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ADAPTIVE WAVELET METHODS FOR SADDLE POINT PROBLEMS
— OPTIMAL CONVERGENCE RATES*

STEPHAN DAHLKE', WOLFGANG DAHMEN?, AND KARSTEN URBAN?

Abstract. In this paper an adaptive wavelet scheme for saddle point problems is developed and analysed. Under
the assumption that the underlying continuous problem satisfies the inf-sup condition it is shown in the first part under
which circumstances the scheme exhibits asymptotically optimal complexity. This means that within a certain range the
convergence rate which relates the achieved accuracy to the number of involved degrees of freedom is asymptotically the same
as the best wavelet N-term approximation of the solution with respect to the relevant norms. Moreover, the computational
work needed to compute the approximate solution stays proportional to the number of degrees of freedom. It is remarkable
that compatibility constraints on the trial spaces such as the Ladyshenskaja-Babuska-Brezzi (LBB) condition do not arise.
In the second part the general results are applied to the Stokes problem. Aside from the verification of those requirements
on the algorithmic ingredients the theoretical analysis had been based upon, the regularity of the solutions in certain Besov
scales is analyzed. These results reveal under which circumstances the work/accuracy balance of the adaptive scheme is even
asymptotically better than that resulting from preassigned uniform refinements. This in turn is used to select and interpret
some first numerical experiments that are to quantitatively complement the theoretical results for the Stokes problem.

Key Words: Saddle point problems, wavelet bases, norm equivalences, adaptive refinements, fast ap-
proximate operator application, Uzawa iteration.

1. Introduction. This paper draws on two major sources of motivation. First, it has recently been
shown in [8] that certain adaptive wavelet schemes are asymptotically optimal for a wide class of selfadjoint
elliptic operator equations. This means that the achieved accuray in the energy norm expressed in terms
of the numbers of involved degrees of freedom is asymptotically the same as the rate of the best N-term
approzimation, i.e., the minimal number of basis functions needed to approximate the solution within the
given accuracy tolerance. Moreover, (up to additional log-factors in sorting operations, see also Remark
4.9 below) it was shown that the computational work needed to compute the approximate solution stays
proportional to the number of degrees of freedom. While the class of operator equations covers boundary
value problems for partial differential equations as well as singular integral equations, symmetry did play
a crucial role in the analysis and design of the scheme. These techniques have meanwhile been extended
to non-coercive problems through wavelet least squares formulations [9].

Second, in [14] the results of a predecessor [13] of [8] also for the symmetric elliptic case have been
extended to saddle point problems. The key idea there was to use an outer Uzawa iteration and to solve
the interior symmetric positive definite problems by a scheme of the type considered in [13]. However, no
statements about the efficiency of such schemes in terms of convergence rates and work count was made
in [14].

In this paper we also consider saddle point problems actually under slightly weaker assumptions than
in [14] and propose an adaptive wavelet scheme for their numerical solution. In order to avoid (among
other things) the squaring of condition numbers, it is based as in [14] on an outer Uzawa iteration although
it differs from the scheme in [14] in several essential ways. It draws on detailed algorithmic ingredients
from [8] which allow one to quantify concrete computational steps and estimate their complexity which
results in a somewhat different balance of accuracies. It also applies when the symmetric bilinear form
is only elliptic on the kernel of the constraint operator.

On a more fundamental level, in the same spirit as in [8, 9], there are two essential features that
distinguish the present approach from [13, 14] and more so from classical discretizations. The first one
is that through appropriate wavelet bases the original continuous problem is transformed right from the
beginning into an equivalent problem which is well-posed in the Fuclidean metric. All essential compu-
tational steps refer then to approximation in 5 and therefore bear a great potential of being portable to
other problem classes. In fact, many of the basic routines developed in [2, 8] in the context of elliptic
problems can be used here as well. The second important point is that the wavelet representation allows
us to think of performing, up to a controlled perturbation, an iteration on the full infinite dimensional
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problem realized through the adaptive approzimate application of the full infinite dimensional operators.
The tolerances have to be chosen so that the convergence speed of the perturbed realizable iteration is
indeed governed by the properties of the ideal infinite dimensional iteration.

This offers, in particular, a first intuitive explanation for the following fact which at the first glance
strikes one as a paradoxon, namely compatibility constraints on the choice of trial functions such as the
LBB condition do not arise. In fact, recall that even when the infinite dimensional saddle point problem is
well posed and hence satisfies an inf-sup condition inappropriate choices of finite dimensional trial spaces
could lead to discrete problems with poor stability properties, that is the inverses of the corresponding
system matrices may have arbitrarily large norm. This fact is relevant whenever linear systems are too be
solved for any such given pair of trial spaces. In the present context this situation will never arise. Instead
an iterative process is conceptually applied to the full infinite dimensional problem where each iteration
involves an adaptive application of the underlying infinite dimensional operators within a certain stage
dependent dynamic accuracy tolerance. This process is inherently nonlinear. Roughly speaking proper
adaptation in the above sense inherits the stability of the infinite dimensional problem. In this sense
adaptation not only reduces complexity but also stabilizes the computation automatically.

The paper is organized as follows. After formulating the problem in Section 2 we describe and analyse
an adaptive method in Section 3. It will be shown in Section 4 under which conditions on the algorithmic
ingredients it exhibits an asymptotically optimal accuracy/work balance in the following sense. Whenever
the exact solution has, within a certain range of exponents s, an error of best N -term approzimation with
respect to an underlying wavelet basis decaying like N~ then the error achieved by the adaptive scheme
also decays like N7% where IV is the number of used degrees of freedom. Moreover, the computational
work stays proportional to V. A key role in this context is played by the compressibility range of the
involved operators in wavelet coordinates. Given this property one can apply a certain adaptive scheme
for applying the operator to any finitely supported vector with optimal accuracy/work balance [8].

In Section 5 the general results are applied to the Stokes problem. Specifically, we investigate in
Section 5.3 the compressibility range of the wavelet representation of the Stokes operator for a certain
family of wavelet bases and derive sharp estimates for this range. This identifies the range of decay rates
for which the general results from the preceding sections apply.

It should be stressed that the scheme works without any a-priori assumptions on the solution while
its complexity is analysed under the assumption that the solution has a certain order of best N-term
approximation and the involved operators in wavelet coordinates have a certain compressibility range
(see Section 4). Certain rates of best N-term approximation, in turn, are (almost) equivalent to a
certain regularity of the solution in a Besov scale. Roughly speaking, when the Sobolev regularity of the
solution is lower than its Besov regularity, the adaptive scheme is expected to offer even an asymptotically
better accuracy/work balance than linear schemes. To see whether or under which circumstances the
adaptive scheme can be rigorously proven to offer even an asymptotically better accuracy/work balance
than schemes based on uniform preassigned mesh refinements, we investigate in Section 5.4 the Besov
regularity of singularity solutions for the Stokes problem. The results show that in two spatial dimensions
sufficiently high order wavelet bases would give rise to adaptive schemes with arbitrarily high convergence
rates.

Finally in Section 6 we present some numerical experiments essentially guided by the above mentioned
theoretical considerations. Here we make use of the software developed in [2] as well as in [25]. The results
confirm that the adaptive scheme performs essentially independently of the pairing of trial functions for
velocities and pressure. For instance, the rate of best N-term approximation is met within a factor two
when both velocities and pressure are approximated by piecewise linear trial functions.

After completion of this work we became aware of related investigations in [4] pursuing similar ideas
in a finite element context. There convergence in the sense of [14] is proven for a similar Uzawa technique
without establishing, however, rigorous estimates for the corresponding work/accuracy balance.

2. Saddle Point Problems.

2.1. The Setting. Let X, M denote Hilbert spaces with norms || - ||x,|| - ||am, respectively. Dual
pairings on X x X' and M x M' (X', M' denoting the duals of X, M, respectively) will always be denoted
by (-,-). It will be clear from the context which spaces are referred to. Suppose that a(-, ) is a continuous

2



symmetric bilinear form on X x X and that b(-,-) is a continuos bilinear form on X x M, i.e.,

la(v, w)| < [lvllxllwllx, [b(g; 0)| < [lvllxllglla-

Moreover, denoting by B : X — M’ the operator induced by b(p,v) = (p, Bv) and setting V' := ker B,
assume that a(-,-) is elliptic on V" and b(-, ) satisfies the inf-sup condition

: b(v,q)
(2.1.1) a(v,v) > aljv||%, veEV, inf sup ———2—
gemvex |vllxllgllar

> .
It is well known that then the variational problem has for any f € X', g € M'

a(u,v) + bp,v) = (f,v) YveX,
b(g,u) = (¢,9) VgeM,

(2.1.2)

a unique solution U = (u,p) € X x M, see e.g. [5]. Defining A : X — X' by a(v,w) = (v, Aw), v € X,
(2.1.2) is equivalent to the 2 x 2 block operator equation

(2.1.3) LU = g B;I (Z) = <£> = F,

where £ is an isomorphism from X x M into its dual X' x M’, i.e. there exist positive constants cz,C
such that

1/2 v 1/2
(2.1.4) cc (0% + a2 2 < Hﬁ(q) < Cc (ol +lalB) >

HX’XM’

Classical examples are mixed formulations of second order elliptic boundary value problems, the
Stokes problem or the system obtained when appending essential boundary conditions by Lagrange
multipliers.

2.2. Wavelet Coordinates. Now suppose that we have wavelet bases ¥x = {¢)x : A € Jx},
Uar ={tpmr: A€ Ju} for X and M at our disposal such that for suitable diagonal matrices Dx, Das
and constants cx,Cx, car, Cpr one has

(2.2.1) ex Vllea(an) S W'D x[Ix < Cx[IVllea(gx)s

and likewise
(2.2.2) eallalleszn) < Nla™ D3 Yarllar < Carllalley (g

where VTD;(l Uy :=> AETx d;(l)\v)\’l/J x,x. The validity of such norm equivalences will be crucial in what

follows. Note that often M is a closed subspace of finite codimension in a larger Hilbert space M for
which (2.2.2) holds. For instance, in the case of the Stokes problem M is the space of all Ly functions
with zero mean. Thus the arrays of wavelet coefficients of elements in M will in general form a closed
subspace £ o(Jar) of finite codimension in £o(Jar).

At this point we dispense with any additional technical details about the precise nature of the basis
functions but refer to [7, 15] for surveys and further references, see also the comments in connection with
numerical realizations below. A further important property is the cancellation property which entails
near sparseness of wavelet representations for many operators. This will also be detailed when necessity
arises.

Defining now for any two countable arrays ©, ® and some inner product ¢(-,-) the matrix ¢(0, ®) :=
(c(0, 9))sco,pca, consider as usual the scaled wavelet representations

(2.2.3) A :=a(D'¥, DY), B:=b(D,; ¥y, Dy ¥yx),
3



as well as the arrays f := D! (¥x, f), g := D/ (¥ar, ) and F := (f7,g7)7. Then (2.1.2) or (2.1.3) is
equivalent to the following two by two block matrix system

A BT f
(2.2.4) <“> = < )
B o0 p g
It will make things much more transparent when working from now on exclusively in the ¢» setting.

2.3. Well-Posedness in /». It follows from (2.2.1) and (2.2.2) together with (2.1.4) that the oper-

ator
A BT
L = B 0 :fg(j) = &(jx)xég,o(JM)—)Eg(J), J = ..7X XJM:
is an isomorphism, i.e., there exist positive constants cr,Cp such that for V := (v, q")T € £,(7),

||V||?2(L7) = ||V||?2(L7X) + ||(I||%2(L7M)
(2.3.1) eVl SNV ey < CullViler), V€ (),

see e.g., [15, 22] for further details. Clearly cr,Cr can be expressed in terms of the constants cz,Cp,
cy,Cy for Y € {X, M}. Furthermore there exist constants Cg, C'y such that

(2.3.2) IBVlles(7a) < CBlIVIleaiar)s 1B alles(g) < Cllalles(gan)-
and
(2.3.3) 1AV]ey(7x) < Callvllez(ax)-

2.4. The Schur Complement. In many cases a somewhat stronger property than the first relation
in (2.1.1) is valid, namely that

(2.4.1) a(v,v) ~ [lullk,  veEX,

which, of course means that A is invertible on all of £5(Jx). In this case block elimination reduces (2.2.4)
to the so called reduced system

(2.4.2) Sp=BA 'f —g,
involving the (infinite dimesnional) Schur complement
(2.4.3) S:=BA™'B” : lr0(Tm) = La,0(Tnr)

which is symmetric positive definite and, under the above assumptions, in fact an automorphism on
U3 0(Jum), i-e., there exist positive constants cg, Cs such that

(2.4.4) csllalles () < N18dlles( ) < Cslldlleaga),  a € L2,0(Tnr)-
Once p has been determined from (2.4.2) it remains to solve the positive definite problem
(2.4.5) Au=f—-BTp.

However, under the weaker assumption (2.1.1) on the bilinear form a(-,-) one has to take first a
precaution whose variational counterpart is sometimes referred to as augmented Lagrangian method. In
the present setting it boils down to considering the matrix

(2.4.6) A := A +BTB,

where c is some sufficiently large but fixed positive constant.
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REMARK 2.1. Under the assumption (2.1.1) the matriz A is an automorphism on l>(Jx), i.e., there
exist positive constants c4,C4 such that

(2.4.7) callVileax) < NAV[ere) < Callvllegx), V€ €(Tx).

Proof: It follows from (2.3.2) and (2.3.3) that A is bounded on £5(7x). Moreover, by (2.3.1) the matrix
LYL = L2 is positive definite on ¢5(7). Since BB? is a principal block of L? it is positive definite on
l3,0(Jpr). This entails that A is also injective on f2(Jx). To see this note that by the first relation in
(2.1.1), vTA # 0 for v € ker B. On the other hand, when v is in the range of BT, i.e., v = BTq for
some q € {5 0(Jn), then one has

(2.4.8) v'Av = q"BAB”q + ¢|BB"q|, 4,

which, by the previous remark, is strictly positive whenever p # 0, confirming injectivity of A on (Tx).

By symmetry (2.4.8) also implies surjectivity. Due to the boundedness of A, the claim follows now from

the Inverse Mapping Theorem. [
Now multiply (2.2.4) from the left by the £5(7)-isomorphism

id ¢BT
(2.4.9) ,

which yields the equivalent system

(2.4.10) f;‘ B;)T <‘;> = <;>

for some ¢ > 0, where for A given by (2.4.6)
f:=f+ cBlg.

By Remark 2.1 block elimination can be applied to this new system (2.4.10) which then reduces to the
coupled systems (2.4.2), (2.4.5) with A and f replaced by A, respectively f.

To simplify notation we will use the following convention throughout the remainder of the paper. We
will always set

(2.4.11) A =D 'a(¥x,Vx)D} +cB'B, f: =D} (¥y,f)+cBlg,

with B := D/b(¥p, Tx)Dy" as in (2.2.3) and g := D, (¥s,9). When the bilinear form a(-,)
satisfies the stronger assumption (2.4.1) the constant ¢ in (2.4.11) can be chosen to be zero. Otherwise,
c¢ is any fixed positive number. Thus without loss of generality we can always make use of the reduced
systems (2.4.3), (2.4.5) with a proper interpretation of the matrix A according to the above convention.
Consequently, A satisfies in this sense (2.4.7).

A standard way of formulating finite dimensional problems is to take Galerkin discretizations for
(2.1.2). As soon as one fizes a pair of finite dimensional trial spaces in X and M, for instance, spanned
by collections of wavelets, the corresponding Galerkin discretization gives rise to a finite dimensional
linear system, e.g. in terms of a principal finite submatrix of (2.2.4). However, it is well-known that
stability of the infinite dimensional problem does not guarantee the finite dimensional problems to be
uniformly stable as well. Compatibility constraints in terms of the LBB condition come into play. It will
be seen that this will not be the case in the following adaptive framework.

3. An Adaptive Uzawa-Strategy.



3.1. Infinite Dimensional Uzawa Iteration. The idea is to use a stationary iterative scheme for
the solution of the reduced system (2.4.2) which is essentially the Uzawa strategy proposed in [14]. In
contrast, we formulate it here directly for the discrete infinite dimensional £»-problem (2.2.4). To this
end, we have to address first an issue which is somewhat hidden in the /s-setting. The Spaces X, M are
always function spaces on some domain 2. As will be explained in more detail later the wavelet bases
Ux and ¥y, are then typically constructed as Riesz bases for the corresponding spaces Lo(12), i.e, in
addition to the norm equivalences (2.2.1), (2.2.2) one also has
(3.1.1) IVllean) ~ IV x a0y lallean) ~ la" Carllo)-

This means that there exist dual bases x, Wys in Ly(Q) which are also Riesz bases and satisfy
(3.1.2) (Tx,¥x)=id, (¥y,¥y)=id,

where (-, ) denotes the standard inner product in L2(€2). In full agreement with the fact that the operator
B maps X into M’ one observes that for v = vTD)}1 U x the array Bv represents expansion coefficients
of Bv with respect to the dual basis ¥js. In fact,
(Bv)TDy ¥y = vI(BD ! Ux, Uy )Df Dy¥ar = v (BD Y Wx, U)Wy
= B(vI'D'¥x) = Bu.

Likewise the array g consists by definition of the wavelet coefficients with respect to the dual basis ¥ ;.
On the other hand, the unknown array q in the reduced system (2.4.2) contains coefficients with respect
to the primal basis ¥js;. Now, as mentioned before, in some cases the space M is actually a closed
subspace of a somewhat larger Hilbert space characterized by ¥js. Therefore the wavelet coefficients
of elements of M with respect to ¥y, (or D]T/‘,I\II M) satisfy certain constraints which generally depend

on the particular wavelet basis. To change representations if necessary, observe that, in view of (3.1.2)
Uy = (P, Up) Uy, so that such a change of bases is realized by the matrix

(3.1.3) R:= (¥, ¥u)
because
p i = TRV = (RP) V.
It immediately follows from (3.1.1) that both R and R~ = (¥, ¥ ;) are bounded on £5(Jp),
(3.1.4) IR lez(700) 2 (7mr) < Cr-

Since S is positive definite and satisfies (2.4.4) there exists therefore some positive w (e.g. w < 2CsCRg)
such that

(3.1.5) p = [lid = WRS||ey(70) > a(700) < 1-

Then the infinite dimensional version of the Uzawa scheme reads as follows.

UZAWA: Given any po € £20(Jum), compute fori=1,2,...
(3.1.6) Au; =f-B'p, i,
(3.1.7) pPi = pi1 + wR(Bu; — g).
This is known to converge when p < 1. In fact, since u = A~ (f — BTp) it is easy to see that
p — pi = (id — wRS)(p — pi-1),
so that
(3.1.8) 1P — Pillea(zar) < P'IIP = Pollea(nn)-

Moreover, it has been shown in [14] that for po = 0 one has

(3.1.9) P = Pillea(7nr) < ||A71f||zz(JX)||WRSB||£2(JX)—>62(JM)fp-
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3.2. The Adaptive Scheme. As in [9] the key idea is to apply the above Uzawa iteration to the
ininite dimensional problem. In view of (3.1.6) and (3.1.7), this involves three tasks, namely adding
sequences with generally infinite support such as the data f and g, the application of infinite matrices
like B or B to finitely supported vectors, as well as the solution of elliptic problems involving the infinite
matrix A. Of course, in practice neither one of these tasks can be performed ezactly. Therefore one has
to employ suitable approximations whose accuracy will depend on the current stage of the algorithm and
which will be described next.

To this end, we shall not distinguish formally between finitely supported vectors and infinite sequences
in £5(J") where in the sequel J' € {Jx, Jum }, but will rather view both quantities as sequences (expanded
by zero entries if necessary).

The first basic ingredient is the routine

NCOARSE [n,v] = (¥,A) which determines for a given finitely supported vector v a vector v with
smallest possible support A such that

(3.2.1) IV =9lleg) <.

In particular, NCOARSE will be used to approximate the arrays f° := D)_(1 (Tx, f)x and g of given
data by finitely supported vectors. The way how to think about NCOARSE in this context can be
formulated as the following

Assumption f: In a preprocessing step for a given target accuracy sufficiently many (wavelet) coeffi-
cients in the arrays f° and g are made available and ordered by size.

In many applications f and g are simple and, as model data given by the user, are considered here as
completely accessible. Coarser approximations of the data are then obtained by applying NCOARSE
to these preprocessed finite arrays (see Section 6.1 in [8] for a more detailed discussion).

The second basic ingredient is an approximate application of an infinite matrix to a finitely sup-
ported vector. Given an infinite matrix C (as a mapping from £2(J") to £3(J") for any pair (J',J") €
{JIx,Tm}?), the scheme

APPLY [1,C,v] = (w,A) produces for any finitely supported input vector v a vector w with finite
support A C J' such that

(3.2:2) ICV = Wllear) < 1.

A scheme with this property has been developed in [8]. We postpone a quick description of the
relevant features along with estimates for its computational cost to a later section.

Note that, in particular, the routines APPLY and NCOARSE allow us to approximately evaluate
the right-hand sides of (3.1.6) and (3.1.7).

So the remaining task in an approximate Uzawa iteration of the form (3.1.6), (3.1.7) is to solve the
operator equation (3.1.6) with system matrix A. This is an elliptic problem in the sense of [8] and we
will make heavy use of the results obtained there, see also [2] for implementations and numerical tests.
The scheme from [8] is also built solely on the above routines NCOARSE and APPLY. There are,
however, two minor points that need to be briefly addressed. First in [8] the matrix A is just the wavelet
representation of the underlying elliptic operator while in the present situation A has the form (2.4.11) for
some positive constant ¢ when a(-, ) is not elliptic on all of X. Nevertheless, once a scheme APPLY for
wavelet representations is availabele a scheme for applying matrices of the form (2.4.11) with ¢ # 0 is eas-
ily obtained from such a building block as follows. To simplify notation we set A° := D}la(\I! x,¥ X)D)_(lz

APPLY"[n,A,v] = (w,A)
(i) APPLY [/2,A% v] — (w1, A1);

(ii) APPLY [/4cCg,B,w1] = (w2, Az);



(iii) APPLY [/4,cBT ws] — (w3, A3) and set
WZ:W1+W3, AZ:A1UA3.

REMARK 3.1. One easily derives from (8.2.2) that the output w produced by APPLY™[n, A, V]
satisfies for A given by (2.4.11)

(3.2.3) AV = Wlle(7) <1

Moreover, it is also clear that up to a uniform constant the work/accuracy balance for APPLY™ is the
same as that for APPLY. Note that the matriz BTB is, of course, never computed.

We will extract now from the results in [8] a version for the treatment of (3.1.6) (with APPLY
replaced by APPLY " if necessary) that suits the present needs best. To this end, consider for A as
above the elliptic problem

(3.2.4) Au=h
for some h € ¢5(Jx) with exact solution t.

ELLSOLVE [g, A, v,h] — (@,A)
Given € > 0 and an approzimate solution v to (3.2.4), then the output @ with finite support A satisfies

(3.2.5) [0 =g, (7y) < e

The second point is that in [8] the right-hand data are assumed to be a given array of wavelet
coefficients as explained above that can be preprocessed. In the present situation the right-hand data
are composed of such preprocessable data like f and an additional matrix/vector product involving
dynamically updated entities. We therefore have to approximate these data by finitely supported vectors
that can then be processed as in Sections 7.2, 7.3 of [8]. The corresponding perturbations can be estimated
as follows.

REMARK 3.2. Consider again (3.2.4) and suppose that approzimate finitely supported right-hand
side data h, € >(Jx) are given such that

(3.2.6) 1h = hylles(7x) < -

Then the output u of ELLSOLVE [, A, v, h,] satisfies

(3.2.7) I = @l ) < =45l

Proof: The claim follows from (3.2.5) combined with (2.4.7) to estimate the perturbation effect. O

We will describe next the computation of a finitely supported h, when h = f — BTp;_1, see (3.1.6).
Defining f° := D! (¥ x, f), recall from (2.4.11) that

f—Bp;_1 =f° - B (pi_1 — cg),

which thus involves coarsening the given (preprocessed) data f°,g and a multiplication by BY. The
respective concrete accuracy tolerences are given in the following routine:

RHS [pa 77] - (h777 Ah)
Given a finitely supported p the routine RHS computes a vector h, with finite support A" satisfying

(3.2.8) If = BYp — hyllez(gx) <y

as follows:
(i) Apply NCOARSE [5/3,f°] — (f,A), NCOARSE [/3¢cCg,g] — (g,AY) and setr:= g + p.
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(ii) APPLY [/3,BT r] = (w,A%) and set
h, :=f—-w, AP = AT U AV,
Since by (3.2.1) [|(P—cg) —r(l¢y(7x) < 1/3Cp the estimate (3.2.8) indeed readily follows from (3.2.2).

Our numerical realization of the ideal (infinite dimensional) Uzawa scheme (3.1.6), (3.1.7) has the
following structure. A fixed uniformly bounded number K, depending only on the constants associated
with the wavelet bases and the mapping properties of the involved operators, of approximate applications
of (3.1.6), (3.1.7) are applied which is then followed by a coarsening step before the iteration is further
resumed. Such an iteration block will be arranged to advance the current approximate solutions so as
to reduce the current error bounds by a fixed factor. Before giving a precise description, we would like
to stress that the Uzawa scheme as a gradient method for the reduced system (2.4.2) treats in some
sense ¢ € M as the “preferred” variable. In fact, the accuracy of the approximate solution to the elliptic
problem (3.1.6) need not be too accurate relative the the current accuracy of the approximation to ¢. In
order to formulate now the basic iteration block as a concrete routine we will use the following choice
for the number K of perturbed iterations before the next coarsening step. Let 7; denote any positive
summable numbers, e.g. 7; = (1 + i)~ 2. Moreover, we need some control parameters. Set

(3.2.9) C1 :=w(CrCp + 2)y+1,
where v :=3"7° ', and let K denote the smallest integer such that
(3.2.10) X ((pca)~1CBCy +1) < 1/10.

ADV [i,p, 6] = (4, P, Au, Ag)

Given current approzimations @, p of the solution to (2.2.4) such that
(3211) ||]'_1 - u||l2(Jx) < 67 ||I_) - p||l2(JM) < 67
ADV [u,p, ] produces new approzimations a,p as follows

(i) Set i = ]., f)() = f), up = u.

(ii) Ifi < K go to (iii); else
NCOARSE [26/5,pi-1] = (P, Ay);
NCOARSE [2§/5,1;-1] = (0,A,);

(iii) Apply RHS [Bi1,ca7ip'6/2] — (hy, A});
(iV) ELLSOLVE [’y,pl(S/Q, A, u;—1, hl] d (l_l,', Ag()

(v) NCOARSE [v,p'6/2CR, g] = (&i, As);
APPLY [71915/2: R7 gl] — (gla Af)7

APPLY [y;p'6/2Ck, B, @;] — (P, Ai);
APPLY [yip'6/2, R, pi] — (P}, AY); set

Pi = Pi—1 +w(P; — 8);
set i+ 1 — i and go to (ii).

It will be shown later that the error bounds of the new approximations produced by ADV are reduced
by a factor two. The role of the final application of NCOARSE in step (ii) of ADV will be seen later to
play an important role with regard to asymptotically optimal complexity, roughly speaking, by keeping
only significant coefficients.



Of course, when the characterization of the space M does not entail any constraints on the wavelet
coeffcicients R can be replaced by the identity in (3.1.7) in which case step (v) of ADV simplifies in an
obvious manner.

To formulate the main algorithm recall that by (2.3.1)

Wl e + P, ) < 2" (I, + Nl ) -

Therefore the right-hand side gives a bound for the initial error when using 0 as initial guess for u,p,
respectively. The complete adaptive Uzawa iteration can be described now as follows.

UZAWA-*[A,B,f,g,¢] — (u(e),p(e)):
Set Ao := (AL, AY) € J = Jx x Ju to be empty AYY = AF =0, po = po =0, a =0, § =

—1/2 o112 9 1/2
cr (||f ey 7 + ||g||[2(JM)) , J =0, choose a target accuracy e.
(i) ADV [ﬁapan] — (ﬁaf)aAuaAq);

(ii) Set dy41 :=4d4/2.
If 6541 < e, stop and accept u(e) := 1, p(e) := p as solution.
Else, set u=1u,p=p, J+ 1 — J and go to (i).

3.3. Convergence. The convergence of UZAWAYF relies on the error reduction caused by ADV.
PROPOSITION 3.3. Given a scheme APPLY such that (3.2.2) holds then, under the above assump-
tions concerning NCOARSE on the data f, g, the vectors u,p produced by ADV [1, P, d] above satisfy

(3.3.1) 0 —ulley7y) £6/2, IP = Pllea(gn) < 9/2.

Hence, after finitely many steps the scheme UZAWA produces finitely supported solutions (u(e), p(e))
satisfying

(33.2) lu—u@E)llee) <& P =PE)egn <&
Proof: Set py := pp = P, Gp := 1 and observe that
Pi — Pi = Pi—1 + wR(Bu; — g) — pi—1 — w(p; — &)

(3.3.3) =pi-1 —Pi-1 + w(RBu; — p; — Rg + g;)
= (id — wRS)(pFl - 17)1;1) +w (R(BAilBT)(pl;l - f)ifl) + RBllz — p; +gi— Rg) .

Since Au; = f — BTp;_; we can replace BTp;_; by f — Au; to obtain

w (R(BA™'BT)(p;_1 — Pi—1) + RBu; — p; + g; — Rg)
=w (R(BA™'f — Bu; + Bu; - BA™'B”p,_;) — p} + g; — Rg)

(3.3.4) =w (RBA™'(f —B"p;_1) — p} + (g: — Rg))
Thus
(3.3.5) RBA '(f -B'p; 1) —p; =RB (A '(f - B”p; 1) — u;) + (RBu; — p})

Hence combining (3.3.3), (3.3.4) and (3.3.5) and recalling (3.1.5), yields

IPi = Pilles(7ar) < PIPi—1 — Piztllea(rar) +w (IRB (AT (F — B pi_1) — 1) lea(700)
(3.3.6) + [[RBU; — pillea(n) + I8 = Rgllea(aan)
< pllPict — Pi—tllea(7ag) + WORCBIAT (= BT Di—1) — Wilry 7y ) + 2w7ip"S
where we have used the tolerances in step (v) of ADV. By (3.2.8) we have for the output h; of step
(iii) in ADV that ||h; — (f = BYps_1)|le(7x) < €avip’0/2 which, in view of the tolerances in step (iv)
of ADV and (3.2.7), implies
(3.3.7) AT (F =B pic1) — llry(7x) < 7ip'S.
10



Therefore we deduce from (3.3.6) that
(3.3.8) 1P — Pilles(7ne) < PlPi—1 — Pi—tllea(70r) + w(CrCB + 2)7ip"d.

Iterating this estimate and bearing in mind that py = po, provides

(3.3.9) lPi — Pilleo(7ar) < w(CrCE +2) (Z %‘) p'o.
=1

Since by (3.1.8) and the assumption, |[p — Pilley(7a) < PP = Pollea(ga) = PP = Blles(sn) < p'0 we
conclude that

i
(3.3.10) P = Pillea(gnr) < {W(CRCB +2) (Z %) + 1} p'o,
=1

which, in view of (3.2.10), gives
(3.3.11) Ip — Pxlles(gar) < 6/10.
Now recall that by step (ii) of ADV the final approximation p is obtained by coarsening px. Thus

- _ _ - 2 1 1)
3312 o=l < 0~ Pl +Iox ~ Bl < (5+5) 0=
as claimed.

It remains to estimate the accuracy of ig. Denoting by u; be the exact solution of Au; = f; -BTp,;_1,
(3.3.7) and (3.2.7) say that [|G; — W[¢,(7x) < 7ip'd. Writing

(3.3.13) u-u,=u—-w+u -1 =A"'B(p; , —p) + 1 — 1w,
and defining C := w(CrCp + 2)7 + 1, one obtains

u = Tilley(7x) < (cap) ' CBC1P'S +7ip'0 = ((cap) ' CBC1 + 7i) p'd.
Again, we infer from (3.2.10) that

(3314) ||u — ﬁK“fz(Jx) < 5/10,
so that by the same reasoning as in (3.3.12) @ produced by NCOARSE [20/5, Gk] satisfies |ju —
l|¢,(7x) < 6/2, which completes the proof. [

As an immediate consequence of the norm equivalences (2.2.1), (2.2.2) one has the following fact.

COROLLARY 3.4. Let u = uTD)}llllX, p = pTDMl\IIM be the exact solution of (2.1.2). Then
the finite ezpansions u(e) := ul ()D ' Ux, p(e) = pT(e)D,; Y with terms from the finite index sets
Au(s) C Jx, Aq(g) C Jur satisfy

(3.3.15) lu —u@)llx <ce,  lg—ale)llm < ce,
uniformly in €, where ¢ depends only on the constants in (2.1.4), (2.2.1), (2.2.2).

To keep things transparent we have based the above considerations on the simplest version (3.1.6),
(3.1.7) of an Uzawa iteration. It will be seen below that already this version gives rise to asymptotically
optimal convergence properties. Of course, similar results would be obtained for different accuracy
tolerances as long as they differ by constants leading possibly to different values of K. Nevertheless, several
more important possibilities suggest themselves to realize quantitative improvements, e.g. by replacing
the Richardson iteration by a gradient or conjugate gradient iteration. This avoids the need of estimating
step size parameters and should speed error reduction. Note that these variants still involve only the
same algorithmic tasks namely approximate application of operators in the above sense. Furthermore,
the number K of subiterations is likely to be too pessimistic. Therefore it would be preferable to monitor
the error decay as follows. Note that p; — g; in step (v) of ADV approximates R(Bu; — p;) and, in
view of (3.1.6), (3.1.7), the residual R(BAf —g — Sp;_1). By (2.4.4) and the bounded invertibility of
R this residual can be bounded from below and above by fixed constant multiples of the current error of
the approximate solution to the reduced system (2.4.2). Thus monitoring ||p; — 8ill¢,(7,,) can be used as
a stopping criterion. This is expected to result in frequent early termination of step (ii) in ADV. These
points will be taken up in more detail elsewhere.
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4. Complexity Analysis. Of course, the central questions now are how to come up with an AP-
PLY scheme with the desired properties and what is the computational cost of UZAWACF for a given
target accuracy . In the present generality cost will be measured by storage requirements and the number
of flops required by the scheme (well being aware of the fact that this is not the full story).

4.1. Best N-Term Approximation. As in [8] we will relate the performance of the adaptive
scheme to what could be achieved at best namely the approximation of the solution in terms of possibly
few degrees of freedom within the given discretization context - here determined by the underlying wavelet
bases. Note that, in view of (3.3.15), it suffices to deal with the conceptually much simpler approximation

in £5(J). To explain this, it is useful to recall first the following notion of best N-term approzimation in
ZQZ

(4.1.1) ONea(gn(V) = inf v = wlley g,
w,#supp w<N

where £5(J') stands again for o(Jx) or £2(Ja). Thus oy g,(s7)(v) describes the error as a function
of the number of degrees of freedom when the (possibly infinitely supported) vector is approximated
by a vector with at most IN nonzero entries whose value and position can be chosen freely. Thus the
approximant is not taken from any fixed linear space but from the nonlinear manifold of all vectors with
at most N nonzero entries. This notion is well understood for £s, see e.g. [19]. Obviously, oy ¢, (g7 (V) is
realized by retaining the IV largest coefficients in v which are, of course, unknown when v is a solution of
a system of equations. To understand how this error behaves denote for any v € £5(J") by v* = {vy, }ien
its decreasing rearrangement in the sense that |vy,| > |vy,,, | and let

(4.1.2) A(v,N):={N:l=1,...,N}, VN :=V|rw,nN)

It is clear that v is a best N-term approximation of v.

In particular, it will be important to characterize the sequences in £5(J') whose best N-term ap-
proximation behaves like N—° for some s > 0. The following facts are well-known [8, 19]. Let for
0<T7<?2

1/7

(4.1.3) [V]ew(gry = supn ol Vllew () = [IVIlea(ary + [V]ew ()

It is easy to see that for any 7 < 7/ < 2

(4.1.4) Vlle,, 7y S IVllew gy < 2[VIle, (1)

so that by Jensen’s inequality, in particular, £¥(J") C £2(J").
PROPOSITION 4.1. Let

(4.1.5) l :s+1,
T 2
then
(4.1.6) ver(J) < Iv=valagy S NIVl

In complete analogy one can define ||-||¢w () for £(J) := £¥(Jx x Ju) by forming the rearrangements
from both component vectors v € £3(Jx), p € €20(Jn) and regrouping the entries to both component
vectors.

We will make use of the following result from [8] which interrelates best N-term approximation in ¢,
with the routine NCOARSE, see Section 6.2 in [§].

PROPOSITION 4.2. Given v € £2(T"), a toleragnce n > 0 and a finitely supported w such that

||V - W”lz(J’) < 77/57
Then (as has been used before), the output w of NCOARSE [w,4n/5] satisfies |[|[v — Wl[g7) < 1.

Moreover, when v € £¥(J') and % =s +% for some s > 0, then there exists a constant C' depending only
on s when s tends to infinity such that:

s

(4.1.7) v = ¥lleatr) < OlIVllew () (# supp )2,
12



and

(4.1.8) [W|ew () < ClVIies (), #suppw < C|lv]|*/snp=/5.

Best N-term approximation will be one important ingredient in the realization of the approximate
application of infinite matrices represented by APPLY. The other one is the (a-priori known) quasi
sparseness of wavelet representations which can be formalized as follows, see [8].

DEFINITION 4.3. A matriz C belongs to the class Cs« if for every s < s* there exists a positive
summable sequence (a;)j>o and for every j > 0 there exists a matriz C; with at most 27 nonzero
entries per row and column such that

(4.1.9) IC; —C|| < a;27%.

A matriz in Cs is called compressible or sometimes s*-compressible.

Compressibility of a wavelet representation of certain operators follows from the above mentioned
cancellation properties of the wavelets, see [8] as well as Section 5.3 for concretizations.

Now suppose that the (possibly infinite) matrix C (defined on £2(7") say) is known to be compressible
in the sense of (4.1.9) for some range of s > 0. For any given finitely supported v € £2(J"), let v;j := va;
denote its best 2’-term approximation in £2(7"). We shall numerically approximate Cv by using the
vector

(4.1.10) W) = CkV[O] + Ckfl(V[l] — V[O]) + -+ CO(V[k] — V[k—l])

for a certain value of k determined by the desired numerical accuracy. This leads to a practical scheme
APPLY [n,C,v] — (w,A), whose detailed description is given in [8], Section 6.4, see also [2]. For later
use we recall its properties, see Properties 6.4 in [8].

PROPOSITION 4.4. Assume that C € Cs«. Given a tolerance n > 0 and a vector v with finite support,
the algorithm APPLY produces a vector w = w(v,n) which satisfies (3.2.2).

Moreover, if v € £¥(J"), with T = (s + 1/2)"Y/? and 0 < s < s*, then the following properties hold:

(i) The size of the output A is bounded by

1/s -1
(4.1.11) #(A) < CHV”thu(jr)’? /s;
and the number of entries of C that need to be computed is < C’||v||%s(jl)nfl/s.

(i9) The number of arithmetic operations needed to compute w(v,n) does not exceed

Cn_l/s||v||%s(\7,) + 2N with N := #suppv.
(#ii) The number of operations for sorting needed to assemble the slices vi;) of w(v,n),
j=0,1,---,[log N|, does not exceed CN log N.

(iv) The output vector w satisfies
(4.1.12) IWllew( 7y < CllVlles(7)-

As for the log-terms for sorting, see Remark 4.9 at the end of this section. We shall make use of the
following fact, see [8].

REMARK 4.5. It follows from Proposition 4.1 and Proposition 4.4 (i) that any matriz C € Cs is
bounded on ¥ when T is related to s < s* by (4.1.5).

As mentioned above, wavelet representations of differential operators are compressible. Therefore
the following observation is useful.

REMARK 4.6. When A° := D)}la(\IlX,\I»'X)D;(1 and B belong to Cs« for some s* > 0, then one
easily shows that the scheme APPLY™ inherits all the properties described in Proposition 4.4 above, see
[8] Properties 6.4.

The complexity estimates in (i) and (i) of Proposition 4.4 hold under the assumption that the
entries of C are accessible during the calculation. In fact, the subsequent developments will always be
based on the following

13



Assumption C: The entries of the matrices A° and B are accessible at unit cost.

Using piecewise polynomial wavelets this assumption can be realized for constant coefficient operators
in a relatively straightforward manner. This task becomes much more delicate under more general
circumstances, e.g. when isoparametric mappings are involved in the construction of the wavelets, see
Section 5.2 below. In [3] a fast evaluation scheme is developed that computes sufficiently accurate
approximations to the summands on the right-hand side of (4.1.10) at a computational cost that still
satisfies the bounds in (i), (iii) of Proposition 4.4 above. Thus Assumption Cis justified for a wide range
of practically relevant situations.

With Remark 4.6 at hand, we are now in the position for estimating the complexity analysis of
ELLSOLVE based on the results in [8, 9] with the APPLY scheme for compressible matrices replaced,
if necessary, by the extended version APPLY™* introduced above. The fact that in the present context
ELLSOLVE applies to varying auxiliary problems with little a-priori information on the corresponding
intermediate solutions prevents us from applying the results from [8] directly. Nevertheless, we can
extract from the analysis in [8, 9] some facts that will apply in the present situation as well. This is
most transparent when considering the simplified scheme in [9] which (in the very spirit of the current
approach) for the special case of an elliptic (coercive) problem is based on a simple iteration for (3.2.4)
of the form

(4.1.13) "t = 4" + o(h — AG").

In particular, when the right-hand sides are already finitely supported as in the present situation,
the scheme consists of at most K perturbed iterations of the form (4.1.13), employing APPLY* and
NCOARSE with judiceaously chosen accuracy tolerances, followed by a coarsening step so as to reduce
a current error bound by a factor two, say (see the algorithm SOLVE in Section 4.2 of [9]). This implies
the following fact.

PROPOSITION 4.7. Consider the problem (3.2.4) and suppose that the initial approximation v used
as input for ELLSOLVE satisfies

(4.1.14) 0= vlle gy <€
for some € > e. Moreover assume that s and T are related by (4.1.5) and that
(4.1.15) e<Ce

for some positive constant C. Then the output a and A := suppu of ELLSOLVE [e, A, v, h] satisfies

#() £ € (#urpv) + (M1l + k) )
(4.1.16) lalew (7x) < ¢ (”V”[;"(JX) + ||h||z;u(yx)) .

Moreover, the number of arithmetic operations required for the computation of . remains bounded by

(4.1.17) C {suppv +e Mo (”VHZJS(JX) + ||h||zés<yx))} '

An additional factor C’log e~ is allowed for operations spent on sorting arrays (see Remark 4.9). The
constant C depends in all cases only on the constants in (2.4.7), (2.2.1), on s when s tends to infinity,
and on the constant C in (4.1.15).

Proof: In view of (4.1.15) only a uniformly bounded number of blocks of perturbed iterations (4.1.13)
separated by coarsening steps is needed to reduce the current error bound from ¢ to e, see Proposition
4.2 in [9]. This number depends clearly on the bound C for the ratio /. Each block, in turn, involves
a uniformly bounded number K of perturbed applications of (4.1.13), where K depends only on the
constants in (2.4.7) and (2.2.1). The claim follows now immediately from Propositions 4.2 and 4.4 (see
also the proof of Theorem 5.7 in [9]). L]

The main result can now be formulated as follows.
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THEOREM 4.8. Assume that the scaled wavelet representations A°, B in (2.2.4) and R from (3.1.3)
belong to Cs« for some s* > 0. If the exact solution (u,p) of (2.1.2) satisfies for some s < s*

(4.1.18) inf Ju—-vID¥x|x < NP, inf  |lp—a' D} Uumllnw SN, N — oo,
#suppv<N #suppq<N

then the approzimations (u(e), p(e)) produced by UZAWAS satisfy

(4.1.19) Jlu—u(e)" Dy Tx|lx < (#suppu(e)™, llp—p(e)" Dy Cullu < (#suppp(e))

Moreover, under assumptions f, C (pages 7 and 14, resp.) the computational work needed to compute
u(e), p(e) is also of the order e~'/* (except for additional log terms for sorting).

Proof: First note that by (2.2.4), Proposition 4.1 and Remark 4.5, u € £¥(Jx) implies g € ¥ (Jm).
Since by the same argument BTp, Au € (*(Jx), (2.4.5) says that also f € (¥(Jx), i.e.,

(4.1.20) lI8llex (72 S lMallew(ax), Ellewax) S lMalle ) + P lex (0)-

We proceed now estimating the computational cost of one call of ADV adhering to the notation
used in this context before. We will make frequent use of the fact that all accuracy tolerances appearing
in ADV remain, in view of the uniform boundedness of K, proportional to the current accuracy § = ¢,
in the Jth call of ADV in UZAWAc*. First observe that, by Proposition 4.2 and step (ii) in ADV
combined with the error estimate (3.3.11), one has

(4.1.21) #(suppp) < C6 1/ (IIBllL 1, + 11" 7,,) ) + #(5upp B),
and
(4.1.22) IBllex, (70) < ClIPllex, (70

where C' depends only on s when s tends to infinity.

We still have to control the computational cost of the intermediate steps in (iv) of ADV leading to
the final update px which is then subjected to the coarsening step that led to the above estimates. To
this end, we infer from Remark 4.5, Propositions 4.2 and 4.4 that, since the number K of updates in step
(v) of ADV is uniformly bounded, one has

(4.1.23) #(supp i) < Co (I[wllyl ) + lgllils 5, ) + #(supppi 1),

and

(4.1.24) 1Billex, (720) < C (IBi=tllex (a0 + allee (7)) »

Thus we have to estimate next the quantities ||T;||¢w(7y), supp@;, 7 = 1,..., K. Again, the coarsening

step (ii) in ADV combined with the error estimate (3.3.14) ensures, in view of Proposition 4.2, that @
and hence the input u = up of ELLSOLVE [v1pd/2, A, uy, h;] satisfies

(4.1.25) [lles () < Cllulles (), supp i < CO~*[ullils ;)

where 0 = §; is the current accuracy level in the Jth call of ADV in UZAWA*‘. We will ex-
ploit this for the estimation of the intermediate approximations @; in a call of ADV by applying
Proposition 4.7. To this end, we first have to determine the accuracy of @;_; as an initial guess for
ELLSOLVE [v;p'§/2, A, i;_1, h;]. In fact, a little care is needed because the right-hand sides h; change.
Recall that @; denotes the exact solution of Awu; = h;, see (iii) in ADV. Then, by (3.3.13), for 6 = d;
in the Jth call of ADV in UZAWAF one obtains for some constant C

g — Gi—1lle( ) < 0 —ullgygyy + 0= Tisi|le, gy
<c;'|If-B'p-— hi i|leygx) +CO
<cx (If-B'p—(f- BTI_)"—l)”b(Jx) +[If =B Dy — hi_1lle,(7x)) + C6
< 1" ClIp = Pi-tlles(a) + 7iP'0/2+ C§
< C'y,
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where we have used (3.3.10) and (3.2.8). Thus the ratio of initial and target accuracies in each call of
ELLSOLVE remains uniformly bounded by a constant C' depending on the number K in ADV, so that
Proposition 4.7 applies. To this end, consider first ¢ = 1 in step (iv) of ADV. By the above bound
(4.1.22) on pp = p’ 1, Remark 4.5, Propositions 4.2, 4.4 and steps (i), (ii) in RHS, we conclude that

(4.1.26) i lew(7c) < CUIPlee(gm) + 1Ellew(7x)) < CUPIew (70) + Iallew(gx)),

where we have used (4.1.20) in the last step. Here and in the sequel, unless stated otherwise, C' will be
a constant (that may vary from place to place) which is independent of u,p and at most depending on
the problem constants as before. Proposition 4.7 combined with (4.1.25) implies now

I8l () < CUIPllee a0y + lales ()
(4.1.27) #(supp ) < C (#(supp o) + 3 (IBILL 7, + 10l 7)) -

Again keeping (4.1.22) in mind and substituting (4.1.27) in (4.1.24) for i = 1, we obtain

(4.1.28) IP1llex (73r) < CIPIlew(7ar) + llew(7x))-

We can now repeat this argument K times obtaining that for all i < K

illew () < CUPles ) + Mallen(a)
#(supp i) < C (#(supp o) + 6~ (IpllyL5 5, + Il 7))
IBillex () < CUIPlles () + lles ()
(4.1.29) #(suppp;) < C (#(supppi1) + 8 (Bl 5, + LS 7))

Of course, the constants C' depend on the number of steps K and may build up. However, it is important
to note that the thresholding applied by step (ii) in ADV produces a new constant that no longer
depends on K and in some sense sets the estimate back. In view of the bound on the operations count
given in Proposition 4.7, we conclude that under the given assumptions on the exact solutions u,p
the convergence rate N ¢ is indeed preserved by ALGORITHMYF¢ within the claimed bounds for the
corresponding computational work. The assertion follows now directly from Corollary 3.4, (3.3.15). =

REMARK 4.9. One should note that a strict ordering of the wavelet coefficients by size is actually
not essential. What matters is to group the coefficients in binary bins, i.e., to collect all those coefficients
whose modulus falls into [a277,a277~1Y), say. In this way one can avoid the logarithmic terms appearing
in the work counts for sorting, see [1].

5. Applications to the Stokes Problem. In this section the above developments will be applied
to a classical example, namely the Stokes problem.

5.1. The Continuous Problem. We consider a Lipschitz domain Q C R? and assume for simplicity
homogeneous boundary conditions, i.e.,
(5.1.1) ~Au+Vp=f inQCRY, wulpg =0,
V-u=0.

The standard Ly inner product on a domain G will be denoted by (v, w)¢ := [, v(z)w(z) dr where we

will drop the subscript whenever the inner product refers to 2. The mixed formulation takes the form
(2.1.2) with

(5.1.2) X = Hy(Q)¢4, M= Ly(Q) := {v € Ly(Q) : / v(z)dr = 0},
Q

and

(5.1.3) a(u,v) := (Vu, Vv), b(v,q) := —(V - v,q).
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It is well known that (2.1.1) holds in this case even with the stronger relation (2.4.1), so that (2.1.4) is
true for (5.1.2). In view of the preceding discussion we have to address the following issues. First we
identify a class of suitable wavelet bases which will be employed later in numerical experiments. Then we
determine the compressibility range of the corresponding wavelet representations. Next, we discuss the
regularity of the solution to (5.1.1) in a certain scale of Besov spaces. Although this information has no
effect on the algorithmic realization it will allow us to determine under which principal circumstances the
adaptive scheme offers even an asymptotically better work/accuracy balance than discretizations based
on uniform mesh refinements. These results will guide the selection of our test examples.

5.2. Wavelet Representation. When () can be partitioned into regular parametric images ; =
k1(O) of the unit d-cube O := (0, 1)?, one can use the constructions from [6, 17] yielding conforming trial
spaces for the velocities and pressure. We proceed now collecting the relevant properties of these bases
in the present context.

We will reserve the notation ¥x for the wavelet basis for X = H}(Q)?, i.e., each wavelet ¢x \ is a
vector valued function with components ¢y ;, A € Jx, 4 = 1,...,d. A wavelet v, ; which is supported
in a single patch € is then constructed as a linear combination of tensor product B-splines of (coordi-
natewise) order mx (which is for simplicity taken to be the same for each component i) composed with
nl_l. Wavelets whose support intersects several domains are obtained by suitably patching together such
functions across interfaces, see [6, 17] for details. At this point a word on the nature of the indices A
is in order. Without going into details, A encodes the spatial location of the wavelet ¢ x x as well as its
scale denoted by |A|. We will only employ compactly supported wavelets whose supports then scale like
diam (supp ¢x) ~ 2~1*. The coarsest scale |A| = 0 corresponds to finitely many functions, which roughly
speaking span the polynomial part in an expansion. Thus for each component ¢ the corresponding mul-
tiresolution spaces S; j := span {1 ; : |\| < J} can be viewed as trial spaces on meshes of size 277. To
have a conforming discretization the S; ; are arranged to be contained in H} (). Being generated by
mx-th order B-splines they realize approximation order mx in H™¥ () N HJ (). Such a basis can be
realized for any order mx € N. We will vary later this order keeping in mind that the restrictions to a
patch € satisfy

(5.2.1) Uxlo, € H™x1/2(Q))4.

Moreover, recall that a wavelet basis consists of two disjoint collections of functions \Il} and ¥y
(and analogously for ¥j). As indicated above \Il} is comprised of finitely many scaling functions of level
|A] = 0 whose preimages under the parametric mappings span all polynomials of order mx on O (up to
boundary conditions). The infinite collection ¥y contains the “true wavelets” in the following sense. In
fact, the construction of ¥x involves a second important parameter mx. Given any mx one can take
any mx € N, mx > mx such that mx + mx is even, and arrange ¥ x so that for any v, ; supported in
Q; the following mx-th order moment conditions hold

(522) (P, w}\J)Ql =0 for all P € |1 I Q,ZJ)\7i ev,,

where (-,-)q, denotes the standard inner product on the subdomain ;. Here I ., = {P : P =
giQ o Ii;l, Q € 11;;} where g; := |det 8ﬁf1| and II ., denotes the space of all polynomials of degree < m.
With a slight abuse of terminology we will refer to the elements of II,, ., simply as polynomials. In fact,
since by assumption the g; are smooth and bounded away from zero the local approximation properties
of Il 3 ., are the same as those of Il; which is what matters for the compression properties.

The pressure functions will be expanded in a basis ¥y = {¢ar, : A € T} which is also generated
by B-splines of order mjs in the above sense. Likewise the order of moment conditions will be denoted
by myr, ie.,

(5.2.3) (PyYvmpa)o, =0 forall P elly,, w, Yuar € ¥,y

REMARK 5.1. There are some important distinctions between ¥x and ¥,; though (aside from the
fact that ¥ x is vector and Uy is scalar valued). First, the Yy do not satisfy any boundary conditions.
Moreover, the moment conditions hold everywhere in Q since all wavelets are always fully supported in a
single patch . , i.e., the wavelets need not to be continuous across patch interfaces.
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Since by (5.2.3), the wavelets in ¥}, have zero mean, an ab initio wavelet basis for L, () can easily
be transfromed into one for the constrained space L2 o({2) by modifying only the finitely many elements
in \IIL, a fact that will be important later in the numerical realization.

It has been shown in [6, 17] that bases ¥x and W, satisfy the norm equivalences (2.2.1) and (2.2.2)
with scaling weights

(5.2.4) (Dx)x =2 (Dy)y = 1.
In fact, the alternative choice (Dx)x := a(¥x.x,¥x.2)"?
results but we will stick for simplicity with (5.2.4).

Hence, the resulting wavelet representations A and B are of the following form

typically gives rise to quantitatively better

d
_ ' OV O i
2. A = (axr)an I (wmn/_yz iy
(5.2.5) (@xxanvers, @ “zzzl S T
: Db
(526) BT = (b}\)\/))\EJX,XEJM, b}\)\/ = — ZQ—D\l / Q;ZJM,)\’ (.’I,') aw.ﬂ (.’L')d.’L'
i=1 Q @

5.3. Compression Properties. The matrices A, B, defined by (5.2.5) and (5.2.6), are known
to be compressible in a range that depends on the regularity of the wavelets, see [8]. However, the
special piecewise polynomial nature of the above bases allows us to establish a somewhat larger range
of compressibility compared with the general estimates. In this subsection, we analyze the compression
properties of matrices A and B, B” in detail. The analysis in this section is based on the following
version of the Schur lemma (which is folklore).

LEMMA 5.2. Let T = (T, )icz,vez be a matriz and let T,7' be countable index sets. Suppose that
there exist sequences (ww;)iez and (Sop )y ez such that

(531) Z |Tl7l/|Z~Ulr < cwy and Z |Tl’lr|wl < coy, leT, I'e Z’,
el lez

then ||T|| < c.

Our numerical examples refer to the L-shaped domain @ = (—1,1)? \ (—1,0]%>. Thus Q can be
decomposed e.g. into three subpatches €;,1 = 1,2,3, each being a simple translate of the unit square
(0,1)%. The spaces Il,, ., consist then of polynomials in the classical sense. The moment conditions
(5.2.2) hold then on all of Q also for those wavelets whose support overlaps more than one subdomain.
In this case the truncation rule that produces the compressed matrices A; from (4.1.9) reads as follows,
see [8, 2]. In order to indicate the role of the spatial dimension we keep the general notation although
the example refers to d = 2. Given j, set

ax,v, )\ — || < ] d,
(5.3.2) D L 1Al = Il| <4/
0, else.

Unless otherwise stated, we shall henceforth use the abbreviation m = my, m = my.
THEOREM 5.3. For the matriz A defined by (5.2.5) and any € > 0 the following compression estimate
holds:

(5.3.3) |A —Ay|| < 277m=3/229/d e AeC,, s<s" =(m-—3/2)/d

Proof: Eq. (5.3.3) can be established by using Lemma 5.2 with 7 = 7' = Jx and wy = @) = 21Al(1—d)
for all A € Jx. The first step is to estimate a typical entry in the wavelet representation. Let Q) ;
denote the support of the ¢-component of ¢,. We recall that derivatives of wavelets are again wavelets
with the order of vanishing moments increased by one, [23]. Exploiting this fact, we obtain for suitable
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polynomials Py ;; on Qy ; of degree at most m (recall m > m) and |\'| > |)|

d d
[(VYxa, Vix a)| = Z <%, _3111)«,@') = Z <6¢M — Py iy, 3111)«,@')
il=1

. 833; a:Ul a:Ul 7 8xl
i,l=1
d 9
S am = Pui 21,
i,l=1 T L2(Q2yr )
where we have applied (2.2.1) with the weights from (5.2.4) to estimate the term Hazg_;; . by 21N,
2
Setting j := |A|, j' := ||, since %p—;l”' € H%, s < m — 3/2, a classical Whitney type estimate yields
therefore
d Oy
| (Vepa, Vo) | < Z 9§’ 9=i'(m=3/2—¢) | ZXA1
~ Oz m—3/2—¢
i,l=1 H
d . .
S 22T IOy e
i=1

< 9i'9—i'(m—3/2-c)9j(m—1/2-¢)

< 9li=i)(m=3/2-)9i+i

so that, taking the scaling matrix Dx into account, we derive

(5.3.4) laan| < 207900m=3/2=9) 1>

The case j' < j can be treated analogously,

(5.3.5) jax x| S 20 =R <

According to (5.3.3) and (5.3.1), we have to show that

(5.3.6) Z Z |a>\7)\,|2j’(1—d) < 9—J(m=3/2=¢)/d  9j(1-d)
l7=3"|>J/d|X|=j"

Let us again first consider the case j' > j. We start by observing that the crude estimate (5.3.4) does not
tell the whole truth. If we combine the fact that \Il} is spanned by cardinal B-splines with the vanishing
moment property (5.2.2) of the wavelet basis, we see that for a fixed value of |A|, many of the entries |ax x|
are zero. Roughly speaking, the non-vanishing entries correspond only to the wavelets 1)/ for which the
support of one component vy ; intersects the corresponding singular support S; of 1 ;. The set S; can
be viewed as a submanifold of dimension d — 1 with measure of the order 277(?=1), Consequently, for
j' > j, there are at most a fixed constant multiple of 200" =4)(d—1) many wavelets possessing a non-trivial
intersection with S;. Therefore we get

(5.3.7) Z lax | < 9(i=i")(m=3/2—€)9(3'—j)(d—1) < 9(i—3")(m=3/2—e+1-d)_
X |=5"
Hence we finally obtain

o0

(5.3.8) Z Z |a>\7)\,|2j'(1—d)5 Z 9(i—3")(m=3/2—e+1-d) 95’ (1-d)
J'=i>J/d|N|=j" J'=j+J/d
< 2im=s/r—cti-a) §° o=’ (m=3/2-¢)
i'=j+J/d

< 2j(m73/27e+17d)27(J/d+j)(m73/27e)
< 2j(1—d)2—.](m—3/2—6)/d'

19



The case j' < j can be treated analogously. The second condition in (5.3.1) can be checked in a similar
fashion which confirms (5.3.3). O

REMARK 5.4. By combining the results in [8] with the analysis in [13], one derives the following
bound for the range of compressibility of the wavelet representation of an elliptic differential operator of
order 2t

s* := min o _ L2t
o d 2 d '

Here the parameter o must satisfy t +o < vy, where v bounds the Sobolev regularity of the wavelets. In the
present case one hast =1, y =m—1/2, i.e., c =m—3/2, and hence s* = (m —3/2)/d—1/2. Therefore
(5.3.3) ensures in any spatial dimension a gain in the compression range by 1/2 when compared with the
usual estimate.

For more general domains when the k; are no longer affine some constructions of wavelet bases
guarantee the full order of vanishing moments (5.2.2) only for those wavelets that are supported in a
single patch ;. Those wavelets overlapping several subdomains still have at least first order moments and
hence their gradients have second order moments. Of course, this occurs only along a (d — 1)-dimensional
manifold, and can be compensated by modifying the compression rule (5.3.2). Moreover, those entries
a(x, ¥ ), for which the supports overlap each other but their singular supports (cut regions of tensor
product B-splines) do not intersect, are no longer zero. However, since one of the wavelets is arbitrarily
smooth throughout the integration domain, the order of vanishing moments increases to mx + 1 so
that these entries are much smaller than the remaining ones which suffices as well. Alternatively, one can
employ the construction from [18] where vanishing moments are not constrained through patch interfaces.

A similar result can also be established for the matrix BT defined in (5.2.6).

THEOREM 5.5. Suppose that the order mx of the multiresolution spaces for the velocity space X and
the order s of the vanishing moments of the pressure wavelets defined in (5.2.3) satisfy ma > mx — 1.
Then for the matriz BT defined in (5.2.6) and any e > 0 the following compression estimate holds:

(5.3.9) IBY — BY|| < 27/m=3/2=9/d e BT e(,, s<s* =(m—3/2)/d

Proof: The proof follows the lines of the proof of Theorem 5.3, therefore we only sketch the arguments.
We use Lemma 5.2 for the case Z = Jx, Z' = Jur, wy = 2ME=D X e Jx, and @y = 2V 10~ N ¢ 7,/
As before, for suitable polynomials Py ; on Q) of degree < m — 1 and j' = |X'| > j = |\| we obtain

~ (9 || 9
VY2 Paen )l < Z om, Prisbmx )| S Z or, Py 1¥na ||,
=t : i=1 ¢ La2(2yr)
3 e «
< 2—jl(m—3/2—e) )i < 2—j'(m—3/2—g) .
~ ; al’z Hm—3/2—¢ ~ 1:21 |1/))\7Z|H 1/2
< 9=i'(m=3/2=¢)9j(m—1/2—c)
so that
(5.3.10) x| < Q(j*j')(m73/2—e), i

The case j' < j can again be treated analogously. According to (5.3.9) and (5.3.1), we have to show that
(5.3.11) Z Z A |20 (1D < 9= (m=3/2=e)/d  9j(1—d)
l7—3"1>J/d|N|=5"

Let us again first consider the case j' > j. By using similar arguments as in the proof of Theorem 5.3,
we get

(5.3.12) Z loan| < 9(i—3")(m—3/2—€)9(j'—j)(d—1) < 2(i=i")(m=3/2=et1-d)
=5
20



hence

oo

(5.3.13) S a0 g S 2/ emeti=digs (1-d)
J—god /AN = =it/
< gilm=3/2-cti=d)  § goil(mes/2=0
jr=j+J/d

< 2]’(17(1)27‘](17173/276)/(1'

The case j' < j can again be treated analogously. The second condition in (5.3.1) can be verified by
employing similar arguments. d

To determine finally the compressibility of the matrix R from (3.1.3) we can apply the same reasoning
for Oy ;/Ox; and ¥, a replaced by 1/)M . Since in this case no derivatives are involved and ¥, just as
¥, is patchwise defined, the compressibility range is again determined by the order mj; of the primal
basis ¥ps (which limits the order of the polynomials that can be subtracted in the inner products) and
the Sobolev regularity 5as of the dual basis ¥ inside each patch €. The constructions in [6, 17] allow
one to realize therefore any desired order s}, of compressibility for R provided m s and 9p are chosen
accordingly.

Theorems 5.3 and 5.5 tell us now in which range for a given choice of wavelet bases the general results
Theorem 4.8 and Corollary 3.4 assert asymptotically optimal accuracy/work balance for the adaptive
solution of the Stokes problem.

5.4. Regularity Theory for the Stokes Problem. So far we have presented some numerical
tools to serve as input for an adaptive scheme that realizes asymptotically optimal convergence rates in
(essentially) linear time within a certain range of error decay orders determined by the compressibility of
the involved wavelet representations. A natural question is whether at all or under which circumstances
the corresponding accuracy/work balance is better than for technically much simpler schemes based e.g.
on uniformly refined meshes — in brief: when does adaptivity pay? It turns out that this question is
inherently related to the regularity of the approximated solution. More precisely, while a given order
of best approximation from trial spaces for preassigned uniform meshes (referred to as linear schemes)
is characterized by the Sobolev regularity of the approximand, the order of nonlinear or best N-term
approzimation is (almost) characterized by the regularity in a certain Besov scale to be specified in a
moment, see also [19]. To explain this let H' denote a (closed subspace of a) Sobolev space such as
HE(Q) respectively HE ()4 or Lo o(Q2) for ¢ = 0 and let T denote a wavelet basis in H' satisfying a norm
equivalence of the form (2.2.1) with suitable scaling matrix D?. In analogy to (4.1.1) let

(5.4.1) onmt(v):= inf [jv—w! (DY) Y g
w,#wWIN

denote the error of best wavelet N-term approximation in H?. The following fact has been shown in [12].
PROPOSITION 5.6. Whenever t < s let

1 r—t 1
4.2 — = —.
(542) o' d + 2
Then (for a sufficiently reqular basis T ) one has
(5.4.3) Y (N<T—t>/daN7Ht (v)) <oo iff ve BL(La()).

N=1

Note that B~ (L, (f)) is the largest space of smoothnes r in L, which is still embedded in H?, since
(5.4.2) marks the Sobolev embedding line. Clearly, (2.2.1) says that for v = v (D!) 1Y one has

(5.4.4) on,Ht (V) ~ TN (V).

Moreover, (5.4.3), (5.4.4) mean that when v € B! (L,(€)) then the best N-term approximation of its
wavelet coefficients v decays at least like on ¢, (V) < N —(r=t)/d_ This is sharp in the sense that the
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exponent s = (r —t)/d is best possible. This subtle gap in the characterization of the Besov spaces is due
to the small difference between the classical spaces ¢, (characterizing wavelet coefficients for elements in
the Besov space) and the weak type space £¥ characterizing best N-term approximation of the wavelet
coefficient sequences in £3, [19].

These facts suggest to ask for the regularity of the solution (u,p) of the Stokes problem (5.1.1) in the
relevant Besov scales.

During the past years the Sobolev and Besov regularity theory for the Stokes problem has attracted
the attention of several authors. We refer to [21, 24] for the Sobolev and to [10] for the Besov regularity
theory. We consider here a planar polygonal domain @ C R?. This section can be viewed as both, a
summary and a specific application of the results in [10, 21, 24] to the special case of (5.1.1) for the
L-shaped domain. These results will be used later in Section 6 to select and properly interpret the
numerical tests.

Some preparations are necessary. The smooth segments of 9 are denoted by Iy, I'; open, | =
1,...,N, numbered in positive orientation. Furthermore, V, denotes the endpoint of I'; and w; denotes
the measure of the interior angle at V;. Moreover, we introduce polar coordinates (r;,6;) in the vicinity
of each vertex V;. By (; we will always denote a suitable C'*° truncation function. Finally, z; ., is a real
solution of the transcendental equation

(5.4.5) sin? (zw;) = 2% sin® (wy).
Unless otherwise stated, we shall always assume that
(5.4.6) tan(w;) # wy for every .

Let us first discuss the regularity of the velocity u. For f € Ly(Q2)?, clearly the best we could expect is
u € H?(2)2. However, it is well-known that even for smooth right-hand sides the Sobolev regularity of u
may drop down due to certain singularity functions, see [21, 24]. In our case, a typical singular part ug
is of the form

(5.4.7) us = Z Z Cj,mCl(Tl)TlZlm Sl,zz.m7

T o<im<l
where

S = (zsin((z — 2)w;) + (2 — 2) sin(z6))S11 — 2(cos((z — 2)wy) — co8(201)) Sz 2,
(5.4.8)
with
(5.4.9) Sian = (zsin((z — 2)8)) — (= + 2) sin(26;), z(cos((z — 2)8;) — cos(z61)))7,

St,z2 = (—2z(cos((z — 2)6;) — cos(z6;)), zsin((z — 2)0;) — (z — 2) sin(z6;))T.

We see that the singular part ug describes the influence of the domain since it is independent of the
given right-hand side f. Obviously, the Sobolev regularity of ug decreases significantly as the angles w;
increase. In contrast to this, the Besov regularity of ug is almost independent of the shape of the domain
in the following sense.

In fact, by following the lines in [10], the following result can be established.

THEOREM 5.7. Any singular solution defined by (5.4.7) satisfies

1 r—1 1

(5.4.10) us € B"(L,(0))?, forall r>0, == 5t
T

This result can be proved by showing first that any singular solution defined by (5.4.7) satisfies

1
(5.4.11) us € Bl (L,(Q))?, forall r >0, =

—=-+
-

N3
N | =
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Note that the Besov scale in (5.4.11) corresponds to H! = L in Proposition 5.6 above and hence is
related to nonlinear approximation in Ls. For the velocity components the best N-term approximation
in H! is relevant though. To this end, obviously, ug is contained in H'(2)?. Therefore the result fol-
lows by interpolation between H'(Q)? and B7(L,(Q))?, 1/7 = r/2+1/2, see [11] for additional details. O

It remains to study the regularity of the pressure p. By writing
(5.4.12) Vp=f+Au,

inserting the singularity functions according to (5.4.7) and integrating (5.4.12), we see that for f € Ly(2)?
the pressure can also possess a singular part pg which in the vicinity of V; can be written as

(5.4.13) ps = Ci(6)rim !
for some smooth function Cj(6;). Once again, by following the lines in [10], it can be shown that ps has
arbitrary high regularity in the nonlinear approximation scale BT (L,(f)), 1/7 =r/2+1/2.

To construct the singular solutions according to (5.4.7), we have to determine the solutions of (5.4.5).
This equation has been studied in detail in [21]. Let us briefly recall the results. We introduce the
exceptional angle

(5.4.14) wo = tan(wp).

Then the following Lemma holds.

LEMMA 5.8. The equation (5.4.5) has no root in the strip 0 < R(z) < 1 when w < . It has only one
single real root in that strip when m < w < wy and it has two distinct simple real roots in that strip when
wo < w < 27.

Now we want to apply these results to the L-shaped domain. According to Lemma 5.8 and (5.4.7), we
only have singular solutions corresponding to the reentrant corner. It can be checked that the exceptional
angle wy is given by wy = 257.40 degrees. Consequently, in our case (5.4.5) has two distinct roots and we
have two singular solutions. The two roots can easily be computed numerically. We obtain

z1,1 = 0.9085291898461, z1,2 = 0.54448373678246.

Obviously, the second root is the ‘worse’ one. Consequently, to test the adaptive scheme, we designed
the right-hand side f in such a way that the solution u is exactly the singularity function corresponding
to 21,2, i.e.,

U= C(,,,,)TO.54448373678246 Sl
- 21,2

see also Section 6. According to (5.4.12), we choose the pressure p as a solution to
VP = A(r21'251721,2)'

Finally, we normalize p in L3 ¢(€2). The suitable right-hand side can be obtained by another application
of (5.4.12).

REMARK 5.9. One can easily verify that
u€ H'(Q)?, r<ri :=1.54448373678246 and p€ H"(Q), r <ry :=0.54448373678246

(i.e., uw & H™x(Q)2, p & H™™(Q)), which limits the convergence rate of uniform refinements. One the
other hand, u and p both have arbitrary high Besov regularity. Hence, in principle, wavelet bases with
high order regularity would give rise to corrispondingly high order adaptive approrimation rates.

6. Numerical Results. In this section, we present some numerical experiments for the Stokes-
problem on the planar L-shaped domain 2 = (—1,1)? \ [-1,0]*>. We employ different versions from the
family of wavelet bases ¥x and ¥,; from Section 5.2 for velocities and pressure, respectively.

Our objective is not to present a fully matured code but to gain additional quantitative insight
that complements the preceding theoretical results of primarily asymptotic nature. This concerns the
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quantitative effect of “violating” the LBB condition and the tradeoff between larger supports and better
compressibility when using higher order wavelets as well as suggestions for further algorithmic variants
and developments. For instance, the theoretical estimates, e.g. on the number K of iterations in ADV,
are presumably overly conservative. So it would be interesting to see experimentally whether typically
smaller numbers suffice or whether monitoring residuals pays to realize significantly earlier terminations.
Furthermore, we wish to see how the scheme copes with highly singular cases suggested by the discussion
in Section 5.4 compared with more regular solutions. More extensive tests of variants derived from first
experiences will be presented elsewhere.

6.1. Discretization of the Pressure. Recall from (5.1.2) that Ls o(f2) is the appropriate pressure
space. Hence the zero mean constraint requires special care. Here we exploit the fact that all wavelets in
U, have, according to (5.2.3), vanishing moments of order mar > mas > 1, so that

/@z;M,A(x)dx:o, N e Tars AL > o
Q

Hence for any q = q” ¥, one has

/Qq(:v)dx: Z qA/§z¢M7A($)d$ =: Z aax =: Ig(q).

[A=30 [A=jo

On the other hand, the scaling functions form a partition of unity, i.e.,

1= Y adwua(e), e,  ani= /Q@M,A(w) dr = (1,9nr,),

[A[=jo

where {tarn : |[A| = jo} is the (explicitly known) dual basis for the scaling functions in W/, i.e.,
(Wprx,¥an) = Oan, see [6, 17]. Thus, denoting by p() the Lebesgue measure of Q, we obtain a
projection Py : Ly(2) = L3 o(£2) by

Pyq):= ) (fh _lalg) 50\) vuat D D,

0
IXI=do () IAI>Jo

that factors out constants. Hence, realizing the zero mean constraint, requires modifications only on
the coarsest level, whereas the wavelet coefficients remain unchanged. Since operators are only applied
approximately, corresponding corrections are needed after applying B and also after coarsening. Since
the projection Py depends on the particular primal wavelet basis for Lo({2) all arrays have to refer to
the same basis so that the Riesz map R = (¥, ¥y) is needed in the second step (3.1.7)of the Uzawa
iteration.

Note that the present way of factoring out constants is only a first convenient option. A drawback
reflected by the experiments below is that due to the nature of Py always all coarse scale functions will
be involved in the pressure approximations. In particular, for higher order trial functions this number
grows, so that at least for the first few refinement steps the work/accuracy balance of the scheme is less
favorable for the pressure component. Local coarse scale basis functions would remedy this effect.

A detailed description of the routines APPLY and NCOARSE can be found in [2, 8] combined
with the above provisions with respect to the matrix B. As mentioned before, the routine ELLSOLVE
is essentially the adaptive Poisson solver from [2]. This indicates the principal potential of recycling these
basic routines for the treatment of problems with increasing complexity.

6.2. Description of the Test Cases. We wish to report below on two different test cases. Example
(I) corresponds to the most singular solution described in Section 5.4. As can be seen in Figure 6.1, the
pressure exhibits a strong singularity at the reentrant corner. In order to keep the effort for computing
an exact reference solution as moderate as possible we have computed an approximation of the exact
solution by truncating p. Of course, this limits the number of iterations of the adaptive algorithm for
which meaningfull comparisions can be made.

Example (II) involves a pressure which is localized around the reentrant corner, has strong gradients
but is smooth. More precisely, we have chosen an exact solution for the velocity which is very similar to
the one above and a pressure solution which is constant around the reentrant corner and multiplied by a
smooth cut off function. These functions are displayed in Figure 6.2.
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FIGURE 6.1. Ezact solutiopn for the first ezample. Velocity components (left and middle) and pressure (right). The
pressure functions exhibits a strong singularity and is only shown up to r = 0.001 in polar coordinates.
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FIGURE 6.2. Ezact solutiopn for the second example. Velocity components (left and middle) and pressure (right).

6.2.1. Choice of the Parameters. We expect that some of the constants resulting from the
analysis are actually too pessimistic. For instance, deriving estimates for the constants in the norm
equivalences, we have estimated K to be in the range of 15, which turned out to entail unnecessarily high
accuracy in the treatment of the inner Poisson problems while the pressure approximation and hence
the right-hand side for the Laplace problem are still poor. Several numerical experiments with different
trial functions and for different test cases, indicate that K = 3 already seems to suffice and that the
alternatives discussed in Section 3 are in these cases not necessary. All subsequent results are therefore
based on this choice. Moreover, we have used p = 0.6 and w = 1.3 in all experiments.

6.3. Rate of Convergence. Table 6.1 displays the results for Example (I), employing piecewise
linear trial functions for the velocity and piecewise constant functions for the pressure. We are interested
in the relation between the error produced for a given number of degrees of freedom by the adaptive
scheme and the error of best N-term approximation with respect to the underlying wavelet basis. To
describe the results we denote by u',u? the wavelet coefficient arrays of the first and second velocity
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component and define for x € {u',u?,p} by

_lx = xalle, _lx=xalle,

px = ) X -
lIx = xzalle, 1l

)

the ratio of the error of the adaptive approximation and the corresponding best N-term approximation,
respectively the relative error. Recall from Corollary 3.4 that these quantities also reflect the error in
the energy norms. We see that the velocity approximation is from the beginning very close to its best
N-term approximation. For the reasons indicated above this is different for the pressure. The application
of Py fills up the coarsest level which in this example has 768 degrees of freedom. To explain this in more
detail assume that the adaptive method picks exactly one scaling function, so that the degree of freedom
for the pressure would be 1. Since the integral of a scaling function is not zero, the pressure projection
Py produces a non-zero constant whose expansion involves all scaling function coefficients. This is the
reason why at the early stage of the refinement process the work accuracy balance for the pressure is less
favorable. However, the last two iterates shown in the table indicate that the scheme catches up with the
optimal rate. Local coarse scale bases would of course yield better results already from the beginning of
the adaptive refinements.

It O || #Aw | pu Tt || #Aw2 | puz raz || #Ap Pp Tp
1 || 11.730947 33 | 1.04 | 0.6838 34 | 1.04 | 0.6744 768 | 130.35 | 1.0024
2 5.865474 84 | 1.26 | 0.3427 83 | 1.24 | 0.3447 768 | 130.40 | 1.0028
3 2.932737 193 | 1.32 | 0.1530 184 | 1.31 | 0.1541 768 | 15.37 | 0.5234
4 1.466368 446 | 1.29 | 0.0821 450 | 1.29 | 0.0897 929 4.15 | 0.2218
) 0.733184 1070 | 1.27 | 0.0434 1065 | 1.27 | 0.0456 || 1211 2.58 | 0.1034

TABLE 6.1
Results for the first ezample. Numbers of adaptively generated degrees of freedom, ratio to best N-term approximation
and relative errors.

The results for Example (II) are shown in Table 6.2 and plots of the approximations are displayed
in Figure 6.4. We see that the computed approximations differ only by a very moderate factor from
the best N-term approximation. The results suggest the following directions for more systematic im-

It 0 || #A, Pul Tul || #FAL2 Pu2 Taz || #Ap Pp Tp
1| 15.636636 278 | 28.20 | 1.2936 364 | 60.31 | 2.1867 || 768 | 6.96 | 0.3329
2 || 7.818318 261 | 8.30 | 0.4028 295 | 16.10 | 0.7003 | 768 | 3.76 | 0.1800
3 { 3.909159 234 | 3.72 | 0.1995 274 | 5.63 | 0.2617 | 768 | 1.80 | 0.0863
4 || 1.954580 180 | 1.25 | 0.0886 249 | 2.08 | 0.1056 || 810 | 1.22 | 0.0452
5 0.977290 233 | 1.14 | 0.0615 267 | 1.29 | 0.0615 || 980 | 1.07 | 0.0231
6 || 0.488645 298 | 1.11 | 0.0480 321 | 1.17 | 0.0470 || 1276 | 1.05 | 0.0117
7| 0.244322 456 | 1.35 | 0.0398 505 | 1.43 | 0.0265 || 1551 | 1.09 | 0.0061
8 0.122161 704 1.36 | 0.0250 724 1.39 | 0.0177 || 1842 | 1.24 | 0.0035

TABLE 6.2
Results for the second example. Numbers of adaptively generated degrees of freedom, ratio to best N-term approzima-
tion and relative error.

plementations. The simple Richardson iteration should be replaced (possibly after a few initial steps)
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by gradient or conjugate gradient steps. This should speed up convergence and avoid a necessarily pes-
simistic estimation of step size parameters. Since all algorithmic ingredients still require the same type of
(approximate) matrix/vector multiplications one can employ the same routines. One should then include,
however, monitoring residuals which, due to (2.3.1), should detect rapid convergence for a possible early
termination of the iterations in ADV (ii). Moreover, higher order wavelets should be tested to exploit
larger compressibility ranges.

High order dircretizations.. Recall from Section 5.3 that the compressibility range of the wavelet
representations grows with increasing regularity and hence order of the wavelet bases, see Theorems 5.3,
5.5. Moreover, the regularity results from Theorem 5.7 and Remark 5.9 indicate that the larger the
compressibility range of the wavelet representations the more an adaptive scheme would gain at least
asymptotically over uniform refinements. This suggest investigating the quantitative effect of employing
higher order spline wavelets.

We compare now discretizations of various orders for the pressure in the second example. In Figure
6.3, we have shown the relative error versus the number of unknowns in a logarithmic scale. Comparing
the slopes of the best N-term approximation, we obtain the expected asymptotic gain for increasing
orders, again at the end with moderate values for the ratios px. However, we also see that the fast decay
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FIGURE 6.3. Relative error versus number of unknowns for spline wavelets of different order for the discretization of
the pressure in the second example.

of the rate of the best N-term approximation is delayed more and more for an increasing order of trial
functions. For instance, for piecewise cubic wavelets, we obtain an almost horizontal line until N ~ 2000.
This is on one hand due to some technical restrictions of the particular patchwise tensor product wavelet
bases used here requiring a certain coarsets level jo on each patch. The values for jo are shown in Table
6.3 for different orders. We see that jo increases with m (the case m = 2 is somewhat special due to
the very local character of primal and dual functions). We display also the number of unknowns for
the coarsest level, i.e., the number of scaling functions on level j = jo. On the other hand, as pointed
out before, the nature of Py keeps all coarse scale basis functions active. This explains why the slope of
the best N-term approximation is almost horizontal until all scaling functions are used up. There are
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several ways to alleviate this problem also for higher order discretizations. Aside from using local coarse
scale basis functions with zero mean one can take a ficticous domain approach and append the boundary
conditions by Lagrange multipliers. This allows one to use periodic wavelet bases on the fictitious domain
where the minimal level can be always chosen as jo = 0 for all values of m and m. This issue will be
addressed elsewhere.

m,m 1,31 22| 3,3 4.4
Jo 4 3 4 )

Ng || 705 | 242 | 587 | 2882

TABLE 6.3
Minimal level jo and number of scaling functions Ng on the minimal level for different order discretizations.

6.4. The LBB-Condition. At the first glance it is somewhat puzzling that in the analyis of the
adaptive Uzawa method the LBB condition did not play any role. Roughly, speaking this is due to the fact
that conceptually at every stage of the algorithm the full infinite dimensional operator is applied within
a certain tolerance that has to be chosen tight enough to inherit the stability properties of the original
infinite dimensional problem. This effect of adaptive schemes in connection with saddle point problems
and also with more complex variational problems has been observed first in (a predecessor of) [9], see also
[14] for saddle point problems. Hence it is interesting to study the quantitative influence of the choice
of bases. Therefore, we have included a combination of bases for which pairs of fixed finite dimensional
subspaces would violate the LBB-condition, namely piecewise linear trial functions for both velocity and
pressure. The results are displayed in Table 6.4. We see that the rate of the best N-term approximation
is still matched fairly well with ratios that are only slightly larger than in Table 6.2 for the piecewise
linear /piecewise constant discretization. Note that the oscillations in the pressure approximation for

It O || #Aw | pun rat || #Aw> | pu ra2 || #Ap Pp p
1| 16.743449 1] 1.00 | 0.9293 1] 1.00 | 0.9300 243 | 6.27552 | 0.3354
2 8.371724 1] 1.00 | 0.9304 11 1.00 | 0.9292 243 | 3.98811 | 0.2131
3 4.185862 5 | 1.00 | 0.7586 5 | 1.00 | 0.7588 243 | 2.23810 | 0.1196
4 2.092931 20 | 1.13 | 0.4064 24 | 1.45 | 0.3979 262 | 2.08107 | 0.0612
5 1.046466 61 | 1.47 | 0.2107 77 | 1.79 | 0.2107 324 | 2.72102 | 0.0339
6 0.523233 178 | 1.33 | 0.1060 198 | 1.52 | 0.1306 396 | 2.81079 | 0.0209
7 0.261617 294 | 1.19 | 0.0533 286 | 1.46 | 0.0744 674 | 2.21371 | 0.0108
8 0.130808 478 | 1.25 | 0.0271 531 | 1.46 | 0.0362 899 | 1.83271 | 0.0071

TABLE 6.4
Results for the second example with piecewise linear trial functions for velocity and pressure. Note that in this case
the number of degrees of freedom for the coarsest level is 243.

unstable elements shown by the experiments in [4] are not observed in the present context, see Figure
6.4. This seems to results from the different pressure update.
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FIGURE 6.4. Approzimations for the second example. First and second velocity component (left and middle column)
and pressure (right column).
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