
Zentrum f�ur Te
hnomathematikFa
hberei
h 3 { Mathematik und Informatik
Besov Regularity for Edge Singularitiesin Polyhedral DomainsStephan Dahlke

Report 01{05

Beri
hte aus der Te
hnomathematikReport 01{05 Mai 2001





Besov Regularity for Edge Singularities in PolyhedralDomainsDedi
ated to Prof. Dr. R.A. DeVore on the o

asion of his 60th birthdayStephan Dahlke�Fa
hberei
h 3, ZeTeMUniversit�at BremenPostfa
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tThis paper is 
on
erned with the regularity of the solutions to ellipti
 boundaryvalue problems in polyhedral domains 
 
ontained in R3. Espe
ially, we 
onsiderthe spe
i�
 s
ale B�� (L� (
)); 1=� = �=3 + 1=2; of Besov spa
es. The regularityof the variational solution in these Besov spa
es determines the order of approxi-mation that 
an be a
hieved by adaptive and nonlinear numeri
al s
hemes. It iswell{known that in polyhedral domains di�erent types of singularities a

ording toedges and verti
es o

ur. In this paper, we shall primarily be 
on
erned with theBesov regularity of edge singularities. We show that the 
orresponding singularityfun
tions are mu
h smoother in the spe
i�
 Besov s
ale than in the usual L2{Sobolovs
ale whi
h justi�es the use of adaptive s
hemes. The proofs are based on spe
i�
representations of the solutions whi
h were, e.g., derived by Grisvard [17℄, and on
hara
terizations of Besov spa
es by wavelet expansions.Key Words: Ellipti
 boundary value problems, adaptive methods, Besov spa
es,edge singularities, wavelets.AMS Subje
t Classi�
ation: Primary 35B65, se
ondary 41A46, 46E35.1 Introdu
tionQuite re
ently, the regularity of the solutions to se
ond order ellipti
 boundary valueproblems Lu = f in 
 � Rd; (1)u = 0 on �
;where 
 is a Lips
hitz domain, in spe
i�
 Besov spa
es has been investigated, see, e.g.,[4, 5, 6, 10℄. The aim was to provide some theoreti
al foundations for the use of adaptive�This work has partially been supported by Deuts
he Fors
hungsgemeins
haft (DA 117/13{1).1



s
hemes for the numeri
al treatment of (1). This note 
an be interpreted as a 
ontinuationof these studies. The order of 
onvergen
e of usual (linear) Galerkin s
hemes obtained,e.g., by �nite element spa
es based on uniform grid re�nement, is determined by theregularity of the variational solution u to (1) in the usual Sobolev s
ale Hs(
); s �1: Unfortunately, on a general Lips
hitz domain, this Sobolev regularity may not bevery high, even if the right{hand side f is suÆ
iently smooth. This fa
t is 
aused bysingularities near the boundary. Therefore, to in
rease eÆ
ien
y, one often uses adaptivemethods, i.e., the underlying grid is only re�ned in regions where the solution la
kssmoothness. In this 
ase, one does not use the whole linear spa
es, hen
e an adaptives
heme 
an be interpreted as some kind of nonlinear approximation. Then the questionarises if nonlinear methods indeed provide some gain of eÆ
ien
y when 
ompared withlinear s
hemes. So far, the problem is best understood for numeri
al s
hemes based ona wavelet basis 	 = f �; � 2 J g. (We refer to one of the textbooks [1, 11, 19, 21℄for the de�nition and the basi
 properties of wavelets). An adaptive wavelet s
hemeapproximates the solution u to (1) by a linear 
ombination of N wavelets. Therefore anatural ben
hmark for its performan
e is given by the best N{term approximation. Thenone approximates a fun
tion F 2 L2(Rd) by the nonlinear manifoldsMn of all fun
tionsG = X�2� a� �with � � J of 
ardinality N and studies the error�N (F )L2(Rd) := infG2Mn kF �GkL2(Rd): (2)For the L2{metri
 and an orthonormal wavelet basis, the approximation problem (2) hasa simple solution. We order the wavelet 
oeÆ
ients by their absolute values and 
hoose� 
orresponding to the N largest values. In 
ontrary to linear s
hemes, the order ofapproximation that 
an be a
hieved by best N{term approximation is not determined bythe Sobolev regularity but by 
ertain non{
lassi
al s
ales of fun
tion spa
es. Indeed, thefollowing 
hara
terization has been derived in [14℄1XN=1[N s=d�N (F )L2(Rd)℄� 1N <1 if and only if F 2 Bs� (L� (Rd)); � = (s=d+ 1=2)�1; (3)where the Bs� (L� (Rd)) are the Besov spa
es (see, e.g., [15, 20℄ for the de�nition and themain properties of Besov spa
es). Similar results also hold for other norms su
h as Lpand Sobolev norms, see, e.g., [7, 13℄ for details.Of 
ourse, best N{term approximation is not dire
tly appli
able in our setting for
at
hing the N biggest wavelet 
oeÆ
ients requires knowing all 
oeÆ
ients of the unknownsolution u. Nevertheless, quite re
ently, an implementable adaptive wavelet s
heme hasbeen developed whi
h produ
es asymptoti
ally the same rate of 
onvergen
e as the bestN{term approximation [2℄, see also [3, 8, 9℄. Having these results and the 
hara
terization(3) in mind, it is therefore natural to ask the following question: what is the regularity ofthe solution u to (1) as measured in the s
ale Bs� (L� (
)); � = (s=d+ 1=2)�1? Espe
ially,does the solution have a higher smoothness order in these spa
es 
ompared to the usualSobolev s
ale? For then, adaptive wavelet methods would de�nitely perform better thanlinear s
hemes and the use of adaptive s
hemes is 
ompletely justi�ed. The results in[4, 5, 6, 10℄ indi
ate that this is indeed the 
ase for many problems. However, most ofthese investigations were 
on
erned with general Lips
hitz domains, i.e., all boundary2



points are viewed as equally `bad' whi
h is often not realisti
. In pra
ti
e, one is typi
ally
on
erned with domains with pie
ewise analyti
 boundary, e.g., with polyhedral domains.One would expe
t that in this 
ase mu
h sharper results are available. Indeed, in [6℄, a�rst result in this dire
tion for the Poisson equation in polygonal domains in R2 has beenestablished. It turned out that the 
orresponding singularity fun
tions, although not verysmooth in the usual Sobolev s
ale, have arbitrary high regularity in the spe
i�
 Besovs
ale we are interested in. The aim of this paper is to derive similar results for polyhedraldomains in R3. In this 
ase, the situation is mu
h more 
ompli
ated sin
e di�erent typesof singularities a

ording to edges and verti
es o

ur, see, e.g., [12, 16, 17℄ for details.In this paper, we shall primarily be 
on
erned with edge singularities. It turns out thatin 
ontrary to polygonal domains the singularity fun
tions for the Poisson equation arenot arbitrary smooth in the nonlinear approximation s
ale of Besov spa
es. Nevertheless,
ompared to the general results for Lips
hitz domains from [10℄, there is still some gainof regularity. Espe
ially, the singularity fun
tions have mu
h higher smoothness order inthe Besov spa
es 
ompared to the usual Sobolev s
ale.This paper is organized as follows. In Se
tion 2, we brie
y re
all some fa
ts from the
lassi
al regularity theory for polyhedral domains and state and dis
uss our main Besovregularity result. Then, in Se
tion 3, we present a detailed proof of this result whi
h isbased on wavelet analysis.2 Main ResultsIn this se
tion, we want to present a new regularity result for the model problem4u = f in 
; (4)u = 0 on �
;where 
 is a simply 
onne
ted polyhedral domain 
ontained in R3. It is well{known thatthe Sobolev regularity of the variational solution to (4) is often diminished by singularitiesindu
ed by the shape of the domain 
. For polyhedral domains, two types of singularitiesa

ording to edges and verti
es 
an o

ur. The basi
 setting 
an be des
ribed as follows.First of all, we have to dis
uss some fa
ts from the regularity theory for simply 
onne
ted,bounded polygonal domains � 
ontained in R2. The segments of �� are denoted by�l; �l open, l = 1; : : : ;N ; numbered in positive orientation. Furthermore, Sl denotes theendpoint of �l and !l denotes the measure of the interior angle at Sl. We 
onsider theauxiliary 2D{model problem 4v = g in �; (5)v = 0 on ��:It is well{known that for g 2 L2(�) the variational solution v to (5) 
an be de
omposedinto a regular part vR and a singular part vS; v = vR + vS; where vR 2 H2(
) and uSonly depends on the shape of the domain and 
an be 
omputed expli
itely. Results of thisform were �rst derived by Kondrat'ev [18℄, however, in this paper, our standard referen
ewill always be the book of Grisvard [17℄. We introdu
e polar 
oordinates (rl; �l) in thevi
inity of ea
h vertex Sl and introdu
e the fun
tionsSl(rl; �l) = �l(rl)r�ll sin(��l=!l); �l := �=!l; (6)where �l denotes a suitable C1 trun
ation fun
tion. Then one has the following theorem(see, e.g., [17℄, Chapter 2.4): 3



Theorem 2.1 For given g 2 L2(�); the 
orresponding variational solution to (5) has anexpansion v = vR + vS, where vR 2 H2(�) andvS = NXj=1 X0<�l<1 
lSl: (7)In this paper, we are espe
ially interested in the singularity fun
tions a

ording to theedges of a polyhedral domain in R3. It turns out that these fun
tions 
an be 
onstru
tedby means of the fun
tions de�ned in (6). In fa
t, the behaviour of the solutions to ellipti
boundary value problems in polyhedral domains in R3 along edges is often studied by
onsidering a 
orresponding unbounded domain without verti
es of the following type.Let ~
 � R3 be of the form ~
 = ��R, where � is a bounded polygonal domain in R2:Then one has the following theorem [17℄.Theorem 2.2 For ea
h f 2 L2(~
) there exists a unique solution toZ~
ru � rvdx = � Z~
 fvdx; (8)and in addition there exist unique fun
tions �l 2 H1��l(R) su
h thatu�Xl X0<�l<1(K � �l)Sl 2 H2(~
); (9)where K := r=(�(r2 + x23)); r = (x21 + x22)1=2 and Sl denotes one of the usual singularityfun
tions for �.In other words, K � �l means the fun
tionx3 �! r� ZR �l(x3 � t)(r2 + t2)�1dt:The 
entral aim of this paper is to determine the Besov regularity of the singular partsWl := (K � �l)Sl (10)introdu
ed in (9). In the next se
tion, we shall prove the following theorem whi
h is themain result of this paper.Theorem 2.3 Ea
h of the fun
tions de�ned in (10) satis�esWl 2 Bs� (L� (
̂)); 1� = s3 + 12 ; s < s� := 9� 3�l2 ; (11)where 
̂ is any domain of the form �� I; I � R a bounded interval.Remark 2.1 i) Let us �rst 
ompare this theorem with the general Besov regularity re-sults for arbitrary Lips
hitz domains. As a spe
ial 
ase of the analysis in [10℄, it turns outthat for f 2 L2(
) the solution u to the Poisson equation in an arbitrary Lips
hitz domainis 
ontained in the spa
es Bs� (L� (
)); 1=� = s=d + 1=2 for all 0 < s < 2: However, sin
e0 < �l < 1; Theorem 2.3 implies the 
ondition s� � 3. Therefore we gain smoothness
ompared with the general result, at least for the singular part of the solution.ii) By our method, it is not possible to prove a version of Theorem 2.3 for the wholedomain ~
. However, the unbounded domain ~
 a

ording to Theorem 2.2 is only an aux-iliary 
onstru
tion to treat the edge singularities of the original problem whi
h is de�nedon the bounded domain 
. Therefore the regularity on bounded subsets seems to be whatreally 
ounts in pra
ti
e. 4



3 Proof of Theorem 2.3First of all, let us �x l and set W := Wl; � := �l; � := �l; S := Sl; � := �l; S :=Sl: The following proof is based on wavelet analysis. We want to use the fa
t thatfun
tion spa
es su
h as Besov spa
es 
an be 
hara
terized by wavelet expansions. Let usbrie
y re
all the basi
 fa
ts. For our purposes, it is suÆ
ient to assume that the waveletbasis is 
onstru
ted by tensor produ
ts of the univariate Daube
hies wavelets and s
alingfun
tions. In [11℄, a univariate family m of 
ompa
tly supported wavelets has been
onstru
ted. The smoothness of m in
reases without bound as m in
reases, as does thesupport of m . Moreover, the wavelet m has m vanishing moments. We �x a value of mand let � = m� be the univariate s
aling fun
tion whi
h generates the wavelet  = m .We de�ne  0 := � and  1 :=  . Further, let E denote the nontrivial verti
es of the square[0; 1℄d: Then, the set 	 of 2d � 1 fun
tions e(x1; : : : ; xd) := dYj=1 ej(xj); e 2 E; (12)generates by shifts and dilates an orthonormal wavelet basis for L2(Rd). Namely, letD := D(Rd) denote the set of dyadi
 
ubes in Rd. Ea
h 
ube I 2 D is of the formI = 2�jk + 2�j[0; 1℄d with k 2 Zd; j 2 Z. The fun
tions�I := �j;k := 2jd=2�(2j � �k); I = 2�jk + 2�j[0; 1℄d; k 2 Zd; j 2 Z; � 2 	; (13)form an orthonormal basis for L2(Rd): Consequently, ea
h fun
tion F 2 L2(Rd) has anexpansion F = P0(F ) + X�2	 XI2D+hF; �Ii�I ; (14)where D+ denotes the set of all dyadi
 
ubes of measure < 1 and P0 is a proje
tor ontothe subspa
e of L2(Rd) spanned by the translates of �(x1) : : : �(xd). By 
onstru
tion,there exists a 
ube Q satisfying supp(�) � Q for all �. Hen
e one 
an also �nd suitable
ubes Q(I) satisfying supp(�I) � Q(I); jQ(I)j <� jIj: (15)(In this paper, `a <� b' indi
ates inequality up to 
onstant fa
tors). Then, if the generator� is 
hosen suÆ
iently smooth, a fun
tion F is in the Besov spa
e B�� (L� (Rd)); 1=� =�=d+ 1=2; if and only ifkP0(F )kL� (Rd) + 0�X�2	 XI2D+ jhF; �Iij�1A1=� <1; (16)see, e.g., [19℄ for details.The 
hara
terization (16) now gives us a hint how to establish Besov regularity. Wehave to 
ompute the wavelet 
oeÆ
ients of the singular part W and to 
he
k if their`�{norm is �nite. To this end, the �rst step is to extend W to all of R3. For te
hni
alreasons whi
h will be
ome 
lear later, we pro
eed as follows. We introdu
e the distan
eto the edge S �R ÆI := infx2Q(I) r(x): (17)Furthermore, we set U := � \ B(S;R), where supp � � [�R;R℄ and B(S;R) 
learlydenotes the ball of radius R at S in R2. There exists a 
one V � R2, 
entered at S and
ontaining U , and an interval Î � I, su
h that for some suitable 
onstant C,Q(I) � V � Î if Q(I) \ (U � I) 6= ;; jIj = 2�3j and ÆI � C2�j: (18)5



Then the expli
it expressions (6) and (10) imply thatW has a trivial extension onto V �Îwhi
h we also denote by W. It is at least 
ontained in H3=2, see again [16℄, and we mayuse a Whitney extension to obtain a fun
tion on all of R3 for whi
h we again keep thenotation W. Then, on the old domain 
̂, W has an expressionW = P0(W) + X(I;�)2�hW; �Ii�I ; (19)where � denotes the set of all indi
es for whi
h (U � I) \ Q(I) 6= ;: Therefore the taskis to estimate the right{hand side in (19). It 
an be shown that P0(W) does not 
auseany serious trouble, see, e.g., [10℄ for details. Therefore it remains to establish Besovregularity for the se
ond term in (19). A

ording to (16), we are left with showing thatX(I;�)2� jhW; �Iij� <1: (20)Let us start by estimating one wavelet 
oeÆ
ient. By the vanishing moment property,ea
h wavelet �I is orthogonal to any polynomial of total degree < m. Hen
e, for anyPI 2 Pm�1, jhW; �Iij � jhW � PI ; �Iij � kW � PIkL2(Q(I))k�IkL2(R3):where Q(I) again denotes the support 
ube of �I . Combining this formula with a standardWhitney{type estimate yieldsjhW; �Iij � kW � PIkL2(Q(I))k�IkL2(Q(I)) <� 2�4jjWjW 4(L2(Q(I))): (21)We �x a re�nement level j and introdu
e the sets�j := f (I; �) j jIj = 2�3jg;�j;k := f (I; �) 2 �j j k2�j � ÆI < (k + 1)2�jg;�oj := �jn�j;C; �j;C := f(I; �) 2 �j j ÆI < C2�jg:The �rst step is to estimate the 
ontribution of all wavelets 
orresponding to a �xedindex set �j;k � �oj . The Whitney estimate (21) immediately impliesXI2�j;k jhW; �Iij� <� XI2�j;k 2�4j� 0�ZQ(I) Xj�j=4 j��Wj2dx1A�=2 :so that, by using H�olders's inequality with p = 2=� and q = 2=(2� �) and the fa
t thatj�j;kj <� 2jk, we obtainXI2�j;k jhW; �Iij� <� 2�4j�2j(2��)=2k(2��)=2 0� XI2�j;k ZQ(I) Xj�j=4 j��Wj2dx1A�=2 :By employing the set R := fx 2 R2 j k2�j � r � (k+1)2�jg\V; this expression may berewritten asXI2�j;k jhW; �Iij� <� 2(�(9=2)�+1)jk(2��)=2 0�ZÎ ZR Xj�j=4 j��Wj2dx1dx2dx31A�=2<� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4 ZR j��Wj2dx3dx2dx11A�=2 :6



Therefore, by using the de�nition of W and Leibniz rule, we �ndXI2�j;k jhW; �Iij� <� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4 ZR j��((K � �)S)j2dx3dx2dx11A�=2<� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4X��� ZR j� � ����Kj2j��Sj2dx3dx2dx11A�=2<� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4X��� ZR �ZR j�(x3 � t)jj����K(r; t)jdt�2 dx3j��Sj2dx2dx1��=2The next step is to employ the Minkowski{inequality. This yieldsXI2�j;k jhW; �Iij� <� 2(�(9=2)�+1)jk(2��)=2 0�ZR Xj�j=4X��� ZR �ZR j�(x3 � t)j2dx3�1=2j����K(r; t)jdt!2j��Sj2dx2dx1��=2<� 2(�(9=2)�+1)jk(2��)=2) 0�ZR Xj�j=4X����ZR j����K(r; t)jdt�2 j��Sj2dx2dx11A�=2: (22)A dire
t 
omputation shows that ��S <� r��j�j (23)and ZR j����K(r; t)jdt <� r�j���j: (24)Consequently, by inserting (23) and (24) into (22) we �nally obtainXI2�j;k jhW; �Iij� <� 2(�9=2)�+1)jk(2��)=2 0�ZR Xj�j=4X��� r�2j���jr2(��j�j)dx2dx11A�=2<� 2(�(9=2)�+1)jk(2��)=2 �ZR r(2��8)dx2dx1��=2<� 2(�(9=2)�+1)jk(2��)=2 �(k2�j)(2��8)jRj��=2<� 2(�(9=2)�+1)jk(2��)=2(k2�j)(2��8)(�=2)(k2�2j)�=2<� 2(�(9=2)�+1)jk(��4)�+12�j�(��3)<� 2j(1��(3=2+�))k(��4)�+1:The next step is to treat a typi
al set �oj : We getXI2�oj jhW; �Iij� <� 2j(1��(3=2��)) 1Xk=k1 k(��4)�+1;and we are in business if �(�4 + �) < �2; i.e.; 1� < 4� �2 ;7



whi
h 
orresponds to s < 9� 3�2 : (25)We now de�ne �o = [1j=1�oj and sum the last inequality over all re�nement levels. Thisyields XI2�o jhW; �Iij� <� 1Xj=1 2j(1��(3=2+�))and the geometri
 series 
onverges if�(32 + �)� + 1 < 0; i.e.; s < 3 + 3�: (26)Sin
e 1=2 < � < 1, it turns out that 9� 3� < 2 + 3�, so that in the setting of Theorem2.3 
ondition (26) is always satis�ed.It remains to study the sets �j;C: Combining the fa
t that j�j;Cj <� 2j with H�olders'sinequality yieldsX(I;�)2�j;C jhW; �Iij� <� 2j( 2��2 )0� X(I;�)2�j;C jhW; �Iij21A�=2
<� 2j( 2��2 )2�j(3�=2)0� X(I;�)2�j;C 23jjhW; �Iij21A�=2 :Therefore summing over all re�nement levels and using H�older's inequality on
e againgives 1Xj=0 X(I;�)2�j;C jhW; �Iij� <� 0� 1Xj=1 2j(1� 3�2�� )1A 2��2 0� 1Xj=0 X(I;�)2�j;C 23jjhW; �Iij21A�=2 :Sin
e W 2 H3=2(R3), the se
ond sum is �nite, see again [19℄ for details. The �rst sum is�nite if 1� 3�2� � < 0; i.e., s < 9=2:The theorem is proved.Referen
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