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Wavelets are usually constructed by means of a so-called scaling function. In general,a function � 2 L2(Rd) is called a scaling function or a re�nable function if it satis�es atwo{scale{relation�(x) = Xk2Zd ak�(Ax� k); a = fakgk2Zd 2 `2(Zd); (1.1)where A is an expanding integer scaling matrix, i.e., all its eigenvalues have moduluslarger than one.Current interest centers around the construction of multivariate interpolating scalingfunctions �, see e.g. [2, 3, 5, 6, 7, 8, 14], i.e. in addition to (1.1) one requires that � isat least continuous and satis�es�(k) = �0;k; k 2 Zd: (1.2)Interpolating scaling functions are needed for various applications e.g. CAGD or col-location methods for operator equations. These applications also require some smooth-ness of the scaling function. This problem has been solved satisfactory for � itself, evenfor the notorious quincunx matrix.The next step of the construction process asks to �nd a dual scaling function ~� whichsatis�es h�(�); ~�(� � k)i = �0;k; k 2 Zd: (1.3)However the best result so far for the quincunx matrix yields a dual scaling function~� 2 C� with � = 0:3132, see [11]. The aim of this paper is to construct duals forinterpolating scaling functions which are continuously di�erentiable. In Section 5 a dualfunction ~� 2 C� for the quincunx matrix with � = 1:9528 is constructed.This result is based on a combination of three di�erent techniques:� construction of smooth interpolating multivariate scaling functions [2],� construction of duals for interpolating scaling functions [11],� estimating the regularity of scaling functions using the techniques of [15].The construction of smooth dual functions is the cornerstone for further develop-ments. Given such a dual function, there exist several ways to construct a biorthogonalwavelet basis, i.e., two sets f igi2I and f ~ i0gi02I of functions satisfyinghj detAjj=2 i(Aj � �k); j detAjj0=2 ~ i0(Aj0 � �k0)i = �i;i0�j;j0�k;k0; (1.4)see, e.g., [11] and [12] for details. Moreover, the existence of dual wavelets is essentialfor establishing characterizations of smoothness spaces such as Sobolev or Besov spaces.In fact, under certain regularity and approximation assumptions the existence of dualwavelets imply the equivalence of the Sobolev and Besov norms of a function to weightedsequence norms of its wavelet coe�cients, see, e.g., [13] and [4] for details.The construction of dual functions for interpolating scaling functions is a fairly recentresearch topic. First examples were obtained in [11]. This paper mainly deals with dual2



scaling functions for the classical box splines associated with the usual dyadic dilationmatrix. Furthermore, some results concerning the quincunx matrix A = � 1 �11 1 � areincluded.The results in [11] are derived by convolving a given interpolating scaling functionwith a suitable distribution. This distribution does not have any smoothness, i.e. thisoperation clearly diminishes the regularity of the resulting dual function ~�.Therefore the whole construction only works satisfactory when the primal function� is su�ciently smooth. Such a family of smooth interpolating scaling functions wasconstructed in [2].Hence we apply the construction principle of [11] to the scaling functions constructedin [2], this leads to a new family of biorthogonal scaling functions for the quincunx matrixA = � 1 �11 1 � which has the advantage that the dual functions are much smoother whencompared to the results in [11].This paper is organized as follows. In Section 2, we briey recall the basic settingof interpolating scaling functions. In Section 3, we explain the construction of [2] as faras it is needed for our purposes. Then, in Section 4, we recall the approach derived in[11]. Finally, in Section 5, we combine both approaches and present a detailed regularityanalysis using the smoothness estimates of [15].For later use, let us �x some notation. Let q = j detAj: Furthermore, let R =f�0; : : : ; �q�1g; RT = f~�0; : : : ; ~�q�1g denote complete sets of representatives of Zd=AZdand Zd=BZd; B = AT ; respectively. Without loss of generality, we shall always assumethat �0 = ~�0 = 0:2 The SettingIn the sequel, we shall only consider compactly supported scaling functions, furthermorewe shall always assume that supp a := fk 2 Zd j ak 6= 0g is �nite. Computing theFourier transform of both sides of (1.1) yields�̂(!) = Xk2Zd 1q ake�ihk;B�1!i�̂(B�1!): (2.1)By iterating (2.1) we obtain �̂(!) = 1Yj=1 a(e�iB�j!); (2.2)where the symbol a(z) is de�ned bya(z) := 1q Xk2Zd akzk: (2.3)Here we use the notation z = z(!) = e�ih�;!i and zk is the short hand notation fore�ihk;!i. We will mainly use the z-notation in this paper, i.e. a(1) refers to the value of3



the symbol at !1 = :::!d = 0. It will be stated explicitly, whenever we go back to the!-notation.All known procedures for constructing multivariate scaling functions start with asymbol a(z), which by Equation (2.2) determines �. Then the question arises whichconditions on a(z) guarantee that � according to (2.2) is well{de�ned in L2(Rd) andhas some additional desirable properties such as su�cient smoothness. Moreover, forour purposes, we have to clarify how the interpolating property (1.2) can be guaranteed.The following two conditions are necessary:(C1) a(1) = 1;(C2) P~�2RT a(�~�e�iB�1!) = 1; where �~� := e�2�iB�1 ~�.The following condition is not necessary, but it can be easily established in many casesand it is required for the construction of [11] as well as for the regularity estimates inSection 5. Moreover this condition already implies that the resulting scaling function isat least continuous:(C3) a(z) � 0 .Usually, conditions (C1){(C3) are the starting point for the construction of a suitablesymbol and the related interpolatory scaling function. Nevertheless, we want to pointout that they are not su�cient in general.Several procedures are known for constructing interpolating scaling functions, how-ever the true challenge asks for constructing smooth scaling functions. To this end, oneoften requires that the Strang{Fix{conditions of order N are satis�ed, i.e.,(C4)  @@!!l a(2�B�1~�) = 0 for all jlj � N and all ~� 2 RTnf0g:This paper is concerned with the construction of pairs of biorthogonal functions (�; ~�)where � is an interpolating scaling function and the dual scaling function ~� satis�es(1.3). A necessary condition for the symbol ~a of the dual scaling function ~� in order tosatisfy (1.3) is given by 1 = X~�2RT a(�~�z)~a(�~�z): (2.4)Therefore the usual way to �nd a dual function for a given scaling function is to constructa symbol ~a(z) satisfying (2.4) and to check that the corresponding re�nable functionexists in L2 and is su�ciently regular. Indeed, we measure the success of a constructionmethod for the dual function by the achievable H�older regularity of ~�.3 Smooth Interpolating Scaling FunctionsAs outlined in the introduction our search for smooth dual functions ~� requires a smoothinterpolating scaling function �. The details on how to construct a suitable ~�, resp. ~a,for a given �, resp. a are outlined in Section 4.4



First of all we briey recall the construction of interpolating scaling functions devel-oped in [2]. It is based on Lagrange interpolation and can be interpreted as a general-ization of the univariate approach derived in [10] to the multivariate situation.We say that a symbol a(z) satis�es the Strang{Fix conditions with respect to a setof polynomials �, if (D = @@! )(p(D)a)(2�B�1~�) = 0 for all p 2 �; ~� 2 RTnf0g: (3.1)For any subset T � Zd, �T will always denote a �nite{dimensional subspace of poly-nomials such that the Lagrange interpolation problem with respect to T is uniquelysolvable. Under this hypothesis the following theorem holds.Theorem 3.1 Let P be a subspace of �T satisfying(1) If p 2 P; then p (c(Ax + �)) 2 �T for c 2 C; � 2 R;(2) p(0) = 0 for all p 2 P.Then the symbol a(!) de�ned bya(!) = 1q + 1q Xk2T X�2Rnf0g pk(�A�1�)e�ihAk+�;!i (3.2)satis�es (C1), (C2), and the Strang{Fix conditions (3.1) with respect to P:Since Lagrange interpolation on general sets of nodes in Rd is far from understood, werestrict ourselves to very simple sets with additional symmetry. Let T consist of alllattice points in a cube in Rd, i.e., for N 2 N and � 2 Zd we setT = TL;� := fk 2 Zd : �i � ki � N + �i; i = 1; : : : ; dg = (� + [0; N ]d) \ Zd: (3.3)The Lagrange interpolation problem is always unisolvable on T by the polynomial sub-space �T = spanfxk; k 2 Zd; kkk1 � N; ki � 0; i = 1; : : : ; dg : (3.4)The fundamental Lagrange interpolants are simply tensor products of the univariateLagrange polynomials and can be written explicitly aspk(x) = `k1(x1)`k2(x2) � � � `kd(xd); `ki(xi) := L+aiYn=ai;n 6=ki xi � nki � n: (3.5)This leads to the following corollary.Corollary 3.1 Let T and �T be de�ned by (3.3) and (3.4), respectively. Then a(!)de�ned by (3.2) satis�es the Strang{Fix conditions with respect to �T : In particular, theusual Strang{Fix conditions of order N are satis�ed.5



It has been shown in [2] that under certain symmetry assumptions on the maskthe resulting symbol is in fact real which is clearly necessary to ensure condition (C3).Moreover, in [2], this setting has been applied to the quincunx matrix A =  1 �11 1 !.Then q = 2 and a set of representatives is given by �0 = 0; �1 = �10�: Moreover,�A�1�10� = ��1=21=2 � and T needs to be symmetric about (�1=2; 1=2). This is the casefor T = [�L; L� 1]� [�L + 1; L] \ Z2. Let `n denote the basic Lagrange interpolationpolynomial for n 2 f�L;�L + 1; ::; L� 1g. WithqL(x) := L�1Xn=�L `n(�1=2)e�inx ; (3.6)we obtain for a(!) corresponding to (3.2)a(!) = 12 + 12e�i(!1+!2)=2qL(!1 + !2)e�i(!2�!1)=2qL(!2 � !1): (3.7)By construction, this symbol satis�es (C1) and (C2). Moreover, it has been shownthat for any L condition (C3) is also satis�ed and that the symbol indeed gives rise toan interpolating scaling function.As an example, for L = 2 the nonvanishing coe�cients can be computed as follows.a(0;0) = 12; (3.8)a(1;0) = a(0;1) = a(�1;0) = a(0;�1) = 81512;a(3;0) = a(0;3) = a(�3;0) = a(0;�3) = 1512;a(2;1) = a(1;2) = a(�1;2) = a(�2;1) = a(�2;�1) = a(�1;�2) = a(1;�2) = a(2;�1) = � 9512 :4 Construction of Dual FunctionsIn this section, we briey recall the algorithm for constructing a dual basis for a giveninterpolating scaling function as developed in [11]. The main result in [11] is a liftingscheme, which allows to construct a second smoother interpolating function from a givenone.De�ning b~�(z) = a(�~�z); ~� 2 RT ; (4.1)condition (C2) may equivalently be written as1 = X~�2RT b~�(z): (4.2)
6



Hence, for any integer K,0@ X~�2RT b~�(z)1AKq = Xjj=qK0@CqK Y�̂2RT b�̂̂� (z)1A = 1: (4.3)Here  denotes a vector of dimension q, the coe�cients of  are indexed be ~� 2 RT =f~�0; : : : ; ~�q�1g.By using (4.3), the following theorem was established in [11].Theorem 4.1 Let a(z) be a symbol satisfying (4.2) for a dilation matrix A with q =j detAj: De�neG0 := n 2 Nq0 : jj = qK; 0 > K and 0 > �̂; �̂ 2 RTnf0goGj := n 2 Nq0 : jj = qK; 0 > K and 0 � �̂; �̂ 2 RTnf0g; with exactly j equalitieso ;j = 1; : : : ; q � 2;and de�neHK := q�2Xj=0 1j + 1 0@X2Gj CqKa(z)0�1 Y�̂2RT nf0g b�̂̂� (z)1A + C(K;:::;K)qK Y�̂2RT bK̂� (z);where CqK are the multinomial coe�cients. Then the symbol a(z)HK(z) also satis�es(4.2).It can be checked that the symbol HK can be factored asHK(z) = a(z)KTK(z) (4.4)for some suitable symbol TK(z). Consequently, the re�nable function associated witha(z)HK(z) is obtained by convolving the original functionK�1{times with itself followedby a convolution with some distribution. Since a(z)HK(z) satis�es (4.2), it is a candidatefor a symbol corresponding to an interpolating scaling function. Indeed, the followingcorollary was established in [11].Corollary 4.1 Let a(z) be the symbol of a continuous compactly supported interpolatingre�nable function and assume that a(z) satis�es (C3). If the re�nable function corre-sponding to a(z)HK(z) is continuous, then it is interpolating.This approach can now be used to construct dual functions for the given interpolatingscaling function �: Indeed, by recalling the necessary condition (2.4), we see that byTheorem 4.1 ~a(z) := HK(z) = a(z)KTK(z) (4.5)is a natural candidate for a symbol associated with a dual function. The followingcorollary is again taken from [11].Corollary 4.2 If the re�nable function corresponding to the mask HK is in L2(Rd),then it is stable and dual to �. 7



5 Smooth Dual Pairs on the Quincunx GridIn this section, we want to employ the algorithm described in Section 4 to constructsmooth dual pairs for the quincunx matrix A = � 1 �11 1 �. Corollary 4.2 tells us howto proceed:� Find a continuous interpolating re�nable function �;� Compute HK according to Theorem 4.1;� Check that the corresponding re�nable function is contained in L2(Rd).Clearly the last part is the most nontrivial step. Moreover, it is desirable to �nd dualfunctions which are as smooth as possible. We are therefore faced with the problem ofestimating the regularity of a re�nable function by only using the re�nement mask. Thisproblem has attracted several people in the last few years, see, e.g., [1, 9, 14, 15]. Letus briey recall the basic ideas. We want to �nd�� := supf� : � 2 C�g:It is well{known that �� � �sup, where �sup is de�ned by�sup := supf� : ZRd(1 + j!j)�j�̂(!)jd! <1g: (5.1)Our aim is to estimate �sup from below. One typical result in this direction reads asfollows.Theorem 5.1 For an integer N , letVN := fv 2 `0(Zd) : Xk2Zd p(k)vk = 0; for all p 2 �Ng;where �N denotes the polynomials of total degree N . Assume that A is a dilation matrixwith a complete set of orthonormal eigenvectors, let j�maxj denote the eigenvalue of Awith the largest modulus. Let 
 denote a subset of Zd s.t. supp a � 
 and VN isinvariant under the matrix H := [qaAk�l]k;l2
 :Assume that the symbol a(z) according to (2.3) is non{negative and satis�es Strang{Fix conditions of order N . Let % be the spectral radius of HjVN : Then the exponent �supsatis�es �sup � � log(%)log(j�maxj) : (5.2)As already stressed in Section 4, the approach in [11] actually consists of a convolutionof the starting interpolating function � with itself followed by a convolution with adistribution. This distribution may be ugly so that it may diminish the regularity of8



the resulting function signi�cantly. Therefore the method in [11] will only performsatisfactory for a su�cienly smooth starting mask.Hence we combine this construction procedure with the approach in [2], which pro-duces interpolating functions with a small mask but with a high order of Strang{Fixconditions. Since the Strang{Fix conditions serve as indicators for some smoothness,there is good reason to expect that the resulting re�nable functions are quite regular.Indeed, by using Theorem 5.1 we obtained for L = 2 and L = 3, respectively�2 2 C� for all � < 1:5156 and �3 2 C� for all � < 2:3035: (5.3)Therefore we decided to use these functions as starting points. The next step is tocompute the symbols HK. For the quincunx matrix, we clearly have q = 2 and the �rstfour symbols can be computed explicitly, for the de�nition of b0 and b1 see (4.1):H1 = b0(1 + 2b1); (5.4)H2 = b20(b0 + 4b1 + 6b21);H3 = b30(b20 + 6b0b1 + 15b21 + 20b31);H4 = b40(b70 + 8b60b1 + 28b50b21 + 56b40b31 + 70b40b41):For details, we refer again to [11]. Given a(z), the corresponding symbols H1; : : : ; H4can be computed by symbolic software such as MAPLE.
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Figure 1: Visualization of the dual function for L = 3; K = 2; this function satis�es~� 2 C�(R2) for � = 1:9528.
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As an example, for L = 2 and K = 1 we obtain a mask with 65 non-zero coe�cients:H1;(�6;0) = �1=65536; H1;(�5;�1) = 9=32768; H1;(�5;1) = 9=32768;H1;(�4;�2) = �63=65536; H1;(�4;0) = �81=16384; H1;(�4;2) = �63=65536;H1(�3;�3) = �41=16384; H1;(�3;�1) = 567=32768; H1;(�3;0) = 1=256;H1;(�3;1) = 567=32768; H1;(�3;3) = �41=16384 H1;(�2�4) = �63=65536;H1;(�2;�2) = 369=8192; H1;(�2;�1) = �9=256; H1;(�2;0) = �3969=65536;H1;(�2;1) = �9=256; H1;(�2;2) = 369=8192; H1;(�2;4) = �63=65536;H1;(�1;�5) = 9=32768; H1;(�1�3) = 567=32768; H1;(�1;�2) = �9=256;H1;(1;�1) = �2583=16384; H1;(�1;0) = 81=256; H1;(�1;1) = �2583=16384;H1;(�1;2) = �9=256; H1;(�1;3) = 567=32768; H1;(�15) = 9=32768;H1;(0;�6) = �1=65536; H1;(0;�4) = �81=16384; H1;(0;�3) = 1=256;H1;(0;�2) = �3969=65536; H1;(0;�1) = 81=256; H1;(0;0) = 6511=4096;H1;(0;1) = 81=256; H1;(0;2) = �3969=65536; H1;(0;3) = 1=256;H1;(0;4) = �81=16384; H1;(0;6) = �1=65536; H1;(1;�5) = 9=32768;H1;(1;�3) = 567=32768; H1;(1;�2) = �9=256; H1;(1;�1) = �2583=16384;H1;(1;0) = 81=256; H1;(1;1) = �2583=16384; H1;(1;2) = �9=256;H1;(1;3) = 567=32768; H1;(1;5) = 9=32768; H1;(2;�4) = �63=65536;H1;(2;�2) = 369=8192; H1;(2;�1) = �9=256; H1;(2;0) = �3969=65536;H1;(2;1) = �9=256; H1;(2;2) = 369=8192; H1;(2;4) = �63=65536;H1;(3;�3) = �41=16384; H1;(3;�1) = 567=32768; H1;(3;0) = 1=256;H1;(3;1) = 567=32768; H1;(3;3) = �41=16384; H1;(4;�2) = �63=65536;H1;(4;0) = �81=16384; H1;(4;2) = �63=65536; H1;(5;�1) = 9=32768;H1;(5;1) = 9=32768; H1;(6;0) = �1=65536: (5.5)We used Theorem 5.1 to estimate the regularity of the resulting re�nable functions. Theresults are displayed in the following table.L K �sup2 1 �0:4972 2 0:7292 3 1:8033 1 0:2043 2 1:952We see, that the regularity of the dual functions grows rapidly as K increases. ForL = 2; K = 1 we do not get an L2{function, but already the function with respectto L = 2; K = 2 is smoother than the smoothest one constructed in [11] which wascontained in C0:313226:For L = 2; K = 3 the dual function is continuously di�erentiable. To our knowledge,examples for the quincunx matrix with these properties have not been constructed before.For L = 3; K = 2 the dual function is almost contained in C2. It seems very likely thatenlarging the values of N and K will produce even higher orders of regularity. Howeverthe computations become too time consuming, already the presented examples lead toeigenvalue problems for matrices with dimension > 4 � 103. This could only be handledwith reasonable computer time by employing sparse matrix techniques.10
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