p(k)vp, =0, forall p ellL},

keZd

where 11, denotes the polynomials of total degree L. Assume that M is a
dilation matriz with a complete set of orthonormal eigenvectors. If the symbol
m(w) according to (2) is nonnegative and satisfies Strang—Fiz—conditions (3)
of order L, then for a suitable choice of a set Q) with supp a C Q, Vi is
invariant under the matriz

H:= [quk—l]k,leQ' (5)

Let o be the spectral radius of H|v,. Then the exponent ke salisfies

~ log(e)
0 Tog( [l o

where |Amax| denotes the maximum modulus of the eigenvalues of MT.
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The matrix H can furthermore be used to check if the refinable function ¢
under consideration is an interpolating function in the sense that

B(k) = do.r, ke Z® (7)

In fact, we may use the following theorem which goes back to Lawton, Lee,

and Shen [5].

Theorem 2.2 Let m(w) be a trigonometric polynomial which satisfies the
condition

m(0) = 1. (8)

A necessary and sufficient condition for an associated continuous refinable
function to be interpolatory is that the sequence 6 is the unique eigenvector
of the matriz H defined in (5) corresponding to a simple eigenvalue 1.

3 Description of the Program

The IGPM Villemoes Machine is a graphical user interface (GUI) written in
MATLAB 5.3.0.10183 that can be used to estimate the Holder regularity of
refinable functions in one and two spatial dimensions. The IGPM Villemoes
Machine will also automatically check if the resulting refinable function is
interpolating by inspecting the conditions of Theorem 2.2. In the following,
we want to explain how to install and use the program. Note that underlined
expressions refer to elements you can see in the graphical user interfaces such
as buttons.

3.1 Installation of the IGPM Villemoese Machine

After downloading villemach.tar.gz containing the Villmeos machine from
http://www.igpm.rwth-aachen.de/barinka/mattoys/soft.html, the in-
stallation of the Villemoes Machine can be done in two steps:

1 Extraction
Extract villemach.tar.gz, e.g., by typing

gtar -zxvf villemach.tar.gz.



Thereafter the program files should all be found in the directory you extracted
the files to, say (homedir) (see Section 3.3 for a complete list of included files).

Please note that villemach.tar.gz also contains some typical examples
of masks you might want to test the Villemoes Machine with. Therefore,
after extraction, there should be a subdirectory Data of (homedir). For fur-
ther information on the data organization and the data format, please see
Subsection 3.3.

2 Edit initialization—file
Use any editor to edit the file villmach_init .m.

e Specify the (homedir) directory containing the program files and the
(datadir) directory containing the data you want to work with by doing
the following: Line 14 and 15 of villmach_init.m look like
homedir=(’ /home/igpm/barinka/matlab/villemoes’);
datadir=(’ /home/igpm/barinka/matlab/villemoes/Data’);

Edit these lines and make sure that (homedir) and (datadir) are set
to the corresponding directories on your computer. The directory
(datadir) does not necessarily have to be a subdirectory of (homedir).
Note: Both strings should start with a blank. Please give the full path.

e In line 20 of villmach_init.m, you should specify the command for
the postscript viewer you want to use. Default is PSviewer="gv’ ;.

e Optionally you can set startup position of the lower left corner of the
Villemoes Machine in the line p_position=[ (x), (y) 1;.

This completes the installation. Now call MATLAB and run the IGPM
Villemoes Machine by typing vmm in a MATLAB shell.

3.2 How to use the IGPM Villemoes Machine
3.2.1 The Main Window

After starting the IGPM Villemoes Machine, the main window will appear.
This window is to work with already existing masks. For the organization
of data, we refer again to Subsection 3.3. For the creation of new masks, or
the deletion/modification of existing masks, the Villemoes Machine provides
a mask editor. You can enter this tool by pressing the Create/Delete mask




button at the lower right of the main window. For further details, see Subsec-
tion 3.2.2. To work with an existing mask, please switch to the main window
and proceed as follows:

o First decide if you want to work in one or two dimensions by pressing
the button 1D or 2D, respectively. The choosen button will appear
highlighted. Default is 2D. Notice that the list Current mask shows a
list of currently existing masks of the choosen dimension, i.e., all one or
two dimensional masks in the data directory (datadir) (see Subsection
3.3. From this list, you can choose the mask you want to work with
by clicking on it. Once selected, the name of the file is highlighted and
the mask and a corresponding comment (if available) are displayed in
the text window.

o Next, enter the parameters N1 and N2. They have to be chosen in such
a way that the corresponding rectangle [V, V5] x [N, N3] contains the
invariant set €.

e Choose the order L of Strang—Fix—conditions according to (3) in the
field Strang—Fix condition:order.

e Now enter the dilation matrix M. By default, empty fields have the
value 0.

e Then hit the Go! button. The Villemoes Machine will now estimate
the Holder regularity of the current refinable function defined by the
selected mask and parameters. To this end, the matrix H according
to (5) is assembled and the eigenvectors and eigenvalues are computed.
Then, for the given value of L, it is checked which eigenvectors are
contained in the space V7. The corresponding eigenvalues are finally
used to compute the spectral radius p. The program also takes care of
the case of multiple eigenvalues. There, special attention is necessary,
because it may happen that none of the computed eigenvectors lies
in the invariant space Vi, cf. (5), but a suitable linear combination
does. The Villemoes Machine will also check if the refinable function is
interpolating. The result is displayed in the text window. Eventually
also warnings will appear there.



o In the upper right corner of the IGPM Villemoes Machine window you
will find button mode that allows you to optionally select the amount
of output, displayed in the MATLAB shell. There are the following
selections which you can choose by click/holding on mode:
quiet No output in the MATLAB shell (Default).
loud Almost every step is commented, intermediate results are given.
algebra | Only the eigenvectors and eigenvalues of ‘H are printed.

To avoid difficulties, please be aware of the following facts.

e Choose the parameters N; and N, as small as possible. These parame-
ters determine the size of the matrix H. Therefore, if you choose Ny and
N; to be very large, the computations may take quite a while. How-
ever, do not choose these parameters too small! For then, [N1, N2] x
[N1, N2] may not contain the invariant set 2 and you will get a wrong
result!

e The symbol m has to be positive. If this is not the case, you may
use |m(w)|? instead of m(w). This is the symbol corresponding to the
autocorrelation function ¢(-) * ¢(—-). Then the program provides you

with the Ly—Sobolev exponent

Ko = sup{k : /Rd(l + Jw]?)¥|d(w)]Pdw < oo} (9)

From this exponent, you may compute the Holder regularity by using
the Sobolev embeding theorem.

3.2.2 Create New Masks, Delete Old Ones: The Mask Editor

From the main window of the IGPM Villemoes machine, you can open the
Mask Editor by pressing Create/Delete mask. This will bring you to the
Mask Editor window. There you can create new masks and inspect, modify

and delete old ones.

Again you first have to choose in which dimension you want to work by
pressing 1D or 2D. The corresponding already existing mask will be dis-
played in the list on the right. When you open the mask editor, its default
dimension will be the same as the chosen dimension of the Villemoes machine
main window.



Creating a New Mask

To create a new mask, the Mask Editor offers you two possibilities. As an
example, let us assume that you want to enter the mask of the centralized
B—spline of order 2 (1D example) and the mask of the Courant finite element
(2D example), say.

1D example: a_y = 1/2, ap =1, a3 = 1/2.

2D example: g = ag1 = a10=a12 = az0 = az1 = 1/2, a;1 = 1.

The first possible way, which is also default, is to enter the matrix of mask
coefficients without specifying the coordinates in detail:

e Click/hold on the button Edit mode: and select Edit mode: Borders

and mask matriz .

e Enter the borders of the support of your mask in the field al, bl and
(for 2D) a2, b2

e Enter the mask in the field Enter the mask.... You should do this in
standard MATLAB format. For our 1D examples, this reads as follows

al = —1,bl =1,
a = [1/2 1 1/2;— (1/2 1 1/2).

For the 2D example, enter

al = 0,bl=2 a2=0, b2 =2

1/2 1/2 0
a = [1/21/20:1/2 1 1/2 ;0 1/2 1/2);— [1/2 1 1/2
0 1/2 1/2

Note that the column index referes to the x—direction, i.e., the columns
correspond to [al,bl]. To avoid difficulties, give the coefficients of the
mask as precise as possible. Otherwise you may get wrong results due
to round—off errors in the Villemoes algorithm.

e You may optionally enter four lines of comment that will be displayed
in the Villemoes Machine. To do this, just fill out the corresponding
fields.



o After you have completed your editing, specify a file name in the field
Save mask as:. You can choose any valid file name (name). Finally
press Save. The mask will be saved as (name).m in the current direc-
tory, corresponding to the data directory and the dimension you have
chosen. If (name) already ends on .m, no extra .m will be appended.

The second way is to enter the mask coefficients including the coordinates.

e Click/hold on the button Edit mode: and select Edit mode: Lattice
points and mask coefficients.

e In the field Enter..., please enter now a matrix in standard MATLAB
format containing the lattice points and the corresponding mask coef-
ficients. For our 1D examples, this reads as follows

-1 1/2
a = [-11/2:;01;1 1/2;— | O 1
L 1/2
For the 2D example, enter
a = [021/2;121/2;011/25;1113;211/25101/2;
20 1/2 |
0 2 1/2
1 2 1/2
0 1 1/2
— 1 1 1
2 1 1/2
1 0 1/2
2 0 1/2

e Finish the saving process as before.

Which mode you like to choose depends on the mask you want to create.
The format of the file actually written by the mask editor is described in
Subsection 3.3.

Inspect and Modify a Mask



e Choose the editing mode by click/holding on Edit mode:.

o Select a mask from the list of existing masks by clicking on it. The
mask and the current comment as well as the filename will appear in
the corresponding fields of the editor. Furthermore, the mask will be
displayed in the text window. There you can check how it will appear
in the Villemoes Machine main window.

e Change any of the fields until you are satisfied with your changes.

e Press Save.

Delete a Mask
o Select a mask from the list of existing masks by clicking on 1it.

o Press Delete.

3.3 Organization of Data

The data of the Villemoes Machine will be taken from the subdirectory
(datadir) as specified in the initialization file, see Section 3.1. The one di-
mensional masks are stored in the subdirectory (oneD) of (datadir). Likewise
(twoD) containes the two dimensional data. The data files usually start with
the lines

global m_mask;

global m_mask_comment;

m_mask_comment={’(comment line 1)’ ’(comment line 2)...°};

The lines concerning m_mask_comment are optional. Then the mask is spec-
ified in the following format

dimension ‘ format
1D m_mask=[x; coef f1 ; 3 coeffr; ... ];
2D m_mask=[x; y; coeffi ; w3 ys coeffy 5 ... 1;

As an example, here is the file for the courant finite element (courant.m).
global m_mask;
global m_mask_comment;
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m_mask_comment={’This is the mask for the Courant finite element’ };
m_mask=[0 0 1/2; 1 0 1/2; 01 1/2; 1 1 1; 21 1/2; 1 2 1/2; 2 2 1/2];

3.4 Trouble Shooting

If any error occurs like 2727 Undefined function or variable..., the Villemoes
Machine is very likely confused about the directories it is working on. Make
sure that the line homedir= in the villmach_init.m file is correct. It is
supposed to contain the directory the program files are located in. Once
the Villemoes Machine got confused, change to the Villemoes Machine home
directory in the MATLAB shell. Check the error messages and make sure
that no file is missing. If no data is found or wrong data appear, check the

line datadir=in the villmach_init.mfile. Note: Both strings should begin
with a blank!

3.5 Modification of Code

This program is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public Licence as published by the Free
Software Foundation; either version 2 of the Licence, or (at your option) any
later version. This program is distributed in the hope that it will be use-
ful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public Licence for further details.
If you don’t have a copy of the GNU General Public Licence write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111,
U.S.A.

The following is a list of files belonging to the IGPM Villemoes Machine.
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file name purpose

villemach_gui.m, .mat | graphical information for the Villemoes

Machine GUI

villmach.m commands (callbacks) for the Villemoes
Machine GUI

doOne.m, doTwo.m main programs

villmach_init.m initialization file

vmm. m startup batch

masked_gui.m, .mat graphical information for the Villemoes

Machine mask editor GUI

masked.m commands (callbacks) for the Villemoes

Machine mask editor GUI

References

1]

2]

A. Cohen, K. Grochenig, and L. Villemoes, Regularity of multivariate
refinable functions, Constr. Approx. 15 (1999), 241-255.

[. Daubechies, Orthonormal bases of compactly supported wavelets,

Comm. Pure Appl. Math. 41 (1988), 909-996.

[. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Confer-
ence Series in Applied Math. 61, STAM, Philadelphia, 1992.

T. Eirola, Sobolev characterization of solutions of dilation equations,

SIAM J. Math. Anal. 23 (1992), 1015-1030.

W. Lawton, S.L. Lee, and Z. Shen, Stability and orthonormality of mul-
tivariate refinable functions, Preprint.

S.D. Riemenschneider and 7. Shen, Multidimensional interpolatory sub-

division schemes, STAM J. Numer. Anal. 34 (1997), 2357-2381.

A. Ron and 7. Shen, The Sobolev regularity of refinable functions,
Preprint, 1999, submitted.

L. Villemoes, Wavelet analysis of refinement equations, SIAM
J. Math. Anal. 25 (1994), 1433-1460.

12



Arne Barinka, Stephan Dahlke, Nicole Mulders
RWTH Aachen

Institut fur Geometrie und Praktische Mathematik
Templergraben 55

52056 Aachen

Germany
{barinka,dahlke,nicole}@igpm.rwth-aachen.de

13



