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ADAPTIVE WAVELET METHODS FOR SADDLE POINT PROBLEMS| OPTIMAL CONVERGENCE RATES�STEPHAN DAHLKEy, WOLFGANG DAHMENz, AND KARSTEN URBANzAbstra
t. In this paper an adaptive wavelet s
heme for saddle point problems is developed and analysed. Underthe assumption that the underlying 
ontinuous problem satis�es the inf-sup 
ondition it is shown in the �rst part underwhi
h 
ir
umstan
es the s
heme exhibits asymptoti
ally optimal 
omplexity. This means that within a 
ertain range the
onvergen
e rate whi
h relates the a
hieved a

ura
y to the number of involved degrees of freedom is asymptoti
ally the sameas the best wavelet N-term approximation of the solution with respe
t to the relevant norms. Moreover, the 
omputationalwork needed to 
ompute the approximate solution stays proportional to the number of degrees of freedom. It is remarkablethat 
ompatibility 
onstraints on the trial spa
es su
h as the Ladyshenskaja-Babu�ska-Brezzi (LBB) 
ondition do not arise.In the se
ond part the general results are applied to the Stokes problem. Aside from the veri�
ation of those requirementson the algorithmi
 ingredients the theoreti
al analysis had been based upon, the regularity of the solutions in 
ertain Besovs
ales is analyzed. These results reveal under whi
h 
ir
umstan
es the work/a

ura
y balan
e of the adaptive s
heme is evenasymptoti
ally better than that resulting from preassigned uniform re�nements. This in turn is used to sele
t and interpretsome �rst numeri
al experiments that are to quantitatively 
omplement the theoreti
al results for the Stokes problem.Key Words: Saddle point problems, wavelet bases, norm equivalen
es, adaptive re�nements, fast ap-proximate operator appli
ation, Uzawa iteration.1. Introdu
tion. This paper draws on two major sour
es of motivation. First, it has re
ently beenshown in [8℄ that 
ertain adaptive wavelet s
hemes are asymptoti
ally optimal for a wide 
lass of selfadjointellipti
 operator equations. This means that the a
hieved a

uray in the energy norm expressed in termsof the numbers of involved degrees of freedom is asymptoti
ally the same as the rate of the best N-termapproximation, i.e., the minimal number of basis fun
tions needed to approximate the solution within thegiven a

ura
y toleran
e. Moreover, (up to additional log-fa
tors in sorting operations, see also Remark4.9 below) it was shown that the 
omputational work needed to 
ompute the approximate solution staysproportional to the number of degrees of freedom. While the 
lass of operator equations 
overs boundaryvalue problems for partial di�erential equations as well as singular integral equations, symmetry did playa 
ru
ial role in the analysis and design of the s
heme. These te
hniques have meanwhile been extendedto non-
oer
ive problems through wavelet least squares formulations [9℄.Se
ond, in [14℄ the results of a prede
essor [13℄ of [8℄ also for the symmetri
 ellipti
 
ase have beenextended to saddle point problems. The key idea there was to use an outer Uzawa iteration and to solvethe interior symmetri
 positive de�nite problems by a s
heme of the type 
onsidered in [13℄. However, nostatements about the eÆ
ien
y of su
h s
hemes in terms of 
onvergen
e rates and work 
ount was madein [14℄.In this paper we also 
onsider saddle point problems a
tually under slightly weaker assumptions thanin [14℄ and propose an adaptive wavelet s
heme for their numeri
al solution. In order to avoid (amongother things) the squaring of 
ondition numbers, it is based as in [14℄ on an outer Uzawa iteration althoughit di�ers from the s
heme in [14℄ in several essential ways. It draws on detailed algorithmi
 ingredientsfrom [8℄ whi
h allow one to quantify 
on
rete 
omputational steps and estimate their 
omplexity whi
hresults in a somewhat di�erent balan
e of a

ura
ies. It also applies when the symmetri
 bilinear formis only ellipti
 on the kernel of the 
onstraint operator.On a more fundamental level, in the same spirit as in [8, 9℄, there are two essential features thatdistinguish the present approa
h from [13, 14℄ and more so from 
lassi
al dis
retizations. The �rst oneis that through appropriate wavelet bases the original 
ontinuous problem is transformed right from thebeginning into an equivalent problem whi
h is well-posed in the Eu
lidean metri
. All essential 
ompu-tational steps refer then to approximation in `2 and therefore bear a great potential of being portable toother problem 
lasses. In fa
t, many of the basi
 routines developed in [2, 8℄ in the 
ontext of ellipti
problems 
an be used here as well. The se
ond important point is that the wavelet representation allowsus to think of performing, up to a 
ontrolled perturbation, an iteration on the full in�nite dimensional�This work has been supported in part by the Deuts
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problem realized through the adaptive approximate appli
ation of the full in�nite dimensional operators.The toleran
es have to be 
hosen so that the 
onvergen
e speed of the perturbed realizable iteration isindeed governed by the properties of the ideal in�nite dimensional iteration.This o�ers, in parti
ular, a �rst intuitive explanation for the following fa
t whi
h at the �rst glan
estrikes one as a paradoxon, namely 
ompatibility 
onstraints on the 
hoi
e of trial fun
tions su
h as theLBB 
ondition do not arise. In fa
t, re
all that even when the in�nite dimensional saddle point problem iswell posed and hen
e satis�es an inf-sup 
ondition inappropriate 
hoi
es of �nite dimensional trial spa
es
ould lead to dis
rete problems with poor stability properties, that is the inverses of the 
orrespondingsystem matri
es may have arbitrarily large norm. This fa
t is relevant whenever linear systems are too besolved for any su
h given pair of trial spa
es. In the present 
ontext this situation will never arise. Insteadan iterative pro
ess is 
on
eptually applied to the full in�nite dimensional problem where ea
h iterationinvolves an adaptive appli
ation of the underlying in�nite dimensional operators within a 
ertain stagedependent dynami
 a

ura
y toleran
e. This pro
ess is inherently nonlinear. Roughly speaking properadaptation in the above sense inherits the stability of the in�nite dimensional problem. In this senseadaptation not only redu
es 
omplexity but also stabilizes the 
omputation automati
ally.The paper is organized as follows. After formulating the problem in Se
tion 2 we des
ribe and analysean adaptive method in Se
tion 3. It will be shown in Se
tion 4 under whi
h 
onditions on the algorithmi
ingredients it exhibits an asymptoti
ally optimal a

ura
y/work balan
e in the following sense. Wheneverthe exa
t solution has, within a 
ertain range of exponents s, an error of best N-term approximation withrespe
t to an underlying wavelet basis de
aying like N�s, then the error a
hieved by the adaptive s
hemealso de
ays like N�s where N is the number of used degrees of freedom. Moreover, the 
omputationalwork stays proportional to N . A key role in this 
ontext is played by the 
ompressibility range of theinvolved operators in wavelet 
oordinates. Given this property one 
an apply a 
ertain adaptive s
hemefor applying the operator to any �nitely supported ve
tor with optimal a

ura
y/work balan
e [8℄.In Se
tion 5 the general results are applied to the Stokes problem. Spe
i�
ally, we investigate inSe
tion 5.3 the 
ompressibility range of the wavelet representation of the Stokes operator for a 
ertainfamily of wavelet bases and derive sharp estimates for this range. This identi�es the range of de
ay ratesfor whi
h the general results from the pre
eding se
tions apply.It should be stressed that the s
heme works without any a-priori assumptions on the solution whileits 
omplexity is analysed under the assumption that the solution has a 
ertain order of best N -termapproximation and the involved operators in wavelet 
oordinates have a 
ertain 
ompressibility range(see Se
tion 4). Certain rates of best N -term approximation, in turn, are (almost) equivalent to a
ertain regularity of the solution in a Besov s
ale. Roughly speaking, when the Sobolev regularity of thesolution is lower than its Besov regularity, the adaptive s
heme is expe
ted to o�er even an asymptoti
allybetter a

ura
y/work balan
e than linear s
hemes. To see whether or under whi
h 
ir
umstan
es theadaptive s
heme 
an be rigorously proven to o�er even an asymptoti
ally better a

ura
y/work balan
ethan s
hemes based on uniform preassigned mesh re�nements, we investigate in Se
tion 5.4 the Besovregularity of singularity solutions for the Stokes problem. The results show that in two spatial dimensionssuÆ
iently high order wavelet bases would give rise to adaptive s
hemes with arbitrarily high 
onvergen
erates.Finally in Se
tion 6 we present some numeri
al experiments essentially guided by the above mentionedtheoreti
al 
onsiderations. Here we make use of the software developed in [2℄ as well as in [25℄. The results
on�rm that the adaptive s
heme performs essentially independently of the pairing of trial fun
tions forvelo
ities and pressure. For instan
e, the rate of best N -term approximation is met within a fa
tor twowhen both velo
ities and pressure are approximated by pie
ewise linear trial fun
tions.After 
ompletion of this work we be
ame aware of related investigations in [4℄ pursuing similar ideasin a �nite element 
ontext. There 
onvergen
e in the sense of [14℄ is proven for a similar Uzawa te
hniquewithout establishing, however, rigorous estimates for the 
orresponding work/a

ura
y balan
e.2. Saddle Point Problems.2.1. The Setting. Let X;M denote Hilbert spa
es with norms k � kX ; k � kM , respe
tively. Dualpairings on X�X 0 andM�M 0 (X 0;M 0 denoting the duals of X;M , respe
tively) will always be denotedby h�; �i. It will be 
lear from the 
ontext whi
h spa
es are referred to. Suppose that a(�; �) is a 
ontinuous2



symmetri
 bilinear form on X �X and that b(�; �) is a 
ontinuos bilinear form on X �M , i.e.,ja(v; w)j <� kvkXkwkX ; jb(q; v)j <� kvkXkqkM :Moreover, denoting by B : X ! M 0 the operator indu
ed by b(p; v) = hp;Bvi and setting V := kerB,assume that a(�; �) is ellipti
 on V and b(�; �) satis�es the inf-sup 
onditiona(v; v) � �kvk2X ; v 2 V; infq2M supv2X b(v; q)kvkXkqkM > �:(2.1.1)It is well known that then the variational problem has for any f 2 X 0, g 2M 0a(u; v) + b(p; v) = hf; vi 8 v 2 X;b(q; u) = hq; gi 8 q 2M;(2.1.2)a unique solution U = (u; p) 2 X �M , see e.g. [5℄. De�ning A : X ! X 0 by a(v; w) = hv;Awi, v 2 X ,(2.1.2) is equivalent to the 2� 2 blo
k operator equationLU := 0� A B0B 0 1A�up� = �fg� =: F;(2.1.3)where L is an isomorphism from X �M into its dual X 0 �M 0, i.e. there exist positive 
onstants 
L; CLsu
h that 
L �kvk2X + kqk2M�1=2 � 
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X0�M 0 � CL �kvk2X + kqk2M�1=2 :(2.1.4)Classi
al examples are mixed formulations of se
ond order ellipti
 boundary value problems, theStokes problem or the system obtained when appending essential boundary 
onditions by Lagrangemultipliers.2.2. Wavelet Coordinates. Now suppose that we have wavelet bases 	X = f X;� : � 2 JXg,	M = f M;� : � 2 JMg for X and M at our disposal su
h that for suitable diagonal matri
es DX , DMand 
onstants 
X ; CX , 
M , CM one has
Xkvk`2(JX ) � kvTD�1X 	XkX � CXkvk`2(JX );(2.2.1)and likewise 
Mkqk`2(JM ) � kqTD�1M 	MkM � CMkqk`2(JM );(2.2.2)where vTD�1X 	X :=P�2JX d�1X;�v� X;�. The validity of su
h norm equivalen
es will be 
ru
ial in whatfollows. Note that often M is a 
losed subspa
e of �nite 
odimension in a larger Hilbert spa
e M̂ forwhi
h (2.2.2) holds. For instan
e, in the 
ase of the Stokes problem M is the spa
e of all L2 fun
tionswith zero mean. Thus the arrays of wavelet 
oeÆ
ients of elements in M will in general form a 
losedsubspa
e `2;0(JM ) of �nite 
odimension in `2(JM ).At this point we dispense with any additional te
hni
al details about the pre
ise nature of the basisfun
tions but refer to [7, 15℄ for surveys and further referen
es, see also the 
omments in 
onne
tion withnumeri
al realizations below. A further important property is the 
an
ellation property whi
h entailsnear sparseness of wavelet representations for many operators. This will also be detailed when ne
essityarises.De�ning now for any two 
ountable arrays �;� and some inner produ
t 
(�; �) the matrix 
(�;�) :=(
(�; �))�2�;�2�, 
onsider as usual the s
aled wavelet representationsA := a(D�1X 	;D�1X 	); B := b(D�1M 	M ;D�1X 	X);(2.2.3) 3



as well as the arrays f := D�1X h	X ; fi, g := D�1M h	M ; gi and F := (fT ;gT )T . Then (2.1.2) or (2.1.3) isequivalent to the following two by two blo
k matrix system0� A BTB 0 1A�up� = �fg�:(2.2.4)It will make things mu
h more transparent when working from now on ex
lusively in the `2 setting.2.3. Well-Posedness in `2. It follows from (2.2.1) and (2.2.2) together with (2.1.4) that the oper-ator L := 0� A BTB 0 1A : `2(J ) := `2(JX )� `2;0(JM )! `2(J ); J := JX �JM ;is an isomorphism, i.e., there exist positive 
onstants 
L; CL su
h that for V := (vT ;qT )T 2 `2(J ),kVk2̀2(J ) = kvk2̀2(JX ) + kqk2̀2(JM )
LkVk`2(J ) � kLVk`2(J ) � CLkVk`2(J ); V 2 `2(J );(2.3.1)see e.g., [15, 22℄ for further details. Clearly 
L; CL 
an be expressed in terms of the 
onstants 
L; CL,
Y ; CY for Y 2 fX;Mg. Furthermore there exist 
onstants CB , C 0A su
h thatkBvk`2(JM ) � CBkvk`2(JX ); kBTqk`2(JX ) � CBkqk`2(JM ):(2.3.2)and kAvk`2(JX ) � C 0Akvk`2(JX ):(2.3.3)2.4. The S
hur Complement. In many 
ases a somewhat stronger property than the �rst relationin (2.1.1) is valid, namely that a(v; v) � kvk2X ; v 2 X;(2.4.1)whi
h, of 
ourse means that A is invertible on all of `2(JX ). In this 
ase blo
k elimination redu
es (2.2.4)to the so 
alled redu
ed system Sp = BA�1f � g;(2.4.2)involving the (in�nite dimesnional) S
hur 
omplementS := BA�1BT : `2;0(JM )! `2;0(JM )(2.4.3)whi
h is symmetri
 positive de�nite and, under the above assumptions, in fa
t an automorphism on`2;0(JM ), i.e., there exist positive 
onstants 
S ; CS su
h that
Skqk`2(JM ) � kSqk`2(JM ) � CSkqk`2(JM ); q 2 `2;0(JM ):(2.4.4)On
e p has been determined from (2.4.2) it remains to solve the positive de�nite problemAu = f �BTp:(2.4.5)However, under the weaker assumption (2.1.1) on the bilinear form a(�; �) one has to take �rst apre
aution whose variational 
ounterpart is sometimes referred to as augmented Lagrangian method. Inthe present setting it boils down to 
onsidering the matrixÂ := A+ 
BTB;(2.4.6)where 
 is some suÆ
iently large but �xed positive 
onstant.4



Remark 2.1. Under the assumption (2.1.1) the matrix Â is an automorphism on `2(JX ), i.e., thereexist positive 
onstants 
A; CA su
h that
Akvk`2(JX ) � kÂvk`2(JX ) � CAkvk`2(JX ); v 2 `2(JX ):(2.4.7)Proof: It follows from (2.3.2) and (2.3.3) that Â is bounded on `2(JX). Moreover, by (2.3.1) the matrixLTL = L2 is positive de�nite on `2(J ). Sin
e BBT is a prin
ipal blo
k of L2 it is positive de�nite on`2;0(JM ). This entails that Â is also inje
tive on `2(JX ). To see this note that by the �rst relation in(2.1.1), vT Â 6= 0 for v 2 kerB. On the other hand, when v is in the range of BT , i.e., v = BTq forsome q 2 `2;0(JM ), then one hasvT Âv = qTBABTq+ 
kBBTqk2̀2(JM )(2.4.8)whi
h, by the previous remark, is stri
tly positive whenever p 6= 0, 
on�rming inje
tivity of Â on `2(JX).By symmetry (2.4.8) also implies surje
tivity. Due to the boundedness of Â, the 
laim follows now fromthe Inverse Mapping Theorem.Now multiply (2.2.4) from the left by the `2(J )-isomorphism0� id 
BTB 0 1A ;(2.4.9)whi
h yields the equivalent system 0� Â BTB 0 1A�up� = � f̂g�;(2.4.10)for some 
 > 0, where for Â given by (2.4.6) f̂ := f + 
BTg:By Remark 2.1 blo
k elimination 
an be applied to this new system (2.4.10) whi
h then redu
es to the
oupled systems (2.4.2), (2.4.5) with A and f repla
ed by Â, respe
tively f̂ .To simplify notation we will use the following 
onvention throughout the remainder of the paper. Wewill always set A := D�1X a(	X ;	X)D�1X + 
BTB; f := D�1X h	X ; fi+ 
BTg;(2.4.11)with B := D�1M b(	M ;	X)D�1X as in (2.2.3) and g := D�1M h	M ; gi. When the bilinear form a(�; �)satis�es the stronger assumption (2.4.1) the 
onstant 
 in (2.4.11) 
an be 
hosen to be zero. Otherwise,
 is any �xed positive number. Thus without loss of generality we 
an always make use of the redu
edsystems (2.4.3), (2.4.5) with a proper interpretation of the matrix A a

ording to the above 
onvention.Consequently, A satis�es in this sense (2.4.7).A standard way of formulating �nite dimensional problems is to take Galerkin dis
retizations for(2.1.2). As soon as one �xes a pair of �nite dimensional trial spa
es in X and M , for instan
e, spannedby 
olle
tions of wavelets, the 
orresponding Galerkin dis
retization gives rise to a �nite dimensionallinear system, e.g. in terms of a prin
ipal �nite submatrix of (2.2.4). However, it is well-known thatstability of the in�nite dimensional problem does not guarantee the �nite dimensional problems to beuniformly stable as well. Compatibility 
onstraints in terms of the LBB 
ondition 
ome into play. It willbe seen that this will not be the 
ase in the following adaptive framework.3. An Adaptive Uzawa-Strategy. 5



3.1. In�nite Dimensional Uzawa Iteration. The idea is to use a stationary iterative s
heme forthe solution of the redu
ed system (2.4.2) whi
h is essentially the Uzawa strategy proposed in [14℄. In
ontrast, we formulate it here dire
tly for the dis
rete in�nite dimensional `2-problem (2.2.4). To thisend, we have to address �rst an issue whi
h is somewhat hidden in the `2-setting. The Spa
es X;M arealways fun
tion spa
es on some domain 
. As will be explained in more detail later the wavelet bases	X and 	M are then typi
ally 
onstru
ted as Riesz bases for the 
orresponding spa
es L2(
), i.e, inaddition to the norm equivalen
es (2.2.1), (2.2.2) one also haskvk`2(JX ) � kvT	XkL2(
); kqk`2(JM ) � kqT	MkL2(
):(3.1.1)This means that there exist dual bases ~	X , ~	M in L2(
) whi
h are also Riesz bases and satisfy(	X ; ~	X) = id; (	M ; ~	M ) = id;(3.1.2)where (�; �) denotes the standard inner produ
t in L2(
). In full agreement with the fa
t that the operatorB maps X into M 0 one observes that for v = vTD�1X 	X the array Bv represents expansion 
oeÆ
ientsof Bv with respe
t to the dual basis ~	M . In fa
t,(Bv)TDM ~	M = vT hBD�1X 	X ;	M iD�1M DM ~	M = vT hBD�1X 	X ;	M i~	M= B(vTD�1X 	X) = Bv:Likewise the array g 
onsists by de�nition of the wavelet 
oeÆ
ients with respe
t to the dual basis ~	M .On the other hand, the unknown array q in the redu
ed system (2.4.2) 
ontains 
oeÆ
ients with respe
tto the primal basis 	M . Now, as mentioned before, in some 
ases the spa
e M is a
tually a 
losedsubspa
e of a somewhat larger Hilbert spa
e 
hara
terized by 	M . Therefore the wavelet 
oeÆ
ientsof elements of M with respe
t to 	M (or D�1M 	M ) satisfy 
ertain 
onstraints whi
h generally dependon the parti
ular wavelet basis. To 
hange representations if ne
essary, observe that, in view of (3.1.2)~	M = (~	M ; ~	M )	M , so that su
h a 
hange of bases is realized by the matrixR := (~	M ; ~	M )(3.1.3)be
ause ~pT ~	M = ~pTR	M = (R~p)T	M :It immediately follows from (3.1.1) that both R and R�1 = (	M ;	M ) are bounded on `2(JM ),kRk`2(JM )!`2(JM ) � CR:(3.1.4)Sin
e S is positive de�nite and satis�es (2.4.4) there exists therefore some positive ! (e.g. ! < 2CSCR)su
h that � := kid� !RSk`2(JM )!`2(JM ) < 1:(3.1.5)Then the in�nite dimensional version of the Uzawa s
heme reads as follows.UZAWA: Given any p0 2 `2;0(JM ), 
ompute for i = 1; 2; : : :Aui = f �BTpi�1;(3.1.6) pi = pi�1 + !R(Bui � g):(3.1.7)This is known to 
onverge when � < 1. In fa
t, sin
e u = A�1(f �BTp) it is easy to see thatp� pi = (id� !RS)(p� pi�1);so that kp� pik`2(JM ) � �ikp� p0k`2(JM ):(3.1.8)Moreover, it has been shown in [14℄ that for p0 = 0 one haskp� pik`2(JM ) � kA�1fk`2(JX )k!RSBk`2(JX )!`2(JM ) �i1� � :(3.1.9) 6



3.2. The Adaptive S
heme. As in [9℄ the key idea is to apply the above Uzawa iteration to theininite dimensional problem. In view of (3.1.6) and (3.1.7), this involves three tasks, namely addingsequen
es with generally in�nite support su
h as the data f and g, the appli
ation of in�nite matri
eslike B or BT to �nitely supported ve
tors, as well as the solution of ellipti
 problems involving the in�nitematrix A. Of 
ourse, in pra
ti
e neither one of these tasks 
an be performed exa
tly. Therefore one hasto employ suitable approximations whose a

ura
y will depend on the 
urrent stage of the algorithm andwhi
h will be des
ribed next.To this end, we shall not distinguish formally between �nitely supported ve
tors and in�nite sequen
esin `2(J 0) where in the sequel J 0 2 fJX ;JMg, but will rather view both quantities as sequen
es (expandedby zero entries if ne
essary).The �rst basi
 ingredient is the routineNCOARSE [�;v℄ ! (�v;�) whi
h determines for a given �nitely supported ve
tor v a ve
tor �v withsmallest possible support � su
h that kv� �vk`2(J ) � �:(3.2.1)In parti
ular, NCOARSE will be used to approximate the arrays fÆ := D�1X h	X ; fiX and g of givendata by �nitely supported ve
tors. The way how to think about NCOARSE in this 
ontext 
an beformulated as the followingAssumption f: In a prepro
essing step for a given target a

ura
y suÆ
iently many (wavelet) 
oeÆ-
ients in the arrays fÆ and g are made available and ordered by size.In many appli
ations f and g are simple and, as model data given by the user, are 
onsidered here as
ompletely a

essible. Coarser approximations of the data are then obtained by applying NCOARSEto these prepro
essed �nite arrays (see Se
tion 6.1 in [8℄ for a more detailed dis
ussion).The se
ond basi
 ingredient is an approximate appli
ation of an in�nite matrix to a �nitely sup-ported ve
tor. Given an in�nite matrix C (as a mapping from `2(J 00) to `2(J 0) for any pair (J 0;J 00) 2fJX ;JMg2), the s
hemeAPPLY [�;C;v℄ ! (w;�) produ
es for any �nitely supported input ve
tor v a ve
tor w with �nitesupport � � J 0 su
h that kCv�wk`2(J 0) � �:(3.2.2)A s
heme with this property has been developed in [8℄. We postpone a qui
k des
ription of therelevant features along with estimates for its 
omputational 
ost to a later se
tion.Note that, in parti
ular, the routines APPLY and NCOARSE allow us to approximately evaluatethe right-hand sides of (3.1.6) and (3.1.7).So the remaining task in an approximate Uzawa iteration of the form (3.1.6), (3.1.7) is to solve theoperator equation (3.1.6) with system matrix A. This is an ellipti
 problem in the sense of [8℄ and wewill make heavy use of the results obtained there, see also [2℄ for implementations and numeri
al tests.The s
heme from [8℄ is also built solely on the above routines NCOARSE and APPLY. There are,however, two minor points that need to be brie
y addressed. First in [8℄ the matrix A is just the waveletrepresentation of the underlying ellipti
 operator while in the present situationA has the form (2.4.11) forsome positive 
onstant 
 when a(�; �) is not ellipti
 on all of X . Nevertheless, on
e a s
heme APPLY forwavelet representations is availabele a s
heme for applying matri
es of the form (2.4.11) with 
 6= 0 is eas-ily obtained from su
h a building blo
k as follows. To simplify notation we set AÆ := D�1X a(	X ;	X)D�1X :APPLY�[�;A;v℄! (w;�)(i) APPLY [�=2;AÆ;v℄! (w1;�1);(ii) APPLY [�=4
CB ;B;w1℄! (w2;�2); 7



(iii) APPLY [�=4; 
BT ;w2℄! (w3;�3) and setw := w1 +w3; � := �1 [ �3:Remark 3.1. One easily derives from (3.2.2) that the output w produ
ed by APPLY�[�;A;v℄satis�es for A given by (2.4.11) kAv �wk`2(JX ) � �:(3.2.3)Moreover, it is also 
lear that up to a uniform 
onstant the work/a

ura
y balan
e for APPLY� is thesame as that for APPLY. Note that the matrix BTB is, of 
ourse, never 
omputed.We will extra
t now from the results in [8℄ a version for the treatment of (3.1.6) (with APPLYrepla
ed by APPLY� if ne
essary) that suits the present needs best. To this end, 
onsider for A asabove the ellipti
 problem Au = h(3.2.4)for some h 2 `2(JX ) with exa
t solution û.ELLSOLVE [";A;v;h℄! (�u;�)Given " > 0 and an approximate solution v to (3.2.4), then the output �u with �nite support � satis�eskû� �uk`2(JX ) � ":(3.2.5)The se
ond point is that in [8℄ the right-hand data are assumed to be a given array of wavelet
oeÆ
ients as explained above that 
an be prepro
essed. In the present situation the right-hand dataare 
omposed of su
h prepro
essable data like f and an additional matrix/ve
tor produ
t involvingdynami
ally updated entities. We therefore have to approximate these data by �nitely supported ve
torsthat 
an then be pro
essed as in Se
tions 7.2, 7.3 of [8℄. The 
orresponding perturbations 
an be estimatedas follows.Remark 3.2. Consider again (3.2.4) and suppose that approximate �nitely supported right-handside data h� 2 `2(JX ) are given su
h thatkh� h�k`2(JX ) � �:(3.2.6)Then the output �u of ELLSOLVE [�;A;v;h� ℄ satis�eskû� �uk`2(JX ) � "+ 
�1A �:(3.2.7)Proof: The 
laim follows from (3.2.5) 
ombined with (2.4.7) to estimate the perturbation e�e
t. �We will des
ribe next the 
omputation of a �nitely supported h� when h = f �BT �pi�1, see (3.1.6).De�ning fÆ := D�1X h	X ; fi, re
all from (2.4.11) thatf �B�pi�1 = fÆ �BT (�pi�1 � 
g);whi
h thus involves 
oarsening the given (prepro
essed) data fÆ;g and a multipli
ation by BT . Therespe
tive 
on
rete a

ura
y toleren
es are given in the following routine:RHS [�p; �℄! (h�;�h)Given a �nitely supported �p the routine RHS 
omputes a ve
tor h� with �nite support �h satisfyingkf �BT �p� h�k`2(JX ) � �;(3.2.8)as follows:(i) Apply NCOARSE [�=3; fÆ℄! (�f ;�f ), NCOARSE [�=3
CB;g℄! (�g;�g) and set r := �g + �p.8



(ii) APPLY [�=3;BT ; r℄! (w;�w) and seth� := �f �w; �h := �f [ �w:Sin
e by (3.2.1) k(�p�
g)�rk`2(JX ) � �=3CB the estimate (3.2.8) indeed readily follows from (3.2.2).Our numeri
al realization of the ideal (in�nite dimensional) Uzawa s
heme (3.1.6), (3.1.7) has thefollowing stru
ture. A �xed uniformly bounded number K, depending only on the 
onstants asso
iatedwith the wavelet bases and the mapping properties of the involved operators, of approximate appli
ationsof (3.1.6), (3.1.7) are applied whi
h is then followed by a 
oarsening step before the iteration is furtherresumed. Su
h an iteration blo
k will be arranged to advan
e the 
urrent approximate solutions so asto redu
e the 
urrent error bounds by a �xed fa
tor. Before giving a pre
ise des
ription, we would liketo stress that the Uzawa s
heme as a gradient method for the redu
ed system (2.4.2) treats in somesense q 2M as the \preferred" variable. In fa
t, the a

ura
y of the approximate solution to the ellipti
problem (3.1.6) need not be too a

urate relative the the 
urrent a

ura
y of the approximation to q. Inorder to formulate now the basi
 iteration blo
k as a 
on
rete routine we will use the following 
hoi
efor the number K of perturbed iterations before the next 
oarsening step. Let 
i denote any positivesummable numbers, e.g. 
i = (1 + i)�2. Moreover, we need some 
ontrol parameters. SetC1 := !(CRCB + 2)
 + 1;(3.2.9)where 
 :=P1i=0 
i, and let K denote the smallest integer su
h that�K((�
A)�1CBC1 + 1) � 1=10:(3.2.10)ADV [�u; �p; Æ℄! (~u; ~p;�u;�q)Given 
urrent approximations �u; �p of the solution to (2.2.4) su
h thatk�u� uk`2(JX ) � Æ; k�p� pk`2(JM ) � Æ;(3.2.11)ADV [�u; �p; Æ℄ produ
es new approximations ~u; ~p as follows(i) Set i = 1, �p0 := �p, �u0 := �u.(ii) If i � K go to (iii); elseNCOARSE [2Æ=5; �pi�1℄! (~p;�q);NCOARSE [2Æ=5; �ui�1℄! (~u;�u);(iii) Apply RHS [�pi�1; 
A
i�iÆ=2℄! (hi;�hi );(iv) ELLSOLVE [
i�iÆ=2;A; �ui�1;hi℄! (�ui;�Xi ).(v) NCOARSE [
i�iÆ=2CR;g℄! (ĝi; �̂i);APPLY [
i�iÆ=2;R; ĝi℄! (gi;�gi );APPLY [
i�iÆ=2CR;B; �ui℄! (p̂i; �̂i);APPLY [
i�iÆ=2;R; p̂i℄! (p0i;�pi ); set�pi = �pi�1 + !(p0i � gi);set i+ 1! i and go to (ii).It will be shown later that the error bounds of the new approximations produ
ed byADV are redu
edby a fa
tor two. The role of the �nal appli
ation of NCOARSE in step (ii) of ADV will be seen later toplay an important role with regard to asymptoti
ally optimal 
omplexity, roughly speaking, by keepingonly signi�
ant 
oeÆ
ients. 9



Of 
ourse, when the 
hara
terization of the spa
e M does not entail any 
onstraints on the wavelet
oe�
i
ients R 
an be repla
ed by the identity in (3.1.7) in whi
h 
ase step (v) of ADV simpli�es in anobvious manner.To formulate the main algorithm re
all that by (2.3.1)kuk2̀2(JX ) + kpk2̀2(JM ) � 
�1L �kfÆk2̀2(JX ) + kgk2̀2(JM )� :Therefore the right-hand side gives a bound for the initial error when using 0 as initial guess for u;p,respe
tively. The 
omplete adaptive Uzawa iteration 
an be des
ribed now as follows.UZAWA
 [A;B; f ;g; "℄! (u(");p(")):Set �0 := (�X0 ;�M0 ) � J =: JX � JM to be empty �M0 = �X0 = ;, p0 = �p0 = 0, �u = 0, Æ0 :=
�1=2L �kfÆk2̀2(JX ) + kgk2̀2(JM )�1=2, J = 0, 
hoose a target a

ura
y ".(i) ADV [�u; �p; ÆJ ℄! (~u; ~p;�u;�q);(ii) Set ÆJ+1 := ÆJ=2.If ÆJ+1 � ", stop and a

ept u(") := ~u;p(") := ~p as solution.Else, set �u = ~u, �p = ~p, J + 1! J and go to (i).3.3. Convergen
e. The 
onvergen
e of UZAWA
 relies on the error redu
tion 
aused by ADV.Proposition 3.3. Given a s
heme APPLY su
h that (3.2.2) holds then, under the above assump-tions 
on
erning NCOARSE on the data f ;g, the ve
tors ~u; ~p produ
ed by ADV [�u; �p; Æ℄ above satisfyk~u� uk`2(JX ) � Æ=2; k~p� pk`2(JM ) � Æ=2:(3.3.1)Hen
e, after �nitely many steps the s
heme UZAWA produ
es �nitely supported solutions (u(");p("))satisfying ku� u(")k`2(JX ) � "; kp� p(")k`2(JM ) � ":(3.3.2)Proof: Set p0 := �p0 = �p, �u0 := �u and observe thatpi � �pi = pi�1 + !R(Bui � g)� �pi�1 � !(p0i � gi)= pi�1 � �pi�1 + !(RBui � p0i �Rg+ gi)(3.3.3) = (id� !RS)(pi�1 � �pi�1) + ! �R(BA�1BT )(pi�1 � �pi�1) +RBui � p0i + gi �Rg� :Sin
e Aui = f �BTpi�1 we 
an repla
e BTpi�1 by f �Aui to obtain! �R(BA�1BT )(pi�1 � �pi�1) +RBui � p0i + gi �Rg�= ! �R(BA�1f �Bui +Bui �BA�1BT �pi�1)� p0i + gi �Rg�= ! �RBA�1(f �BT �pi�1)� p0i + (gi �Rg)�(3.3.4)Thus RBA�1(f �BT �pi�1)� p0i = RB �A�1(f �BT �pi�1)� �ui�+ (RB�ui � p0i)(3.3.5)Hen
e 
ombining (3.3.3), (3.3.4) and (3.3.5) and re
alling (3.1.5), yieldskpi � �pik`2(JM ) � �kpi�1 � �pi�1k`2(JM ) + ! �kRB �A�1(f �BT �pi�1)� �ui� k`2(JM )+ kRB�ui � p0ik`2(JM ) + kgi �Rgk`2(JM )�(3.3.6) � �kpi�1 � �pi�1k`2(JM ) + !CRCBkA�1(f �BT �pi�1)� �uik`2(JX ) + 2!
i�iÆwhere we have used the toleran
es in step (v) of ADV. By (3.2.8) we have for the output hi of step(iii) in ADV that khi � (f �BT �pi�1)k`2(JX ) � 
A
i�iÆ=2 whi
h, in view of the toleran
es in step (iv)of ADV and (3.2.7), implies kA�1(f �BT �pi�1)� �uik`2(JX ) � 
i�iÆ:(3.3.7) 10



Therefore we dedu
e from (3.3.6) thatkpi � �pik`2(JM ) � �kpi�1 � �pi�1k`2(JM ) + !(CRCB + 2)
i�iÆ:(3.3.8)Iterating this estimate and bearing in mind that p0 = �p0, provideskpi � �pik`2(JM ) � !(CRCB + 2) iXl=1 
i! �iÆ:(3.3.9)Sin
e by (3.1.8) and the assumption, kp � pik`2(JM ) � �ikp � p0k`2(JM ) = �ikp � �pk`2(JM ) � �iÆ we
on
lude that kp� �pik`2(JM ) � (!(CRCB + 2) iXl=1 
l!+ 1) �iÆ;(3.3.10)whi
h, in view of (3.2.10), gives kp� �pKk`2(JM ) � Æ=10:(3.3.11)Now re
all that by step (ii) of ADV the �nal approximation ~p is obtained by 
oarsening �pK . Thuskp� ~pk`2(JM ) � kp� �pKk`2(JM ) + k�pK � ~pk`2(JM ) � �25 + 110� Æ = Æ2(3.3.12)as 
laimed.It remains to estimate the a

ura
y of �uK . Denoting by ûi be the exa
t solution ofAûi = fi�BT �pi�1,(3.3.7) and (3.2.7) say that kûi � �uik`2(JX ) � 
i�iÆ. Writingu� �ui = u� ûi + �ui � �ui = A�1BT (�pi�1 � p) + ûi � �ui;(3.3.13)and de�ning C1 := !(CRCB + 2)
 + 1, one obtainsku� �uik`2(JX ) � (
A�)�1CBC1�iÆ + 
i�iÆ = �(
A�)�1CBC1 + 
i� �iÆ:Again, we infer from (3.2.10) that ku� �uKk`2(JX ) � Æ=10;(3.3.14)so that by the same reasoning as in (3.3.12) ~u produ
ed by NCOARSE [2Æ=5; �uK ℄ satis�es ku �~uk`2(JX ) � Æ=2, whi
h 
ompletes the proof.As an immediate 
onsequen
e of the norm equivalen
es (2.2.1), (2.2.2) one has the following fa
t.Corollary 3.4. Let u = uTD�1X 	X , p = pTD�1M 	M be the exa
t solution of (2.1.2). Thenthe �nite expansions u(") := uT (")D�1X 	X , p(") = pT (")D�1M 	M with terms from the �nite index sets�u(") � JX , �q(") � JM satisfy ku� u(")kX � 
"; kq � q(")kM � 
";(3.3.15)uniformly in ", where 
 depends only on the 
onstants in (2.1.4), (2.2.1), (2.2.2).To keep things transparent we have based the above 
onsiderations on the simplest version (3.1.6),(3.1.7) of an Uzawa iteration. It will be seen below that already this version gives rise to asymptoti
allyoptimal 
onvergen
e properties. Of 
ourse, similar results would be obtained for di�erent a

ura
ytoleran
es as long as they di�er by 
onstants leading possibly to di�erent values ofK. Nevertheless, severalmore important possibilities suggest themselves to realize quantitative improvements, e.g. by repla
ingthe Ri
hardson iteration by a gradient or 
onjugate gradient iteration. This avoids the need of estimatingstep size parameters and should speed error redu
tion. Note that these variants still involve only thesame algorithmi
 tasks namely approximate appli
ation of operators in the above sense. Furthermore,the number K of subiterations is likely to be too pessimisti
. Therefore it would be preferable to monitorthe error de
ay as follows. Note that pi � gi in step (v) of ADV approximates R(Bui � pi) and, inview of (3.1.6), (3.1.7), the residual R(BA�1f � g� Spi�1). By (2.4.4) and the bounded invertibility ofR this residual 
an be bounded from below and above by �xed 
onstant multiples of the 
urrent error ofthe approximate solution to the redu
ed system (2.4.2). Thus monitoring kp0i�gik`2(JM ) 
an be used asa stopping 
riterion. This is expe
ted to result in frequent early termination of step (ii) in ADV. Thesepoints will be taken up in more detail elsewhere. 11



4. Complexity Analysis. Of 
ourse, the 
entral questions now are how to 
ome up with an AP-PLY s
heme with the desired properties and what is the 
omputational 
ost of UZAWA
 for a giventarget a

ura
y ". In the present generality 
ost will be measured by storage requirements and the numberof 
ops required by the s
heme (well being aware of the fa
t that this is not the full story).4.1. Best N-Term Approximation. As in [8℄ we will relate the performan
e of the adaptives
heme to what 
ould be a
hieved at best namely the approximation of the solution in terms of possiblyfew degrees of freedom within the given dis
retization 
ontext - here determined by the underlying waveletbases. Note that, in view of (3.3.15), it suÆ
es to deal with the 
on
eptually mu
h simpler approximationin `2(J ). To explain this, it is useful to re
all �rst the following notion of best N-term approximation in`2: �N;`2(J 0)(v) := infw;#suppw�N kv�wk`2(J 0);(4.1.1)where `2(J 0) stands again for `2(JX ) or `2(JM ). Thus �N;`2(J 0)(v) des
ribes the error as a fun
tionof the number of degrees of freedom when the (possibly in�nitely supported) ve
tor is approximatedby a ve
tor with at most N nonzero entries whose value and position 
an be 
hosen freely. Thus theapproximant is not taken from any �xed linear spa
e but from the nonlinear manifold of all ve
tors withat most N nonzero entries. This notion is well understood for `2, see e.g. [19℄. Obviously, �N;`2(J 0)(v) isrealized by retaining the N largest 
oeÆ
ients in v whi
h are, of 
ourse, unknown when v is a solution ofa system of equations. To understand how this error behaves denote for any v 2 `2(J 0) by v� = fv�lgl2Nits de
reasing rearrangement in the sense that jv�l j � jv�l+1 j and let�(v; N) := f�l : l = 1; : : : ; Ng; vN := vj�(v;N):(4.1.2)It is 
lear that vN is a best N -term approximation of v.In parti
ular, it will be important to 
hara
terize the sequen
es in `2(J 0) whose best N -term ap-proximation behaves like N�s for some s > 0. The following fa
ts are well-known [8, 19℄. Let for0 < � < 2 jvj`w� (J 0) := supn2Nn1=� jv�nj; kvk`w� (J 0) := kvk`2(J 0) + jvj`w� (J 0):(4.1.3)It is easy to see that for any � < � 0 � 2kvk`�0 (J 0) <� kvk`w� (J 0) � 2kvk`� (J 0);(4.1.4)so that by Jensen's inequality, in parti
ular, `w� (J 0) � `2(J 0).Proposition 4.1. Let 1� = s+ 12 ;(4.1.5)then v 2 `w� (J 0) () kv� vNk`2(J 0) <� N�skvk`w� (J 0):(4.1.6)In 
omplete analogy one 
an de�ne k�k`w� (J ) for `w� (J ) := `w� (JX�JM ) by forming the rearrangementsfrom both 
omponent ve
tors v 2 `2(JX ), p 2 `2;0(JM ) and regrouping the entries to both 
omponentve
tors.We will make use of the following result from [8℄ whi
h interrelates best N -term approximation in `2with the routine NCOARSE, see Se
tion 6.2 in [8℄.Proposition 4.2. Given v 2 `2(J 0), a toleraqn
e � > 0 and a �nitely supported w su
h thatkv�wk`2(J 0) � �=5;Then (as has been used before), the output �w of NCOARSE [w; 4�=5℄ satis�es kv � �wk`2(J 0) � �.Moreover, when v 2 `w� (J 0) and 1� = s+ 12 for some s > 0, then there exists a 
onstant C depending onlyon s when s tends to in�nity su
h that:kv � �wk`2(J 0) � Ckvk`w� (J 0)(# supp �w)�s;(4.1.7) 12



and k �wk`w� (J 0) � Ckvk`w� (J 0); #supp �w � Ckvk1=s��1=s:(4.1.8)Best N -term approximation will be one important ingredient in the realization of the approximateappli
ation of in�nite matri
es represented by APPLY. The other one is the (a-priori known) quasisparseness of wavelet representations whi
h 
an be formalized as follows, see [8℄.Definition 4.3. A matrix C belongs to the 
lass Cs� if for every s < s� there exists a positivesummable sequen
e (�j)j�0 and for every j � 0 there exists a matrix Cj with at most 2j�j nonzeroentries per row and 
olumn su
h that kCj �Ck <� �j2�sj :(4.1.9)A matrix in Cs� is 
alled 
ompressible or sometimes s�-
ompressible.Compressibility of a wavelet representation of 
ertain operators follows from the above mentioned
an
ellation properties of the wavelets, see [8℄ as well as Se
tion 5.3 for 
on
retizations.Now suppose that the (possibly in�nite) matrixC (de�ned on `2(J 0) say) is known to be 
ompressiblein the sense of (4.1.9) for some range of s > 0. For any given �nitely supported v 2 `2(J 0), let v[j℄ := v2jdenote its best 2j-term approximation in `2(J 0). We shall numeri
ally approximate Cv by using theve
tor wk := Ckv[0℄ +Ck�1(v[1℄ � v[0℄) + � � �+C0(v[k℄ � v[k�1℄)(4.1.10)for a 
ertain value of k determined by the desired numeri
al a

ura
y. This leads to a pra
ti
al s
hemeAPPLY [�;C;v℄! (w;�), whose detailed des
ription is given in [8℄, Se
tion 6.4, see also [2℄. For lateruse we re
all its properties, see Properties 6.4 in [8℄.Proposition 4.4. Assume that C 2 Cs� . Given a toleran
e � > 0 and a ve
tor v with �nite support,the algorithm APPLY produ
es a ve
tor w = w(v; �) whi
h satis�es (3.2.2).Moreover, if v 2 `w� (J 0), with � = (s+ 1=2)�1=2 and 0 < s < s�, then the following properties hold:(i) The size of the output � is bounded by#(�) � Ckvk1=s`w� (J 0)��1=s;(4.1.11)and the number of entries of C that need to be 
omputed is � Ckvk1=s`w� (J 0)��1=s.(ii) The number of arithmeti
 operations needed to 
ompute w(v; �) does not ex
eedC��1=skvk1=s`w� (J 0) + 2N with N := #suppv.(iii) The number of operations for sorting needed to assemble the sli
es v[j℄ of w(v; �),j = 0; 1; � � � ; blogN
, does not ex
eed CN logN .(iv) The output ve
tor w satis�es kwk`w� (J 0) � Ckvk`w� (J 0):(4.1.12)As for the log-terms for sorting, see Remark 4.9 at the end of this se
tion. We shall make use of thefollowing fa
t, see [8℄.Remark 4.5. It follows from Proposition 4.1 and Proposition 4.4 (i) that any matrix C 2 Cs� isbounded on `w� when � is related to s < s� by (4.1.5).As mentioned above, wavelet representations of di�erential operators are 
ompressible. Thereforethe following observation is useful.Remark 4.6. When AÆ := D�1X a(	X ;	X)D�1X and B belong to Cs� for some s� > 0, then oneeasily shows that the s
heme APPLY� inherits all the properties des
ribed in Proposition 4.4 above, see[8℄ Properties 6.4.The 
omplexity estimates in (ii) and (iii) of Proposition 4.4 hold under the assumption that theentries of C are a

essible during the 
al
ulation. In fa
t, the subsequent developments will always bebased on the following 13



Assumption C: The entries of the matri
es AÆ and B are a

essible at unit 
ost.Using pie
ewise polynomial wavelets this assumption 
an be realized for 
onstant 
oeÆ
ient operatorsin a relatively straightforward manner. This task be
omes mu
h more deli
ate under more general
ir
umstan
es, e.g. when isoparametri
 mappings are involved in the 
onstru
tion of the wavelets, seeSe
tion 5.2 below. In [3℄ a fast evaluation s
heme is developed that 
omputes suÆ
iently a

urateapproximations to the summands on the right-hand side of (4.1.10) at a 
omputational 
ost that stillsatis�es the bounds in (ii), (iii) of Proposition 4.4 above. Thus Assumption C is justi�ed for a wide rangeof pra
ti
ally relevant situations.With Remark 4.6 at hand, we are now in the position for estimating the 
omplexity analysis ofELLSOLVE based on the results in [8, 9℄ with the APPLY s
heme for 
ompressible matri
es repla
ed,if ne
essary, by the extended version APPLY� introdu
ed above. The fa
t that in the present 
ontextELLSOLVE applies to varying auxiliary problems with little a-priori information on the 
orrespondingintermediate solutions prevents us from applying the results from [8℄ dire
tly. Nevertheless, we 
anextra
t from the analysis in [8, 9℄ some fa
ts that will apply in the present situation as well. This ismost transparent when 
onsidering the simpli�ed s
heme in [9℄ whi
h (in the very spirit of the 
urrentapproa
h) for the spe
ial 
ase of an ellipti
 (
oer
ive) problem is based on a simple iteration for (3.2.4)of the form ûn+1 = ûn + �!(h�Aûn):(4.1.13)In parti
ular, when the right-hand sides are already �nitely supported as in the present situation,the s
heme 
onsists of at most �K perturbed iterations of the form (4.1.13), employing APPLY� andNCOARSE with judi
eaously 
hosen a

ura
y toleran
es, followed by a 
oarsening step so as to redu
ea 
urrent error bound by a fa
tor two, say (see the algorithm SOLVE in Se
tion 4.2 of [9℄). This impliesthe following fa
t.Proposition 4.7. Consider the problem (3.2.4) and suppose that the initial approximation v usedas input for ELLSOLVE satis�es kû� vk`2(JX ) � �"(4.1.14)for some �" > ". Moreover assume that s and � are related by (4.1.5) and that" � �C�"(4.1.15)for some positive 
onstant �C. Then the output �u and � := supp �u of ELLSOLVE [";A;v;h℄ satis�es#(�) � Ĉ �#(suppv) + �kvk1=s`w� (JX ) + khk1=s`w� (JX )� "�1=s� ;k�uk`w� (JX ) � Ĉ �kvk`w� (JX ) + khk`w� (JX )� :(4.1.16)Moreover, the number of arithmeti
 operations required for the 
omputation of �u remains bounded byĈ nsuppv + "�1=s �kvk1=s`w� (JX ) + khk1=s`w� (JX)�o :(4.1.17)An additional fa
tor Ĉ log "�1 is allowed for operations spent on sorting arrays (see Remark 4.9). The
onstant Ĉ depends in all 
ases only on the 
onstants in (2.4.7), (2.2.1), on s when s tends to in�nity,and on the 
onstant �C in (4.1.15).Proof: In view of (4.1.15) only a uniformly bounded number of blo
ks of perturbed iterations (4.1.13)separated by 
oarsening steps is needed to redu
e the 
urrent error bound from �" to ", see Proposition4.2 in [9℄. This number depends 
learly on the bound �C for the ratio �"=". Ea
h blo
k, in turn, involvesa uniformly bounded number �K of perturbed appli
ations of (4.1.13), where �K depends only on the
onstants in (2.4.7) and (2.2.1). The 
laim follows now immediately from Propositions 4.2 and 4.4 (seealso the proof of Theorem 5.7 in [9℄).The main result 
an now be formulated as follows.14



Theorem 4.8. Assume that the s
aled wavelet representations AÆ, B in (2.2.4) and R from (3.1.3)belong to Cs� for some s� > 0. If the exa
t solution (u; p) of (2.1.2) satis�es for some s < s�inf#suppv�N ku� vTD�1X 	XkX <� N�s; inf#suppq�N kp� qTD�1M 	MkM <� N�s; N !1;(4.1.18)then the approximations (u(");p(")) produ
ed by UZAWA
 satisfyku� u(")TD�1X 	XkX <� (#suppu("))�s; kp� p(")TD�1M 	MkM <� (#suppp("))�s:(4.1.19)Moreover, under assumptions f , C (pages 7 and 14, resp.) the 
omputational work needed to 
omputeu(");p(") is also of the order "�1=s (ex
ept for additional log terms for sorting).Proof: First note that by (2.2.4), Proposition 4.1 and Remark 4.5, u 2 `w� (JX ) implies g 2 `w� (JM ).Sin
e by the same argument BTp;Au 2 `w� (JX), (2.4.5) says that also f 2 `w� (JX ), i.e.,kgk`w� (JM ) <� kuk`w� (JX ); kfk`w� (JX ) <� kuk`w� (JX ) + kpk`w� (JM ):(4.1.20)We pro
eed now estimating the 
omputational 
ost of one 
all of ADV adhering to the notationused in this 
ontext before. We will make frequent use of the fa
t that all a

ura
y toleran
es appearingin ADV remain, in view of the uniform boundedness of K, proportional to the 
urrent a

ura
y Æ = ÆJin the Jth 
all of ADV in UZAWA
. First observe that, by Proposition 4.2 and step (ii) in ADV
ombined with the error estimate (3.3.11), one has#(supp ~p) � CÆ�1=s �kpk1=s`w�0(JM ) + k�pk1=s`w�0 (JM )�+#(supp �p);(4.1.21)and k~pk`w�0 (JM ) � Ckpk`w�0 (JM );(4.1.22)where C depends only on s when s tends to in�nity.We still have to 
ontrol the 
omputational 
ost of the intermediate steps in (iv) of ADV leading tothe �nal update �pK whi
h is then subje
ted to the 
oarsening step that led to the above estimates. Tothis end, we infer from Remark 4.5, Propositions 4.2 and 4.4 that, sin
e the number K of updates in step(v) of ADV is uniformly bounded, one has#(supp �pi) � CÆ�1=s �k�uik1=s`w� (JX ) + kgk1=s`w� (JM )�+#(supp �pi�1);(4.1.23)and k�pik`w�0 (JM ) � C �k�pi�1k`w� (JM ) + k�uik`w� (JX )� ;(4.1.24)Thus we have to estimate next the quantities k�uik`w� (JX ), supp �ui, i = 1; : : : ;K. Again, the 
oarseningstep (ii) in ADV 
ombined with the error estimate (3.3.14) ensures, in view of Proposition 4.2, that ~uand hen
e the input �u = �u0 of ELLSOLVE [
1�Æ=2;A; �u0;h1℄ satis�esk~uk`w� (JX ) � Ckuk`w� (JX ); supp ~u � CÆ�1=skuk1=s`w� (JX );(4.1.25)where Æ = ÆJ is the 
urrent a

ura
y level in the Jth 
all of ADV in UZAWA
. We will ex-ploit this for the estimation of the intermediate approximations �ui in a 
all of ADV by applyingProposition 4.7. To this end, we �rst have to determine the a

ura
y of �ui�1 as an initial guess forELLSOLVE [
i�iÆ=2;A; �ui�1;hi℄. In fa
t, a little 
are is needed be
ause the right-hand sides hi 
hange.Re
all that ûi denotes the exa
t solution of Aûi = hi, see (iii) in ADV. Then, by (3.3.13), for Æ = ÆJin the Jth 
all of ADV in UZAWA
 one obtains for some 
onstant Ckûi � �ui�1k`2(JX ) � kûi � uk`2(JX ) + ku� �ui�1k`2(JX )� 
�1A kf �BTp� hi�1k`2(JX ) + CÆ� 
�1A �kf �BTp� (f �BT �pi�1)k`2(JX ) + kf �BT �pi�1 � hi�1k`2(JX )�+ CÆ� 
�1A CBkp� �pi�1k`2(JM ) + 
i�iÆ=2 + CÆ� C 0ÆJ ; 15



where we have used (3.3.10) and (3.2.8). Thus the ratio of initial and target a

ura
ies in ea
h 
all ofELLSOLVE remains uniformly bounded by a 
onstant �C depending on the number K in ADV, so thatProposition 4.7 applies. To this end, 
onsider �rst i = 1 in step (iv) of ADV. By the above bound(4.1.22) on �p0 = ~pJ�1, Remark 4.5, Propositions 4.2, 4.4 and steps (i), (ii) in RHS, we 
on
lude thatkh1k`w� (JX ) � C(kpk`w� (JM ) + kfk`w� (JX )) � C(kpk`w� (JM ) + kuk`w� (JX ));(4.1.26)where we have used (4.1.20) in the last step. Here and in the sequel, unless stated otherwise, C will bea 
onstant (that may vary from pla
e to pla
e) whi
h is independent of u;p and at most depending onthe problem 
onstants as before. Proposition 4.7 
ombined with (4.1.25) implies nowk�u1k`w� (JX) � C(kpk`w� (JM ) + kuk`w� (JX ))#(supp �u1) � C �#(supp �u0) + Æ�1=s(kpk1=s`w� (JM ) + kuk1=s`w� (JX ))� :(4.1.27)Again keeping (4.1.22) in mind and substituting (4.1.27) in (4.1.24) for i = 1, we obtaink�p1k`w� (JM ) � C(kpk`w� (JM ) + kuk`w� (JX )):(4.1.28)We 
an now repeat this argument K times obtaining that for all i � Kk�uik`w� (JX ) � C(kpk`w� (JM ) + kuk`w� (JX ))#(supp �ui) � C �#(supp �u0) + Æ�1=s(kpk1=s`w� (JM ) + kuk1=s`w� (JX ))�k�pik`w� (JM ) � C(kpk`w� (JM ) + kuk`w� (JX ))#(supp �pi) � C �#(supp �pi�1) + Æ�1=s(kpk1=s`w� (JM ) + kuk1=s`w� (JX ))� :(4.1.29)Of 
ourse, the 
onstants C depend on the number of steps K and may build up. However, it is importantto note that the thresholding applied by step (ii) in ADV produ
es a new 
onstant that no longerdepends on K and in some sense sets the estimate ba
k. In view of the bound on the operations 
ountgiven in Proposition 4.7, we 
on
lude that under the given assumptions on the exa
t solutions u;pthe 
onvergen
e rate N�s is indeed preserved by ALGORITHM
 within the 
laimed bounds for the
orresponding 
omputational work. The assertion follows now dire
tly from Corollary 3.4, (3.3.15).Remark 4.9. One should note that a stri
t ordering of the wavelet 
oeÆ
ients by size is a
tuallynot essential. What matters is to group the 
oeÆ
ients in binary bins, i.e., to 
olle
t all those 
oeÆ
ientswhose modulus falls into [a2�j ; a2�j�1), say. In this way one 
an avoid the logarithmi
 terms appearingin the work 
ounts for sorting, see [1℄.5. Appli
ations to the Stokes Problem. In this se
tion the above developments will be appliedto a 
lassi
al example, namely the Stokes problem.5.1. The Continuous Problem. We 
onsider a Lips
hitz domain 
 � Rd and assume for simpli
ityhomogeneous boundary 
onditions, i.e.,��u+rp = f in 
 � Rd ; uj�
 = 0;(5.1.1) r � u = 0:The standard L2 inner produ
t on a domain G will be denoted by hv; wiG := RG v(x)w(x) dx where wewill drop the subs
ript whenever the inner produ
t refers to 
. The mixed formulation takes the form(2.1.2) with X = H10 (
)d; M = L2;0(
) := �v 2 L2(
) : Z
 v(x) dx = 0�;(5.1.2)and a(u; v) := (ru;rv); b(v; q) := �hr � v; qi:(5.1.3) 16



It is well known that (2.1.1) holds in this 
ase even with the stronger relation (2.4.1), so that (2.1.4) istrue for (5.1.2). In view of the pre
eding dis
ussion we have to address the following issues. First weidentify a 
lass of suitable wavelet bases whi
h will be employed later in numeri
al experiments. Then wedetermine the 
ompressibility range of the 
orresponding wavelet representations. Next, we dis
uss theregularity of the solution to (5.1.1) in a 
ertain s
ale of Besov spa
es. Although this information has noe�e
t on the algorithmi
 realization it will allow us to determine under whi
h prin
ipal 
ir
umstan
es theadaptive s
heme o�ers even an asymptoti
ally better work/a

ura
y balan
e than dis
retizations basedon uniform mesh re�nements. These results will guide the sele
tion of our test examples.5.2. Wavelet Representation. When 
 
an be partitioned into regular parametri
 images 
l =�l(�) of the unit d-
ube � := (0; 1)d, one 
an use the 
onstru
tions from [6, 17℄ yielding 
onforming trialspa
es for the velo
ities and pressure. We pro
eed now 
olle
ting the relevant properties of these basesin the present 
ontext.We will reserve the notation 	X for the wavelet basis for X = H10 (
)d, i.e., ea
h wavelet  X;� is ave
tor valued fun
tion with 
omponents  �;i; � 2 JX , i = 1; : : : ; d. A wavelet  �;i whi
h is supportedin a single pat
h 
l is then 
onstru
ted as a linear 
ombination of tensor produ
t B-splines of (
oordi-natewise) order mX (whi
h is for simpli
ity taken to be the same for ea
h 
omponent i) 
omposed with��1l . Wavelets whose support interse
ts several domains are obtained by suitably pat
hing together su
hfun
tions a
ross interfa
es, see [6, 17℄ for details. At this point a word on the nature of the indi
es �is in order. Without going into details, � en
odes the spatial lo
ation of the wavelet  X;� as well as itss
ale denoted by j�j. We will only employ 
ompa
tly supported wavelets whose supports then s
ale likediam (supp �) � 2�j�j. The 
oarsest s
ale j�j = 0 
orresponds to �nitely many fun
tions, whi
h roughlyspeaking span the polynomial part in an expansion. Thus for ea
h 
omponent i the 
orresponding mul-tiresolution spa
es Si;J := span f �;i : j�j < Jg 
an be viewed as trial spa
es on meshes of size 2�J . Tohave a 
onforming dis
retization the Si;J are arranged to be 
ontained in H10 (
). Being generated bymX -th order B-splines they realize approximation order mX in HmX (
) \H10 (
). Su
h a basis 
an berealized for any order mX 2 N. We will vary later this order keeping in mind that the restri
tions to apat
h 
l satisfy 	X j
l � HmX�1=2(
l)d:(5.2.1)Moreover, re
all that a wavelet basis 
onsists of two disjoint 
olle
tions of fun
tions 	+X and 	�X(and analogously for 	M ). As indi
ated above 	+X is 
omprised of �nitely many s
aling fun
tions of levelj�j = 0 whose preimages under the parametri
 mappings span all polynomials of order mX on � (up toboundary 
onditions). The in�nite 
olle
tion 	�X 
ontains the \true wavelets" in the following sense. Infa
t, the 
onstru
tion of 	X involves a se
ond important parameter ~mX . Given any mX one 
an takeany ~mX 2 N, ~mX � mX su
h that mX + ~mX is even, and arrange 	X so that for any  �;i supported in
l the following mX -th order moment 
onditions hold(P;  �;i)
l = 0 for all P 2 � ~mX ;�l ;  �;i 2 	�i ;(5.2.2)where (�; �)
l denotes the standard inner produ
t on the subdomain 
l. Here � ~m;�l := fP : P =glQ Æ ��1l ; Q 2 � ~mg where gl := jdet ���1l j and � m denotes the spa
e of all polynomials of degree < ~m:With a slight abuse of terminology we will refer to the elements of �m;�l simply as polynomials. In fa
t,sin
e by assumption the gl are smooth and bounded away from zero the lo
al approximation propertiesof � ~m;�l are the same as those of � ~m whi
h is what matters for the 
ompression properties.The pressure fun
tions will be expanded in a basis 	M = f M;� : � 2 JMg whi
h is also generatedby B-splines of order mM in the above sense. Likewise the order of moment 
onditions will be denotedby ~mM , i.e., (P;  M;�)
l = 0 for all P 2 � ~mM ;�l ;  M;� 2 	�M :(5.2.3)Remark 5.1. There are some important distin
tions between 	X and 	M though (aside from thefa
t that 	X is ve
tor and 	M is s
alar valued). First, the  M;� do not satisfy any boundary 
onditions.Moreover, the moment 
onditions hold everywhere in 
 sin
e all wavelets are always fully supported in asingle pat
h 
l. , i.e., the wavelets need not to be 
ontinuous a
ross pat
h interfa
es.17



Sin
e by (5.2.3), the wavelets in 	�M have zero mean, an ab initio wavelet basis for L2(
) 
an easilybe transfromed into one for the 
onstrained spa
e L2;0(
) by modifying only the �nitely many elementsin 	+M , a fa
t that will be important later in the numeri
al realization.It has been shown in [6, 17℄ that bases 	X and 	M satisfy the norm equivalen
es (2.2.1) and (2.2.2)with s
aling weights (DX )� := 2j�j; (DM )� := 1:(5.2.4)In fa
t, the alternative 
hoi
e (DX)� := a( X;�;  X;�)1=2 typi
ally gives rise to quantitatively betterresults but we will sti
k for simpli
ity with (5.2.4).Hen
e, the resulting wavelet representations A and BT are of the following formA = (a�;�0)�;�02JX ; a�;�0 = dXi;l=1 2�(j�j+j�0j) Z
 � �;i�xl � �0;i�xl dx;(5.2.5) BT = (b�;�0)�2JX ;�02JM ; b�;�0 = � dXi=1 2�j�j Z
  M;�0(x)� �;i�xi (x)dx:(5.2.6)5.3. Compression Properties. The matri
es A, B, de�ned by (5.2.5) and (5.2.6), are knownto be 
ompressible in a range that depends on the regularity of the wavelets, see [8℄. However, thespe
ial pie
ewise polynomial nature of the above bases allows us to establish a somewhat larger rangeof 
ompressibility 
ompared with the general estimates. In this subse
tion, we analyze the 
ompressionproperties of matri
es A and B, BT in detail. The analysis in this se
tion is based on the followingversion of the S
hur lemma (whi
h is folklore).Lemma 5.2. Let T = (Tl;l0)l2I;l02I0 be a matrix and let I; I 0 be 
ountable index sets. Suppose thatthere exist sequen
es ($l)l2I and ( ~$l0)l02I0 su
h thatXl02I0 jTl;l0 j ~$l0 � 
$l and Xl2I jTl;l0 j$l � 
 ~$l0 ; l 2 I; l0 2 I 0;(5.3.1)then kTk � 
:Our numeri
al examples refer to the L-shaped domain 
 = (�1; 1)2 n (�1; 0℄2. Thus 
 
an bede
omposed e.g. into three subpat
hes 
l; l = 1; 2; 3, ea
h being a simple translate of the unit square(0; 1)2. The spa
es �m;�l 
onsist then of polynomials in the 
lassi
al sense. The moment 
onditions(5.2.2) hold then on all of 
 also for those wavelets whose support overlaps more than one subdomain.In this 
ase the trun
ation rule that produ
es the 
ompressed matri
es Aj from (4.1.9) reads as follows,see [8, 2℄. In order to indi
ate the role of the spatial dimension we keep the general notation althoughthe example refers to d = 2. Given j, set~a�;� := 8<: a�;� ; ��j�j � j�j�� � j=d;0; else:(5.3.2)Unless otherwise stated, we shall hen
eforth use the abbreviation m = mX ; ~m = ~mX :Theorem 5.3. For the matrix A de�ned by (5.2.5) and any � > 0 the following 
ompression estimateholds: kA�AJk <� 2�J(m�3=2��)=d; i.e., A 2 Cs; s < s� = (m� 3=2)=d:(5.3.3)Proof: Eq. (5.3.3) 
an be established by using Lemma 5.2 with I = I 0 = JX and $� = ~$� = 2j�j(1�d)for all � 2 JX . The �rst step is to estimate a typi
al entry in the wavelet representation. Let 
�;idenote the support of the i-
omponent of  �: We re
all that derivatives of wavelets are again waveletswith the order of vanishing moments in
reased by one, [23℄. Exploiting this fa
t, we obtain for suitable18



polynomials P�0;i;l on 
�0;i of degree at most m (re
all ~m � m) and j�0j � j�jj(r X;�;r X;�0)j = ������ dXi;l=1�� �;i�xl ; � �0;i�xl ������� = ������ dXi;l=1�� �;i�xl � P�0;i;l; � �0;i�xl �������<� dXi;l=1 



� �;i�xl � P�0;i;l



L2(
�0;i) 2j�0j;where we have applied (2.2.1) with the weights from (5.2.4) to estimate the term 


� �0;i�xl 


L2 by 2j�0j.Setting j := j�j, j0 := j�0j, sin
e � �;i�xl 2 Hs; s < m � 3=2; a 
lassi
al Whitney type estimate yieldstherefore j (r �;r �0) j <� dXi;l=1 2j02�j0(m�3=2��) ����� �;i�xl ����Hm�3=2��<� dXi=1 2j02�j0(m�3=2��)j �;ijHm�1=2��<� 2j02�j0(m�3=2��)2j(m�1=2��)<� 2(j�j0)(m�3=2��)2j+j0 ;so that, taking the s
aling matrix DX into a

ount, we deriveja�;�0 j <� 2(j�j0)(m�3=2��); j0 � j:(5.3.4)The 
ase j0 < j 
an be treated analogously,ja�;�0 j <� 2(j0�j)(m�3=2��); j0 < j:(5.3.5)A

ording to (5.3.3) and (5.3.1), we have to show thatXjj�j0 j>J=d Xj�0j=j0 ja�;�0 j2j0(1�d) <� 2�J(m�3=2��)=d � 2j(1�d):(5.3.6)Let us again �rst 
onsider the 
ase j0 > j:We start by observing that the 
rude estimate (5.3.4) does nottell the whole truth. If we 
ombine the fa
t that 	+X is spanned by 
ardinal B-splines with the vanishingmoment property (5.2.2) of the wavelet basis, we see that for a �xed value of j�j, many of the entries ja�;�0 jare zero. Roughly speaking, the non-vanishing entries 
orrespond only to the wavelets  �0 for whi
h thesupport of one 
omponent  �0;i interse
ts the 
orresponding singular support Si of  �;i. The set Si 
anbe viewed as a submanifold of dimension d � 1 with measure of the order 2�j(d�1): Consequently, forj0 > j; there are at most a �xed 
onstant multiple of 2(j0�j)(d�1) many wavelets possessing a non-trivialinterse
tion with Si. Therefore we getXj�0j=j0 ja�;�0 j <� 2(j�j0)(m�3=2��)2(j0�j)(d�1) <� 2(j�j0)(m�3=2��+1�d):(5.3.7)Hen
e we �nally obtainXj0�j>J=d Xj�0j=j0 ja�;�0 j2j0(1�d) <� 1Xj0=j+J=d 2(j�j0)(m�3=2��+1�d)2j0(1�d)(5.3.8) <� 2j(m�3=2��+1�d)) 1Xj0=j+J=d 2�j0(m�3=2��)<� 2j(m�3=2��+1�d)2�(J=d+j)(m�3=2��)<� 2j(1�d)2�J(m�3=2��)=d:19



The 
ase j0 � j 
an be treated analogously. The se
ond 
ondition in (5.3.1) 
an be 
he
ked in a similarfashion whi
h 
on�rms (5.3.3). �Remark 5.4. By 
ombining the results in [8℄ with the analysis in [13℄, one derives the followingbound for the range of 
ompressibility of the wavelet representation of an ellipti
 di�erential operator oforder 2t s� := min��d � 12 ; 2t+ 2 ~md � :Here the parameter � must satisfy t+� < 
, where 
 bounds the Sobolev regularity of the wavelets. In thepresent 
ase one has t = 1; 
 = m�1=2, i.e., � = m�3=2, and hen
e s� = (m�3=2)=d�1=2: Therefore(5.3.3) ensures in any spatial dimension a gain in the 
ompression range by 1=2 when 
ompared with theusual estimate.For more general domains when the �l are no longer aÆne some 
onstru
tions of wavelet basesguarantee the full order of vanishing moments (5.2.2) only for those wavelets that are supported in asingle pat
h 
l. Those wavelets overlapping several subdomains still have at least �rst order moments andhen
e their gradients have se
ond order moments. Of 
ourse, this o

urs only along a (d�1)-dimensionalmanifold, and 
an be 
ompensated by modifying the 
ompression rule (5.3.2). Moreover, those entriesa( �;  �0), for whi
h the supports overlap ea
h other but their singular supports (
ut regions of tensorprodu
t B-splines) do not interse
t, are no longer zero. However, sin
e one of the wavelets is arbitrarilysmooth throughout the integration domain, the order of vanishing moments in
reases to ~mX + 1 sothat these entries are mu
h smaller than the remaining ones whi
h suÆ
es as well. Alternatively, one 
anemploy the 
onstru
tion from [18℄ where vanishing moments are not 
onstrained through pat
h interfa
es.A similar result 
an also be established for the matrix BT de�ned in (5.2.6).Theorem 5.5. Suppose that the order mX of the multiresolution spa
es for the velo
ity spa
e X andthe order ~mM of the vanishing moments of the pressure wavelets de�ned in (5.2.3) satisfy ~mM � mX �1:Then for the matrix BT de�ned in (5.2.6) and any � > 0 the following 
ompression estimate holds:kBT �BTJ k <� 2�J(m�3=2��)=d; i.e., BT 2 Cs; s < s� = (m� 3=2)=d:(5.3.9)Proof: The proof follows the lines of the proof of Theorem 5.3, therefore we only sket
h the arguments.We use Lemma 5.2 for the 
ase I = JX ; I 0 = JM ; $� = 2j�j(1�d); � 2 JX , and ~$�0 = 2j�0j(1�d); �0 2 JM .As before, for suitable polynomials P�;i on 
�0 of degree < m� 1 and j0 = j�0j � j = j�j we obtainj(r �  X;�;  M;�0)j � ����� dXi=1 �� �;i�xl � P�;i;  M;�0������ <� dXi=1 



� �;i�xi � P�;i



L2(
�0 ) k M;�0kL2<� dXi=1 2�j0(m�3=2��) ����� �;i�xi ����Hm�3=2�� <� dXi=1 2�j0(m�3=2��) j �;ijHm�1=2��<� 2�j0(m�3=2��)2j(m�1=2��);so that jb�;�0 j <� 2(j�j0)(m�3=2��); j0 � j:(5.3.10)The 
ase j0 < j 
an again be treated analogously. A

ording to (5.3.9) and (5.3.1), we have to show thatXjj�j0j>J=d Xj�0j=j0 jb�;�0 j2j0(1�d) <� 2�J(m�3=2��)=d � 2j(1�d):(5.3.11)Let us again �rst 
onsider the 
ase j0 > j: By using similar arguments as in the proof of Theorem 5.3,we get Xj�0j=j0 jb�;�0 j <� 2(j�j0)(m�3=2��)2(j0�j)(d�1) <� 2(j�j0)(m�3=2��+1�d);(5.3.12) 20



hen
e Xj0�j>J=d Xj�0j=j0 jb�;�0 j2j0(1�d) <� 1Xj0=j+J=d 2(j�j0)(m�3=2��+1�d)2j0(1�d)(5.3.13) <� 2j(m�3=2��+1�d) 1Xj0=j+J=d 2�j0(m�3=2��)<� 2j(1�d)2�J(m�3=2��)=d:The 
ase j0 � j 
an again be treated analogously. The se
ond 
ondition in (5.3.1) 
an be veri�ed byemploying similar arguments. �To determine �nally the 
ompressibility of the matrixR from (3.1.3) we 
an apply the same reasoningfor � �;i=�xl and  M;�0 repla
ed by ~ M;�. Sin
e in this 
ase no derivatives are involved and ~	M just as	M is pat
hwise de�ned, the 
ompressibility range is again determined by the order mM of the primalbasis 	M (whi
h limits the order of the polynomials that 
an be subtra
ted in the inner produ
ts) andthe Sobolev regularity ~
M of the dual basis ~	 inside ea
h pat
h 
l. The 
onstru
tions in [6, 17℄ allowone to realize therefore any desired order s�R of 
ompressibility for R provided mM and ~
M are 
hosena

ordingly.Theorems 5.3 and 5.5 tell us now in whi
h range for a given 
hoi
e of wavelet bases the general resultsTheorem 4.8 and Corollary 3.4 assert asymptoti
ally optimal a

ura
y/work balan
e for the adaptivesolution of the Stokes problem.5.4. Regularity Theory for the Stokes Problem. So far we have presented some numeri
altools to serve as input for an adaptive s
heme that realizes asymptoti
ally optimal 
onvergen
e rates in(essentially) linear time within a 
ertain range of error de
ay orders determined by the 
ompressibility ofthe involved wavelet representations. A natural question is whether at all or under whi
h 
ir
umstan
esthe 
orresponding a

ura
y/work balan
e is better than for te
hni
ally mu
h simpler s
hemes based e.g.on uniformly re�ned meshes | in brief: when does adaptivity pay? It turns out that this question isinherently related to the regularity of the approximated solution. More pre
isely, while a given orderof best approximation from trial spa
es for preassigned uniform meshes (referred to as linear s
hemes)is 
hara
terized by the Sobolev regularity of the approximand, the order of nonlinear or best N-termapproximation is (almost) 
hara
terized by the regularity in a 
ertain Besov s
ale to be spe
i�ed in amoment, see also [19℄. To explain this let Ht denote a (
losed subspa
e of a) Sobolev spa
e su
h asH10 (
) respe
tively H10 (
)d or L2;0(
) for t = 0 and let � denote a wavelet basis in Ht satisfying a normequivalen
e of the form (2.2.1) with suitable s
aling matrix Dt. In analogy to (4.1.1) let�N;Ht(v) := infw;#w�N kv �wT (Dt)�1�kHt(5.4.1)denote the error of best wavelet N -term approximation in Ht. The following fa
t has been shown in [12℄.Proposition 5.6. Whenever t � s let 1� = r � td + 12 :(5.4.2)Then (for a suÆ
iently regular basis �) one has1XN=1�N (r�t)=d�N;Ht(v)�� <1 i� v 2 Br�(L�(
)):(5.4.3)Note that Br�(L�(
)) is the largest spa
e of smoothnes r in L� whi
h is still embedded in Ht, sin
e(5.4.2) marks the Sobolev embedding line. Clearly, (2.2.1) says that for v = vT (Dt)�1� one has�N;Ht(v) � �N;`2(v):(5.4.4)Moreover, (5.4.3), (5.4.4) mean that when v 2 Br�(L�(
)) then the best N -term approximation of itswavelet 
oeÆ
ients v de
ays at least like �N;`2(v) <� N�(r�t)=d. This is sharp in the sense that the21



exponent s = (r� t)=d is best possible. This subtle gap in the 
hara
terization of the Besov spa
es is dueto the small di�eren
e between the 
lassi
al spa
es `� (
hara
terizing wavelet 
oeÆ
ients for elements inthe Besov spa
e) and the weak type spa
e `w� 
hara
terizing best N -term approximation of the wavelet
oeÆ
ient sequen
es in `2, [19℄.These fa
ts suggest to ask for the regularity of the solution (u; p) of the Stokes problem (5.1.1) in therelevant Besov s
ales.During the past years the Sobolev and Besov regularity theory for the Stokes problem has attra
tedthe attention of several authors. We refer to [21, 24℄ for the Sobolev and to [10℄ for the Besov regularitytheory. We 
onsider here a planar polygonal domain 
 � R2 . This se
tion 
an be viewed as both, asummary and a spe
i�
 appli
ation of the results in [10, 21, 24℄ to the spe
ial 
ase of (5.1.1) for theL-shaped domain. These results will be used later in Se
tion 6 to sele
t and properly interpret thenumeri
al tests.Some preparations are ne
essary. The smooth segments of �
 are denoted by �l; �l open, l =1; : : : ; N; numbered in positive orientation. Furthermore, Vl denotes the endpoint of �l and !l denotesthe measure of the interior angle at Vl. Moreover, we introdu
e polar 
oordinates (rl; �l) in the vi
inityof ea
h vertex Vl. By �l we will always denote a suitable C1 trun
ation fun
tion. Finally, zl;m is a realsolution of the trans
endental equation sin2(z!l) = z2 sin2(!l):(5.4.5)Unless otherwise stated, we shall always assume thattan(!l) 6= !l for every l:(5.4.6)Let us �rst dis
uss the regularity of the velo
ity u. For f 2 L2(
)2, 
learly the best we 
ould expe
t isu 2 H2(
)2: However, it is well-known that even for smooth right-hand sides the Sobolev regularity of umay drop down due to 
ertain singularity fun
tions, see [21, 24℄. In our 
ase, a typi
al singular part uSis of the form uS =Xl X0<zl;m<1 
j;m�l(rl)rzl;ml Sl;zl;m ;(5.4.7)where Sl;z = (z sin((z � 2)!l) + (2� z) sin(z!l))Sl;z;1 � z(
os((z � 2)!l)� 
os(z!l))Sl;z;2;(5.4.8)with Sl;z;1 = (z sin((z � 2)�l)� (z + 2) sin(z�l); z(
os((z � 2)�l)� 
os(z�l)))T ;(5.4.9) Sl;z;2 = (�z(
os((z � 2)�l)� 
os(z�l)); z sin((z � 2)�l)� (z � 2) sin(z�l))T :We see that the singular part uS des
ribes the in
uen
e of the domain sin
e it is independent of thegiven right-hand side f . Obviously, the Sobolev regularity of uS de
reases signi�
antly as the angles !lin
rease. In 
ontrast to this, the Besov regularity of uS is almost independent of the shape of the domainin the following sense.In fa
t, by following the lines in [10℄, the following result 
an be established.Theorem 5.7. Any singular solution de�ned by (5.4.7) satis�esuS 2 Br� (L� (
))2; for all r > 0; 1� = r � 12 + 12 :(5.4.10)This result 
an be proved by showing �rst that any singular solution de�ned by (5.4.7) satis�esuS 2 Br� (L� (
))2; for all r > 0; 1� = r2 + 12 :(5.4.11) 22



Note that the Besov s
ale in (5.4.11) 
orresponds to Ht = L2 in Proposition 5.6 above and hen
e isrelated to nonlinear approximation in L2. For the velo
ity 
omponents the best N -term approximationin H1 is relevant though. To this end, obviously, uS is 
ontained in H1(
)2. Therefore the result fol-lows by interpolation between H1(
)2 and Br� (L� (
))2; 1=� = r=2+1=2, see [11℄ for additional details. �It remains to study the regularity of the pressure p. By writingrp = f +�u;(5.4.12)inserting the singularity fun
tions a

ording to (5.4.7) and integrating (5.4.12), we see that for f 2 L2(
)2the pressure 
an also possess a singular part pS whi
h in the vi
inity of Vl 
an be written aspS = Cl(�l)rzl;m�1l(5.4.13)for some smooth fun
tion Cl(�l). On
e again, by following the lines in [10℄, it 
an be shown that pS hasarbitrary high regularity in the nonlinear approximation s
ale Br� (L� (
)); 1=� = r=2 + 1=2.To 
onstru
t the singular solutions a

ording to (5.4.7), we have to determine the solutions of (5.4.5).This equation has been studied in detail in [21℄. Let us brie
y re
all the results. We introdu
e theex
eptional angle !0 = tan(!0):(5.4.14)Then the following Lemma holds.Lemma 5.8. The equation (5.4.5) has no root in the strip 0 < <(z) < 1 when ! < �. It has only onesingle real root in that strip when � < ! < !0 and it has two distin
t simple real roots in that strip when!0 < ! � 2�:Now we want to apply these results to the L-shaped domain. A

ording to Lemma 5.8 and (5.4.7), weonly have singular solutions 
orresponding to the reentrant 
orner. It 
an be 
he
ked that the ex
eptionalangle !0 is given by !0 = 257:40 degrees. Consequently, in our 
ase (5.4.5) has two distin
t roots and wehave two singular solutions. The two roots 
an easily be 
omputed numeri
ally. We obtainz1;1 = 0:9085291898461; z1;2 = 0:54448373678246:Obviously, the se
ond root is the `worse' one. Consequently, to test the adaptive s
heme, we designedthe right-hand side f in su
h a way that the solution u is exa
tly the singularity fun
tion 
orrespondingto z1;2, i.e., u = �(r)r0:54448373678246S1;z1;2 ;see also Se
tion 6. A

ording to (5.4.12), we 
hoose the pressure p as a solution torp = �(rz1;2S1;z1;2):Finally, we normalize p in L2;0(
). The suitable right-hand side 
an be obtained by another appli
ationof (5.4.12).Remark 5.9. One 
an easily verify thatu 2 Hr(
)2; r < r�X := 1:54448373678246 and p 2 Hr(
); r < r�M := 0:54448373678246(i.e., u 62 Hr�X (
)2, p 62 Hr�M (
)), whi
h limits the 
onvergen
e rate of uniform re�nements. One theother hand, u and p both have arbitrary high Besov regularity. Hen
e, in prin
iple, wavelet bases withhigh order regularity would give rise to 
orrispondingly high order adaptive approximation rates.6. Numeri
al Results. In this se
tion, we present some numeri
al experiments for the Stokes-problem on the planar L-shaped domain 
 = (�1; 1)2 n [�1; 0℄2. We employ di�erent versions from thefamily of wavelet bases 	X and 	M from Se
tion 5.2 for velo
ities and pressure, respe
tively.Our obje
tive is not to present a fully matured 
ode but to gain additional quantitative insightthat 
omplements the pre
eding theoreti
al results of primarily asymptoti
 nature. This 
on
erns the23



quantitative e�e
t of \violating" the LBB 
ondition and the tradeo� between larger supports and better
ompressibility when using higher order wavelets as well as suggestions for further algorithmi
 variantsand developments. For instan
e, the theoreti
al estimates, e.g. on the number K of iterations in ADV,are presumably overly 
onservative. So it would be interesting to see experimentally whether typi
allysmaller numbers suÆ
e or whether monitoring residuals pays to realize signi�
antly earlier terminations.Furthermore, we wish to see how the s
heme 
opes with highly singular 
ases suggested by the dis
ussionin Se
tion 5.4 
ompared with more regular solutions. More extensive tests of variants derived from �rstexperien
es will be presented elsewhere.6.1. Dis
retization of the Pressure. Re
all from (5.1.2) that L2;0(
) is the appropriate pressurespa
e. Hen
e the zero mean 
onstraint requires spe
ial 
are. Here we exploit the fa
t that all wavelets in	�M have, a

ording to (5.2.3), vanishing moments of order ~mM � mM � 1, so thatZ
  M;�(x) dx = 0; � 2 JM ; j�j > j0:Hen
e for any q = qT	M one hasZ
 q(x) dx = Xj�j=j0 q� Z
  M;�(x) dx =: Xj�j=j0 q��� =: I
(q):On the other hand, the s
aling fun
tions form a partition of unity, i.e.,1 � Xj�j=j0 ~��  M;�(x); x 2 
; ~�� := Z
 ~ M;�(x) dx = (1; ~ M;�);where f ~ M;� : j�j = j0g is the (expli
itly known) dual basis for the s
aling fun
tions in 	M , i.e.,( M;�; ~ M;�0) = Æ�;�0 , see [6, 17℄. Thus, denoting by �(
) the Lebesgue measure of 
, we obtain aproje
tion P0 : L2(
)! L2;0(
) byP0(q) := Xj�j=j0�q� � I
(q)�(
) ~��� M;� + Xj�j>j0 q� M;�;that fa
tors out 
onstants. Hen
e, realizing the zero mean 
onstraint, requires modi�
ations only onthe 
oarsest level, whereas the wavelet 
oeÆ
ients remain un
hanged. Sin
e operators are only appliedapproximately, 
orresponding 
orre
tions are needed after applying B and also after 
oarsening. Sin
ethe proje
tion P0 depends on the parti
ular primal wavelet basis for L2(
) all arrays have to refer tothe same basis so that the Riesz map R = (~	M ; ~	M ) is needed in the se
ond step (3.1.7)of the Uzawaiteration.Note that the present way of fa
toring out 
onstants is only a �rst 
onvenient option. A drawba
kre
e
ted by the experiments below is that due to the nature of P0 always all 
oarse s
ale fun
tions willbe involved in the pressure approximations. In parti
ular, for higher order trial fun
tions this numbergrows, so that at least for the �rst few re�nement steps the work/a

ura
y balan
e of the s
heme is lessfavorable for the pressure 
omponent. Lo
al 
oarse s
ale basis fun
tions would remedy this e�e
t.A detailed des
ription of the routines APPLY and NCOARSE 
an be found in [2, 8℄ 
ombinedwith the above provisions with respe
t to the matrix B. As mentioned before, the routine ELLSOLVEis essentially the adaptive Poisson solver from [2℄. This indi
ates the prin
ipal potential of re
y
ling thesebasi
 routines for the treatment of problems with in
reasing 
omplexity.6.2. Des
ription of the Test Cases. We wish to report below on two di�erent test 
ases. Example(I) 
orresponds to the most singular solution des
ribed in Se
tion 5.4. As 
an be seen in Figure 6.1, thepressure exhibits a strong singularity at the reentrant 
orner. In order to keep the e�ort for 
omputingan exa
t referen
e solution as moderate as possible we have 
omputed an approximation of the exa
tsolution by trun
ating p. Of 
ourse, this limits the number of iterations of the adaptive algorithm forwhi
h meaningfull 
omparisions 
an be made.Example (II) involves a pressure whi
h is lo
alized around the reentrant 
orner, has strong gradientsbut is smooth. More pre
isely, we have 
hosen an exa
t solution for the velo
ity whi
h is very similar tothe one above and a pressure solution whi
h is 
onstant around the reentrant 
orner and multiplied by asmooth 
ut o� fun
tion. These fun
tions are displayed in Figure 6.2.24
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Figure 6.1. Exa
t solutiopn for the �rst example. Velo
ity 
omponents (left and middle) and pressure (right). Thepressure fun
tions exhibits a strong singularity and is only shown up to r = 0:001 in polar 
oordinates.
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Figure 6.2. Exa
t solutiopn for the se
ond example. Velo
ity 
omponents (left and middle) and pressure (right).6.2.1. Choi
e of the Parameters. We expe
t that some of the 
onstants resulting from theanalysis are a
tually too pessimisti
. For instan
e, deriving estimates for the 
onstants in the normequivalen
es, we have estimated K to be in the range of 15, whi
h turned out to entail unne
essarily higha

ura
y in the treatment of the inner Poisson problems while the pressure approximation and hen
ethe right-hand side for the Lapla
e problem are still poor. Several numeri
al experiments with di�erenttrial fun
tions and for di�erent test 
ases, indi
ate that K = 3 already seems to suÆ
e and that thealternatives dis
ussed in Se
tion 3 are in these 
ases not ne
essary. All subsequent results are thereforebased on this 
hoi
e. Moreover, we have used � = 0:6 and ! = 1:3 in all experiments.6.3. Rate of Convergen
e. Table 6.1 displays the results for Example (I), employing pie
ewiselinear trial fun
tions for the velo
ity and pie
ewise 
onstant fun
tions for the pressure. We are interestedin the relation between the error produ
ed for a given number of degrees of freedom by the adaptives
heme and the error of best N -term approximation with respe
t to the underlying wavelet basis. Todes
ribe the results we denote by u1;u2 the wavelet 
oeÆ
ient arrays of the �rst and se
ond velo
ity25




omponent and de�ne for x 2 fu1;u2;pg by�x := kx� x�k`2kx� x#�k`2 ; rx := kx� x�k`2kxk`2 ;the ratio of the error of the adaptive approximation and the 
orresponding best N -term approximation,respe
tively the relative error. Re
all from Corollary 3.4 that these quantities also re
e
t the error inthe energy norms. We see that the velo
ity approximation is from the beginning very 
lose to its bestN -term approximation. For the reasons indi
ated above this is di�erent for the pressure. The appli
ationof P0 �lls up the 
oarsest level whi
h in this example has 768 degrees of freedom. To explain this in moredetail assume that the adaptive method pi
ks exa
tly one s
aling fun
tion, so that the degree of freedomfor the pressure would be 1. Sin
e the integral of a s
aling fun
tion is not zero, the pressure proje
tionP0 produ
es a non-zero 
onstant whose expansion involves all s
aling fun
tion 
oeÆ
ients. This is thereason why at the early stage of the re�nement pro
ess the work a

ura
y balan
e for the pressure is lessfavorable. However, the last two iterates shown in the table indi
ate that the s
heme 
at
hes up with theoptimal rate. Lo
al 
oarse s
ale bases would of 
ourse yield better results already from the beginning ofthe adaptive re�nements.It Æ #�u1 �u1 ru1 #�u2 �u2 ru2 #�p �p rp1 11.730947 33 1.04 0.6838 34 1.04 0.6744 768 130.35 1.00242 5.865474 84 1.26 0.3427 83 1.24 0.3447 768 130.40 1.00283 2.932737 193 1.32 0.1530 184 1.31 0.1541 768 15.37 0.52344 1.466368 446 1.29 0.0821 450 1.29 0.0897 929 4.15 0.22185 0.733184 1070 1.27 0.0434 1065 1.27 0.0456 1211 2.58 0.1034Table 6.1Results for the �rst example. Numbers of adaptively generated degrees of freedom, ratio to best N-term approximationand relative errors.The results for Example (II) are shown in Table 6.2 and plots of the approximations are displayedin Figure 6.4. We see that the 
omputed approximations di�er only by a very moderate fa
tor fromthe best N -term approximation. The results suggest the following dire
tions for more systemati
 im-It Æ #�u1 �u1 ru1 #�u2 �u2 ru2 #�p �p rp1 15.636636 278 28.20 1.2936 364 60.31 2.1867 768 6.96 0.33292 7.818318 261 8.30 0.4028 295 16.10 0.7003 768 3.76 0.18003 3.909159 234 3.72 0.1995 274 5.63 0.2617 768 1.80 0.08634 1.954580 180 1.25 0.0886 249 2.08 0.1056 810 1.22 0.04525 0.977290 233 1.14 0.0615 267 1.29 0.0615 980 1.07 0.02316 0.488645 298 1.11 0.0480 321 1.17 0.0470 1276 1.05 0.01177 0.244322 456 1.35 0.0398 505 1.43 0.0265 1551 1.09 0.00618 0.122161 704 1.36 0.0250 724 1.39 0.0177 1842 1.24 0.0035Table 6.2Results for the se
ond example. Numbers of adaptively generated degrees of freedom, ratio to best N-term approxima-tion and relative error.plementations. The simple Ri
hardson iteration should be repla
ed (possibly after a few initial steps)26



by gradient or 
onjugate gradient steps. This should speed up 
onvergen
e and avoid a ne
essarily pes-simisti
 estimation of step size parameters. Sin
e all algorithmi
 ingredients still require the same type of(approximate) matrix/ve
tor multipli
ations one 
an employ the same routines. One should then in
lude,however, monitoring residuals whi
h, due to (2.3.1), should dete
t rapid 
onvergen
e for a possible earlytermination of the iterations in ADV (ii). Moreover, higher order wavelets should be tested to exploitlarger 
ompressibility ranges.High order dir
retizations.. Re
all from Se
tion 5.3 that the 
ompressibility range of the waveletrepresentations grows with in
reasing regularity and hen
e order of the wavelet bases, see Theorems 5.3,5.5. Moreover, the regularity results from Theorem 5.7 and Remark 5.9 indi
ate that the larger the
ompressibility range of the wavelet representations the more an adaptive s
heme would gain at leastasymptoti
ally over uniform re�nements. This suggest investigating the quantitative e�e
t of employinghigher order spline wavelets.We 
ompare now dis
retizations of various orders for the pressure in the se
ond example. In Figure6.3, we have shown the relative error versus the number of unknowns in a logarithmi
 s
ale. Comparingthe slopes of the best N -term approximation, we obtain the expe
ted asymptoti
 gain for in
reasingorders, again at the end with moderate values for the ratios �x. However, we also see that the fast de
ay
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                Adaptive    Figure 6.3. Relative error versus number of unknowns for spline wavelets of di�erent order for the dis
retization ofthe pressure in the se
ond example.of the rate of the best N -term approximation is delayed more and more for an in
reasing order of trialfun
tions. For instan
e, for pie
ewise 
ubi
 wavelets, we obtain an almost horizontal line until N � 2000.This is on one hand due to some te
hni
al restri
tions of the parti
ular pat
hwise tensor produ
t waveletbases used here requiring a 
ertain 
oarsets level j0 on ea
h pat
h. The values for j0 are shown in Table6.3 for di�erent orders. We see that j0 in
reases with m (the 
ase m = 2 is somewhat spe
ial due tothe very lo
al 
hara
ter of primal and dual fun
tions). We display also the number of unknowns forthe 
oarsest level, i.e., the number of s
aling fun
tions on level j = j0. On the other hand, as pointedout before, the nature of P0 keeps all 
oarse s
ale basis fun
tions a
tive. This explains why the slope ofthe best N -term approximation is almost horizontal until all s
aling fun
tions are used up. There are27



several ways to alleviate this problem also for higher order dis
retizations. Aside from using lo
al 
oarses
ale basis fun
tions with zero mean one 
an take a �
ti
ous domain approa
h and append the boundary
onditions by Lagrange multipliers. This allows one to use periodi
 wavelet bases on the �
titious domainwhere the minimal level 
an be always 
hosen as j0 = 0 for all values of m and ~m. This issue will beaddressed elsewhere. m; ~m 1,3 2,2 3,3 4,4j0 4 3 4 5N� 705 242 587 2882Table 6.3Minimal level j0 and number of s
aling fun
tions N� on the minimal level for di�erent order dis
retizations.6.4. The LBB-Condition. At the �rst glan
e it is somewhat puzzling that in the analyis of theadaptive Uzawa method the LBB 
ondition did not play any role. Roughly, speaking this is due to the fa
tthat 
on
eptually at every stage of the algorithm the full in�nite dimensional operator is applied withina 
ertain toleran
e that has to be 
hosen tight enough to inherit the stability properties of the originalin�nite dimensional problem. This e�e
t of adaptive s
hemes in 
onne
tion with saddle point problemsand also with more 
omplex variational problems has been observed �rst in (a prede
essor of) [9℄, see also[14℄ for saddle point problems. Hen
e it is interesting to study the quantitative in
uen
e of the 
hoi
eof bases. Therefore, we have in
luded a 
ombination of bases for whi
h pairs of �xed �nite dimensionalsubspa
es would violate the LBB-
ondition, namely pie
ewise linear trial fun
tions for both velo
ity andpressure. The results are displayed in Table 6.4. We see that the rate of the best N-term approximationis still mat
hed fairly well with ratios that are only slightly larger than in Table 6.2 for the pie
ewiselinear/pie
ewise 
onstant dis
retization. Note that the os
illations in the pressure approximation forIt Æ #�u1 �u1 ru1 #�u2 �u2 ru2 #�p �p rp1 16.743449 1 1.00 0.9293 1 1.00 0.9300 243 6.27552 0.33542 8.371724 1 1.00 0.9304 1 1.00 0.9292 243 3.98811 0.21313 4.185862 5 1.00 0.7586 5 1.00 0.7588 243 2.23810 0.11964 2.092931 20 1.13 0.4064 24 1.45 0.3979 262 2.08107 0.06125 1.046466 61 1.47 0.2107 77 1.79 0.2107 324 2.72102 0.03396 0.523233 178 1.33 0.1060 198 1.52 0.1306 396 2.81079 0.02097 0.261617 294 1.19 0.0533 286 1.46 0.0744 674 2.21371 0.01088 0.130808 478 1.25 0.0271 531 1.46 0.0362 899 1.83271 0.0071Table 6.4Results for the se
ond example with pie
ewise linear trial fun
tions for velo
ity and pressure. Note that in this 
asethe number of degrees of freedom for the 
oarsest level is 243.unstable elements shown by the experiments in [4℄ are not observed in the present 
ontext, see Figure6.4. This seems to results from the di�erent pressure update.REFERENCES[1℄ A. Barinka, Fast Evaluation Tools for Adaptive Wavelet S
hemes, PhD Thesis, RWTH Aa
hen, in preparation.[2℄ A. Barinka, T. Bars
h, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and K. Urban, Adaptive wavelet s
hemes forellipti
 problems { Implementation and numeri
al experiments, IGPM-Report # 173, RWTH Aa
hen, 1999, toappear in: SIAM J. S
ient. Comput. 28



[3℄ A. Barinka, S. Dahlke, and W. Dahmen, Adaptive appli
ation of operators in standard wavelet representation, inpreparation.[4℄ E. B�ans
h, P. Morin, and R.H. No
hetto, An adaptive Uzawa FEM for Stokes: Convergen
e without the inf-sup,preprint, 2001.[5℄ F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.[6℄ A. Canuto, A. Taba

o, and K. Urban, The wavelet element method, part I: Constru
tion and analysis, Appl. Comp.Harm. Anal., 6 (1999), 1-52.[7℄ A. Cohen, Wavelet Methods in Numeri
al Analysis, in: Handbook of Numeri
al Analysis, P.G. Ciarlet, J.L. Lions,eds., Elsevier, 2000, 417-711.[8℄ A. Cohen, W. Dahmen, and R.A. DeVore, Adaptive wavelet methods for ellipti
 operator equations | Convergen
erates, Math. Comp. 70 (2001), 27-75.[9℄ A. Cohen, W. Dahmen, R.A. DeVore, Adaptive wavelet methods II - Beyond the ellipti
 
ase, IGPM Report # 199,RWTH Aa
hen, 2000.[10℄ S. Dahlke, Besov regularity for the Stokes problem, in: Avan
es in Multivariate Approximation, W. Hau�mann, K.Jetter, and M. Reimer, eds., Wiley VCH, Mathemati
al Resear
h 107, Berlin, 1999, 129-138.[11℄ S. Dahlke, Besov regularity for ellipti
 boundary value problems on polygonal domains, Appl. Math. Lett. 12(6)(1999), 31-36.[12℄ S. Dahlke, W. Dahmen, and R.A. DeVore, Nonlinear approximation and adaptive te
hniques for solving ellipti
operator equations, in: Multis
ale Wavelet Methods for PDEs, W. Dahmen, A. Kurdila, and P. Oswald, eds.,A
ademi
 Press, San Diego, 1997, 237-284.[13℄ S. Dahlke, W. Dahmen, R. Ho
hmuth, and R. S
hneider, Stable multis
ale bases and lo
al error estimation for ellipti
problems, Appl. Numer. Math. 23(1) (1997), 21-48.[14℄ S. Dahlke, R. Ho
hmuth, and K. Urban, Adaptive wavelet methods for saddle point problems, Math. Model. Numer.Anal. (M2AN) 34(5) (2000), 1003-1022.[15℄ W. Dahmen, Wavelet methods for PDEs | Some re
ent developments, J. Comp. Appl. Math. 128 (2001), 133-185.[16℄ W. Dahmen, A. Kunoth, and K. Urban, Biorthogonal spline-wavelets on the interval | Stability and moment 
ondi-tions, Appl. Comp. Harm. Anal. 6, 132-196 (1999).[17℄ W. Dahmen and R. S
hneider, Composite wavelet bases for operator equations, Math. Comp., 68 (1999), 1533-1567.[18℄ W. Dahmen and R. S
hneider, Wavelets on manifolds I. Constru
tion and domain de
omposition, SIAM J. Math.Anal., 31 (1999), 184-230.[19℄ R.A. DeVore, Nonlinear approximation, A
ta Numeri
a 7 (1998), 51-150.[20℄ V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes-Equations, Springer-Verlag, 2nd edition,1986.[21℄ P. Grisvard, Singularities in Boundary Value Problems, Resear
h Notes in Applied Mathemati
s 22, Springer-Verlag,1992.[22℄ A. Kunoth, Wavelet Methods for Minimization Problems Involving Ellipti
 Partial Di�erential Equations, Teubner-Verlag, 2001[23℄ P.G. Lemari�e-Rieusset, Analyses multi-r�esolutions non orthogonales, Commutation entre Proje
teurs et Derivationet Ondelettes Ve
teurs �a divergen
e nulle (in fren
h), Rev. Mat. Iberoameri
ana 8 (1992), 221-236.[24℄ J. Osborn, Regularity of solutions to the Stokes problem in a polygonal domain, in: Symposium on Numeri
al Solutionsof Partial Di�erential Equations III, B. Hubbart, ed., A
ademi
 Press, 1975, 393-411.[25℄ J. Vorloeper, Multiskalenverfahren und Gebietszerlegungsmethoden (in german), Master Thesis, RWTH Aa
hen, 1999.

29



−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

discrete solution (adaptive), N=278

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

discrete solution (adaptive), N=364

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−20

−15

−10

−5

0

5

10

15

20

discrete solution (adaptive), N = 768

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=261

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

discrete solution (adaptive), N=295

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−4

−2

0

2

4

6

8

10

12

14

16

discrete solution (adaptive), N = 768

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=234

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=274

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−4

−2

0

2

4

6

8

10

12

14

16

discrete solution (adaptive), N = 768

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=180

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=249

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−5

0

5

10

15

20

discrete solution (adaptive), N = 810

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=233

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=267

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−5

0

5

10

15

20

discrete solution (adaptive), N = 980

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=298

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=321

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−5

0

5

10

15

20

discrete solution (adaptive), N = 1276

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=456

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=505

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−5

0

5

10

15

20

discrete solution (adaptive), N = 1551

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=704

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

discrete solution (adaptive), N=724

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−5

0

5

10

15

20

discrete solution (adaptive), N = 1842

Figure 6.4. Approximations for the se
ond example. First and se
ond velo
ity 
omponent (left and middle 
olumn)and pressure (right 
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