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Abstract

This paper is concerned with reconstruction problems arising in the context
of radar signal analysis. The goal in radar is to obtain information about objects
by emitting certain signals and analyzing the reflected echoes. In this paper, we
shall focus on the general wideband model for radar echoes and on the case of
continuously distributed objects D (reflectivity density).

In this case, the echo is given by an inverse wavelet transform of the density
D where the role of the analyzing wavelet is played by the transmitted signal.
However, the null space of an inverse wavelet transform is non trivial, it is described
by the corresponding reproducing kernel. Following the approach of H. Naparst
[13] and L. Rebolla et al. [15] we suggest to treat this problem by transmitting
not just one signal but a family of signals. Indeed, a reconstruction formula for
one and two dimensional reflectivity densities can be derived, provided that the
set of outgoing signals forms an orthogonal basis or — more general — a frame.
We also present some rigorous error estimates for these reconstruction formulas.
The theoretical results are confirmed by some numerical examples. We also briefly
discuss the generalization of our approach to the narrowband regime.
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1 Introduction

In recent years, wavelet analysis has been successfully applied to many problems in signal
analysis and image processing as well as to applications in numerical analysis. Moreover,
since the pioneering work of Naparst [13, 14], it is well-known that the specific features of
wavelets can also be used efficiently for treating reconstruction problems in the context of
radar signal analysis. Related approaches for radar applications have been investigated
by [11, 12], more recently the original approach of Naparst has been extended by [15].

The basic radar problem asks to gain information about an object by analyzing waves
reflected from it. To describe this simplified setting, let us first assume that the object
under consideration can be described as a point, moving with constant velocity v towards
or away from a given source. The distance between object and source at time ¢t = 0 is
denoted be R. The emitted signal is denoted by h(t), then the wideband model for the
received echo f(t) is given by

£ = Isl h(s(t = 7)), (L.1)

where the Doppler scale factor s is obtained from the speed of light ¢ and the object
velocity v as
c—v
c+v’
and the delay 7 is determined by the distance R between the object and the source as

(1.2)

S =

2R

c—uv

(1.3)

T =

The so-called Doppler coordinates (s, 7) are in one—to—one correspondence to the desired

values v and R. The multiplicative factor \/m is chosen such that the energy is con-
served, i.e., we assume a perfectly reflecting object. For further information, the reader
is referred, e.g., to [7, 8, 9].

In the presence of many objects the total echo is modeled as the superposition of
the single echoes. More general, if we assume that we want to observe a reflecting
continuum with varying reflectivity as described in Doppler coordinates by a reflectivity
density D(,1/s), then the total echo is given by

/ / D(t,s)|s|” 1/2h< > deT (1.4)
R\{0}

Consequently, the task is to reconstruct the density D(r,s) from the received echo. To
treat this problem, let us first remark that formula (1.4) can be reinterpreted in the
context of wavelet analysis: In general, the continuous wavelet transform Wy, (F) of a
function F' € Ly(R) is given by

(WyF)a.b) = [ F(@) a2 (?)dx. (1.5)



This transformation is well-defined, provided that the analyzing wavelet ¢ satisfies the
admissibility condition

C, = /I{|¢|(§|)|2d§<oo. (1.6)

The wavelet transform W, is a multiple of an isometry whose inverse is given by the
adjoint wavelet transform

Fla) = W3 (WF(@,0) (0) = o [ [ (W,F)(a,0) Ja] 2 ) g 1)

T AT ~ Oy JrIryey ’ a Jaz
see, e.g., [3, 7, 10] for details. Therefore a comparison of (1.7) with (1.4) yields the well-
known and basic identity which links wideband radar echoes to wavelet analysis, see
e.g. [13, 12]: the echo f is identical with the inverse wavelet transform of the searched
reflectivity distribution D where the transmitted signal h plays the role of the analyzing
wavelet.
This suggests to recover D by computing the wavelet transform of the echo f:

D(r,s) = o (W) (7.5)]. (18)
h
However, the null space A of an inverse wavelet transform is non trivial. Hence by
this procedure one can only recover the component of D which lies in the orthogonal
complement of N or equivalently one can recover the component of D in the range of
the wavelet transform W,

To our knowledge, there exists no physical principle that guarantees that D is in
fact contained in the range of W}, so that (1.8) only describes one part of the desired
density D. Inspired by these problems, Naparst [13, 14] was the first one who sug-
gested not to transmit just one signal but a family of signals. In his fundamental work,
Naparst primarily studied the case that the transmitted signals form an orthonormal
basis. However, this assumption is very restrictive in practice. Therefore, quite recently,
Rebollo—Neira, Platino and Fernandez—Rubio generalized Naparst’s approach to the case
of transmitting a frame of signals, which is a much weaker restriction, [15]. The present
study is very much inspired by their results, however, we modify and generalize their
approach in the following sense:

e rigorous error estimates in suitably weighted Sobolev spaces are given in Section
3;

e a generalization to the multivariate case is discussed in Section 4, this includes an
inversion formula for a suitable subclass of 2D reflectivity distributions;

e numerical examples using orthogonal and biorthogonal wavelets confirm the theo-
retical results in Section 5;

e an investigation of the narrowband model is contained in Section 6.

Moreover, the proof of the basic reconstruction formula in Section 2 is significantly
shorter compared to the exposition in [15].



2 Basic Reconstruction Formulas

In general, the reflectivity distribution D(7, s) cannot be reconstructed from the knowl-
edge of a single echo. Following the approach of [13, 15] we assume that echoes

// (1, 5)|s| " %Ry, (
R\{O}

are available for a family of submitted signals {h, } mez. H. Naparst proved a reconstruc-
tion formula under the assumption that {h,, },cz forms an orthogonal basis. We follow
the approach of Rebolla et al. and assume a weaker condition, namely that {h,}mez
forms a frame in Ly(R). The original proof in [15] is somewhat complicated and long,
we will present a shorter proof using some standard Fourier techniques.

Let us briefly recall the notion of a frame. In general, a system {h, }mecz of functions
is called a frame if there exist constants A and B, 0 < A < B < oo, such that

) deT 2.1)

AlF Ly < 22 E ha)[* < BIIF||7,w)- (2.2)

meZ

The numbers A, B are called frame bounds. Given a frame {h,,}mez, one defines the

frame operator T as
T(F):= Z (F, hyp)ho,. (2.3)

meZ

For later use, let us recall the following fundamental theorem which was proved in [5].
Theorem 2.1 Let {h,,}mez be a frame in Ly(R). Then the following holds.

i) T is invertible and B—'T < T—!' < A7'I.

i) {h™}mez, W™ := T thy, is a frame with bounds A~', B™!, called the dual frame

Of {hm}mez-
iii) Every F' € Ly(R) can be written as
F =Y (E,N"hy =Y (F, hyp)h™. (2.4)
meZ meZ

Furthermore we need a result concerning the Fourier transform of frames.

Lemma 2.1 Let {hy,}mez be a frame and let {h™},,cz denote the dual frame. Then the
set {hm }mez also constitutes a frame and the dual frame is defined by (h)™ = ﬁhm.

Proof: First of all, we show that the set {h, }mez with

— / hon ()= d (2.5)



is a frame. By Plancherel’s Theorem, we obtain

Alflz,my = @) AlflZ,m) < 1) X 1(F, hm)l? (2.6)
meZ
= Y [{f b < (QW)B||f||2L2(R) = B||flIZ,&)
meZ

It remains to identify the reciprocal frame. The decomposition

[ = Z <hma f>hm
meZ
implies
meZ (27T) meZ
and the result follows by another application of Plancherel’s Theorem. O

Using the frame theoretic approach, the following reconstruction formula holds.

Theorem 2.2 Let {h,,}mez be a frame of outgoing signals in Lo(R) and let f,, denote
the corresponding echoes produced by a reflectivity density D(t, s),

dsd
// 7'8|8|1/2h< >S7‘
R\{0}

Let us assume that the following conditions are satisfied

D(r, )|s|~/2h,, (t - T) € Ll(dsjsz), DC s)(w) € Li(dw), DG, o)(w)|o]| ™2 € Ly(do).

(2.8)

(2.7)

Then D(r,s) can be reconstructed as follows

—

Plrs) = W,EZ/ T ()l e

—

2 X [ @) @)l e d, (29)

meZ

27T
where {h™} ez denotes the reciprocal frame of {hy }mez.-

Proof: We first observe that

—

5171/ B ( j) (@) = |52 T hpn(ws). (2.10)

Therefore, applying Fourier transforms to (2.7) and interchanging the order of integration

yields
~ t—
m - D ) / _1/2hm<
ful@) = [ fog D) [
dsdt

_ 1/2 —iwT 7,

= /R/R\{O} D(r,s)ls| 2¢ hm(sw)—s2

- / D(, 8)(w) i (sw) ||/ 2ds.
R\{0}

7') o—iwt gy 54T dsdr

52



Observe that all modifications performed above are justified by (2.8). Hence, by em-
ploying the substitution ¢ = sw, we obtain

w) = /_\2 W) hm (0 g_/Qw_la
ful@) = [ DG @hn(@)] Tl

= /:RV\{O} D((j)’ 0)hpm(0)do
= (D(w,"), hm(-)), (2.11)

where D(w, o) is defined by

—

D('a

D(w,0) )(w)|w|H?|o| 32 (2.12)

o
w

From (2.11), we observe that the quantities fm(w) can be interpreted as the coefficients
of D(w, -) with respect to the set {h,, } mez. However, from Lemma 2.1 we know that this

set also constitutes a frame with reciprocal frame (h)™ = ﬁﬁ”\% Therefore, by using
the identity
1 N
f=——=>> (f, hm)h™, (2.13)
2 %
we may reconstruct D(w, o) as
— 1 — . —
D(w,a) = 2— <D(w;');hm(')>hm(0)
( 7T) meZ
1 A —
= — m(w)h™ (o). (2.14)
2 %,

From (2.14), we can now also reconstruct the density D(7,s). By using the definition
(2.12) we obtain

D) = Gy 3 fn@ (o)l
which yields
DEs)w) = @ 5 Fuli)F7 ) ol
L S Nl () () 5[
= Ty X, I @l ()l (2.15)

Now the result follows by applying the one-dimensional inverse Fourier transform to
both sides of (2.15)

1

D(r,s) = %/F{D(-,\s)(w)eimdw



- 2WQZ/ )l ) ) |s] e o
meZ

—

—0 fon (W) (=) ()] 5] 2 deo
S

Y S / F ) @)]s] 2
= 27”2 / L F () @) e

—

Ty Z/ ‘f' b ()|s| e ™ dw.

(Il
We would like to conclude this section on reconstruction formulae for wideband radar
models with a reference to an elegant but rather different approach. Assume that the
signal A, (t) ~ 6(t — t,,) is a short pulse at time t,,. Then, the echo (1.4) at time ¢ is
equivalent to the integration of D along the line 7 =t —st,,. L.e. the echoes resemble the
Radon transform of D, they can then be inverted by tomographic inversion procedures,
see [6].

3 Error Estimates

In the previous section, we have derived a method to reconstruct the reflectivity density
from the observed echoes. However, the applicability of this method to real-life problems
is diminished by the fact that the underlying frame usually contains infinitely many
elements. Clearly, in practice, only a finite number of frame elements can be transmitted.
Hence we are faced with the problem of choosing appropriate collections. Furthermore,
it is clearly desirable to have some information concerning the resulting approximation
properties for different choices of frames.

The derivation of the error bounds rests on a Jackson type estimate for the frame
{hmYmez. Let us assume that this set of functions allows an ordering by index sets
1; C Z, s.t. an Jackson type estimate of the form

||g - Z <gahm>hm||Lz(R) 5 2—2Ja |g|?{a(R)
mely
holds. (In the sequel, * < ’ will always indicate inequality up to constant factors). H®
denotes the Sobolev space of order «, see e.g. [1].

Such estimates are known for a variety of functions, e.g. trigonometric polynomials
and hierarchical finite elements. In the context of wavelet analysis, this requirement is
met by orthogonal or biorthogonal wavelets. Let us therefore assume that the frame
{hm}mez consists of the inverse Fourier transforms of the elements of an orthonormal
wavelet basis, i.e.,

hin = bunigy = F 00 Win(z) = 22922 — k), 4,k € Z, (3.1)

7



where the functions 1; satisfy

<’ll)j,k7 'l[)jl,kl> == 6j,j’6k,k" (32)

We may e.g. use the compactly supported wavelet basis constructed by Daubechies [3].
Then we do not employ all functions in the resulting frame, but only those up to a

given refinement level J. For this specific setting, the following result in the weighted
Ly—space Lo(R?, dﬁf—%) holds.

Theorem 3.1 Let N—1 denote the degree of polynomial exactness of the multiresolution
analysis {V;}jez associated with the wavelet 1. Suppose that for some fized oo < N the
condition -

G(a,w) = |D(w, )| fam) < 00 (3.3)

15 satisfied. Then, the following error estimate holds:

2

G 2 () ol 517

<J | |3 ~

(3.4)
If « is an integer, the function G(a,w) can be estimated in terms of the density D as
follows:

/\

< Sl [ ) D)ot (35)

B<a

Proof: Classical wavelet analysis provides us with the following Jackson-type estimate:

ID(w,") = = me Oliom S 271D W, )fam), (3.6)

]<J

see, e.g., [4] for details. Hence, by using (2.12) and substituting o = sw we obtain

—

IDC, 2kl o] 2 = o zfm l1atao

]<J

272G a, w)

2

ol ol 2 (3.7)

— 1
= D(-,s - — sww33/2
/R‘ (56 = g 2 Fuhn(s)lels

|5

Therefore multiplying both sides of (3.7) by |w|, integrating with respect to w and
applying Plancherel’s Theorem for another time yields

2

272104/ G do > // D/-\ . 3/2
wlGlesw)do 2 || ID(s) — > @) hm(sw)|w]|s]

i<J

2

~

W) han (500) ] |5]>/ %€ dw

d
dr > < 2’2‘]0‘/ |w|G (e, w)dw.
R

dr

(3.8)

ds
|s[3



[t remains to establish (3.5). By using Leibnitz’ rule we obtain

_ o _ 2
DMy = [ |5z (D) do
0% o 2
— 7 e 1/2 —3/2
L |55 (P62 @)l 2ol )| do

2

0 do

_ v 9\ —iwr —3/2
= ol [ |5 ([ D@2 dro™)

2

0" . K
= LR (g e e gy o)
o a o’ o -, —IWT
= BLIE ()G D e
- (—g)(—g —1)... (—g — B =10 3 P2do
5B -1 5
= LI (D) DD LS = o s
BLla =0
a-B
S Tl G D6 D e
B<a
and (3.5) is shown. 0

4 The Multivariate Case

In this section, we want to investigate to what extent the analysis presented above can
be generalized to the multivariate case. In the sequel, we shall especially focus on the
2D-case. First of all, we have to derive a suitable mathematical model which describes
the echoes produced by a two-dimensional reflectivity distribution. Secondly, we have
to analyze how this reflectivity density can be reconstructed from these echoes.

4.1 A 2D-Model

For univariate signals in Ly(R), the model (1.4) which describes the echoes produced
by a reflectivity density is well-established. This model deals with signals which are
modulated over time, i.e., the signal is a function h(¢). However, this only allows to
reconstruct the velocities in the direction of the emitted beam, i.e., only the radial
component of the velocity field can be analyzed.

It seems that much less is known for the higher dimensional cases. In general one
might assume, that the signal is emitted in a three dimensional cone. In principle, one
might then emit signals, which are modulated differently for each beam in this cone, i.e.,
the emitted signal is a function h(t, v, (), where v and ¢ are the angles of the cone.

9



In this paper, we want to treat a two dimensional model as a first step. Here we
assume, that the signal is emitted as a fan. Moreover, we assume that the positions of
the reflecting entities, as described by the support of the reflectivity distribution D, are
sufficiently far away, so that we can treat the fan of beams as a set of parallel beams
instead. Let us assume, that the beams are aligned on the z-axis, i.e., the emitted signal
is modelled by a function h(t,z), and that the signal is emitted in the direction of the
y-axis.

We follow the approach of Section 1 in order to model mathematically the resulting
echoes. Hence let us first consider the case of a single point object, which is moving in
the (x,y)-plane. We further assume that the measurement process lives on a shorter
time scale compared to the velocity of the object. Hence, we can neglect any acceleration
of the object and we simply assume that the trajectory of the object is given by

(@(t), y(t)) = (w0 + tve, yo + tvy). (4.1)
Again, we introduce Doppler variables

2
S := Ct Yy T := Yo (4.2)

s .
C— Uy C— Uy

At time ¢ the moving object is at a position with y-coordinate yo + tv,, i.e., at this
instant it reflects a signal which was send out at time ¢ — @ at the corresponding
position xy + tv,. Altogether, the object reflects the signal

Yo + tuy

s(t) = h(t — , o + tuyg) .

This signal then produces an echo at position x = xy + tv, which is time delayed by

@, i.e., this yields an echo
+ tv + tv
et + LM g0 tuy) = s(t) = At — L0 g+ ty) (4.3)
We define the auxiliary parameters
1+ S0 VzTo
= and =1x9 — . 4.4
0o Ug 250 n 20 = To 250 ( )

Lemma 4.1 Suppose that the object is moving with velocity v = (vg,vy) in the (x,y)-
plane and that a signal h(x,t) is transmitted. Then the echo produced by the object is
given by

t— 70

e(t, 2o + tog) = h( .
0

, 20 —|—t0'0) . (45)

Proof:
We start with equation (4.3) and use the substitution ¢ — ¢ + 22 which yields

ct — ct — c— ct —
e(t, o + Yo ve) = h( Yo Y _ @,xg + Yo V)
C+ vy C+ Uy c c ¢+ vy

10




Rewriting this equation in Doppler coordinates and using the auxiliary parameters (4.4)
yields

t—TO

e(t, zo + tog) = h( .
0

, 20 +t0’0) . (46)

and the lemma is proved. O

The set of parameters (79, o, 20, 09) is in one—to—one correspondence to the origi-
nal variables (x¢, vy, yo,v,). Hence, similar to the 1D-case, we describe a dense target
environment by a reflectivity distribution D(7y, s¢, 29, 00). Note, that we use a slightly
different notation for the Doppler coordinates in the 2D—case: the variable s in the
1D-model corresponds to the variable 1/sy in the 2D—case. This avoids the term ds/s?,
moreover, we have neglected the scaling term /s. We now obtain the following model
for describing the 2D—echo.

Corollary 4.1 The echo produced by a reflectivity density D(Ty, So, 20, 00) @S given by

t _
€(t, .I‘) = / / / / D(Tg, S0, 205 0'0)6(1' — (Z[) + Uot))h ( TO,Z() + O'gt) dngSgdUodZo.
R/R/R /R S0
(4.7)
Proof:
We rewrite the echo of a single object as
e(t, 1) == 0(x — (20 + 0ot))h(—2, 2o + opt). (4.8)

S0
Consequently, for the case of a nontrivial reflectivity density, we obtain

t—TO

QW”ZAAAAPMM%WMQ_%+%WM

, 20 + O'Ot)dngSOdO'gdZo.
50

proving the corollary. a

4.2 The Reconstruction Problem

Once the model described in Corollary 4.1 is given, it is natural to ask for a suitable
reconstruction formula to extract the unknown density D. Again we suggest not to
transmit just one signal but a family of signals. However, even then, in contrary to the
univariate case, the density cannot be completely reconstructed. The operator which
maps a reflectivity density to its echoes is linear, hence it makes sense to characterize
the nullspace of this mapping.

Definition 4.1 A function D € Ly(R*) is called a vanishing reflectivity distribution if
the echo (4.7) vanishes for any signal h € Ly(R?).

11



These vanishing reflectivity distributions can be characterized by their integrals over
certain 2D-subspaces. Let E(7, z,v) denote the 2D—plane defined by

E(t,z,v) = {(70, S0, 20,00) | To =1t — Vs, 20 = x — 0pt, So,00 € R} .
The nullspace is then characterized by the following lemma.

Lemma 4.2 A function D € Ly(R*Y) is a vanishing reflectivity distribution if and only
if the integrals of soD over the 2D—planes

{E(t,z,v) | t,z,v € R}
vanish, i.e.
0= / / SgD(t — VSp, Sp, T — Uot, 0'0) dS[)dO'o ,
R /R
for all (t,z,v) € R3.

Proof:
In order to show that the echoes of a reflectivity distribution vanish for all signals
h € L?(IR?), it is sufficient that the echoes vanish for all separable signals

h(t, ) = hy (t)hs(z) .

Inserting this into the model of the echo (4.7) and applying the substitution v = (¢ —
70)/So yields

t—TO

e(t,x) = AAALD(To,50,2’0,0'0)5(£U—(2’0+0'0t)) hl ( 50 > h2(20+0'07') dngSng’odZo

t—TO

= hg(l’) ALLD(T@,SO,$—Uot, 0'0) h1< 5 ) d’]’odsodo'o

= hg(l‘) AAA SgD(t — VSp, Sp, T — Uot, 0'0) hl(l/) dVdSOdO'O

These integrals have to vanish for any choice of ¢ and x. Moreover, with respect to
the variable v the scalar products with all h; € Ly(R) have to vanish, i.e. a vanishing
reflectiviy distribution has to satisfy a.e.

0= / / SgD(t — VSp, Sp, T — Uot, 0'0) dS[]dO'o y
RJ/R

which yields the desired charaterization of the nullspace by vanishing integrals of D over
2D-planes. O

Vanishing integrals can only occur if the integrand takes positive and negative values.
However, a physically meaningful reflectivity distribution is non—negative, and s, lives on
the positive part of the real line. Nevertheless two positive reflectivity distributions D,
and Dy, which only differ by a vanishing reflectivity distribution, cannot be distinguished
by any combination of transmitted signals.

12



The nullspace is characterized by a three-dimensional set of conditions. In order
to characterize the complement of the nullspace, i.e., the reconstructable reflectivity
distributions, we therefore need to eliminate one of the four variables of D € Ly(R*Y).

This can be achieved by reducing the dependency of D on oy by fixing the mean
velocity as follows: we define

D(1o, S0, T, 1) 3:/ D(70, s0, x — 00t, 09)doy. (4.9)
R
and assume, that D can be approximated by its zero order term
D(TOJSOJ:EJt) NID(T@,SQ,.Z‘,UO/C), (410)

compare with (4.4). Furthermore, we have to assume that the family of transmitted
signals consists of tensor products

B (0, 8) = B (£ (), (4.11)

where both families {h, }mez and {h, }nez form frames in Ly(R).
The first step is to integrate (4.7) with respect to zp, this yields

6(7', JZ‘) = LL /RD(T[], So, T — O'[]t, O'g)hm,n <7—;707—0,.T> dUnggng
— / / D(70, S0, T, t) <T — TO) hy(x)dTodsy
R /R

S0

~ hn(aj)/R/RD(TO,SO,JJ,UO/c)hm(

T — 1T

> dngS[]. (412)

S0

Now the quantity D(7y, so, z,vp/c) can be reconstructed by using the method explained
in Section 2.

5 Numerical Experiments

In this section, we want to demonstrate the applicability of our reconstruction formulae
and of the error estimates presented above. The application of our theory to real-
life data is still in its elaboration. In particular, 2D—data for signals, which can be
modulated arbitrarily in time ¢ and position x, are not available. Nevertheless, to test
the algorithm, we proceed as follows: We fix in advance an (artificial) density D in
range Doppler coordinates and a suitable frame {h,, } ez, compute the corresponding
echoes and apply the reconstruction procedure to these echoes. The true density is
known in this case, hence, we can estimate and compare the error bounds of different
approximation schemes.

First of all, we fix a density D which fits into the setting of our theory: As an
manageable example we choose D as

D(r,s) := eiT“’Oe’T2/21[_sl,S2](s) ,

13
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Figure 1: Representation of D(-,s)(w) and D(-,s)(w)|s|~3? on the discrete grid
[5.00,15.00] x [0.85, 1.00].
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Figure 2: The simulated echoes { f,, }mez for the Haar frame (left-hand side) and for the
Daubechies-5-frame (right-hand side). The higher scales are not displayed.

where 1;_,, ,,) represents the characteristic function of the closed interval [—si, sp] and
wy describes a shift in Fourier domain. In the sequel, we choose s; = 0.90 and s, = 0.95.
This reflectivity distribution D satisfies the assumptions of Theorem 2.2.

The outgoing signals have to be a frame. However, since we also want to check the
error estimate in Theorem 3.1, a good choice for the frame is

hm(t) = hm(j,k) (t) = fﬁl’g/)jyk(t) ,

where F~14); ;. is the inverse Fourier transform of some dilated and translated wavelet,
see formula (3.1). In our simulations we used the Haar basis, the Daubechies wavelets
of order two, compare [3], and biorthogonal wavelets as constructed in [2], respectively.

Based on the underlying density DD we now have to generate families of echoes
{fm }mez which represent the backscattered signals of the transmitted frame {h, }mez-
Using the substitution (2.12) we approximate the echoes

Ful@) = [ D)) sl ds
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Figure 3: Partial reconstructions based on simulated echoes with respect to the
Haar frame. The shown images correspond to the reconstructed densities for J =
-3,-2,-1,0,1,2,3,4 and 6 (from top left to bottom right).

by the corresponding Riemann sums for evaluating these Ly—inner products. A coarse
approximation is then given by

finw) = > D(,s)(w)tyuws)|si| >l (5.1)
sleAs
= > 67(“]7&00)2/21[0.90,0.95](31)2j/2¢(2jwsl — k)i
sleAs

where A describes the grid with respect to the variable s and h; = s; — s;_1.

Numerically we have to truncate the evaluation of the echoes at some index (j, k).
The numerical implementations start at resolution level ji, = —3 and end at j,a. = 6.
On the first approximation level j,;, = —3 we use the echoes produced by translates of
the corresponding generator function .

For our discretization, we choose s; = 0.85 4+ h;, where h; = [ - 0.00035 and [ =
0,...,429, and w, = 5.00 + v,, where v, = r-0.025 and r =0,...,399. Hence, we have
to choose the translation parameter &k in such a way that — for all relevant j, r and [ —
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Figure 4: Partial reconstructions based on simulated echoes with respect to the
Daubechies frame (N=2). The shown images correspond to the reconstructed densi-
ties for J = —3,—-2,—1,0,1,2,3,4 and 6 (from top left to bottom right).

the value of 2jwr§l\— k covers the support of ¢/ and ¢. Figure 1 displays the functions
D(-,5)(w) and D(-, s)(w)|s|~*/? on the rectangle [5.00, 15.00] x [0.85, 1.00]. The resulting
echoes approximated by (5.1) are visualized in Figure 2.

Now we are ready to apply the reconstruction formula stated in Theorem 2.2. In
order to keep the technical difficulties at a reasonable level, we restrict ourselves to the

reconstruction in the Fourier domain:

—

D(5)(w) = 3 fmlw) ™ (ws)lwl|s]*/* .

meZ

The quality of the reconstruction is estimated by computing the left hand side of the error
estimate of Theorem 3.1. The appraisal has to be taken modulo the integration and scale
projection error. The error estimation in Theorem 3.1 was stated in the time domain,
Plancherel’s Theorem however translates this into an identical estimate in the Fourier
domain representation, see (3.8). Additionally, Theorem 3.1 predicts an exponential
decay of the error rate, the constants of the estimate depend on the regularity of the

16
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Figure 5: Partial reconstructions based on simulated echoes with respect to the
Bior2.4 frame. The shown images correspond to the reconstructed densities for J =
-3,-2,-1,0,1,2,3,4 and 6 (from top left to bottom right).

frame. Indeed, we observe that the weighted Lo—error decreases in the predicted way as
the frame regularity increases: We start by presenting a scale-wise reconstruction, see
Figures 3, 4, 5 and 6. It turns out that the algorithm converges for all simulated cases.
Following Theorem 3.1 we study the error depending on the scale J and on the frame
regularity «, respectively. Therefore it is necessary to plot

/R/R ‘DCS)(M) — 3 fon(@)hi (sw) |w]] s]2 dwél—fg |

JsJ

From Figure 7, left image, we observe that the error indeed decreases exponentially.
From the logarithmic plot, right image, we can estimate the parameter « as the slope
of the linear least square fit. We deduce the validity of the proposed wavelet based
reconstruction algorithm and of the given error estimate.
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Figure 6: Partial reconstructions based on simulated echoes with respect to the
Bior2.8 frame. The shown images correspond to the reconstructed densities for J =
-3,-2,-1,0,1,2,3,4 and 6 (from top left to bottom right).
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Figure 7: The weighted Lo-error. The left-hand side shows the numerically evaluated
error and the right-hand side the linear least square fit in the logarithmic scale.
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6 The Narrowband Approach

The wideband model, which describes echoes for arbitrary signals A, can be simplified
for most real-life situations. The commonly used narrowband approximation deals with
signals of the form

h(t) = e n(t) ,

where the carrier frequency w,. is assumed to be much larger then the comparatively
narrowbanded frequencies of the modulation function .

Furthermore, most objects of interest in radar travel with a speed much smaller than
light. Thus |v|/c << 1 and

2Ry
~—. 6.1
e~ (61)
Now we have to treat the positive and negative frequencies of ) separately
i = 1@)X000 @) (@) == A(@)X o). (6.2

Removing the carrier frequency w, from both, the signal ¢ and the echo f, and neglecting
time independent scale factors leads to the standard narrowband model for the echo f
of a single moving object

£(0) = e {np(t = T)e  + nlt —7)e" )

where ¢ = 2w.v/c, see e.g. the classical textbooks [17, 16] and [7] for details. The
variables (7, ¢) are called the narrowband Doppler coordinates.
Consequently, the narrow—band model for the echo produced by a reflectivity density

Dyp(¢,7) is given by

() = /R /R {np(t —T)e '+ np(t — )"} Dyp(g, m)dddr . (6.3)
We may decompose the space Ly(R) as
Ly(R) = Ly p(R) & Ly p(R) (6.4)
where
Lyp(R) = {f € Ly(R) | supp f C [0,00), ie., fr= f}

Lyr(R) = {f€LyR), | fr=f}
Then Dyp(¢, 7) can be reconstructed as follows.

Theorem 6.1 Let {h,}mez, {gm }mez be sets of outgoing signals in Ly p(R) and Lo r(R),
respectively. Let us furthermore assume that {hm,}mez, {Gmtmez form frames in these
space, and let {h™}mez and {g™ }mez denote the corresponding dual frames. The echoes
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of {hm}mez are denoted by fp,., the echoes of {gm}mez are denoted by fr,. Let us
assume that the reflectivity density Dyg(p, T) satisfies the following conditions

ho(t — T)Dyp(6,7) € Li(dpdr), Dyp(-,7)(w) € Li(dw). (6.7)

Then Dyp(¢,T) can be reconstructed as follows

Dyg(6,7) = Z/fpm HR™(t — T)eltdt
mEZ
Z / from (= —t —71)eldt (6.8)
mEZ

Proof: We proceed by following the lines of the proof of Theorem 2.2. Using (6.3) yields

Frm(t) = /R /R " by (t — 7) Dy (b, 7)dbdlr

= Jnlt =) (fy e Drn(6. o) ar

= [ hult =7)Dyu(, ) (0)dr

= [ hu(r)Dyu(t =) (t)dr

= (hm(-), (Dns(t,"))p),
where - -

DNB(t,T) = DNB(',t—T)(t). (69)

Consequently, by using the reciprocal frame {h™},cz we obtain

(Dxp(t.1)e = 3 ((Dws(t,)es hu()R" (1)

meZ

= Z fP,m(t)h’

meZ

and therefore
(DNB p— Z fpm hm t—’]’) (610)

meZ

A similar calculation yields

(Dnst, 7)) = Y ((Dns(t,)r gm()g™(T)

= ZZ frm()g"™ (T)
where -
ENB(t,T) = DNB(',t—T)(—t). (611)
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Consequently, we obtain

(D (7)(=t)r = > Jnn(t)g" (=) (6.12)
so that

(DNB R = Z me —t — T) (613)
and

—

Dnp(,7)(t) = (Dnp(7)(t)r + Dyl 7)(t)p
= > fen@W(t 1)+ D frm(—t)g™(—t —T).

meZ meZ

Again the result follows by applying the inverse Fourier transform

1 — .
Dyp(d,7) = % / Dns(,7) (1) dt
— 2/ frm(@®R™(t — l¢tdt+—2/me m(—t — 7)e"dL.
meZ meZ
O
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