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h of H. Naparst[13℄ and L. Rebolla et al. [15℄ we suggest to treat this problem by transmittingnot just one signal but a family of signals. Indeed, a re
onstru
tion formula forone and two dimensional re
e
tivity densities 
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1 Introdu
tionIn re
ent years, wavelet analysis has been su

essfully applied to many problems in signalanalysis and image pro
essing as well as to appli
ations in numeri
al analysis. Moreover,sin
e the pioneering work of Naparst [13, 14℄, it is well{known that the spe
i�
 features ofwavelets 
an also be used eÆ
iently for treating re
onstru
tion problems in the 
ontext ofradar signal analysis. Related approa
hes for radar appli
ations have been investigatedby [11, 12℄, more re
ently the original approa
h of Naparst has been extended by [15℄.The basi
 radar problem asks to gain information about an obje
t by analyzing wavesre
e
ted from it. To des
ribe this simpli�ed setting, let us �rst assume that the obje
tunder 
onsideration 
an be des
ribed as a point, moving with 
onstant velo
ity v towardsor away from a given sour
e. The distan
e between obje
t and sour
e at time t = 0 isdenoted be R. The emitted signal is denoted by h(t), then the wideband model for there
eived e
ho f(t) is given by f(t) = qjsj h(s(t� �)); (1.1)where the Doppler s
ale fa
tor s is obtained from the speed of light 
 and the obje
tvelo
ity v as s = 
� v
+ v ; (1.2)and the delay � is determined by the distan
e R between the obje
t and the sour
e as� = 2R
� v : (1.3)The so-
alled Doppler 
oordinates (s; �) are in one{to{one 
orresponden
e to the desiredvalues v and R. The multipli
ative fa
tor qjsj is 
hosen su
h that the energy is 
on-served, i.e., we assume a perfe
tly re
e
ting obje
t. For further information, the readeris referred, e.g., to [7, 8, 9℄.In the presen
e of many obje
ts the total e
ho is modeled as the superposition ofthe single e
hoes. More general, if we assume that we want to observe a re
e
ting
ontinuum with varying re
e
tivity as des
ribed in Doppler 
oordinates by a re
e
tivitydensity D(�; 1=s), then the total e
ho is given byf(t) = ZR ZRnf0gD(�; s)jsj�1=2h�t� �s � dsd�s2 : (1.4)Consequently, the task is to re
onstru
t the density D(�; s) from the re
eived e
ho. Totreat this problem, let us �rst remark that formula (1.4) 
an be reinterpreted in the
ontext of wavelet analysis: In general, the 
ontinuous wavelet transform W (F ) of afun
tion F 2 L2(R) is given by(W F )(a; b) := ZR F (x) jaj�1=2  x� ba !dx: (1.5)2



This transformation is well{de�ned, provided that the analyzing wavelet  satis�es theadmissibility 
ondition C = ZR j ̂(�)j2j�j d� <1: (1.6)The wavelet transform W is a multiple of an isometry whose inverse is given by theadjoint wavelet transformF (x) = W � (W F (a; b)) (x) = 1C ZR ZRnf0g(W F )(a; b) jaj�1=2  x� ba ! daa2 db; (1.7)see, e.g., [3, 7, 10℄ for details. Therefore a 
omparison of (1.7) with (1.4) yields the well-known and basi
 identity whi
h links wideband radar e
hoes to wavelet analysis, seee.g. [13, 12℄: the e
ho f is identi
al with the inverse wavelet transform of the sear
hedre
e
tivity distribution D where the transmitted signal h plays the role of the analyzingwavelet.This suggests to re
over D by 
omputing the wavelet transform of the e
ho f :D(�; s) := 1Ch [(Whf)(�; s)℄: (1.8)However, the null spa
e N of an inverse wavelet transform is non trivial. Hen
e bythis pro
edure one 
an only re
over the 
omponent of D whi
h lies in the orthogonal
omplement of N or equivalently one 
an re
over the 
omponent of D in the range ofthe wavelet transform Wh.To our knowledge, there exists no physi
al prin
iple that guarantees that D is infa
t 
ontained in the range of Wh, so that (1.8) only des
ribes one part of the desireddensity D. Inspired by these problems, Naparst [13, 14℄ was the �rst one who sug-gested not to transmit just one signal but a family of signals. In his fundamental work,Naparst primarily studied the 
ase that the transmitted signals form an orthonormalbasis. However, this assumption is very restri
tive in pra
ti
e. Therefore, quite re
ently,Rebollo{Neira, Platino and Fernandez{Rubio generalized Naparst's approa
h to the 
aseof transmitting a frame of signals, whi
h is a mu
h weaker restri
tion, [15℄. The presentstudy is very mu
h inspired by their results, however, we modify and generalize theirapproa
h in the following sense:� rigorous error estimates in suitably weighted Sobolev spa
es are given in Se
tion3;� a generalization to the multivariate 
ase is dis
ussed in Se
tion 4, this in
ludes aninversion formula for a suitable sub
lass of 2D re
e
tivity distributions;� numeri
al examples using orthogonal and biorthogonal wavelets 
on�rm the theo-reti
al results in Se
tion 5;� an investigation of the narrowband model is 
ontained in Se
tion 6.Moreover, the proof of the basi
 re
onstru
tion formula in Se
tion 2 is signi�
antlyshorter 
ompared to the exposition in [15℄. 3



2 Basi
 Re
onstru
tion FormulasIn general, the re
e
tivity distribution D(�; s) 
annot be re
onstru
ted from the knowl-edge of a single e
ho. Following the approa
h of [13, 15℄ we assume that e
hoesfm(t) = ZR ZRnf0gD(�; s)jsj�1=2hm �t� �s � dsd�s2 : (2.1)are available for a family of submitted signals fhmgm2Z. H. Naparst proved a re
onstru
-tion formula under the assumption that fhmgm2Z forms an orthogonal basis. We followthe approa
h of Rebolla et al. and assume a weaker 
ondition, namely that fhmgm2Zforms a frame in L2(R). The original proof in [15℄ is somewhat 
ompli
ated and long,we will present a shorter proof using some standard Fourier te
hniques.Let us brie
y re
all the notion of a frame. In general, a system fhmgm2Z of fun
tionsis 
alled a frame if there exist 
onstants A and B, 0 < A � B <1, su
h thatAkFk2L2(R) � Xm2Z jhF; hmij2 � BkFk2L2(R): (2.2)The numbers A;B are 
alled frame bounds. Given a frame fhmgm2Z, one de�nes theframe operator T as T (F ) := Xm2ZhF; hmihm: (2.3)For later use, let us re
all the following fundamental theorem whi
h was proved in [5℄.Theorem 2.1 Let fhmgm2Z be a frame in L2(R). Then the following holds.i) T is invertible and B�1I � T�1 � A�1I:ii) fhmgm2Z; hm := T�1hm is a frame with bounds A�1; B�1, 
alled the dual frameof fhmgm2Z.iii) Every F 2 L2(R) 
an be written asF = Xm2ZhF; hmihm = Xm2ZhF; hmihm: (2.4)Furthermore we need a result 
on
erning the Fourier transform of frames.Lemma 2.1 Let fhmgm2Z be a frame and let fhmgm2Z denote the dual frame. Then theset fĥmgm2Z also 
onstitutes a frame and the dual frame is de�ned by (ĥ)m = 1(2�)dhm.Proof: First of all, we show that the set fĥmgm2Z withĥm(!) = ZIR hm(x)e�i!x dx (2.5)4



is a frame. By Plan
herel's Theorem, we obtainAkfk2L2(R) = (2�) A k �fk2L2(R) � (2�) Xm2Z jh �f; hmij2 (2.6)= Xm2Z jhf; ĥmij2 � (2�)Bk �fk2L2(R) = Bkfk2L2(R):It remains to identify the re
ipro
al frame. The de
ompositionf = Xm2Zhhm; fihmimplies f̂ = Xm2Zhhm; fidhm = 1(2�) Xm2Zhĥm; f̂idhm;and the result follows by another appli
ation of Plan
herel's Theorem. 2Using the frame theoreti
 approa
h, the following re
onstru
tion formula holds.Theorem 2.2 Let fhmgm2Z be a frame of outgoing signals in L2(R) and let fm denotethe 
orresponding e
hoes produ
ed by a re
e
tivity density D(�; s),fm(t) = ZR ZRnf0gD(�; s)jsj�1=2hm �t� �s � dsd�s2 : (2.7)Let us assume that the following 
onditions are satis�edD(�; s)jsj�1=2hm �t� �s � 2 L1(dsdtd�s2 ); dD(�; s)(!) 2 L1(d!); dD(�; �)(!)j�j�3=2 2 L2(d�):(2.8)Then D(�; s) 
an be re
onstru
ted as followsD(�; s) = 1(2�)2 Xm2Z Z 0�1�1i 
f 0m(!) dhm( �s)(!)jsj1=2ei�!d!+ 1(2�)2 Xm2Z Z 10 1i 
f 0m(!) dhm( �s)(!)jsj1=2ei�!d!; (2.9)where fhmgm2Z denotes the re
ipro
al frame of fhmgm2Z.Proof: We �rst observe thatjsj�1=2 dhm � � � �s �(!) = jsj1=2e�i!� ĥm(!s): (2.10)Therefore, applying Fourier transforms to (2.7) and inter
hanging the order of integrationyields f̂m(!) = ZR ZRnf0gD(�; s) ZR jsj�1=2hm �t� �s � e�i!tdtdsd�s2= ZR ZRnf0gD(�; s)jsj1=2e�i!� ĥm(s!)dsd�s2= ZRnf0g dD(�; s)(!)ĥm(s!)jsj�3=2ds:5



Observe that all modi�
ations performed above are justi�ed by (2.8). Hen
e, by em-ploying the substitution � = s!, we obtainf̂m(!) = ZRnf0g dD(�; �! )(!)ĥm(�)j�! j�3=2j!j�1d�= ZRnf0g fD(!; �)ĥm(�)d�= hfD(!; �); ĥm(�)i; (2.11)where fD(!; �) is de�ned byfD(!; �) := dD(�; �! )(!)j!j1=2j�j�3=2: (2.12)From (2.11), we observe that the quantities f̂m(!) 
an be interpreted as the 
oeÆ
ientsof fD(!; �) with respe
t to the set fĥmgm2Z: However, from Lemma 2.1 we know that thisset also 
onstitutes a frame with re
ipro
al frame (ĥ)m = 1(2�)dhm. Therefore, by usingthe identity f = 1(2�) Xm2Zhf; ĥmidhm; (2.13)we may re
onstru
t fD(!; �) asfD(!; �) = 1(2�) Xm2ZhfD(!; �); ĥm(�)idhm(�)= 1(2�) Xm2Z f̂m(!)dhm(�): (2.14)From (2.14), we 
an now also re
onstru
t the density D(�; s). By using the de�nition(2.12) we obtain dD(�; �! )(!) = 1(2�) Xm2Z f̂m(!)dhm(�)j�j3=2j!j�1=2whi
h yields dD(�; s)(!) = 1(2�) Xm2Z f̂m(!)dhm(!s)j!jjsj3=2= 1(2�) Xm2Z f̂m(!)j!j dhm( �s)(!)jsj1=2: (2.15)Now the result follows by applying the one{dimensional inverse Fourier transform toboth sides of (2.15)D(�; s) = 1(2�) ZR dD(�; s)(!)ei�!d!6



= 1(2�)2 Xm2Z ZR f̂m(!)j!j dhm( �s)(!)jsj1=2ei�!d!= 1(2�)2 Xm2Z Z 0�1�!f̂m(!) dhm( �s)(!)jsj1=2ei�!d!+ 1(2�)2 Xm2Z Z 10 !f̂m(!) dhm( �s)(!)jsj1=2ei�!d!= 1(2�)2 Xm2Z Z 0�1�1i 
f 0m(!) dhm( �s)(!)jsj1=2ei�!d!+ 1(2�)2 Xm2Z Z 10 1i 
f 0m(!) dhm( �s)jsj1=2ei�!d!: 2We would like to 
on
lude this se
tion on re
onstru
tion formulae for wideband radarmodels with a referen
e to an elegant but rather di�erent approa
h. Assume that thesignal hm(t) � Æ(t � tm) is a short pulse at time tm. Then, the e
ho (1.4) at time t isequivalent to the integration of D along the line � = t�stm. I.e. the e
hoes resemble theRadon transform of D, they 
an then be inverted by tomographi
 inversion pro
edures,see [6℄.3 Error EstimatesIn the previous se
tion, we have derived a method to re
onstru
t the re
e
tivity densityfrom the observed e
hoes. However, the appli
ability of this method to real{life problemsis diminished by the fa
t that the underlying frame usually 
ontains in�nitely manyelements. Clearly, in pra
ti
e, only a �nite number of frame elements 
an be transmitted.Hen
e we are fa
ed with the problem of 
hoosing appropriate 
olle
tions. Furthermore,it is 
learly desirable to have some information 
on
erning the resulting approximationproperties for di�erent 
hoi
es of frames.The derivation of the error bounds rests on a Ja
kson type estimate for the framefĥmgm2Z. Let us assume that this set of fun
tions allows an ordering by index setsIJ � Z, s.t. an Ja
kson type estimate of the formkg � Xm2IJhg; ĥmiĥmkL2(R) <� 2�2J� jgj2H�(R)holds. (In the sequel, ` <� ' will always indi
ate inequality up to 
onstant fa
tors). H�denotes the Sobolev spa
e of order �, see e.g. [1℄.Su
h estimates are known for a variety of fun
tions, e.g. trigonometri
 polynomialsand hierar
hi
al �nite elements. In the 
ontext of wavelet analysis, this requirement ismet by orthogonal or biorthogonal wavelets. Let us therefore assume that the framefhmgm2Z 
onsists of the inverse Fourier transforms of the elements of an orthonormalwavelet basis, i.e.,hm = hm(j;k) = F�1 j;k;  j;k(x) = 2j=2 (2jx� k); j; k 2 Z; (3.1)7



where the fun
tions  j;k satisfy h j;k;  j0;k0i = Æj;j0Æk;k0: (3.2)We may e.g. use the 
ompa
tly supported wavelet basis 
onstru
ted by Daube
hies [3℄.Then we do not employ all fun
tions in the resulting frame, but only those up to agiven re�nement level J . For this spe
i�
 setting, the following result in the weightedL2{spa
e L2(R2; d� dsjsj3 ) holds.Theorem 3.1 Let N�1 denote the degree of polynomial exa
tness of the multiresolutionanalysis fVjgj2Z asso
iated with the wavelet  . Suppose that for some �xed � < N the
ondition G(�; !) := jfD(!; �)j2H�(R) <1 (3.3)is satis�ed. Then, the following error estimate holds:ZR ZR ������D(�; s)� 1(2�)2 Xj�J ZRf̂m(!)ĥm(s!)j!jjsj3=2ei�!d!������2 d� dsjsj3 <� 2�2J� ZR j!jG(�; !)d!:(3.4)If � is an integer, the fun
tion G(�; !) 
an be estimated in terms of the density D asfollows: G(�; !) <� X��� j!j1+2��2� ZR j d( ��� ���D)(�; �! )(!)�3=2��j2d�: (3.5)Proof: Classi
al wavelet analysis provides us with the following Ja
kson-type estimate:kfD(!; �)� 1(2�) Xj�J f̂m(!)ĥm(�)k2L2(R) <� 2�2J�jfD(!; �)j2H�(R); (3.6)see, e.g., [4℄ for details. Hen
e, by using (2.12) and substituting � = s! we obtain2�2J�G(�; !) >� k dD(�; �! )(!)j!j1=2j�j�3=2 � 1(2�) Xj�J f̂m(!)ĥm(�)kL2(d�)= ZR ������ dD(�; s)(!)� 1(2�) Xj�J f̂m(!)ĥm(s!)j!jjsj3=2������2 j!jj!j�2 dsjsj3 :(3.7)Therefore multiplying both sides of (3.7) by j!j, integrating with respe
t to ! andapplying Plan
herel's Theorem for another time yields2�2J� ZR j!jG(�; !)d! >� ZR ZR ������ dD(�; s)(!)�Xj�J f̂m(!)ĥm(s!)j!jjsj3=2������2 d! dsjsj3 (3.8)= (2�) ZR ZR ������D(�; s)� 1(2�)2 Xj�J ZR f̂m(!)ĥm(s!)j!jjsj3=2ei�!d!������2 d� dsjsj3 :8



It remains to establish (3.5). By using Leibnitz' rule we obtainjfD(!; �)j2H�(R) = ZR ����� ��� �(fD(!; �))�����2 d�= ZR ����� ��� �( dD(�; �! )(!)j!j1=2j�j�3=2)�����2 d�= j!j ZR ����� ��� �(ZRD(�; �! )e�i!�d���3=2)�����2 d�= j!j ZR ������X��� ��! ��� ���(ZRD(�; �! )e�i!�d�)( ��� ���3=2)������2 d�= j!j ZR jX��� ��!(ZR( ��� ���D)(�; �! )!���e�i!�d�)� (�32)(�32 � 1) : : : (�32 � � � 1)��3=2��j2d�= j!j ZR jX��� ��! d( ��� ���D)(�; �! )(!)!��� ��1Yl=0(�32 � l)��3=2��j2d�<� X��� j!j1+2��2� ZR j d( ��� ���D)(�; �! )(!)��3=2��j2d�;and (3.5) is shown. 24 The Multivariate CaseIn this se
tion, we want to investigate to what extent the analysis presented above 
anbe generalized to the multivariate 
ase. In the sequel, we shall espe
ially fo
us on the2D-
ase. First of all, we have to derive a suitable mathemati
al model whi
h des
ribesthe e
hoes produ
ed by a two-dimensional re
e
tivity distribution. Se
ondly, we haveto analyze how this re
e
tivity density 
an be re
onstru
ted from these e
hoes.4.1 A 2D-ModelFor univariate signals in L2(R), the model (1.4) whi
h des
ribes the e
hoes produ
edby a re
e
tivity density is well{established. This model deals with signals whi
h aremodulated over time, i.e., the signal is a fun
tion h(t). However, this only allows tore
onstru
t the velo
ities in the dire
tion of the emitted beam, i.e., only the radial
omponent of the velo
ity �eld 
an be analyzed.It seems that mu
h less is known for the higher dimensional 
ases. In general onemight assume, that the signal is emitted in a three dimensional 
one. In prin
iple, onemight then emit signals, whi
h are modulated di�erently for ea
h beam in this 
one, i.e.,the emitted signal is a fun
tion h(t; 
; �), where 
 and � are the angles of the 
one.9



In this paper, we want to treat a two dimensional model as a �rst step. Here weassume, that the signal is emitted as a fan. Moreover, we assume that the positions ofthe re
e
ting entities, as des
ribed by the support of the re
e
tivity distribution D, aresuÆ
iently far away, so that we 
an treat the fan of beams as a set of parallel beamsinstead. Let us assume, that the beams are aligned on the x-axis, i.e., the emitted signalis modelled by a fun
tion h(t; x), and that the signal is emitted in the dire
tion of they-axis.We follow the approa
h of Se
tion 1 in order to model mathemati
ally the resultinge
hoes. Hen
e let us �rst 
onsider the 
ase of a single point obje
t, whi
h is moving inthe (x; y){plane. We further assume that the measurement pro
ess lives on a shortertime s
ale 
ompared to the velo
ity of the obje
t. Hen
e, we 
an negle
t any a

elerationof the obje
t and we simply assume that the traje
tory of the obje
t is given by(x(t); y(t)) = (x0 + tvx; y0 + tvy): (4.1)Again, we introdu
e Doppler variabless0 := 
+ vy
� vy ; �0 := 2y0
� vy : (4.2)At time t the moving obje
t is at a position with y-
oordinate y0 + tvy, i.e., at thisinstant it re
e
ts a signal whi
h was send out at time t � y0+tvy
 at the 
orrespondingposition x0 + tvx. Altogether, the obje
t re
e
ts the signals(t) = h(t� y0 + tvy
 ; x0 + tvx) :This signal then produ
es an e
ho at position x = x0 + tvx whi
h is time delayed byy0+tvy
 , i.e., this yields an e
hoe(t + y0 + tvy
 ; x0 + tvx) = s(t) = h(t� y0 + tvy
 ; x0 + tvx) : (4.3)We de�ne the auxiliary parameters�0 := vx1 + s02s0 ; and z0 = x0 � vx�02s0 : (4.4)Lemma 4.1 Suppose that the obje
t is moving with velo
ity v = (vx; vy) in the (x; y){plane and that a signal h(x; t) is transmitted. Then the e
ho produ
ed by the obje
t isgiven by e(t; z0 + t�0) = h(t� �0s0 ; z0 + t�0) : (4.5)Proof:We start with equation (4.3) and use the substitution t! t+ y0+tvy
 , whi
h yieldse(t; x0 +  
t� y0
+ vy ! vx) = h( 
t� y0
 + vy ! 
� vy
 � y0
 ; x0 +  
t� y0
+ vy ! vx) :10



Rewriting this equation in Doppler 
oordinates and using the auxiliary parameters (4.4)yields e(t; z0 + t�0) = h(t� �0s0 ; z0 + t�0) : (4.6)and the lemma is proved. 2The set of parameters (�0; s0; z0; �0) is in one{to{one 
orresponden
e to the origi-nal variables (x0; vx; y0; vy). Hen
e, similar to the 1D{
ase, we des
ribe a dense targetenvironment by a re
e
tivity distribution D(�0; s0; z0; �0). Note, that we use a slightlydi�erent notation for the Doppler 
oordinates in the 2D{
ase: the variable s in the1D{model 
orresponds to the variable 1=s0 in the 2D{
ase. This avoids the term ds=s2,moreover, we have negle
ted the s
aling term ps. We now obtain the following modelfor des
ribing the 2D{e
ho.Corollary 4.1 The e
ho produ
ed by a re
e
tivity density D(�0; s0; z0; �0) is given bye(t; x) = ZR ZR ZR ZRD(�0; s0; z0; �0)Æ(x� (z0 + �0t))h�t� �0s0 ; z0 + �0t� d�0ds0d�0dz0:(4.7)Proof:We rewrite the e
ho of a single obje
t ase(t; x) := Æ(x� (z0 + �0t))h(t� �0s0 ; z0 + �0t): (4.8)Consequently, for the 
ase of a nontrivial re
e
tivity density, we obtaine(t; x) = ZR ZR ZR ZRD(�0; s0; z0; �0)Æ(x� (z0 + �0t))h(t� �0s0 ; z0 + �0t)d�0ds0d�0dz0:proving the 
orollary. 24.2 The Re
onstru
tion ProblemOn
e the model des
ribed in Corollary 4.1 is given, it is natural to ask for a suitablere
onstru
tion formula to extra
t the unknown density D. Again we suggest not totransmit just one signal but a family of signals. However, even then, in 
ontrary to theunivariate 
ase, the density 
annot be 
ompletely re
onstru
ted. The operator whi
hmaps a re
e
tivity density to its e
hoes is linear, hen
e it makes sense to 
hara
terizethe nullspa
e of this mapping.De�nition 4.1 A fun
tion D 2 L2(R4) is 
alled a vanishing re
e
tivity distribution ifthe e
ho (4.7) vanishes for any signal h 2 L2(R2).11



These vanishing re
e
tivity distributions 
an be 
hara
terized by their integrals over
ertain 2D{subspa
es. Let E(�; x; �) denote the 2D{plane de�ned byE(t; x; �) = f(�0; s0; z0; �0) j �0 = t� �s0; z0 = x� �0t; s0; �0 2 Rg :The nullspa
e is then 
hara
terized by the following lemma.Lemma 4.2 A fun
tion D 2 L2(R4) is a vanishing re
e
tivity distribution if and onlyif the integrals of s0D over the 2D{planesfE(t; x; �) j t; x; � 2 Rgvanish, i.e. 0 = ZR ZR s0D(t� �s0; s0; x� �0t; �0) ds0d�0 ;for all (t; x; �) 2 R3.Proof:In order to show that the e
hoes of a re
e
tivity distribution vanish for all signalsh 2 L2(IR2), it is suÆ
ient that the e
hoes vanish for all separable signalsh(t; x) = h1(t)h2(x) :Inserting this into the model of the e
ho (4.7) and applying the substitution � = (t ��0)=s0 yieldse(t; x) = ZR ZR ZR ZRD(�0; s0; z0; �0)Æ(x�(z0+�0t)) h1 �t� �0s0 � h2(z0+�0�) d�0ds0d�0dz0= h2(x) ZR ZR ZRD(�0; s0; x� �0t; �0) h1 �t� �0s0 � d�0ds0d�0= h2(x) ZR ZR ZR s0D(t� �s0; s0; x� �0t; �0) h1(�) d�ds0d�0These integrals have to vanish for any 
hoi
e of t and x. Moreover, with respe
t tothe variable � the s
alar produ
ts with all h1 2 L2(R) have to vanish, i.e. a vanishingre
e
tiviy distribution has to satisfy a.e.0 = ZR ZR s0D(t� �s0; s0; x� �0t; �0) ds0d�0 ;whi
h yields the desired 
haraterization of the nullspa
e by vanishing integrals of D over2D{planes. 2Vanishing integrals 
an only o

ur if the integrand takes positive and negative values.However, a physi
ally meaningful re
e
tivity distribution is non{negative, and s0 lives onthe positive part of the real line. Nevertheless two positive re
e
tivity distributions D1and D2, whi
h only di�er by a vanishing re
e
tivity distribution, 
annot be distinguishedby any 
ombination of transmitted signals.12



The nullspa
e is 
hara
terized by a three-dimensional set of 
onditions. In orderto 
hara
terize the 
omplement of the nullspa
e, i.e., the re
onstru
table re
e
tivitydistributions, we therefore need to eliminate one of the four variables of D 2 L2(R4).This 
an be a
hieved by redu
ing the dependen
y of D on �0 by �xing the meanvelo
ity as follows: we de�neD(�0; s0; x; t) := ZRD(�0; s0; x� �0t; �0)d�0: (4.9)and assume, that D 
an be approximated by its zero order termD(�0; s0; x; t) � D(�0; s0; x; v0=
); (4.10)
ompare with (4.4). Furthermore, we have to assume that the family of transmittedsignals 
onsists of tensor produ
tshm;n(x; t) := hm(t)hn(x); (4.11)where both families fhmgm2Z and fhngn2Z form frames in L2(R):The �rst step is to integrate (4.7) with respe
t to z0, this yieldse(�; x) = ZR ZR ZRD(�0; s0; x� �0t; �0)hm;n �� � �0s0 ; x� d�0d�0ds0= ZR ZRD(�0; s0; x; t)hm �� � �0s0 � hn(x)d�0ds0� hn(x) ZR ZRD(�0; s0; x; v0=
)hm �� � �0s0 � d�0ds0: (4.12)Now the quantity D(�0; s0; x; v0=
) 
an be re
onstru
ted by using the method explainedin Se
tion 2.5 Numeri
al ExperimentsIn this se
tion, we want to demonstrate the appli
ability of our re
onstru
tion formulaeand of the error estimates presented above. The appli
ation of our theory to real-life data is still in its elaboration. In parti
ular, 2D{data for signals, whi
h 
an bemodulated arbitrarily in time t and position x, are not available. Nevertheless, to testthe algorithm, we pro
eed as follows: We �x in advan
e an (arti�
ial) density D inrange Doppler 
oordinates and a suitable frame fhmgm2Z, 
ompute the 
orrespondinge
hoes and apply the re
onstru
tion pro
edure to these e
hoes. The true density isknown in this 
ase, hen
e, we 
an estimate and 
ompare the error bounds of di�erentapproximation s
hemes.First of all, we �x a density D whi
h �ts into the setting of our theory: As anmanageable example we 
hoose D asD(�; s) := ei�!0e��2=21[�s1;s2℄(s) ;13



Figure 1: Representation of dD(�; s)(!) and dD(�; s)(!)jsj�3=2 on the dis
rete grid[5:00; 15:00℄� [0:85; 1:00℄.

Figure 2: The simulated e
hoes ff̂mgm2Z for the Haar frame (left-hand side) and for theDaube
hies-5-frame (right-hand side). The higher s
ales are not displayed.where 1[�s1;s2℄ represents the 
hara
teristi
 fun
tion of the 
losed interval [�s1; s2℄ and!0 des
ribes a shift in Fourier domain. In the sequel, we 
hoose s1 = 0:90 and s2 = 0:95.This re
e
tivity distribution D satis�es the assumptions of Theorem 2.2.The outgoing signals have to be a frame. However, sin
e we also want to 
he
k theerror estimate in Theorem 3.1, a good 
hoi
e for the frame ishm(t) = hm(j;k)(t) := F�1 j;k(t) ;where F�1 j;k is the inverse Fourier transform of some dilated and translated wavelet,see formula (3.1). In our simulations we used the Haar basis, the Daube
hies waveletsof order two, 
ompare [3℄, and biorthogonal wavelets as 
onstru
ted in [2℄, respe
tively.Based on the underlying density D we now have to generate families of e
hoesffmgm2Z whi
h represent the ba
ks
attered signals of the transmitted frame fhmgm2Z.Using the substitution (2.12) we approximate the e
hoesf̂m(!) = ZRnf0g dD(�; s)(!)ĥm(s!)jsj�3=2ds14



Figure 3: Partial re
onstru
tions based on simulated e
hoes with respe
t to theHaar frame. The shown images 
orrespond to the re
onstru
ted densities for J =�3;�2;�1; 0; 1; 2; 3; 4 and 6 (from top left to bottom right).by the 
orresponding Riemann sums for evaluating these L2{inner produ
ts. A 
oarseapproximation is then given byf̂j;k(!) � Xsl2�s dD(�; sl)(!) j;k(!sl)jslj�3=2hl (5.1)= Xsl2�s e�(!�!0)2=21[0:90;0:95℄(sl)2j=2 (2j!sl � k)jslj�3=2hl ;where �s des
ribes the grid with respe
t to the variable s and hl = sl � sl�1.Numeri
ally we have to trun
ate the evaluation of the e
hoes at some index (j; k).The numeri
al implementations start at resolution level jmin = �3 and end at jmax = 6.On the �rst approximation level jmin = �3 we use the e
hoes produ
ed by translates ofthe 
orresponding generator fun
tion '.For our dis
retization, we 
hoose sl = 0:85 + hl, where hl = l � 0:00035 and l =0; : : : ; 429, and wr = 5:00 + vr, where vr = r � 0:025 and r = 0; : : : ; 399. Hen
e, we haveto 
hoose the translation parameter k in su
h a way that { for all relevant j, r and l {15



Figure 4: Partial re
onstru
tions based on simulated e
hoes with respe
t to theDaube
hies frame (N=2). The shown images 
orrespond to the re
onstru
ted densi-ties for J = �3;�2;�1; 0; 1; 2; 3; 4 and 6 (from top left to bottom right).the value of 2j!rsl � k 
overs the support of  and '. Figure 1 displays the fun
tionsdD(�; s)(!) and dD(�; s)(!)jsj�3=2 on the re
tangle [5:00; 15:00℄� [0:85; 1:00℄. The resultinge
hoes approximated by (5.1) are visualized in Figure 2.Now we are ready to apply the re
onstru
tion formula stated in Theorem 2.2. Inorder to keep the te
hni
al diÆ
ulties at a reasonable level, we restri
t ourselves to there
onstru
tion in the Fourier domain:dD(�; s)(!) = Xm2Z f̂m(!)dhm(!s)j!jjsj3=2 :The quality of the re
onstru
tion is estimated by 
omputing the left hand side of the errorestimate of Theorem 3.1. The appraisal has to be taken modulo the integration and s
aleproje
tion error. The error estimation in Theorem 3.1 was stated in the time domain,Plan
herel's Theorem however translates this into an identi
al estimate in the Fourierdomain representation, see (3.8). Additionally, Theorem 3.1 predi
ts an exponentialde
ay of the error rate, the 
onstants of the estimate depend on the regularity of the16



Figure 5: Partial re
onstru
tions based on simulated e
hoes with respe
t to theBior2.4 frame. The shown images 
orrespond to the re
onstru
ted densities for J =�3;�2;�1; 0; 1; 2; 3; 4 and 6 (from top left to bottom right).frame. Indeed, we observe that the weighted L2{error de
reases in the predi
ted way asthe frame regularity in
reases: We start by presenting a s
ale-wise re
onstru
tion, seeFigures 3, 4, 5 and 6. It turns out that the algorithm 
onverges for all simulated 
ases.Following Theorem 3.1 we study the error depending on the s
ale J and on the frameregularity �, respe
tively. Therefore it is ne
essary to plotZR ZR ������ dD(�; s)(!)�Xj�J f̂m(!)ĥm(s!)j!jjsj3=2������2 d! dsjsj3 :From Figure 7, left image, we observe that the error indeed de
reases exponentially.From the logarithmi
 plot, right image, we 
an estimate the parameter � as the slopeof the linear least square �t. We dedu
e the validity of the proposed wavelet basedre
onstru
tion algorithm and of the given error estimate.17



Figure 6: Partial re
onstru
tions based on simulated e
hoes with respe
t to theBior2.8 frame. The shown images 
orrespond to the re
onstru
ted densities for J =�3;�2;�1; 0; 1; 2; 3; 4 and 6 (from top left to bottom right).
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6 The Narrowband Approa
hThe wideband model, whi
h des
ribes e
hoes for arbitrary signals h, 
an be simpli�edfor most real-life situations. The 
ommonly used narrowband approximation deals withsignals of the form h(t) = e�i!
t�(t) ;where the 
arrier frequen
y !
 is assumed to be mu
h larger then the 
omparativelynarrowbanded frequen
ies of the modulation fun
tion  .Furthermore, most obje
ts of interest in radar travel with a speed mu
h smaller thanlight. Thus jvj=
 << 1 and � � 2R0
 : (6.1)Now we have to treat the positive and negative frequen
ies of  separately�̂P := �̂(!)�[0;1)(!); �̂R(!) := �̂(!)�(�1;0℄(!): (6.2)Removing the 
arrier frequen
y !
 from both, the signal  and the e
ho f , and negle
tingtime independent s
ale fa
tors leads to the standard narrowband model for the e
ho fof a single moving obje
tf(t) = 
 n�P (t� �)e�i�t + �R(t� �)e+i�to ;where � = 2!
v=
, see e.g. the 
lassi
al textbooks [17, 16℄ and [7℄ for details. Thevariables (�; �) are 
alled the narrowband Doppler 
oordinates.Consequently, the narrow{band model for the e
ho produ
ed by a re
e
tivity densityDNB(�; �) is given byf(t) = ZR ZR n�P (t� �)e�i�t + �R(t� �)e+i�toDNB(�; �)d�d� : (6.3)We may de
ompose the spa
e L2(R) asL2(R) ' L2;P (R)� L2;R(R) (6.4)where L2;P (R) := ff 2 L2(R) j supp f̂ � [0;1); i.e.; f̂P = f̂g (6.5)L2;R(R) := ff 2 L2(R); j f̂R = f̂g (6.6)Then DNB(�; �) 
an be re
onstru
ted as follows.Theorem 6.1 Let fhmgm2Z; fgmgm2Z be sets of outgoing signals in L2;P (R) and L2;R(R),respe
tively. Let us furthermore assume that fhmgm2Z; fgmgm2Z form frames in thesespa
e, and let fhmgm2Z and fgmgm2Z denote the 
orresponding dual frames. The e
hoes19



of fhmgm2Z are denoted by fP;m, the e
hoes of fgmgm2Z are denoted by fR;m. Let usassume that the re
e
tivity density DNB(�; �) satis�es the following 
onditionshm(t� �)DNB(�; �) 2 L1(d�d�); dDNB(�; �)(!) 2 L1(d!): (6.7)Then DNB(�; �) 
an be re
onstru
ted as followsDNB(�; �) = 12� Xm2Z ZR fP;m(t)hm(t� �)ei�tdt+ 12� Xm2Z ZR fR;m(�t)gm(�t� �)ei�tdt : (6.8)Proof: We pro
eed by following the lines of the proof of Theorem 2.2. Using (6.3) yieldsfP;m(t) = ZR ZR e�i�thm(t� �)DNB(�; �)d�d�= ZR hm(t� �)�ZR e�i�tDNB(�; �)d�� d�= ZR hm(t� �) dDNB(�; �)(t)d�= ZR hm(�) dDNB(�; t� �)(t)d�= hhm(�); ( gDNB(t; �))P i;where gDNB(t; �) := dDNB(�; t� �)(t): (6.9)Consequently, by using the re
ipro
al frame fhmgm2Z we obtain( gDNB(t; �))P = Xm2Zh( gDNB(t; �))P ; hm(�)ihm(�)= Xm2Z fP;m(t)hm(�);and therefore ( dDNB(�; �)(t))P = Xm2Z fP;m(t)hm(t� �): (6.10)A similar 
al
ulation yields(DNB(t; �))R = Xm2Zh(DNB(t; �))R; gm(�)igm(�)= Xm2Z fR;m(t)gm(�)where DNB(t; �) := dDNB(�; t� �)(�t): (6.11)20



Consequently, we obtain( dDNB(�; �)(�t))R = Xm2Z fR;m(t)gm(t� �) (6.12)so that ( dDNB(�; �)(t))R = Xm2Z fR;m(�t)gm(�t� �) (6.13)and dDNB(�; �)(t) = ( dDNB(�; �)(t))R + dDNB(�; �)(t)P= Xm2Z fP;m(t)hm(t� �) + Xm2Z fR;m(�t)gm(�t� �):Again the result follows by applying the inverse Fourier transformDNB(�; �) = 12� ZR dDNB(�; �)(t)ei�tdt= 12� Xm2Z ZR fP;m(t)hm(t� �)ei�tdt+ 12� Xm2Z ZR fR;m(�t)gm(�t� �)ei�tdt:2Referen
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