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ADAPTIVE WAVELET METHODS FOR SADDLE POINT PROBLEMS| OPTIMAL CONVERGENCE RATES�STEPHAN DAHLKEy, WOLFGANG DAHMENz, AND KARSTEN URBANzAbstrat. In this paper an adaptive wavelet sheme for saddle point problems is developed and analysed. Underthe assumption that the underlying ontinuous problem satis�es the inf-sup ondition it is shown in the �rst part underwhih irumstanes the sheme exhibits asymptotially optimal omplexity. This means that within a ertain range theonvergene rate whih relates the ahieved auray to the number of involved degrees of freedom is asymptotially the sameas the best wavelet N-term approximation of the solution with respet to the relevant norms. Moreover, the omputationalwork needed to ompute the approximate solution stays proportional to the number of degrees of freedom. It is remarkablethat ompatibility onstraints on the trial spaes suh as the Ladyshenskaja-Babu�ska-Brezzi (LBB) ondition do not arise.In the seond part the general results are applied to the Stokes problem. Aside from the veri�ation of those requirementson the algorithmi ingredients the theoretial analysis had been based upon, the regularity of the solutions in ertain Besovsales is analyzed. These results reveal under whih irumstanes the work/auray balane of the adaptive sheme is evenasymptotially better than that resulting from preassigned uniform re�nements. This in turn is used to selet and interpretsome �rst numerial experiments that are to quantitatively omplement the theoretial results for the Stokes problem.Key Words: Saddle point problems, wavelet bases, norm equivalenes, adaptive re�nements, fast ap-proximate operator appliation, Uzawa iteration.1. Introdution. This paper draws on two major soures of motivation. First, it has reently beenshown in [8℄ that ertain adaptive wavelet shemes are asymptotially optimal for a wide lass of selfadjointellipti operator equations. This means that the ahieved auray in the energy norm expressed in termsof the numbers of involved degrees of freedom is asymptotially the same as the rate of the best N-termapproximation, i.e., the minimal number of basis funtions needed to approximate the solution within thegiven auray tolerane. Moreover, (up to additional log-fators in sorting operations, see also Remark4.9 below) it was shown that the omputational work needed to ompute the approximate solution staysproportional to the number of degrees of freedom. While the lass of operator equations overs boundaryvalue problems for partial di�erential equations as well as singular integral equations, symmetry did playa ruial role in the analysis and design of the sheme. These tehniques have meanwhile been extendedto non-oerive problems through wavelet least squares formulations [9℄.Seond, in [14℄ the results of a predeessor [13℄ of [8℄ also for the symmetri ellipti ase have beenextended to saddle point problems. The key idea there was to use an outer Uzawa iteration and to solvethe interior symmetri positive de�nite problems by a sheme of the type onsidered in [13℄. However, nostatements about the eÆieny of suh shemes in terms of onvergene rates and work ount was madein [14℄.In this paper we also onsider saddle point problems atually under slightly weaker assumptions thanin [14℄ and propose an adaptive wavelet sheme for their numerial solution. In order to avoid (amongother things) the squaring of ondition numbers, it is based as in [14℄ on an outer Uzawa iteration althoughit di�ers from the sheme in [14℄ in several essential ways. It draws on detailed algorithmi ingredientsfrom [8℄ whih allow one to quantify onrete omputational steps and estimate their omplexity whihresults in a somewhat di�erent balane of auraies. It also applies when the symmetri bilinear formis only ellipti on the kernel of the onstraint operator.On a more fundamental level, in the same spirit as in [8, 9℄, there are two essential features thatdistinguish the present approah from [13, 14℄ and more so from lassial disretizations. The �rst oneis that through appropriate wavelet bases the original ontinuous problem is transformed right from thebeginning into an equivalent problem whih is well-posed in the Eulidean metri. All essential ompu-tational steps refer then to approximation in `2 and therefore bear a great potential of being portable toother problem lasses. In fat, many of the basi routines developed in [2, 8℄ in the ontext of elliptiproblems an be used here as well. The seond important point is that the wavelet representation allowsus to think of performing, up to a ontrolled perturbation, an iteration on the full in�nite dimensional�This work has been supported in part by the Deutshe Forshungsgemeinshaft grants Da 117/8{2, SFB 401, and theTMR Network \Wavelets in Numerial Simulation" funded by the European Commission.yUniversit�at Bremen, Fahbereih 3, ZeTem, Postfah 330440, 28359 Bremen, Germany, dahlke�math.uni-bremen.dezRWTH Aahen, Institut f�ur Geometrie und Praktishe Mathematik, Templergraben 55, 52056 Aahen, Germany,fdahmen,urbang�igpm.rwth-aahen.de 1



problem realized through the adaptive approximate appliation of the full in�nite dimensional operators.The toleranes have to be hosen so that the onvergene speed of the perturbed realizable iteration isindeed governed by the properties of the ideal in�nite dimensional iteration.This o�ers, in partiular, a �rst intuitive explanation for the following fat whih at the �rst glanestrikes one as a paradoxon, namely ompatibility onstraints on the hoie of trial funtions suh as theLBB ondition do not arise. In fat, reall that even when the in�nite dimensional saddle point problem iswell posed and hene satis�es an inf-sup ondition inappropriate hoies of �nite dimensional trial spaesould lead to disrete problems with poor stability properties, that is the inverses of the orrespondingsystem matries may have arbitrarily large norm. This fat is relevant whenever linear systems are too besolved for any suh given pair of trial spaes. In the present ontext this situation will never arise. Insteadan iterative proess is oneptually applied to the full in�nite dimensional problem where eah iterationinvolves an adaptive appliation of the underlying in�nite dimensional operators within a ertain stagedependent dynami auray tolerane. This proess is inherently nonlinear. Roughly speaking properadaptation in the above sense inherits the stability of the in�nite dimensional problem. In this senseadaptation not only redues omplexity but also stabilizes the omputation automatially.The paper is organized as follows. After formulating the problem in Setion 2 we desribe and analysean adaptive method in Setion 3. It will be shown in Setion 4 under whih onditions on the algorithmiingredients it exhibits an asymptotially optimal auray/work balane in the following sense. Wheneverthe exat solution has, within a ertain range of exponents s, an error of best N-term approximation withrespet to an underlying wavelet basis deaying like N�s, then the error ahieved by the adaptive shemealso deays like N�s where N is the number of used degrees of freedom. Moreover, the omputationalwork stays proportional to N . A key role in this ontext is played by the ompressibility range of theinvolved operators in wavelet oordinates. Given this property one an apply a ertain adaptive shemefor applying the operator to any �nitely supported vetor with optimal auray/work balane [8℄.In Setion 5 the general results are applied to the Stokes problem. Spei�ally, we investigate inSetion 5.3 the ompressibility range of the wavelet representation of the Stokes operator for a ertainfamily of wavelet bases and derive sharp estimates for this range. This identi�es the range of deay ratesfor whih the general results from the preeding setions apply.It should be stressed that the sheme works without any a-priori assumptions on the solution whileits omplexity is analysed under the assumption that the solution has a ertain order of best N -termapproximation and the involved operators in wavelet oordinates have a ertain ompressibility range(see Setion 4). Certain rates of best N -term approximation, in turn, are (almost) equivalent to aertain regularity of the solution in a Besov sale. Roughly speaking, when the Sobolev regularity of thesolution is lower than its Besov regularity, the adaptive sheme is expeted to o�er even an asymptotiallybetter auray/work balane than linear shemes. To see whether or under whih irumstanes theadaptive sheme an be rigorously proven to o�er even an asymptotially better auray/work balanethan shemes based on uniform preassigned mesh re�nements, we investigate in Setion 5.4 the Besovregularity of singularity solutions for the Stokes problem. The results show that in two spatial dimensionssuÆiently high order wavelet bases would give rise to adaptive shemes with arbitrarily high onvergenerates.Finally in Setion 6 we present some numerial experiments essentially guided by the above mentionedtheoretial onsiderations. Here we make use of the software developed in [2℄ as well as in [25℄. The resultson�rm that the adaptive sheme performs essentially independently of the pairing of trial funtions forveloities and pressure. For instane, the rate of best N -term approximation is met within a fator twowhen both veloities and pressure are approximated by pieewise linear trial funtions.After ompletion of this work we beame aware of related investigations in [4℄ pursuing similar ideasin a �nite element ontext. There onvergene in the sense of [14℄ is proven for a similar Uzawa tehniquewithout establishing, however, rigorous estimates for the orresponding work/auray balane.2. Saddle Point Problems.2.1. The Setting. Let X;M denote Hilbert spaes with norms k � kX ; k � kM , respetively. Dualpairings on X�X 0 andM�M 0 (X 0;M 0 denoting the duals of X;M , respetively) will always be denotedby h�; �i. It will be lear from the ontext whih spaes are referred to. Suppose that a(�; �) is a ontinuous2



symmetri bilinear form on X �X and that b(�; �) is a ontinuos bilinear form on X �M , i.e.,ja(v; w)j <� kvkXkwkX ; jb(q; v)j <� kvkXkqkM :Moreover, denoting by B : X ! M 0 the operator indued by b(p; v) = hp;Bvi and setting V := kerB,assume that a(�; �) is ellipti on V and b(�; �) satis�es the inf-sup onditiona(v; v) � �kvk2X ; v 2 V; infq2M supv2X b(v; q)kvkXkqkM > �:(2.1.1)It is well known that then the variational problem has for any f 2 X 0, g 2M 0a(u; v) + b(p; v) = hf; vi 8 v 2 X;b(q; u) = hq; gi 8 q 2M;(2.1.2)a unique solution U = (u; p) 2 X �M , see e.g. [5℄. De�ning A : X ! X 0 by a(v; w) = hv;Awi, v 2 X ,(2.1.2) is equivalent to the 2� 2 blok operator equationLU := 0� A B0B 0 1A�up� = �fg� =: F;(2.1.3)where L is an isomorphism from X �M into its dual X 0 �M 0, i.e. there exist positive onstants L; CLsuh that L �kvk2X + kqk2M�1=2 � L�vq�X0�M 0 � CL �kvk2X + kqk2M�1=2 :(2.1.4)Classial examples are mixed formulations of seond order ellipti boundary value problems, theStokes problem or the system obtained when appending essential boundary onditions by Lagrangemultipliers.2.2. Wavelet Coordinates. Now suppose that we have wavelet bases 	X = f X;� : � 2 JXg,	M = f M;� : � 2 JMg for X and M at our disposal suh that for suitable diagonal matries DX , DMand onstants X ; CX , M , CM one hasXkvk`2(JX ) � kvTD�1X 	XkX � CXkvk`2(JX );(2.2.1)and likewise Mkqk`2(JM ) � kqTD�1M 	MkM � CMkqk`2(JM );(2.2.2)where vTD�1X 	X :=P�2JX d�1X;�v� X;�. The validity of suh norm equivalenes will be ruial in whatfollows. Note that often M is a losed subspae of �nite odimension in a larger Hilbert spae M̂ forwhih (2.2.2) holds. For instane, in the ase of the Stokes problem M is the spae of all L2 funtionswith zero mean. Thus the arrays of wavelet oeÆients of elements in M will in general form a losedsubspae `2;0(JM ) of �nite odimension in `2(JM ).At this point we dispense with any additional tehnial details about the preise nature of the basisfuntions but refer to [7, 15℄ for surveys and further referenes, see also the omments in onnetion withnumerial realizations below. A further important property is the anellation property whih entailsnear sparseness of wavelet representations for many operators. This will also be detailed when neessityarises.De�ning now for any two ountable arrays �;� and some inner produt (�; �) the matrix (�;�) :=((�; �))�2�;�2�, onsider as usual the saled wavelet representationsA := a(D�1X 	;D�1X 	); B := b(D�1M 	M ;D�1X 	X);(2.2.3) 3



as well as the arrays f := D�1X h	X ; fi, g := D�1M h	M ; gi and F := (fT ;gT )T . Then (2.1.2) or (2.1.3) isequivalent to the following two by two blok matrix system0� A BTB 0 1A�up� = �fg�:(2.2.4)It will make things muh more transparent when working from now on exlusively in the `2 setting.2.3. Well-Posedness in `2. It follows from (2.2.1) and (2.2.2) together with (2.1.4) that the oper-ator L := 0� A BTB 0 1A : `2(J ) := `2(JX )� `2;0(JM )! `2(J ); J := JX �JM ;is an isomorphism, i.e., there exist positive onstants L; CL suh that for V := (vT ;qT )T 2 `2(J ),kVk2̀2(J ) = kvk2̀2(JX ) + kqk2̀2(JM )LkVk`2(J ) � kLVk`2(J ) � CLkVk`2(J ); V 2 `2(J );(2.3.1)see e.g., [15, 22℄ for further details. Clearly L; CL an be expressed in terms of the onstants L; CL,Y ; CY for Y 2 fX;Mg. Furthermore there exist onstants CB , C 0A suh thatkBvk`2(JM ) � CBkvk`2(JX ); kBTqk`2(JX ) � CBkqk`2(JM ):(2.3.2)and kAvk`2(JX ) � C 0Akvk`2(JX ):(2.3.3)2.4. The Shur Complement. In many ases a somewhat stronger property than the �rst relationin (2.1.1) is valid, namely that a(v; v) � kvk2X ; v 2 X;(2.4.1)whih, of ourse means that A is invertible on all of `2(JX ). In this ase blok elimination redues (2.2.4)to the so alled redued system Sp = BA�1f � g;(2.4.2)involving the (in�nite dimesnional) Shur omplementS := BA�1BT : `2;0(JM )! `2;0(JM )(2.4.3)whih is symmetri positive de�nite and, under the above assumptions, in fat an automorphism on`2;0(JM ), i.e., there exist positive onstants S ; CS suh thatSkqk`2(JM ) � kSqk`2(JM ) � CSkqk`2(JM ); q 2 `2;0(JM ):(2.4.4)One p has been determined from (2.4.2) it remains to solve the positive de�nite problemAu = f �BTp:(2.4.5)However, under the weaker assumption (2.1.1) on the bilinear form a(�; �) one has to take �rst apreaution whose variational ounterpart is sometimes referred to as augmented Lagrangian method. Inthe present setting it boils down to onsidering the matrixÂ := A+ BTB;(2.4.6)where  is some suÆiently large but �xed positive onstant.4



Remark 2.1. Under the assumption (2.1.1) the matrix Â is an automorphism on `2(JX ), i.e., thereexist positive onstants A; CA suh thatAkvk`2(JX ) � kÂvk`2(JX ) � CAkvk`2(JX ); v 2 `2(JX ):(2.4.7)Proof: It follows from (2.3.2) and (2.3.3) that Â is bounded on `2(JX). Moreover, by (2.3.1) the matrixLTL = L2 is positive de�nite on `2(J ). Sine BBT is a prinipal blok of L2 it is positive de�nite on`2;0(JM ). This entails that Â is also injetive on `2(JX ). To see this note that by the �rst relation in(2.1.1), vT Â 6= 0 for v 2 kerB. On the other hand, when v is in the range of BT , i.e., v = BTq forsome q 2 `2;0(JM ), then one hasvT Âv = qTBABTq+ kBBTqk2̀2(JM )(2.4.8)whih, by the previous remark, is stritly positive whenever p 6= 0, on�rming injetivity of Â on `2(JX).By symmetry (2.4.8) also implies surjetivity. Due to the boundedness of Â, the laim follows now fromthe Inverse Mapping Theorem.Now multiply (2.2.4) from the left by the `2(J )-isomorphism0� id BTB 0 1A ;(2.4.9)whih yields the equivalent system 0� Â BTB 0 1A�up� = � f̂g�;(2.4.10)for some  > 0, where for Â given by (2.4.6) f̂ := f + BTg:By Remark 2.1 blok elimination an be applied to this new system (2.4.10) whih then redues to theoupled systems (2.4.2), (2.4.5) with A and f replaed by Â, respetively f̂ .To simplify notation we will use the following onvention throughout the remainder of the paper. Wewill always set A := D�1X a(	X ;	X)D�1X + BTB; f := D�1X h	X ; fi+ BTg;(2.4.11)with B := D�1M b(	M ;	X)D�1X as in (2.2.3) and g := D�1M h	M ; gi. When the bilinear form a(�; �)satis�es the stronger assumption (2.4.1) the onstant  in (2.4.11) an be hosen to be zero. Otherwise, is any �xed positive number. Thus without loss of generality we an always make use of the reduedsystems (2.4.3), (2.4.5) with a proper interpretation of the matrix A aording to the above onvention.Consequently, A satis�es in this sense (2.4.7).A standard way of formulating �nite dimensional problems is to take Galerkin disretizations for(2.1.2). As soon as one �xes a pair of �nite dimensional trial spaes in X and M , for instane, spannedby olletions of wavelets, the orresponding Galerkin disretization gives rise to a �nite dimensionallinear system, e.g. in terms of a prinipal �nite submatrix of (2.2.4). However, it is well-known thatstability of the in�nite dimensional problem does not guarantee the �nite dimensional problems to beuniformly stable as well. Compatibility onstraints in terms of the LBB ondition ome into play. It willbe seen that this will not be the ase in the following adaptive framework.3. An Adaptive Uzawa-Strategy. 5



3.1. In�nite Dimensional Uzawa Iteration. The idea is to use a stationary iterative sheme forthe solution of the redued system (2.4.2) whih is essentially the Uzawa strategy proposed in [14℄. Inontrast, we formulate it here diretly for the disrete in�nite dimensional `2-problem (2.2.4). To thisend, we have to address �rst an issue whih is somewhat hidden in the `2-setting. The Spaes X;M arealways funtion spaes on some domain 
. As will be explained in more detail later the wavelet bases	X and 	M are then typially onstruted as Riesz bases for the orresponding spaes L2(
), i.e, inaddition to the norm equivalenes (2.2.1), (2.2.2) one also haskvk`2(JX ) � kvT	XkL2(
); kqk`2(JM ) � kqT	MkL2(
):(3.1.1)This means that there exist dual bases ~	X , ~	M in L2(
) whih are also Riesz bases and satisfy(	X ; ~	X) = id; (	M ; ~	M ) = id;(3.1.2)where (�; �) denotes the standard inner produt in L2(
). In full agreement with the fat that the operatorB maps X into M 0 one observes that for v = vTD�1X 	X the array Bv represents expansion oeÆientsof Bv with respet to the dual basis ~	M . In fat,(Bv)TDM ~	M = vT hBD�1X 	X ;	M iD�1M DM ~	M = vT hBD�1X 	X ;	M i~	M= B(vTD�1X 	X) = Bv:Likewise the array g onsists by de�nition of the wavelet oeÆients with respet to the dual basis ~	M .On the other hand, the unknown array q in the redued system (2.4.2) ontains oeÆients with respetto the primal basis 	M . Now, as mentioned before, in some ases the spae M is atually a losedsubspae of a somewhat larger Hilbert spae haraterized by 	M . Therefore the wavelet oeÆientsof elements of M with respet to 	M (or D�1M 	M ) satisfy ertain onstraints whih generally dependon the partiular wavelet basis. To hange representations if neessary, observe that, in view of (3.1.2)~	M = (~	M ; ~	M )	M , so that suh a hange of bases is realized by the matrixR := (~	M ; ~	M )(3.1.3)beause ~pT ~	M = ~pTR	M = (R~p)T	M :It immediately follows from (3.1.1) that both R and R�1 = (	M ;	M ) are bounded on `2(JM ),kRk`2(JM )!`2(JM ) � CR:(3.1.4)Sine S is positive de�nite and satis�es (2.4.4) there exists therefore some positive ! (e.g. ! < 2CSCR)suh that � := kid� !RSk`2(JM )!`2(JM ) < 1:(3.1.5)Then the in�nite dimensional version of the Uzawa sheme reads as follows.UZAWA: Given any p0 2 `2;0(JM ), ompute for i = 1; 2; : : :Aui = f �BTpi�1;(3.1.6) pi = pi�1 + !R(Bui � g):(3.1.7)This is known to onverge when � < 1. In fat, sine u = A�1(f �BTp) it is easy to see thatp� pi = (id� !RS)(p� pi�1);so that kp� pik`2(JM ) � �ikp� p0k`2(JM ):(3.1.8)Moreover, it has been shown in [14℄ that for p0 = 0 one haskp� pik`2(JM ) � kA�1fk`2(JX )k!RSBk`2(JX )!`2(JM ) �i1� � :(3.1.9) 6



3.2. The Adaptive Sheme. As in [9℄ the key idea is to apply the above Uzawa iteration to theininite dimensional problem. In view of (3.1.6) and (3.1.7), this involves three tasks, namely addingsequenes with generally in�nite support suh as the data f and g, the appliation of in�nite matrieslike B or BT to �nitely supported vetors, as well as the solution of ellipti problems involving the in�nitematrix A. Of ourse, in pratie neither one of these tasks an be performed exatly. Therefore one hasto employ suitable approximations whose auray will depend on the urrent stage of the algorithm andwhih will be desribed next.To this end, we shall not distinguish formally between �nitely supported vetors and in�nite sequenesin `2(J 0) where in the sequel J 0 2 fJX ;JMg, but will rather view both quantities as sequenes (expandedby zero entries if neessary).The �rst basi ingredient is the routineNCOARSE [�;v℄ ! (�v;�) whih determines for a given �nitely supported vetor v a vetor �v withsmallest possible support � suh that kv� �vk`2(J ) � �:(3.2.1)In partiular, NCOARSE will be used to approximate the arrays fÆ := D�1X h	X ; fiX and g of givendata by �nitely supported vetors. The way how to think about NCOARSE in this ontext an beformulated as the followingAssumption f: In a preproessing step for a given target auray suÆiently many (wavelet) oeÆ-ients in the arrays fÆ and g are made available and ordered by size.In many appliations f and g are simple and, as model data given by the user, are onsidered here asompletely aessible. Coarser approximations of the data are then obtained by applying NCOARSEto these preproessed �nite arrays (see Setion 6.1 in [8℄ for a more detailed disussion).The seond basi ingredient is an approximate appliation of an in�nite matrix to a �nitely sup-ported vetor. Given an in�nite matrix C (as a mapping from `2(J 00) to `2(J 0) for any pair (J 0;J 00) 2fJX ;JMg2), the shemeAPPLY [�;C;v℄ ! (w;�) produes for any �nitely supported input vetor v a vetor w with �nitesupport � � J 0 suh that kCv�wk`2(J 0) � �:(3.2.2)A sheme with this property has been developed in [8℄. We postpone a quik desription of therelevant features along with estimates for its omputational ost to a later setion.Note that, in partiular, the routines APPLY and NCOARSE allow us to approximately evaluatethe right-hand sides of (3.1.6) and (3.1.7).So the remaining task in an approximate Uzawa iteration of the form (3.1.6), (3.1.7) is to solve theoperator equation (3.1.6) with system matrix A. This is an ellipti problem in the sense of [8℄ and wewill make heavy use of the results obtained there, see also [2℄ for implementations and numerial tests.The sheme from [8℄ is also built solely on the above routines NCOARSE and APPLY. There are,however, two minor points that need to be briey addressed. First in [8℄ the matrix A is just the waveletrepresentation of the underlying ellipti operator while in the present situationA has the form (2.4.11) forsome positive onstant  when a(�; �) is not ellipti on all of X . Nevertheless, one a sheme APPLY forwavelet representations is availabele a sheme for applying matries of the form (2.4.11) with  6= 0 is eas-ily obtained from suh a building blok as follows. To simplify notation we set AÆ := D�1X a(	X ;	X)D�1X :APPLY�[�;A;v℄! (w;�)(i) APPLY [�=2;AÆ;v℄! (w1;�1);(ii) APPLY [�=4CB ;B;w1℄! (w2;�2); 7



(iii) APPLY [�=4; BT ;w2℄! (w3;�3) and setw := w1 +w3; � := �1 [ �3:Remark 3.1. One easily derives from (3.2.2) that the output w produed by APPLY�[�;A;v℄satis�es for A given by (2.4.11) kAv �wk`2(JX ) � �:(3.2.3)Moreover, it is also lear that up to a uniform onstant the work/auray balane for APPLY� is thesame as that for APPLY. Note that the matrix BTB is, of ourse, never omputed.We will extrat now from the results in [8℄ a version for the treatment of (3.1.6) (with APPLYreplaed by APPLY� if neessary) that suits the present needs best. To this end, onsider for A asabove the ellipti problem Au = h(3.2.4)for some h 2 `2(JX ) with exat solution û.ELLSOLVE [";A;v;h℄! (�u;�)Given " > 0 and an approximate solution v to (3.2.4), then the output �u with �nite support � satis�eskû� �uk`2(JX ) � ":(3.2.5)The seond point is that in [8℄ the right-hand data are assumed to be a given array of waveletoeÆients as explained above that an be preproessed. In the present situation the right-hand dataare omposed of suh preproessable data like f and an additional matrix/vetor produt involvingdynamially updated entities. We therefore have to approximate these data by �nitely supported vetorsthat an then be proessed as in Setions 7.2, 7.3 of [8℄. The orresponding perturbations an be estimatedas follows.Remark 3.2. Consider again (3.2.4) and suppose that approximate �nitely supported right-handside data h� 2 `2(JX ) are given suh thatkh� h�k`2(JX ) � �:(3.2.6)Then the output �u of ELLSOLVE [�;A;v;h� ℄ satis�eskû� �uk`2(JX ) � "+ �1A �:(3.2.7)Proof: The laim follows from (3.2.5) ombined with (2.4.7) to estimate the perturbation e�et. �We will desribe next the omputation of a �nitely supported h� when h = f �BT �pi�1, see (3.1.6).De�ning fÆ := D�1X h	X ; fi, reall from (2.4.11) thatf �B�pi�1 = fÆ �BT (�pi�1 � g);whih thus involves oarsening the given (preproessed) data fÆ;g and a multipliation by BT . Therespetive onrete auray tolerenes are given in the following routine:RHS [�p; �℄! (h�;�h)Given a �nitely supported �p the routine RHS omputes a vetor h� with �nite support �h satisfyingkf �BT �p� h�k`2(JX ) � �;(3.2.8)as follows:(i) Apply NCOARSE [�=3; fÆ℄! (�f ;�f ), NCOARSE [�=3CB;g℄! (�g;�g) and set r := �g + �p.8



(ii) APPLY [�=3;BT ; r℄! (w;�w) and seth� := �f �w; �h := �f [ �w:Sine by (3.2.1) k(�p�g)�rk`2(JX ) � �=3CB the estimate (3.2.8) indeed readily follows from (3.2.2).Our numerial realization of the ideal (in�nite dimensional) Uzawa sheme (3.1.6), (3.1.7) has thefollowing struture. A �xed uniformly bounded number K, depending only on the onstants assoiatedwith the wavelet bases and the mapping properties of the involved operators, of approximate appliationsof (3.1.6), (3.1.7) are applied whih is then followed by a oarsening step before the iteration is furtherresumed. Suh an iteration blok will be arranged to advane the urrent approximate solutions so asto redue the urrent error bounds by a �xed fator. Before giving a preise desription, we would liketo stress that the Uzawa sheme as a gradient method for the redued system (2.4.2) treats in somesense q 2M as the \preferred" variable. In fat, the auray of the approximate solution to the elliptiproblem (3.1.6) need not be too aurate relative the the urrent auray of the approximation to q. Inorder to formulate now the basi iteration blok as a onrete routine we will use the following hoiefor the number K of perturbed iterations before the next oarsening step. Let i denote any positivesummable numbers, e.g. i = (1 + i)�2. Moreover, we need some ontrol parameters. SetC1 := !(CRCB + 2) + 1;(3.2.9)where  :=P1i=0 i, and let K denote the smallest integer suh that�K((�A)�1CBC1 + 1) � 1=10:(3.2.10)ADV [�u; �p; Æ℄! (~u; ~p;�u;�q)Given urrent approximations �u; �p of the solution to (2.2.4) suh thatk�u� uk`2(JX ) � Æ; k�p� pk`2(JM ) � Æ;(3.2.11)ADV [�u; �p; Æ℄ produes new approximations ~u; ~p as follows(i) Set i = 1, �p0 := �p, �u0 := �u.(ii) If i � K go to (iii); elseNCOARSE [2Æ=5; �pi�1℄! (~p;�q);NCOARSE [2Æ=5; �ui�1℄! (~u;�u);(iii) Apply RHS [�pi�1; Ai�iÆ=2℄! (hi;�hi );(iv) ELLSOLVE [i�iÆ=2;A; �ui�1;hi℄! (�ui;�Xi ).(v) NCOARSE [i�iÆ=2CR;g℄! (ĝi; �̂i);APPLY [i�iÆ=2;R; ĝi℄! (gi;�gi );APPLY [i�iÆ=2CR;B; �ui℄! (p̂i; �̂i);APPLY [i�iÆ=2;R; p̂i℄! (p0i;�pi ); set�pi = �pi�1 + !(p0i � gi);set i+ 1! i and go to (ii).It will be shown later that the error bounds of the new approximations produed byADV are reduedby a fator two. The role of the �nal appliation of NCOARSE in step (ii) of ADV will be seen later toplay an important role with regard to asymptotially optimal omplexity, roughly speaking, by keepingonly signi�ant oeÆients. 9



Of ourse, when the haraterization of the spae M does not entail any onstraints on the waveletoe�iients R an be replaed by the identity in (3.1.7) in whih ase step (v) of ADV simpli�es in anobvious manner.To formulate the main algorithm reall that by (2.3.1)kuk2̀2(JX ) + kpk2̀2(JM ) � �1L �kfÆk2̀2(JX ) + kgk2̀2(JM )� :Therefore the right-hand side gives a bound for the initial error when using 0 as initial guess for u;p,respetively. The omplete adaptive Uzawa iteration an be desribed now as follows.UZAWA [A;B; f ;g; "℄! (u(");p(")):Set �0 := (�X0 ;�M0 ) � J =: JX � JM to be empty �M0 = �X0 = ;, p0 = �p0 = 0, �u = 0, Æ0 :=�1=2L �kfÆk2̀2(JX ) + kgk2̀2(JM )�1=2, J = 0, hoose a target auray ".(i) ADV [�u; �p; ÆJ ℄! (~u; ~p;�u;�q);(ii) Set ÆJ+1 := ÆJ=2.If ÆJ+1 � ", stop and aept u(") := ~u;p(") := ~p as solution.Else, set �u = ~u, �p = ~p, J + 1! J and go to (i).3.3. Convergene. The onvergene of UZAWA relies on the error redution aused by ADV.Proposition 3.3. Given a sheme APPLY suh that (3.2.2) holds then, under the above assump-tions onerning NCOARSE on the data f ;g, the vetors ~u; ~p produed by ADV [�u; �p; Æ℄ above satisfyk~u� uk`2(JX ) � Æ=2; k~p� pk`2(JM ) � Æ=2:(3.3.1)Hene, after �nitely many steps the sheme UZAWA produes �nitely supported solutions (u(");p("))satisfying ku� u(")k`2(JX ) � "; kp� p(")k`2(JM ) � ":(3.3.2)Proof: Set p0 := �p0 = �p, �u0 := �u and observe thatpi � �pi = pi�1 + !R(Bui � g)� �pi�1 � !(p0i � gi)= pi�1 � �pi�1 + !(RBui � p0i �Rg+ gi)(3.3.3) = (id� !RS)(pi�1 � �pi�1) + ! �R(BA�1BT )(pi�1 � �pi�1) +RBui � p0i + gi �Rg� :Sine Aui = f �BTpi�1 we an replae BTpi�1 by f �Aui to obtain! �R(BA�1BT )(pi�1 � �pi�1) +RBui � p0i + gi �Rg�= ! �R(BA�1f �Bui +Bui �BA�1BT �pi�1)� p0i + gi �Rg�= ! �RBA�1(f �BT �pi�1)� p0i + (gi �Rg)�(3.3.4)Thus RBA�1(f �BT �pi�1)� p0i = RB �A�1(f �BT �pi�1)� �ui�+ (RB�ui � p0i)(3.3.5)Hene ombining (3.3.3), (3.3.4) and (3.3.5) and realling (3.1.5), yieldskpi � �pik`2(JM ) � �kpi�1 � �pi�1k`2(JM ) + ! �kRB �A�1(f �BT �pi�1)� �ui� k`2(JM )+ kRB�ui � p0ik`2(JM ) + kgi �Rgk`2(JM )�(3.3.6) � �kpi�1 � �pi�1k`2(JM ) + !CRCBkA�1(f �BT �pi�1)� �uik`2(JX ) + 2!i�iÆwhere we have used the toleranes in step (v) of ADV. By (3.2.8) we have for the output hi of step(iii) in ADV that khi � (f �BT �pi�1)k`2(JX ) � Ai�iÆ=2 whih, in view of the toleranes in step (iv)of ADV and (3.2.7), implies kA�1(f �BT �pi�1)� �uik`2(JX ) � i�iÆ:(3.3.7) 10



Therefore we dedue from (3.3.6) thatkpi � �pik`2(JM ) � �kpi�1 � �pi�1k`2(JM ) + !(CRCB + 2)i�iÆ:(3.3.8)Iterating this estimate and bearing in mind that p0 = �p0, provideskpi � �pik`2(JM ) � !(CRCB + 2) iXl=1 i! �iÆ:(3.3.9)Sine by (3.1.8) and the assumption, kp � pik`2(JM ) � �ikp � p0k`2(JM ) = �ikp � �pk`2(JM ) � �iÆ weonlude that kp� �pik`2(JM ) � (!(CRCB + 2) iXl=1 l!+ 1) �iÆ;(3.3.10)whih, in view of (3.2.10), gives kp� �pKk`2(JM ) � Æ=10:(3.3.11)Now reall that by step (ii) of ADV the �nal approximation ~p is obtained by oarsening �pK . Thuskp� ~pk`2(JM ) � kp� �pKk`2(JM ) + k�pK � ~pk`2(JM ) � �25 + 110� Æ = Æ2(3.3.12)as laimed.It remains to estimate the auray of �uK . Denoting by ûi be the exat solution ofAûi = fi�BT �pi�1,(3.3.7) and (3.2.7) say that kûi � �uik`2(JX ) � i�iÆ. Writingu� �ui = u� ûi + �ui � �ui = A�1BT (�pi�1 � p) + ûi � �ui;(3.3.13)and de�ning C1 := !(CRCB + 2) + 1, one obtainsku� �uik`2(JX ) � (A�)�1CBC1�iÆ + i�iÆ = �(A�)�1CBC1 + i� �iÆ:Again, we infer from (3.2.10) that ku� �uKk`2(JX ) � Æ=10;(3.3.14)so that by the same reasoning as in (3.3.12) ~u produed by NCOARSE [2Æ=5; �uK ℄ satis�es ku �~uk`2(JX ) � Æ=2, whih ompletes the proof.As an immediate onsequene of the norm equivalenes (2.2.1), (2.2.2) one has the following fat.Corollary 3.4. Let u = uTD�1X 	X , p = pTD�1M 	M be the exat solution of (2.1.2). Thenthe �nite expansions u(") := uT (")D�1X 	X , p(") = pT (")D�1M 	M with terms from the �nite index sets�u(") � JX , �q(") � JM satisfy ku� u(")kX � "; kq � q(")kM � ";(3.3.15)uniformly in ", where  depends only on the onstants in (2.1.4), (2.2.1), (2.2.2).To keep things transparent we have based the above onsiderations on the simplest version (3.1.6),(3.1.7) of an Uzawa iteration. It will be seen below that already this version gives rise to asymptotiallyoptimal onvergene properties. Of ourse, similar results would be obtained for di�erent auraytoleranes as long as they di�er by onstants leading possibly to di�erent values ofK. Nevertheless, severalmore important possibilities suggest themselves to realize quantitative improvements, e.g. by replaingthe Rihardson iteration by a gradient or onjugate gradient iteration. This avoids the need of estimatingstep size parameters and should speed error redution. Note that these variants still involve only thesame algorithmi tasks namely approximate appliation of operators in the above sense. Furthermore,the number K of subiterations is likely to be too pessimisti. Therefore it would be preferable to monitorthe error deay as follows. Note that pi � gi in step (v) of ADV approximates R(Bui � pi) and, inview of (3.1.6), (3.1.7), the residual R(BA�1f � g� Spi�1). By (2.4.4) and the bounded invertibility ofR this residual an be bounded from below and above by �xed onstant multiples of the urrent error ofthe approximate solution to the redued system (2.4.2). Thus monitoring kp0i�gik`2(JM ) an be used asa stopping riterion. This is expeted to result in frequent early termination of step (ii) in ADV. Thesepoints will be taken up in more detail elsewhere. 11



4. Complexity Analysis. Of ourse, the entral questions now are how to ome up with an AP-PLY sheme with the desired properties and what is the omputational ost of UZAWA for a giventarget auray ". In the present generality ost will be measured by storage requirements and the numberof ops required by the sheme (well being aware of the fat that this is not the full story).4.1. Best N-Term Approximation. As in [8℄ we will relate the performane of the adaptivesheme to what ould be ahieved at best namely the approximation of the solution in terms of possiblyfew degrees of freedom within the given disretization ontext - here determined by the underlying waveletbases. Note that, in view of (3.3.15), it suÆes to deal with the oneptually muh simpler approximationin `2(J ). To explain this, it is useful to reall �rst the following notion of best N-term approximation in`2: �N;`2(J 0)(v) := infw;#suppw�N kv�wk`2(J 0);(4.1.1)where `2(J 0) stands again for `2(JX ) or `2(JM ). Thus �N;`2(J 0)(v) desribes the error as a funtionof the number of degrees of freedom when the (possibly in�nitely supported) vetor is approximatedby a vetor with at most N nonzero entries whose value and position an be hosen freely. Thus theapproximant is not taken from any �xed linear spae but from the nonlinear manifold of all vetors withat most N nonzero entries. This notion is well understood for `2, see e.g. [19℄. Obviously, �N;`2(J 0)(v) isrealized by retaining the N largest oeÆients in v whih are, of ourse, unknown when v is a solution ofa system of equations. To understand how this error behaves denote for any v 2 `2(J 0) by v� = fv�lgl2Nits dereasing rearrangement in the sense that jv�l j � jv�l+1 j and let�(v; N) := f�l : l = 1; : : : ; Ng; vN := vj�(v;N):(4.1.2)It is lear that vN is a best N -term approximation of v.In partiular, it will be important to haraterize the sequenes in `2(J 0) whose best N -term ap-proximation behaves like N�s for some s > 0. The following fats are well-known [8, 19℄. Let for0 < � < 2 jvj`w� (J 0) := supn2Nn1=� jv�nj; kvk`w� (J 0) := kvk`2(J 0) + jvj`w� (J 0):(4.1.3)It is easy to see that for any � < � 0 � 2kvk`�0 (J 0) <� kvk`w� (J 0) � 2kvk`� (J 0);(4.1.4)so that by Jensen's inequality, in partiular, `w� (J 0) � `2(J 0).Proposition 4.1. Let 1� = s+ 12 ;(4.1.5)then v 2 `w� (J 0) () kv� vNk`2(J 0) <� N�skvk`w� (J 0):(4.1.6)In omplete analogy one an de�ne k�k`w� (J ) for `w� (J ) := `w� (JX�JM ) by forming the rearrangementsfrom both omponent vetors v 2 `2(JX ), p 2 `2;0(JM ) and regrouping the entries to both omponentvetors.We will make use of the following result from [8℄ whih interrelates best N -term approximation in `2with the routine NCOARSE, see Setion 6.2 in [8℄.Proposition 4.2. Given v 2 `2(J 0), a toleraqne � > 0 and a �nitely supported w suh thatkv�wk`2(J 0) � �=5;Then (as has been used before), the output �w of NCOARSE [w; 4�=5℄ satis�es kv � �wk`2(J 0) � �.Moreover, when v 2 `w� (J 0) and 1� = s+ 12 for some s > 0, then there exists a onstant C depending onlyon s when s tends to in�nity suh that:kv � �wk`2(J 0) � Ckvk`w� (J 0)(# supp �w)�s;(4.1.7) 12



and k �wk`w� (J 0) � Ckvk`w� (J 0); #supp �w � Ckvk1=s��1=s:(4.1.8)Best N -term approximation will be one important ingredient in the realization of the approximateappliation of in�nite matries represented by APPLY. The other one is the (a-priori known) quasisparseness of wavelet representations whih an be formalized as follows, see [8℄.Definition 4.3. A matrix C belongs to the lass Cs� if for every s < s� there exists a positivesummable sequene (�j)j�0 and for every j � 0 there exists a matrix Cj with at most 2j�j nonzeroentries per row and olumn suh that kCj �Ck <� �j2�sj :(4.1.9)A matrix in Cs� is alled ompressible or sometimes s�-ompressible.Compressibility of a wavelet representation of ertain operators follows from the above mentionedanellation properties of the wavelets, see [8℄ as well as Setion 5.3 for onretizations.Now suppose that the (possibly in�nite) matrixC (de�ned on `2(J 0) say) is known to be ompressiblein the sense of (4.1.9) for some range of s > 0. For any given �nitely supported v 2 `2(J 0), let v[j℄ := v2jdenote its best 2j-term approximation in `2(J 0). We shall numerially approximate Cv by using thevetor wk := Ckv[0℄ +Ck�1(v[1℄ � v[0℄) + � � �+C0(v[k℄ � v[k�1℄)(4.1.10)for a ertain value of k determined by the desired numerial auray. This leads to a pratial shemeAPPLY [�;C;v℄! (w;�), whose detailed desription is given in [8℄, Setion 6.4, see also [2℄. For lateruse we reall its properties, see Properties 6.4 in [8℄.Proposition 4.4. Assume that C 2 Cs� . Given a tolerane � > 0 and a vetor v with �nite support,the algorithm APPLY produes a vetor w = w(v; �) whih satis�es (3.2.2).Moreover, if v 2 `w� (J 0), with � = (s+ 1=2)�1=2 and 0 < s < s�, then the following properties hold:(i) The size of the output � is bounded by#(�) � Ckvk1=s`w� (J 0)��1=s;(4.1.11)and the number of entries of C that need to be omputed is � Ckvk1=s`w� (J 0)��1=s.(ii) The number of arithmeti operations needed to ompute w(v; �) does not exeedC��1=skvk1=s`w� (J 0) + 2N with N := #suppv.(iii) The number of operations for sorting needed to assemble the slies v[j℄ of w(v; �),j = 0; 1; � � � ; blogN, does not exeed CN logN .(iv) The output vetor w satis�es kwk`w� (J 0) � Ckvk`w� (J 0):(4.1.12)As for the log-terms for sorting, see Remark 4.9 at the end of this setion. We shall make use of thefollowing fat, see [8℄.Remark 4.5. It follows from Proposition 4.1 and Proposition 4.4 (i) that any matrix C 2 Cs� isbounded on `w� when � is related to s < s� by (4.1.5).As mentioned above, wavelet representations of di�erential operators are ompressible. Thereforethe following observation is useful.Remark 4.6. When AÆ := D�1X a(	X ;	X)D�1X and B belong to Cs� for some s� > 0, then oneeasily shows that the sheme APPLY� inherits all the properties desribed in Proposition 4.4 above, see[8℄ Properties 6.4.The omplexity estimates in (ii) and (iii) of Proposition 4.4 hold under the assumption that theentries of C are aessible during the alulation. In fat, the subsequent developments will always bebased on the following 13



Assumption C: The entries of the matries AÆ and B are aessible at unit ost.Using pieewise polynomial wavelets this assumption an be realized for onstant oeÆient operatorsin a relatively straightforward manner. This task beomes muh more deliate under more generalirumstanes, e.g. when isoparametri mappings are involved in the onstrution of the wavelets, seeSetion 5.2 below. In [3℄ a fast evaluation sheme is developed that omputes suÆiently aurateapproximations to the summands on the right-hand side of (4.1.10) at a omputational ost that stillsatis�es the bounds in (ii), (iii) of Proposition 4.4 above. Thus Assumption C is justi�ed for a wide rangeof pratially relevant situations.With Remark 4.6 at hand, we are now in the position for estimating the omplexity analysis ofELLSOLVE based on the results in [8, 9℄ with the APPLY sheme for ompressible matries replaed,if neessary, by the extended version APPLY� introdued above. The fat that in the present ontextELLSOLVE applies to varying auxiliary problems with little a-priori information on the orrespondingintermediate solutions prevents us from applying the results from [8℄ diretly. Nevertheless, we anextrat from the analysis in [8, 9℄ some fats that will apply in the present situation as well. This ismost transparent when onsidering the simpli�ed sheme in [9℄ whih (in the very spirit of the urrentapproah) for the speial ase of an ellipti (oerive) problem is based on a simple iteration for (3.2.4)of the form ûn+1 = ûn + �!(h�Aûn):(4.1.13)In partiular, when the right-hand sides are already �nitely supported as in the present situation,the sheme onsists of at most �K perturbed iterations of the form (4.1.13), employing APPLY� andNCOARSE with judieaously hosen auray toleranes, followed by a oarsening step so as to reduea urrent error bound by a fator two, say (see the algorithm SOLVE in Setion 4.2 of [9℄). This impliesthe following fat.Proposition 4.7. Consider the problem (3.2.4) and suppose that the initial approximation v usedas input for ELLSOLVE satis�es kû� vk`2(JX ) � �"(4.1.14)for some �" > ". Moreover assume that s and � are related by (4.1.5) and that" � �C�"(4.1.15)for some positive onstant �C. Then the output �u and � := supp �u of ELLSOLVE [";A;v;h℄ satis�es#(�) � Ĉ �#(suppv) + �kvk1=s`w� (JX ) + khk1=s`w� (JX )� "�1=s� ;k�uk`w� (JX ) � Ĉ �kvk`w� (JX ) + khk`w� (JX )� :(4.1.16)Moreover, the number of arithmeti operations required for the omputation of �u remains bounded byĈ nsuppv + "�1=s �kvk1=s`w� (JX ) + khk1=s`w� (JX)�o :(4.1.17)An additional fator Ĉ log "�1 is allowed for operations spent on sorting arrays (see Remark 4.9). Theonstant Ĉ depends in all ases only on the onstants in (2.4.7), (2.2.1), on s when s tends to in�nity,and on the onstant �C in (4.1.15).Proof: In view of (4.1.15) only a uniformly bounded number of bloks of perturbed iterations (4.1.13)separated by oarsening steps is needed to redue the urrent error bound from �" to ", see Proposition4.2 in [9℄. This number depends learly on the bound �C for the ratio �"=". Eah blok, in turn, involvesa uniformly bounded number �K of perturbed appliations of (4.1.13), where �K depends only on theonstants in (2.4.7) and (2.2.1). The laim follows now immediately from Propositions 4.2 and 4.4 (seealso the proof of Theorem 5.7 in [9℄).The main result an now be formulated as follows.14



Theorem 4.8. Assume that the saled wavelet representations AÆ, B in (2.2.4) and R from (3.1.3)belong to Cs� for some s� > 0. If the exat solution (u; p) of (2.1.2) satis�es for some s < s�inf#suppv�N ku� vTD�1X 	XkX <� N�s; inf#suppq�N kp� qTD�1M 	MkM <� N�s; N !1;(4.1.18)then the approximations (u(");p(")) produed by UZAWA satisfyku� u(")TD�1X 	XkX <� (#suppu("))�s; kp� p(")TD�1M 	MkM <� (#suppp("))�s:(4.1.19)Moreover, under assumptions f , C (pages 7 and 14, resp.) the omputational work needed to omputeu(");p(") is also of the order "�1=s (exept for additional log terms for sorting).Proof: First note that by (2.2.4), Proposition 4.1 and Remark 4.5, u 2 `w� (JX ) implies g 2 `w� (JM ).Sine by the same argument BTp;Au 2 `w� (JX), (2.4.5) says that also f 2 `w� (JX ), i.e.,kgk`w� (JM ) <� kuk`w� (JX ); kfk`w� (JX ) <� kuk`w� (JX ) + kpk`w� (JM ):(4.1.20)We proeed now estimating the omputational ost of one all of ADV adhering to the notationused in this ontext before. We will make frequent use of the fat that all auray toleranes appearingin ADV remain, in view of the uniform boundedness of K, proportional to the urrent auray Æ = ÆJin the Jth all of ADV in UZAWA. First observe that, by Proposition 4.2 and step (ii) in ADVombined with the error estimate (3.3.11), one has#(supp ~p) � CÆ�1=s �kpk1=s`w�0(JM ) + k�pk1=s`w�0 (JM )�+#(supp �p);(4.1.21)and k~pk`w�0 (JM ) � Ckpk`w�0 (JM );(4.1.22)where C depends only on s when s tends to in�nity.We still have to ontrol the omputational ost of the intermediate steps in (iv) of ADV leading tothe �nal update �pK whih is then subjeted to the oarsening step that led to the above estimates. Tothis end, we infer from Remark 4.5, Propositions 4.2 and 4.4 that, sine the number K of updates in step(v) of ADV is uniformly bounded, one has#(supp �pi) � CÆ�1=s �k�uik1=s`w� (JX ) + kgk1=s`w� (JM )�+#(supp �pi�1);(4.1.23)and k�pik`w�0 (JM ) � C �k�pi�1k`w� (JM ) + k�uik`w� (JX )� ;(4.1.24)Thus we have to estimate next the quantities k�uik`w� (JX ), supp �ui, i = 1; : : : ;K. Again, the oarseningstep (ii) in ADV ombined with the error estimate (3.3.14) ensures, in view of Proposition 4.2, that ~uand hene the input �u = �u0 of ELLSOLVE [1�Æ=2;A; �u0;h1℄ satis�esk~uk`w� (JX ) � Ckuk`w� (JX ); supp ~u � CÆ�1=skuk1=s`w� (JX );(4.1.25)where Æ = ÆJ is the urrent auray level in the Jth all of ADV in UZAWA. We will ex-ploit this for the estimation of the intermediate approximations �ui in a all of ADV by applyingProposition 4.7. To this end, we �rst have to determine the auray of �ui�1 as an initial guess forELLSOLVE [i�iÆ=2;A; �ui�1;hi℄. In fat, a little are is needed beause the right-hand sides hi hange.Reall that ûi denotes the exat solution of Aûi = hi, see (iii) in ADV. Then, by (3.3.13), for Æ = ÆJin the Jth all of ADV in UZAWA one obtains for some onstant Ckûi � �ui�1k`2(JX ) � kûi � uk`2(JX ) + ku� �ui�1k`2(JX )� �1A kf �BTp� hi�1k`2(JX ) + CÆ� �1A �kf �BTp� (f �BT �pi�1)k`2(JX ) + kf �BT �pi�1 � hi�1k`2(JX )�+ CÆ� �1A CBkp� �pi�1k`2(JM ) + i�iÆ=2 + CÆ� C 0ÆJ ; 15



where we have used (3.3.10) and (3.2.8). Thus the ratio of initial and target auraies in eah all ofELLSOLVE remains uniformly bounded by a onstant �C depending on the number K in ADV, so thatProposition 4.7 applies. To this end, onsider �rst i = 1 in step (iv) of ADV. By the above bound(4.1.22) on �p0 = ~pJ�1, Remark 4.5, Propositions 4.2, 4.4 and steps (i), (ii) in RHS, we onlude thatkh1k`w� (JX ) � C(kpk`w� (JM ) + kfk`w� (JX )) � C(kpk`w� (JM ) + kuk`w� (JX ));(4.1.26)where we have used (4.1.20) in the last step. Here and in the sequel, unless stated otherwise, C will bea onstant (that may vary from plae to plae) whih is independent of u;p and at most depending onthe problem onstants as before. Proposition 4.7 ombined with (4.1.25) implies nowk�u1k`w� (JX) � C(kpk`w� (JM ) + kuk`w� (JX ))#(supp �u1) � C �#(supp �u0) + Æ�1=s(kpk1=s`w� (JM ) + kuk1=s`w� (JX ))� :(4.1.27)Again keeping (4.1.22) in mind and substituting (4.1.27) in (4.1.24) for i = 1, we obtaink�p1k`w� (JM ) � C(kpk`w� (JM ) + kuk`w� (JX )):(4.1.28)We an now repeat this argument K times obtaining that for all i � Kk�uik`w� (JX ) � C(kpk`w� (JM ) + kuk`w� (JX ))#(supp �ui) � C �#(supp �u0) + Æ�1=s(kpk1=s`w� (JM ) + kuk1=s`w� (JX ))�k�pik`w� (JM ) � C(kpk`w� (JM ) + kuk`w� (JX ))#(supp �pi) � C �#(supp �pi�1) + Æ�1=s(kpk1=s`w� (JM ) + kuk1=s`w� (JX ))� :(4.1.29)Of ourse, the onstants C depend on the number of steps K and may build up. However, it is importantto note that the thresholding applied by step (ii) in ADV produes a new onstant that no longerdepends on K and in some sense sets the estimate bak. In view of the bound on the operations ountgiven in Proposition 4.7, we onlude that under the given assumptions on the exat solutions u;pthe onvergene rate N�s is indeed preserved by ALGORITHM within the laimed bounds for theorresponding omputational work. The assertion follows now diretly from Corollary 3.4, (3.3.15).Remark 4.9. One should note that a strit ordering of the wavelet oeÆients by size is atuallynot essential. What matters is to group the oeÆients in binary bins, i.e., to ollet all those oeÆientswhose modulus falls into [a2�j ; a2�j�1), say. In this way one an avoid the logarithmi terms appearingin the work ounts for sorting, see [1℄.5. Appliations to the Stokes Problem. In this setion the above developments will be appliedto a lassial example, namely the Stokes problem.5.1. The Continuous Problem. We onsider a Lipshitz domain 
 � Rd and assume for simpliityhomogeneous boundary onditions, i.e.,��u+rp = f in 
 � Rd ; uj�
 = 0;(5.1.1) r � u = 0:The standard L2 inner produt on a domain G will be denoted by hv; wiG := RG v(x)w(x) dx where wewill drop the subsript whenever the inner produt refers to 
. The mixed formulation takes the form(2.1.2) with X = H10 (
)d; M = L2;0(
) := �v 2 L2(
) : Z
 v(x) dx = 0�;(5.1.2)and a(u; v) := (ru;rv); b(v; q) := �hr � v; qi:(5.1.3) 16



It is well known that (2.1.1) holds in this ase even with the stronger relation (2.4.1), so that (2.1.4) istrue for (5.1.2). In view of the preeding disussion we have to address the following issues. First weidentify a lass of suitable wavelet bases whih will be employed later in numerial experiments. Then wedetermine the ompressibility range of the orresponding wavelet representations. Next, we disuss theregularity of the solution to (5.1.1) in a ertain sale of Besov spaes. Although this information has noe�et on the algorithmi realization it will allow us to determine under whih prinipal irumstanes theadaptive sheme o�ers even an asymptotially better work/auray balane than disretizations basedon uniform mesh re�nements. These results will guide the seletion of our test examples.5.2. Wavelet Representation. When 
 an be partitioned into regular parametri images 
l =�l(�) of the unit d-ube � := (0; 1)d, one an use the onstrutions from [6, 17℄ yielding onforming trialspaes for the veloities and pressure. We proeed now olleting the relevant properties of these basesin the present ontext.We will reserve the notation 	X for the wavelet basis for X = H10 (
)d, i.e., eah wavelet  X;� is avetor valued funtion with omponents  �;i; � 2 JX , i = 1; : : : ; d. A wavelet  �;i whih is supportedin a single path 
l is then onstruted as a linear ombination of tensor produt B-splines of (oordi-natewise) order mX (whih is for simpliity taken to be the same for eah omponent i) omposed with��1l . Wavelets whose support intersets several domains are obtained by suitably pathing together suhfuntions aross interfaes, see [6, 17℄ for details. At this point a word on the nature of the indies �is in order. Without going into details, � enodes the spatial loation of the wavelet  X;� as well as itssale denoted by j�j. We will only employ ompatly supported wavelets whose supports then sale likediam (supp �) � 2�j�j. The oarsest sale j�j = 0 orresponds to �nitely many funtions, whih roughlyspeaking span the polynomial part in an expansion. Thus for eah omponent i the orresponding mul-tiresolution spaes Si;J := span f �;i : j�j < Jg an be viewed as trial spaes on meshes of size 2�J . Tohave a onforming disretization the Si;J are arranged to be ontained in H10 (
). Being generated bymX -th order B-splines they realize approximation order mX in HmX (
) \H10 (
). Suh a basis an berealized for any order mX 2 N. We will vary later this order keeping in mind that the restritions to apath 
l satisfy 	X j
l � HmX�1=2(
l)d:(5.2.1)Moreover, reall that a wavelet basis onsists of two disjoint olletions of funtions 	+X and 	�X(and analogously for 	M ). As indiated above 	+X is omprised of �nitely many saling funtions of levelj�j = 0 whose preimages under the parametri mappings span all polynomials of order mX on � (up toboundary onditions). The in�nite olletion 	�X ontains the \true wavelets" in the following sense. Infat, the onstrution of 	X involves a seond important parameter ~mX . Given any mX one an takeany ~mX 2 N, ~mX � mX suh that mX + ~mX is even, and arrange 	X so that for any  �;i supported in
l the following mX -th order moment onditions hold(P;  �;i)
l = 0 for all P 2 � ~mX ;�l ;  �;i 2 	�i ;(5.2.2)where (�; �)
l denotes the standard inner produt on the subdomain 
l. Here � ~m;�l := fP : P =glQ Æ ��1l ; Q 2 � ~mg where gl := jdet ���1l j and � m denotes the spae of all polynomials of degree < ~m:With a slight abuse of terminology we will refer to the elements of �m;�l simply as polynomials. In fat,sine by assumption the gl are smooth and bounded away from zero the loal approximation propertiesof � ~m;�l are the same as those of � ~m whih is what matters for the ompression properties.The pressure funtions will be expanded in a basis 	M = f M;� : � 2 JMg whih is also generatedby B-splines of order mM in the above sense. Likewise the order of moment onditions will be denotedby ~mM , i.e., (P;  M;�)
l = 0 for all P 2 � ~mM ;�l ;  M;� 2 	�M :(5.2.3)Remark 5.1. There are some important distintions between 	X and 	M though (aside from thefat that 	X is vetor and 	M is salar valued). First, the  M;� do not satisfy any boundary onditions.Moreover, the moment onditions hold everywhere in 
 sine all wavelets are always fully supported in asingle path 
l. , i.e., the wavelets need not to be ontinuous aross path interfaes.17



Sine by (5.2.3), the wavelets in 	�M have zero mean, an ab initio wavelet basis for L2(
) an easilybe transfromed into one for the onstrained spae L2;0(
) by modifying only the �nitely many elementsin 	+M , a fat that will be important later in the numerial realization.It has been shown in [6, 17℄ that bases 	X and 	M satisfy the norm equivalenes (2.2.1) and (2.2.2)with saling weights (DX )� := 2j�j; (DM )� := 1:(5.2.4)In fat, the alternative hoie (DX)� := a( X;�;  X;�)1=2 typially gives rise to quantitatively betterresults but we will stik for simpliity with (5.2.4).Hene, the resulting wavelet representations A and BT are of the following formA = (a�;�0)�;�02JX ; a�;�0 = dXi;l=1 2�(j�j+j�0j) Z
 � �;i�xl � �0;i�xl dx;(5.2.5) BT = (b�;�0)�2JX ;�02JM ; b�;�0 = � dXi=1 2�j�j Z
  M;�0(x)� �;i�xi (x)dx:(5.2.6)5.3. Compression Properties. The matries A, B, de�ned by (5.2.5) and (5.2.6), are knownto be ompressible in a range that depends on the regularity of the wavelets, see [8℄. However, thespeial pieewise polynomial nature of the above bases allows us to establish a somewhat larger rangeof ompressibility ompared with the general estimates. In this subsetion, we analyze the ompressionproperties of matries A and B, BT in detail. The analysis in this setion is based on the followingversion of the Shur lemma (whih is folklore).Lemma 5.2. Let T = (Tl;l0)l2I;l02I0 be a matrix and let I; I 0 be ountable index sets. Suppose thatthere exist sequenes ($l)l2I and ( ~$l0)l02I0 suh thatXl02I0 jTl;l0 j ~$l0 � $l and Xl2I jTl;l0 j$l �  ~$l0 ; l 2 I; l0 2 I 0;(5.3.1)then kTk � :Our numerial examples refer to the L-shaped domain 
 = (�1; 1)2 n (�1; 0℄2. Thus 
 an bedeomposed e.g. into three subpathes 
l; l = 1; 2; 3, eah being a simple translate of the unit square(0; 1)2. The spaes �m;�l onsist then of polynomials in the lassial sense. The moment onditions(5.2.2) hold then on all of 
 also for those wavelets whose support overlaps more than one subdomain.In this ase the trunation rule that produes the ompressed matries Aj from (4.1.9) reads as follows,see [8, 2℄. In order to indiate the role of the spatial dimension we keep the general notation althoughthe example refers to d = 2. Given j, set~a�;� := 8<: a�;� ; ��j�j � j�j�� � j=d;0; else:(5.3.2)Unless otherwise stated, we shall heneforth use the abbreviation m = mX ; ~m = ~mX :Theorem 5.3. For the matrix A de�ned by (5.2.5) and any � > 0 the following ompression estimateholds: kA�AJk <� 2�J(m�3=2��)=d; i.e., A 2 Cs; s < s� = (m� 3=2)=d:(5.3.3)Proof: Eq. (5.3.3) an be established by using Lemma 5.2 with I = I 0 = JX and $� = ~$� = 2j�j(1�d)for all � 2 JX . The �rst step is to estimate a typial entry in the wavelet representation. Let 
�;idenote the support of the i-omponent of  �: We reall that derivatives of wavelets are again waveletswith the order of vanishing moments inreased by one, [23℄. Exploiting this fat, we obtain for suitable18



polynomials P�0;i;l on 
�0;i of degree at most m (reall ~m � m) and j�0j � j�jj(r X;�;r X;�0)j = ������ dXi;l=1�� �;i�xl ; � �0;i�xl ������� = ������ dXi;l=1�� �;i�xl � P�0;i;l; � �0;i�xl �������<� dXi;l=1 � �;i�xl � P�0;i;lL2(
�0;i) 2j�0j;where we have applied (2.2.1) with the weights from (5.2.4) to estimate the term � �0;i�xl L2 by 2j�0j.Setting j := j�j, j0 := j�0j, sine � �;i�xl 2 Hs; s < m � 3=2; a lassial Whitney type estimate yieldstherefore j (r �;r �0) j <� dXi;l=1 2j02�j0(m�3=2��) ����� �;i�xl ����Hm�3=2��<� dXi=1 2j02�j0(m�3=2��)j �;ijHm�1=2��<� 2j02�j0(m�3=2��)2j(m�1=2��)<� 2(j�j0)(m�3=2��)2j+j0 ;so that, taking the saling matrix DX into aount, we deriveja�;�0 j <� 2(j�j0)(m�3=2��); j0 � j:(5.3.4)The ase j0 < j an be treated analogously,ja�;�0 j <� 2(j0�j)(m�3=2��); j0 < j:(5.3.5)Aording to (5.3.3) and (5.3.1), we have to show thatXjj�j0 j>J=d Xj�0j=j0 ja�;�0 j2j0(1�d) <� 2�J(m�3=2��)=d � 2j(1�d):(5.3.6)Let us again �rst onsider the ase j0 > j:We start by observing that the rude estimate (5.3.4) does nottell the whole truth. If we ombine the fat that 	+X is spanned by ardinal B-splines with the vanishingmoment property (5.2.2) of the wavelet basis, we see that for a �xed value of j�j, many of the entries ja�;�0 jare zero. Roughly speaking, the non-vanishing entries orrespond only to the wavelets  �0 for whih thesupport of one omponent  �0;i intersets the orresponding singular support Si of  �;i. The set Si anbe viewed as a submanifold of dimension d � 1 with measure of the order 2�j(d�1): Consequently, forj0 > j; there are at most a �xed onstant multiple of 2(j0�j)(d�1) many wavelets possessing a non-trivialintersetion with Si. Therefore we getXj�0j=j0 ja�;�0 j <� 2(j�j0)(m�3=2��)2(j0�j)(d�1) <� 2(j�j0)(m�3=2��+1�d):(5.3.7)Hene we �nally obtainXj0�j>J=d Xj�0j=j0 ja�;�0 j2j0(1�d) <� 1Xj0=j+J=d 2(j�j0)(m�3=2��+1�d)2j0(1�d)(5.3.8) <� 2j(m�3=2��+1�d)) 1Xj0=j+J=d 2�j0(m�3=2��)<� 2j(m�3=2��+1�d)2�(J=d+j)(m�3=2��)<� 2j(1�d)2�J(m�3=2��)=d:19



The ase j0 � j an be treated analogously. The seond ondition in (5.3.1) an be heked in a similarfashion whih on�rms (5.3.3). �Remark 5.4. By ombining the results in [8℄ with the analysis in [13℄, one derives the followingbound for the range of ompressibility of the wavelet representation of an ellipti di�erential operator oforder 2t s� := min��d � 12 ; 2t+ 2 ~md � :Here the parameter � must satisfy t+� < , where  bounds the Sobolev regularity of the wavelets. In thepresent ase one has t = 1;  = m�1=2, i.e., � = m�3=2, and hene s� = (m�3=2)=d�1=2: Therefore(5.3.3) ensures in any spatial dimension a gain in the ompression range by 1=2 when ompared with theusual estimate.For more general domains when the �l are no longer aÆne some onstrutions of wavelet basesguarantee the full order of vanishing moments (5.2.2) only for those wavelets that are supported in asingle path 
l. Those wavelets overlapping several subdomains still have at least �rst order moments andhene their gradients have seond order moments. Of ourse, this ours only along a (d�1)-dimensionalmanifold, and an be ompensated by modifying the ompression rule (5.3.2). Moreover, those entriesa( �;  �0), for whih the supports overlap eah other but their singular supports (ut regions of tensorprodut B-splines) do not interset, are no longer zero. However, sine one of the wavelets is arbitrarilysmooth throughout the integration domain, the order of vanishing moments inreases to ~mX + 1 sothat these entries are muh smaller than the remaining ones whih suÆes as well. Alternatively, one anemploy the onstrution from [18℄ where vanishing moments are not onstrained through path interfaes.A similar result an also be established for the matrix BT de�ned in (5.2.6).Theorem 5.5. Suppose that the order mX of the multiresolution spaes for the veloity spae X andthe order ~mM of the vanishing moments of the pressure wavelets de�ned in (5.2.3) satisfy ~mM � mX �1:Then for the matrix BT de�ned in (5.2.6) and any � > 0 the following ompression estimate holds:kBT �BTJ k <� 2�J(m�3=2��)=d; i.e., BT 2 Cs; s < s� = (m� 3=2)=d:(5.3.9)Proof: The proof follows the lines of the proof of Theorem 5.3, therefore we only sketh the arguments.We use Lemma 5.2 for the ase I = JX ; I 0 = JM ; $� = 2j�j(1�d); � 2 JX , and ~$�0 = 2j�0j(1�d); �0 2 JM .As before, for suitable polynomials P�;i on 
�0 of degree < m� 1 and j0 = j�0j � j = j�j we obtainj(r �  X;�;  M;�0)j � ����� dXi=1 �� �;i�xl � P�;i;  M;�0������ <� dXi=1 � �;i�xi � P�;iL2(
�0 ) k M;�0kL2<� dXi=1 2�j0(m�3=2��) ����� �;i�xi ����Hm�3=2�� <� dXi=1 2�j0(m�3=2��) j �;ijHm�1=2��<� 2�j0(m�3=2��)2j(m�1=2��);so that jb�;�0 j <� 2(j�j0)(m�3=2��); j0 � j:(5.3.10)The ase j0 < j an again be treated analogously. Aording to (5.3.9) and (5.3.1), we have to show thatXjj�j0j>J=d Xj�0j=j0 jb�;�0 j2j0(1�d) <� 2�J(m�3=2��)=d � 2j(1�d):(5.3.11)Let us again �rst onsider the ase j0 > j: By using similar arguments as in the proof of Theorem 5.3,we get Xj�0j=j0 jb�;�0 j <� 2(j�j0)(m�3=2��)2(j0�j)(d�1) <� 2(j�j0)(m�3=2��+1�d);(5.3.12) 20



hene Xj0�j>J=d Xj�0j=j0 jb�;�0 j2j0(1�d) <� 1Xj0=j+J=d 2(j�j0)(m�3=2��+1�d)2j0(1�d)(5.3.13) <� 2j(m�3=2��+1�d) 1Xj0=j+J=d 2�j0(m�3=2��)<� 2j(1�d)2�J(m�3=2��)=d:The ase j0 � j an again be treated analogously. The seond ondition in (5.3.1) an be veri�ed byemploying similar arguments. �To determine �nally the ompressibility of the matrixR from (3.1.3) we an apply the same reasoningfor � �;i=�xl and  M;�0 replaed by ~ M;�. Sine in this ase no derivatives are involved and ~	M just as	M is pathwise de�ned, the ompressibility range is again determined by the order mM of the primalbasis 	M (whih limits the order of the polynomials that an be subtrated in the inner produts) andthe Sobolev regularity ~M of the dual basis ~	 inside eah path 
l. The onstrutions in [6, 17℄ allowone to realize therefore any desired order s�R of ompressibility for R provided mM and ~M are hosenaordingly.Theorems 5.3 and 5.5 tell us now in whih range for a given hoie of wavelet bases the general resultsTheorem 4.8 and Corollary 3.4 assert asymptotially optimal auray/work balane for the adaptivesolution of the Stokes problem.5.4. Regularity Theory for the Stokes Problem. So far we have presented some numerialtools to serve as input for an adaptive sheme that realizes asymptotially optimal onvergene rates in(essentially) linear time within a ertain range of error deay orders determined by the ompressibility ofthe involved wavelet representations. A natural question is whether at all or under whih irumstanesthe orresponding auray/work balane is better than for tehnially muh simpler shemes based e.g.on uniformly re�ned meshes | in brief: when does adaptivity pay? It turns out that this question isinherently related to the regularity of the approximated solution. More preisely, while a given orderof best approximation from trial spaes for preassigned uniform meshes (referred to as linear shemes)is haraterized by the Sobolev regularity of the approximand, the order of nonlinear or best N-termapproximation is (almost) haraterized by the regularity in a ertain Besov sale to be spei�ed in amoment, see also [19℄. To explain this let Ht denote a (losed subspae of a) Sobolev spae suh asH10 (
) respetively H10 (
)d or L2;0(
) for t = 0 and let � denote a wavelet basis in Ht satisfying a normequivalene of the form (2.2.1) with suitable saling matrix Dt. In analogy to (4.1.1) let�N;Ht(v) := infw;#w�N kv �wT (Dt)�1�kHt(5.4.1)denote the error of best wavelet N -term approximation in Ht. The following fat has been shown in [12℄.Proposition 5.6. Whenever t � s let 1� = r � td + 12 :(5.4.2)Then (for a suÆiently regular basis �) one has1XN=1�N (r�t)=d�N;Ht(v)�� <1 i� v 2 Br�(L�(
)):(5.4.3)Note that Br�(L�(
)) is the largest spae of smoothnes r in L� whih is still embedded in Ht, sine(5.4.2) marks the Sobolev embedding line. Clearly, (2.2.1) says that for v = vT (Dt)�1� one has�N;Ht(v) � �N;`2(v):(5.4.4)Moreover, (5.4.3), (5.4.4) mean that when v 2 Br�(L�(
)) then the best N -term approximation of itswavelet oeÆients v deays at least like �N;`2(v) <� N�(r�t)=d. This is sharp in the sense that the21



exponent s = (r� t)=d is best possible. This subtle gap in the haraterization of the Besov spaes is dueto the small di�erene between the lassial spaes `� (haraterizing wavelet oeÆients for elements inthe Besov spae) and the weak type spae `w� haraterizing best N -term approximation of the waveletoeÆient sequenes in `2, [19℄.These fats suggest to ask for the regularity of the solution (u; p) of the Stokes problem (5.1.1) in therelevant Besov sales.During the past years the Sobolev and Besov regularity theory for the Stokes problem has attratedthe attention of several authors. We refer to [21, 24℄ for the Sobolev and to [10℄ for the Besov regularitytheory. We onsider here a planar polygonal domain 
 � R2 . This setion an be viewed as both, asummary and a spei� appliation of the results in [10, 21, 24℄ to the speial ase of (5.1.1) for theL-shaped domain. These results will be used later in Setion 6 to selet and properly interpret thenumerial tests.Some preparations are neessary. The smooth segments of �
 are denoted by �l; �l open, l =1; : : : ; N; numbered in positive orientation. Furthermore, Vl denotes the endpoint of �l and !l denotesthe measure of the interior angle at Vl. Moreover, we introdue polar oordinates (rl; �l) in the viinityof eah vertex Vl. By �l we will always denote a suitable C1 trunation funtion. Finally, zl;m is a realsolution of the transendental equation sin2(z!l) = z2 sin2(!l):(5.4.5)Unless otherwise stated, we shall always assume thattan(!l) 6= !l for every l:(5.4.6)Let us �rst disuss the regularity of the veloity u. For f 2 L2(
)2, learly the best we ould expet isu 2 H2(
)2: However, it is well-known that even for smooth right-hand sides the Sobolev regularity of umay drop down due to ertain singularity funtions, see [21, 24℄. In our ase, a typial singular part uSis of the form uS =Xl X0<zl;m<1 j;m�l(rl)rzl;ml Sl;zl;m ;(5.4.7)where Sl;z = (z sin((z � 2)!l) + (2� z) sin(z!l))Sl;z;1 � z(os((z � 2)!l)� os(z!l))Sl;z;2;(5.4.8)with Sl;z;1 = (z sin((z � 2)�l)� (z + 2) sin(z�l); z(os((z � 2)�l)� os(z�l)))T ;(5.4.9) Sl;z;2 = (�z(os((z � 2)�l)� os(z�l)); z sin((z � 2)�l)� (z � 2) sin(z�l))T :We see that the singular part uS desribes the inuene of the domain sine it is independent of thegiven right-hand side f . Obviously, the Sobolev regularity of uS dereases signi�antly as the angles !linrease. In ontrast to this, the Besov regularity of uS is almost independent of the shape of the domainin the following sense.In fat, by following the lines in [10℄, the following result an be established.Theorem 5.7. Any singular solution de�ned by (5.4.7) satis�esuS 2 Br� (L� (
))2; for all r > 0; 1� = r � 12 + 12 :(5.4.10)This result an be proved by showing �rst that any singular solution de�ned by (5.4.7) satis�esuS 2 Br� (L� (
))2; for all r > 0; 1� = r2 + 12 :(5.4.11) 22



Note that the Besov sale in (5.4.11) orresponds to Ht = L2 in Proposition 5.6 above and hene isrelated to nonlinear approximation in L2. For the veloity omponents the best N -term approximationin H1 is relevant though. To this end, obviously, uS is ontained in H1(
)2. Therefore the result fol-lows by interpolation between H1(
)2 and Br� (L� (
))2; 1=� = r=2+1=2, see [11℄ for additional details. �It remains to study the regularity of the pressure p. By writingrp = f +�u;(5.4.12)inserting the singularity funtions aording to (5.4.7) and integrating (5.4.12), we see that for f 2 L2(
)2the pressure an also possess a singular part pS whih in the viinity of Vl an be written aspS = Cl(�l)rzl;m�1l(5.4.13)for some smooth funtion Cl(�l). One again, by following the lines in [10℄, it an be shown that pS hasarbitrary high regularity in the nonlinear approximation sale Br� (L� (
)); 1=� = r=2 + 1=2.To onstrut the singular solutions aording to (5.4.7), we have to determine the solutions of (5.4.5).This equation has been studied in detail in [21℄. Let us briey reall the results. We introdue theexeptional angle !0 = tan(!0):(5.4.14)Then the following Lemma holds.Lemma 5.8. The equation (5.4.5) has no root in the strip 0 < <(z) < 1 when ! < �. It has only onesingle real root in that strip when � < ! < !0 and it has two distint simple real roots in that strip when!0 < ! � 2�:Now we want to apply these results to the L-shaped domain. Aording to Lemma 5.8 and (5.4.7), weonly have singular solutions orresponding to the reentrant orner. It an be heked that the exeptionalangle !0 is given by !0 = 257:40 degrees. Consequently, in our ase (5.4.5) has two distint roots and wehave two singular solutions. The two roots an easily be omputed numerially. We obtainz1;1 = 0:9085291898461; z1;2 = 0:54448373678246:Obviously, the seond root is the `worse' one. Consequently, to test the adaptive sheme, we designedthe right-hand side f in suh a way that the solution u is exatly the singularity funtion orrespondingto z1;2, i.e., u = �(r)r0:54448373678246S1;z1;2 ;see also Setion 6. Aording to (5.4.12), we hoose the pressure p as a solution torp = �(rz1;2S1;z1;2):Finally, we normalize p in L2;0(
). The suitable right-hand side an be obtained by another appliationof (5.4.12).Remark 5.9. One an easily verify thatu 2 Hr(
)2; r < r�X := 1:54448373678246 and p 2 Hr(
); r < r�M := 0:54448373678246(i.e., u 62 Hr�X (
)2, p 62 Hr�M (
)), whih limits the onvergene rate of uniform re�nements. One theother hand, u and p both have arbitrary high Besov regularity. Hene, in priniple, wavelet bases withhigh order regularity would give rise to orrispondingly high order adaptive approximation rates.6. Numerial Results. In this setion, we present some numerial experiments for the Stokes-problem on the planar L-shaped domain 
 = (�1; 1)2 n [�1; 0℄2. We employ di�erent versions from thefamily of wavelet bases 	X and 	M from Setion 5.2 for veloities and pressure, respetively.Our objetive is not to present a fully matured ode but to gain additional quantitative insightthat omplements the preeding theoretial results of primarily asymptoti nature. This onerns the23



quantitative e�et of \violating" the LBB ondition and the tradeo� between larger supports and betterompressibility when using higher order wavelets as well as suggestions for further algorithmi variantsand developments. For instane, the theoretial estimates, e.g. on the number K of iterations in ADV,are presumably overly onservative. So it would be interesting to see experimentally whether typiallysmaller numbers suÆe or whether monitoring residuals pays to realize signi�antly earlier terminations.Furthermore, we wish to see how the sheme opes with highly singular ases suggested by the disussionin Setion 5.4 ompared with more regular solutions. More extensive tests of variants derived from �rstexperienes will be presented elsewhere.6.1. Disretization of the Pressure. Reall from (5.1.2) that L2;0(
) is the appropriate pressurespae. Hene the zero mean onstraint requires speial are. Here we exploit the fat that all wavelets in	�M have, aording to (5.2.3), vanishing moments of order ~mM � mM � 1, so thatZ
  M;�(x) dx = 0; � 2 JM ; j�j > j0:Hene for any q = qT	M one hasZ
 q(x) dx = Xj�j=j0 q� Z
  M;�(x) dx =: Xj�j=j0 q��� =: I
(q):On the other hand, the saling funtions form a partition of unity, i.e.,1 � Xj�j=j0 ~��  M;�(x); x 2 
; ~�� := Z
 ~ M;�(x) dx = (1; ~ M;�);where f ~ M;� : j�j = j0g is the (expliitly known) dual basis for the saling funtions in 	M , i.e.,( M;�; ~ M;�0) = Æ�;�0 , see [6, 17℄. Thus, denoting by �(
) the Lebesgue measure of 
, we obtain aprojetion P0 : L2(
)! L2;0(
) byP0(q) := Xj�j=j0�q� � I
(q)�(
) ~��� M;� + Xj�j>j0 q� M;�;that fators out onstants. Hene, realizing the zero mean onstraint, requires modi�ations only onthe oarsest level, whereas the wavelet oeÆients remain unhanged. Sine operators are only appliedapproximately, orresponding orretions are needed after applying B and also after oarsening. Sinethe projetion P0 depends on the partiular primal wavelet basis for L2(
) all arrays have to refer tothe same basis so that the Riesz map R = (~	M ; ~	M ) is needed in the seond step (3.1.7)of the Uzawaiteration.Note that the present way of fatoring out onstants is only a �rst onvenient option. A drawbakreeted by the experiments below is that due to the nature of P0 always all oarse sale funtions willbe involved in the pressure approximations. In partiular, for higher order trial funtions this numbergrows, so that at least for the �rst few re�nement steps the work/auray balane of the sheme is lessfavorable for the pressure omponent. Loal oarse sale basis funtions would remedy this e�et.A detailed desription of the routines APPLY and NCOARSE an be found in [2, 8℄ ombinedwith the above provisions with respet to the matrix B. As mentioned before, the routine ELLSOLVEis essentially the adaptive Poisson solver from [2℄. This indiates the prinipal potential of reyling thesebasi routines for the treatment of problems with inreasing omplexity.6.2. Desription of the Test Cases. We wish to report below on two di�erent test ases. Example(I) orresponds to the most singular solution desribed in Setion 5.4. As an be seen in Figure 6.1, thepressure exhibits a strong singularity at the reentrant orner. In order to keep the e�ort for omputingan exat referene solution as moderate as possible we have omputed an approximation of the exatsolution by trunating p. Of ourse, this limits the number of iterations of the adaptive algorithm forwhih meaningfull omparisions an be made.Example (II) involves a pressure whih is loalized around the reentrant orner, has strong gradientsbut is smooth. More preisely, we have hosen an exat solution for the veloity whih is very similar tothe one above and a pressure solution whih is onstant around the reentrant orner and multiplied by asmooth ut o� funtion. These funtions are displayed in Figure 6.2.24
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Figure 6.1. Exat solutiopn for the �rst example. Veloity omponents (left and middle) and pressure (right). Thepressure funtions exhibits a strong singularity and is only shown up to r = 0:001 in polar oordinates.
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Figure 6.2. Exat solutiopn for the seond example. Veloity omponents (left and middle) and pressure (right).6.2.1. Choie of the Parameters. We expet that some of the onstants resulting from theanalysis are atually too pessimisti. For instane, deriving estimates for the onstants in the normequivalenes, we have estimated K to be in the range of 15, whih turned out to entail unneessarily highauray in the treatment of the inner Poisson problems while the pressure approximation and henethe right-hand side for the Laplae problem are still poor. Several numerial experiments with di�erenttrial funtions and for di�erent test ases, indiate that K = 3 already seems to suÆe and that thealternatives disussed in Setion 3 are in these ases not neessary. All subsequent results are thereforebased on this hoie. Moreover, we have used � = 0:6 and ! = 1:3 in all experiments.6.3. Rate of Convergene. Table 6.1 displays the results for Example (I), employing pieewiselinear trial funtions for the veloity and pieewise onstant funtions for the pressure. We are interestedin the relation between the error produed for a given number of degrees of freedom by the adaptivesheme and the error of best N -term approximation with respet to the underlying wavelet basis. Todesribe the results we denote by u1;u2 the wavelet oeÆient arrays of the �rst and seond veloity25



omponent and de�ne for x 2 fu1;u2;pg by�x := kx� x�k`2kx� x#�k`2 ; rx := kx� x�k`2kxk`2 ;the ratio of the error of the adaptive approximation and the orresponding best N -term approximation,respetively the relative error. Reall from Corollary 3.4 that these quantities also reet the error inthe energy norms. We see that the veloity approximation is from the beginning very lose to its bestN -term approximation. For the reasons indiated above this is di�erent for the pressure. The appliationof P0 �lls up the oarsest level whih in this example has 768 degrees of freedom. To explain this in moredetail assume that the adaptive method piks exatly one saling funtion, so that the degree of freedomfor the pressure would be 1. Sine the integral of a saling funtion is not zero, the pressure projetionP0 produes a non-zero onstant whose expansion involves all saling funtion oeÆients. This is thereason why at the early stage of the re�nement proess the work auray balane for the pressure is lessfavorable. However, the last two iterates shown in the table indiate that the sheme athes up with theoptimal rate. Loal oarse sale bases would of ourse yield better results already from the beginning ofthe adaptive re�nements.It Æ #�u1 �u1 ru1 #�u2 �u2 ru2 #�p �p rp1 11.730947 33 1.04 0.6838 34 1.04 0.6744 768 130.35 1.00242 5.865474 84 1.26 0.3427 83 1.24 0.3447 768 130.40 1.00283 2.932737 193 1.32 0.1530 184 1.31 0.1541 768 15.37 0.52344 1.466368 446 1.29 0.0821 450 1.29 0.0897 929 4.15 0.22185 0.733184 1070 1.27 0.0434 1065 1.27 0.0456 1211 2.58 0.1034Table 6.1Results for the �rst example. Numbers of adaptively generated degrees of freedom, ratio to best N-term approximationand relative errors.The results for Example (II) are shown in Table 6.2 and plots of the approximations are displayedin Figure 6.4. We see that the omputed approximations di�er only by a very moderate fator fromthe best N -term approximation. The results suggest the following diretions for more systemati im-It Æ #�u1 �u1 ru1 #�u2 �u2 ru2 #�p �p rp1 15.636636 278 28.20 1.2936 364 60.31 2.1867 768 6.96 0.33292 7.818318 261 8.30 0.4028 295 16.10 0.7003 768 3.76 0.18003 3.909159 234 3.72 0.1995 274 5.63 0.2617 768 1.80 0.08634 1.954580 180 1.25 0.0886 249 2.08 0.1056 810 1.22 0.04525 0.977290 233 1.14 0.0615 267 1.29 0.0615 980 1.07 0.02316 0.488645 298 1.11 0.0480 321 1.17 0.0470 1276 1.05 0.01177 0.244322 456 1.35 0.0398 505 1.43 0.0265 1551 1.09 0.00618 0.122161 704 1.36 0.0250 724 1.39 0.0177 1842 1.24 0.0035Table 6.2Results for the seond example. Numbers of adaptively generated degrees of freedom, ratio to best N-term approxima-tion and relative error.plementations. The simple Rihardson iteration should be replaed (possibly after a few initial steps)26



by gradient or onjugate gradient steps. This should speed up onvergene and avoid a neessarily pes-simisti estimation of step size parameters. Sine all algorithmi ingredients still require the same type of(approximate) matrix/vetor multipliations one an employ the same routines. One should then inlude,however, monitoring residuals whih, due to (2.3.1), should detet rapid onvergene for a possible earlytermination of the iterations in ADV (ii). Moreover, higher order wavelets should be tested to exploitlarger ompressibility ranges.High order dirretizations.. Reall from Setion 5.3 that the ompressibility range of the waveletrepresentations grows with inreasing regularity and hene order of the wavelet bases, see Theorems 5.3,5.5. Moreover, the regularity results from Theorem 5.7 and Remark 5.9 indiate that the larger theompressibility range of the wavelet representations the more an adaptive sheme would gain at leastasymptotially over uniform re�nements. This suggest investigating the quantitative e�et of employinghigher order spline wavelets.We ompare now disretizations of various orders for the pressure in the seond example. In Figure6.3, we have shown the relative error versus the number of unknowns in a logarithmi sale. Comparingthe slopes of the best N -term approximation, we obtain the expeted asymptoti gain for inreasingorders, again at the end with moderate values for the ratios �x. However, we also see that the fast deay
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several ways to alleviate this problem also for higher order disretizations. Aside from using loal oarsesale basis funtions with zero mean one an take a �tious domain approah and append the boundaryonditions by Lagrange multipliers. This allows one to use periodi wavelet bases on the �titious domainwhere the minimal level an be always hosen as j0 = 0 for all values of m and ~m. This issue will beaddressed elsewhere. m; ~m 1,3 2,2 3,3 4,4j0 4 3 4 5N� 705 242 587 2882Table 6.3Minimal level j0 and number of saling funtions N� on the minimal level for di�erent order disretizations.6.4. The LBB-Condition. At the �rst glane it is somewhat puzzling that in the analyis of theadaptive Uzawa method the LBB ondition did not play any role. Roughly, speaking this is due to the fatthat oneptually at every stage of the algorithm the full in�nite dimensional operator is applied withina ertain tolerane that has to be hosen tight enough to inherit the stability properties of the originalin�nite dimensional problem. This e�et of adaptive shemes in onnetion with saddle point problemsand also with more omplex variational problems has been observed �rst in (a predeessor of) [9℄, see also[14℄ for saddle point problems. Hene it is interesting to study the quantitative inuene of the hoieof bases. Therefore, we have inluded a ombination of bases for whih pairs of �xed �nite dimensionalsubspaes would violate the LBB-ondition, namely pieewise linear trial funtions for both veloity andpressure. The results are displayed in Table 6.4. We see that the rate of the best N-term approximationis still mathed fairly well with ratios that are only slightly larger than in Table 6.2 for the pieewiselinear/pieewise onstant disretization. Note that the osillations in the pressure approximation forIt Æ #�u1 �u1 ru1 #�u2 �u2 ru2 #�p �p rp1 16.743449 1 1.00 0.9293 1 1.00 0.9300 243 6.27552 0.33542 8.371724 1 1.00 0.9304 1 1.00 0.9292 243 3.98811 0.21313 4.185862 5 1.00 0.7586 5 1.00 0.7588 243 2.23810 0.11964 2.092931 20 1.13 0.4064 24 1.45 0.3979 262 2.08107 0.06125 1.046466 61 1.47 0.2107 77 1.79 0.2107 324 2.72102 0.03396 0.523233 178 1.33 0.1060 198 1.52 0.1306 396 2.81079 0.02097 0.261617 294 1.19 0.0533 286 1.46 0.0744 674 2.21371 0.01088 0.130808 478 1.25 0.0271 531 1.46 0.0362 899 1.83271 0.0071Table 6.4Results for the seond example with pieewise linear trial funtions for veloity and pressure. Note that in this asethe number of degrees of freedom for the oarsest level is 243.unstable elements shown by the experiments in [4℄ are not observed in the present ontext, see Figure6.4. This seems to results from the di�erent pressure update.REFERENCES[1℄ A. Barinka, Fast Evaluation Tools for Adaptive Wavelet Shemes, PhD Thesis, RWTH Aahen, in preparation.[2℄ A. Barinka, T. Barsh, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and K. Urban, Adaptive wavelet shemes forellipti problems { Implementation and numerial experiments, IGPM-Report # 173, RWTH Aahen, 1999, toappear in: SIAM J. Sient. Comput. 28
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Figure 6.4. Approximations for the seond example. First and seond veloity omponent (left and middle olumn)and pressure (right olumn). 30
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