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Besov Regularity for Edge Singularities in PolyhedralDomainsDediated to Prof. Dr. R.A. DeVore on the oasion of his 60th birthdayStephan Dahlke�Fahbereih 3, ZeTeMUniversit�at BremenPostfah 33 04 4028334 BremenGermanyAbstratThis paper is onerned with the regularity of the solutions to ellipti boundaryvalue problems in polyhedral domains 
 ontained in R3. Espeially, we onsiderthe spei� sale B�� (L� (
)); 1=� = �=3 + 1=2; of Besov spaes. The regularityof the variational solution in these Besov spaes determines the order of approxi-mation that an be ahieved by adaptive and nonlinear numerial shemes. It iswell{known that in polyhedral domains di�erent types of singularities aording toedges and verties our. In this paper, we shall primarily be onerned with theBesov regularity of edge singularities. We show that the orresponding singularityfuntions are muh smoother in the spei� Besov sale than in the usual L2{Sobolovsale whih justi�es the use of adaptive shemes. The proofs are based on spei�representations of the solutions whih were, e.g., derived by Grisvard [17℄, and onharaterizations of Besov spaes by wavelet expansions.Key Words: Ellipti boundary value problems, adaptive methods, Besov spaes,edge singularities, wavelets.AMS Subjet Classi�ation: Primary 35B65, seondary 41A46, 46E35.1 IntrodutionQuite reently, the regularity of the solutions to seond order ellipti boundary valueproblems Lu = f in 
 � Rd; (1)u = 0 on �
;where 
 is a Lipshitz domain, in spei� Besov spaes has been investigated, see, e.g.,[4, 5, 6, 10℄. The aim was to provide some theoretial foundations for the use of adaptive�This work has partially been supported by Deutshe Forshungsgemeinshaft (DA 117/13{1).1



shemes for the numerial treatment of (1). This note an be interpreted as a ontinuationof these studies. The order of onvergene of usual (linear) Galerkin shemes obtained,e.g., by �nite element spaes based on uniform grid re�nement, is determined by theregularity of the variational solution u to (1) in the usual Sobolev sale Hs(
); s �1: Unfortunately, on a general Lipshitz domain, this Sobolev regularity may not bevery high, even if the right{hand side f is suÆiently smooth. This fat is aused bysingularities near the boundary. Therefore, to inrease eÆieny, one often uses adaptivemethods, i.e., the underlying grid is only re�ned in regions where the solution lakssmoothness. In this ase, one does not use the whole linear spaes, hene an adaptivesheme an be interpreted as some kind of nonlinear approximation. Then the questionarises if nonlinear methods indeed provide some gain of eÆieny when ompared withlinear shemes. So far, the problem is best understood for numerial shemes based ona wavelet basis 	 = f �; � 2 J g. (We refer to one of the textbooks [1, 11, 19, 21℄for the de�nition and the basi properties of wavelets). An adaptive wavelet shemeapproximates the solution u to (1) by a linear ombination of N wavelets. Therefore anatural benhmark for its performane is given by the best N{term approximation. Thenone approximates a funtion F 2 L2(Rd) by the nonlinear manifoldsMn of all funtionsG = X�2� a� �with � � J of ardinality N and studies the error�N (F )L2(Rd) := infG2Mn kF �GkL2(Rd): (2)For the L2{metri and an orthonormal wavelet basis, the approximation problem (2) hasa simple solution. We order the wavelet oeÆients by their absolute values and hoose� orresponding to the N largest values. In ontrary to linear shemes, the order ofapproximation that an be ahieved by best N{term approximation is not determined bythe Sobolev regularity but by ertain non{lassial sales of funtion spaes. Indeed, thefollowing haraterization has been derived in [14℄1XN=1[N s=d�N (F )L2(Rd)℄� 1N <1 if and only if F 2 Bs� (L� (Rd)); � = (s=d+ 1=2)�1; (3)where the Bs� (L� (Rd)) are the Besov spaes (see, e.g., [15, 20℄ for the de�nition and themain properties of Besov spaes). Similar results also hold for other norms suh as Lpand Sobolev norms, see, e.g., [7, 13℄ for details.Of ourse, best N{term approximation is not diretly appliable in our setting forathing the N biggest wavelet oeÆients requires knowing all oeÆients of the unknownsolution u. Nevertheless, quite reently, an implementable adaptive wavelet sheme hasbeen developed whih produes asymptotially the same rate of onvergene as the bestN{term approximation [2℄, see also [3, 8, 9℄. Having these results and the haraterization(3) in mind, it is therefore natural to ask the following question: what is the regularity ofthe solution u to (1) as measured in the sale Bs� (L� (
)); � = (s=d+ 1=2)�1? Espeially,does the solution have a higher smoothness order in these spaes ompared to the usualSobolev sale? For then, adaptive wavelet methods would de�nitely perform better thanlinear shemes and the use of adaptive shemes is ompletely justi�ed. The results in[4, 5, 6, 10℄ indiate that this is indeed the ase for many problems. However, most ofthese investigations were onerned with general Lipshitz domains, i.e., all boundary2



points are viewed as equally `bad' whih is often not realisti. In pratie, one is typiallyonerned with domains with pieewise analyti boundary, e.g., with polyhedral domains.One would expet that in this ase muh sharper results are available. Indeed, in [6℄, a�rst result in this diretion for the Poisson equation in polygonal domains in R2 has beenestablished. It turned out that the orresponding singularity funtions, although not verysmooth in the usual Sobolev sale, have arbitrary high regularity in the spei� Besovsale we are interested in. The aim of this paper is to derive similar results for polyhedraldomains in R3. In this ase, the situation is muh more ompliated sine di�erent typesof singularities aording to edges and verties our, see, e.g., [12, 16, 17℄ for details.In this paper, we shall primarily be onerned with edge singularities. It turns out thatin ontrary to polygonal domains the singularity funtions for the Poisson equation arenot arbitrary smooth in the nonlinear approximation sale of Besov spaes. Nevertheless,ompared to the general results for Lipshitz domains from [10℄, there is still some gainof regularity. Espeially, the singularity funtions have muh higher smoothness order inthe Besov spaes ompared to the usual Sobolev sale.This paper is organized as follows. In Setion 2, we briey reall some fats from thelassial regularity theory for polyhedral domains and state and disuss our main Besovregularity result. Then, in Setion 3, we present a detailed proof of this result whih isbased on wavelet analysis.2 Main ResultsIn this setion, we want to present a new regularity result for the model problem4u = f in 
; (4)u = 0 on �
;where 
 is a simply onneted polyhedral domain ontained in R3. It is well{known thatthe Sobolev regularity of the variational solution to (4) is often diminished by singularitiesindued by the shape of the domain 
. For polyhedral domains, two types of singularitiesaording to edges and verties an our. The basi setting an be desribed as follows.First of all, we have to disuss some fats from the regularity theory for simply onneted,bounded polygonal domains � ontained in R2. The segments of �� are denoted by�l; �l open, l = 1; : : : ;N ; numbered in positive orientation. Furthermore, Sl denotes theendpoint of �l and !l denotes the measure of the interior angle at Sl. We onsider theauxiliary 2D{model problem 4v = g in �; (5)v = 0 on ��:It is well{known that for g 2 L2(�) the variational solution v to (5) an be deomposedinto a regular part vR and a singular part vS; v = vR + vS; where vR 2 H2(
) and uSonly depends on the shape of the domain and an be omputed expliitely. Results of thisform were �rst derived by Kondrat'ev [18℄, however, in this paper, our standard referenewill always be the book of Grisvard [17℄. We introdue polar oordinates (rl; �l) in theviinity of eah vertex Sl and introdue the funtionsSl(rl; �l) = �l(rl)r�ll sin(��l=!l); �l := �=!l; (6)where �l denotes a suitable C1 trunation funtion. Then one has the following theorem(see, e.g., [17℄, Chapter 2.4): 3



Theorem 2.1 For given g 2 L2(�); the orresponding variational solution to (5) has anexpansion v = vR + vS, where vR 2 H2(�) andvS = NXj=1 X0<�l<1 lSl: (7)In this paper, we are espeially interested in the singularity funtions aording to theedges of a polyhedral domain in R3. It turns out that these funtions an be onstrutedby means of the funtions de�ned in (6). In fat, the behaviour of the solutions to elliptiboundary value problems in polyhedral domains in R3 along edges is often studied byonsidering a orresponding unbounded domain without verties of the following type.Let ~
 � R3 be of the form ~
 = ��R, where � is a bounded polygonal domain in R2:Then one has the following theorem [17℄.Theorem 2.2 For eah f 2 L2(~
) there exists a unique solution toZ~
ru � rvdx = � Z~
 fvdx; (8)and in addition there exist unique funtions �l 2 H1��l(R) suh thatu�Xl X0<�l<1(K � �l)Sl 2 H2(~
); (9)where K := r=(�(r2 + x23)); r = (x21 + x22)1=2 and Sl denotes one of the usual singularityfuntions for �.In other words, K � �l means the funtionx3 �! r� ZR �l(x3 � t)(r2 + t2)�1dt:The entral aim of this paper is to determine the Besov regularity of the singular partsWl := (K � �l)Sl (10)introdued in (9). In the next setion, we shall prove the following theorem whih is themain result of this paper.Theorem 2.3 Eah of the funtions de�ned in (10) satis�esWl 2 Bs� (L� (
̂)); 1� = s3 + 12 ; s < s� := 9� 3�l2 ; (11)where 
̂ is any domain of the form �� I; I � R a bounded interval.Remark 2.1 i) Let us �rst ompare this theorem with the general Besov regularity re-sults for arbitrary Lipshitz domains. As a speial ase of the analysis in [10℄, it turns outthat for f 2 L2(
) the solution u to the Poisson equation in an arbitrary Lipshitz domainis ontained in the spaes Bs� (L� (
)); 1=� = s=d + 1=2 for all 0 < s < 2: However, sine0 < �l < 1; Theorem 2.3 implies the ondition s� � 3. Therefore we gain smoothnessompared with the general result, at least for the singular part of the solution.ii) By our method, it is not possible to prove a version of Theorem 2.3 for the wholedomain ~
. However, the unbounded domain ~
 aording to Theorem 2.2 is only an aux-iliary onstrution to treat the edge singularities of the original problem whih is de�nedon the bounded domain 
. Therefore the regularity on bounded subsets seems to be whatreally ounts in pratie. 4



3 Proof of Theorem 2.3First of all, let us �x l and set W := Wl; � := �l; � := �l; S := Sl; � := �l; S :=Sl: The following proof is based on wavelet analysis. We want to use the fat thatfuntion spaes suh as Besov spaes an be haraterized by wavelet expansions. Let usbriey reall the basi fats. For our purposes, it is suÆient to assume that the waveletbasis is onstruted by tensor produts of the univariate Daubehies wavelets and salingfuntions. In [11℄, a univariate family m of ompatly supported wavelets has beenonstruted. The smoothness of m inreases without bound as m inreases, as does thesupport of m . Moreover, the wavelet m has m vanishing moments. We �x a value of mand let � = m� be the univariate saling funtion whih generates the wavelet  = m .We de�ne  0 := � and  1 :=  . Further, let E denote the nontrivial verties of the square[0; 1℄d: Then, the set 	 of 2d � 1 funtions e(x1; : : : ; xd) := dYj=1 ej(xj); e 2 E; (12)generates by shifts and dilates an orthonormal wavelet basis for L2(Rd). Namely, letD := D(Rd) denote the set of dyadi ubes in Rd. Eah ube I 2 D is of the formI = 2�jk + 2�j[0; 1℄d with k 2 Zd; j 2 Z. The funtions�I := �j;k := 2jd=2�(2j � �k); I = 2�jk + 2�j[0; 1℄d; k 2 Zd; j 2 Z; � 2 	; (13)form an orthonormal basis for L2(Rd): Consequently, eah funtion F 2 L2(Rd) has anexpansion F = P0(F ) + X�2	 XI2D+hF; �Ii�I ; (14)where D+ denotes the set of all dyadi ubes of measure < 1 and P0 is a projetor ontothe subspae of L2(Rd) spanned by the translates of �(x1) : : : �(xd). By onstrution,there exists a ube Q satisfying supp(�) � Q for all �. Hene one an also �nd suitableubes Q(I) satisfying supp(�I) � Q(I); jQ(I)j <� jIj: (15)(In this paper, `a <� b' indiates inequality up to onstant fators). Then, if the generator� is hosen suÆiently smooth, a funtion F is in the Besov spae B�� (L� (Rd)); 1=� =�=d+ 1=2; if and only ifkP0(F )kL� (Rd) + 0�X�2	 XI2D+ jhF; �Iij�1A1=� <1; (16)see, e.g., [19℄ for details.The haraterization (16) now gives us a hint how to establish Besov regularity. Wehave to ompute the wavelet oeÆients of the singular part W and to hek if their`�{norm is �nite. To this end, the �rst step is to extend W to all of R3. For tehnialreasons whih will beome lear later, we proeed as follows. We introdue the distaneto the edge S �R ÆI := infx2Q(I) r(x): (17)Furthermore, we set U := � \ B(S;R), where supp � � [�R;R℄ and B(S;R) learlydenotes the ball of radius R at S in R2. There exists a one V � R2, entered at S andontaining U , and an interval Î � I, suh that for some suitable onstant C,Q(I) � V � Î if Q(I) \ (U � I) 6= ;; jIj = 2�3j and ÆI � C2�j: (18)5



Then the expliit expressions (6) and (10) imply thatW has a trivial extension onto V �Îwhih we also denote by W. It is at least ontained in H3=2, see again [16℄, and we mayuse a Whitney extension to obtain a funtion on all of R3 for whih we again keep thenotation W. Then, on the old domain 
̂, W has an expressionW = P0(W) + X(I;�)2�hW; �Ii�I ; (19)where � denotes the set of all indies for whih (U � I) \ Q(I) 6= ;: Therefore the taskis to estimate the right{hand side in (19). It an be shown that P0(W) does not auseany serious trouble, see, e.g., [10℄ for details. Therefore it remains to establish Besovregularity for the seond term in (19). Aording to (16), we are left with showing thatX(I;�)2� jhW; �Iij� <1: (20)Let us start by estimating one wavelet oeÆient. By the vanishing moment property,eah wavelet �I is orthogonal to any polynomial of total degree < m. Hene, for anyPI 2 Pm�1, jhW; �Iij � jhW � PI ; �Iij � kW � PIkL2(Q(I))k�IkL2(R3):where Q(I) again denotes the support ube of �I . Combining this formula with a standardWhitney{type estimate yieldsjhW; �Iij � kW � PIkL2(Q(I))k�IkL2(Q(I)) <� 2�4jjWjW 4(L2(Q(I))): (21)We �x a re�nement level j and introdue the sets�j := f (I; �) j jIj = 2�3jg;�j;k := f (I; �) 2 �j j k2�j � ÆI < (k + 1)2�jg;�oj := �jn�j;C; �j;C := f(I; �) 2 �j j ÆI < C2�jg:The �rst step is to estimate the ontribution of all wavelets orresponding to a �xedindex set �j;k � �oj . The Whitney estimate (21) immediately impliesXI2�j;k jhW; �Iij� <� XI2�j;k 2�4j� 0�ZQ(I) Xj�j=4 j��Wj2dx1A�=2 :so that, by using H�olders's inequality with p = 2=� and q = 2=(2� �) and the fat thatj�j;kj <� 2jk, we obtainXI2�j;k jhW; �Iij� <� 2�4j�2j(2��)=2k(2��)=2 0� XI2�j;k ZQ(I) Xj�j=4 j��Wj2dx1A�=2 :By employing the set R := fx 2 R2 j k2�j � r � (k+1)2�jg\V; this expression may berewritten asXI2�j;k jhW; �Iij� <� 2(�(9=2)�+1)jk(2��)=2 0�ZÎ ZR Xj�j=4 j��Wj2dx1dx2dx31A�=2<� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4 ZR j��Wj2dx3dx2dx11A�=2 :6



Therefore, by using the de�nition of W and Leibniz rule, we �ndXI2�j;k jhW; �Iij� <� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4 ZR j��((K � �)S)j2dx3dx2dx11A�=2<� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4X��� ZR j� � ����Kj2j��Sj2dx3dx2dx11A�=2<� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4X��� ZR �ZR j�(x3 � t)jj����K(r; t)jdt�2 dx3j��Sj2dx2dx1��=2The next step is to employ the Minkowski{inequality. This yieldsXI2�j;k jhW; �Iij� <� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4X��� ZR �ZR j�(x3 � t)j2dx3�1=2j����K(r; t)jdt!2j��Sj2dx2dx1��=2<� 2(�(9=2)�+1)jk(2��)=2) 0�ZR Xj�j=4X����ZR j����K(r; t)jdt�2 j��Sj2dx2dx11A�=2: (22)A diret omputation shows that ��S <� r��j�j (23)and ZR j����K(r; t)jdt <� r�j���j: (24)Consequently, by inserting (23) and (24) into (22) we �nally obtainXI2�j;k jhW; �Iij� <� 2(�9=2)�+1)jk(2��)=2 0�ZR Xj�j=4X��� r�2j���jr2(��j�j)dx2dx11A�=2<� 2(�(9=2)�+1)jk(2��)=2 �ZR r(2��8)dx2dx1��=2<� 2(�(9=2)�+1)jk(2��)=2 �(k2�j)(2��8)jRj��=2<� 2(�(9=2)�+1)jk(2��)=2(k2�j)(2��8)(�=2)(k2�2j)�=2<� 2(�(9=2)�+1)jk(��4)�+12�j�(��3)<� 2j(1��(3=2+�))k(��4)�+1:The next step is to treat a typial set �oj : We getXI2�oj jhW; �Iij� <� 2j(1��(3=2��)) 1Xk=k1 k(��4)�+1;and we are in business if �(�4 + �) < �2; i.e.; 1� < 4� �2 ;7



whih orresponds to s < 9� 3�2 : (25)We now de�ne �o = [1j=1�oj and sum the last inequality over all re�nement levels. Thisyields XI2�o jhW; �Iij� <� 1Xj=1 2j(1��(3=2+�))and the geometri series onverges if�(32 + �)� + 1 < 0; i.e.; s < 3 + 3�: (26)Sine 1=2 < � < 1, it turns out that 9� 3� < 2 + 3�, so that in the setting of Theorem2.3 ondition (26) is always satis�ed.It remains to study the sets �j;C: Combining the fat that j�j;Cj <� 2j with H�olders'sinequality yieldsX(I;�)2�j;C jhW; �Iij� <� 2j( 2��2 )0� X(I;�)2�j;C jhW; �Iij21A�=2
<� 2j( 2��2 )2�j(3�=2)0� X(I;�)2�j;C 23jjhW; �Iij21A�=2 :Therefore summing over all re�nement levels and using H�older's inequality one againgives 1Xj=0 X(I;�)2�j;C jhW; �Iij� <� 0� 1Xj=1 2j(1� 3�2�� )1A 2��2 0� 1Xj=0 X(I;�)2�j;C 23jjhW; �Iij21A�=2 :Sine W 2 H3=2(R3), the seond sum is �nite, see again [19℄ for details. The �rst sum is�nite if 1� 3�2� � < 0; i.e., s < 9=2:The theorem is proved.Referenes[1℄ C.K. Chui, An Introdution to Wavelets, Aademi Press, Boston, 1992.[2℄ A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for ellipti operatorequations { Convergene rates, Math. Comp. 70 (2001), 27{75.[3℄ A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods II: Beyond theellipti ase, IGPM{Prprint No. 199, RWTH Aahen, 2000.[4℄ S. Dahlke, Wavelets: Constrution Priniples and Appliations to the NumerialTreatment of Operator Equations, Shaker Verlag, Aahen, 1997.8
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