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1 IntrodutionIn reent years, wavelet analysis has been suessfully applied to many problems in signalanalysis and image proessing as well as to appliations in numerial analysis. Moreover,sine the pioneering work of Naparst [13, 14℄, it is well{known that the spei� features ofwavelets an also be used eÆiently for treating reonstrution problems in the ontext ofradar signal analysis. Related approahes for radar appliations have been investigatedby [11, 12℄, more reently the original approah of Naparst has been extended by [15℄.The basi radar problem asks to gain information about an objet by analyzing wavesreeted from it. To desribe this simpli�ed setting, let us �rst assume that the objetunder onsideration an be desribed as a point, moving with onstant veloity v towardsor away from a given soure. The distane between objet and soure at time t = 0 isdenoted be R. The emitted signal is denoted by h(t), then the wideband model for thereeived eho f(t) is given by f(t) = qjsj h(s(t� �)); (1.1)where the Doppler sale fator s is obtained from the speed of light  and the objetveloity v as s = � v+ v ; (1.2)and the delay � is determined by the distane R between the objet and the soure as� = 2R� v : (1.3)The so-alled Doppler oordinates (s; �) are in one{to{one orrespondene to the desiredvalues v and R. The multipliative fator qjsj is hosen suh that the energy is on-served, i.e., we assume a perfetly reeting objet. For further information, the readeris referred, e.g., to [7, 8, 9℄.In the presene of many objets the total eho is modeled as the superposition ofthe single ehoes. More general, if we assume that we want to observe a reetingontinuum with varying reetivity as desribed in Doppler oordinates by a reetivitydensity D(�; 1=s), then the total eho is given byf(t) = ZR ZRnf0gD(�; s)jsj�1=2h�t� �s � dsd�s2 : (1.4)Consequently, the task is to reonstrut the density D(�; s) from the reeived eho. Totreat this problem, let us �rst remark that formula (1.4) an be reinterpreted in theontext of wavelet analysis: In general, the ontinuous wavelet transform W (F ) of afuntion F 2 L2(R) is given by(W F )(a; b) := ZR F (x) jaj�1=2  x� ba !dx: (1.5)2



This transformation is well{de�ned, provided that the analyzing wavelet  satis�es theadmissibility ondition C = ZR j ̂(�)j2j�j d� <1: (1.6)The wavelet transform W is a multiple of an isometry whose inverse is given by theadjoint wavelet transformF (x) = W � (W F (a; b)) (x) = 1C ZR ZRnf0g(W F )(a; b) jaj�1=2  x� ba ! daa2 db; (1.7)see, e.g., [3, 7, 10℄ for details. Therefore a omparison of (1.7) with (1.4) yields the well-known and basi identity whih links wideband radar ehoes to wavelet analysis, seee.g. [13, 12℄: the eho f is idential with the inverse wavelet transform of the searhedreetivity distribution D where the transmitted signal h plays the role of the analyzingwavelet.This suggests to reover D by omputing the wavelet transform of the eho f :D(�; s) := 1Ch [(Whf)(�; s)℄: (1.8)However, the null spae N of an inverse wavelet transform is non trivial. Hene bythis proedure one an only reover the omponent of D whih lies in the orthogonalomplement of N or equivalently one an reover the omponent of D in the range ofthe wavelet transform Wh.To our knowledge, there exists no physial priniple that guarantees that D is infat ontained in the range of Wh, so that (1.8) only desribes one part of the desireddensity D. Inspired by these problems, Naparst [13, 14℄ was the �rst one who sug-gested not to transmit just one signal but a family of signals. In his fundamental work,Naparst primarily studied the ase that the transmitted signals form an orthonormalbasis. However, this assumption is very restritive in pratie. Therefore, quite reently,Rebollo{Neira, Platino and Fernandez{Rubio generalized Naparst's approah to the aseof transmitting a frame of signals, whih is a muh weaker restrition, [15℄. The presentstudy is very muh inspired by their results, however, we modify and generalize theirapproah in the following sense:� rigorous error estimates in suitably weighted Sobolev spaes are given in Setion3;� a generalization to the multivariate ase is disussed in Setion 4, this inludes aninversion formula for a suitable sublass of 2D reetivity distributions;� numerial examples using orthogonal and biorthogonal wavelets on�rm the theo-retial results in Setion 5;� an investigation of the narrowband model is ontained in Setion 6.Moreover, the proof of the basi reonstrution formula in Setion 2 is signi�antlyshorter ompared to the exposition in [15℄. 3



2 Basi Reonstrution FormulasIn general, the reetivity distribution D(�; s) annot be reonstruted from the knowl-edge of a single eho. Following the approah of [13, 15℄ we assume that ehoesfm(t) = ZR ZRnf0gD(�; s)jsj�1=2hm �t� �s � dsd�s2 : (2.1)are available for a family of submitted signals fhmgm2Z. H. Naparst proved a reonstru-tion formula under the assumption that fhmgm2Z forms an orthogonal basis. We followthe approah of Rebolla et al. and assume a weaker ondition, namely that fhmgm2Zforms a frame in L2(R). The original proof in [15℄ is somewhat ompliated and long,we will present a shorter proof using some standard Fourier tehniques.Let us briey reall the notion of a frame. In general, a system fhmgm2Z of funtionsis alled a frame if there exist onstants A and B, 0 < A � B <1, suh thatAkFk2L2(R) � Xm2Z jhF; hmij2 � BkFk2L2(R): (2.2)The numbers A;B are alled frame bounds. Given a frame fhmgm2Z, one de�nes theframe operator T as T (F ) := Xm2ZhF; hmihm: (2.3)For later use, let us reall the following fundamental theorem whih was proved in [5℄.Theorem 2.1 Let fhmgm2Z be a frame in L2(R). Then the following holds.i) T is invertible and B�1I � T�1 � A�1I:ii) fhmgm2Z; hm := T�1hm is a frame with bounds A�1; B�1, alled the dual frameof fhmgm2Z.iii) Every F 2 L2(R) an be written asF = Xm2ZhF; hmihm = Xm2ZhF; hmihm: (2.4)Furthermore we need a result onerning the Fourier transform of frames.Lemma 2.1 Let fhmgm2Z be a frame and let fhmgm2Z denote the dual frame. Then theset fĥmgm2Z also onstitutes a frame and the dual frame is de�ned by (ĥ)m = 1(2�)dhm.Proof: First of all, we show that the set fĥmgm2Z withĥm(!) = ZIR hm(x)e�i!x dx (2.5)4



is a frame. By Planherel's Theorem, we obtainAkfk2L2(R) = (2�) A k �fk2L2(R) � (2�) Xm2Z jh �f; hmij2 (2.6)= Xm2Z jhf; ĥmij2 � (2�)Bk �fk2L2(R) = Bkfk2L2(R):It remains to identify the reiproal frame. The deompositionf = Xm2Zhhm; fihmimplies f̂ = Xm2Zhhm; fidhm = 1(2�) Xm2Zhĥm; f̂idhm;and the result follows by another appliation of Planherel's Theorem. 2Using the frame theoreti approah, the following reonstrution formula holds.Theorem 2.2 Let fhmgm2Z be a frame of outgoing signals in L2(R) and let fm denotethe orresponding ehoes produed by a reetivity density D(�; s),fm(t) = ZR ZRnf0gD(�; s)jsj�1=2hm �t� �s � dsd�s2 : (2.7)Let us assume that the following onditions are satis�edD(�; s)jsj�1=2hm �t� �s � 2 L1(dsdtd�s2 ); dD(�; s)(!) 2 L1(d!); dD(�; �)(!)j�j�3=2 2 L2(d�):(2.8)Then D(�; s) an be reonstruted as followsD(�; s) = 1(2�)2 Xm2Z Z 0�1�1i f 0m(!) dhm( �s)(!)jsj1=2ei�!d!+ 1(2�)2 Xm2Z Z 10 1i f 0m(!) dhm( �s)(!)jsj1=2ei�!d!; (2.9)where fhmgm2Z denotes the reiproal frame of fhmgm2Z.Proof: We �rst observe thatjsj�1=2 dhm � � � �s �(!) = jsj1=2e�i!� ĥm(!s): (2.10)Therefore, applying Fourier transforms to (2.7) and interhanging the order of integrationyields f̂m(!) = ZR ZRnf0gD(�; s) ZR jsj�1=2hm �t� �s � e�i!tdtdsd�s2= ZR ZRnf0gD(�; s)jsj1=2e�i!� ĥm(s!)dsd�s2= ZRnf0g dD(�; s)(!)ĥm(s!)jsj�3=2ds:5



Observe that all modi�ations performed above are justi�ed by (2.8). Hene, by em-ploying the substitution � = s!, we obtainf̂m(!) = ZRnf0g dD(�; �! )(!)ĥm(�)j�! j�3=2j!j�1d�= ZRnf0g fD(!; �)ĥm(�)d�= hfD(!; �); ĥm(�)i; (2.11)where fD(!; �) is de�ned byfD(!; �) := dD(�; �! )(!)j!j1=2j�j�3=2: (2.12)From (2.11), we observe that the quantities f̂m(!) an be interpreted as the oeÆientsof fD(!; �) with respet to the set fĥmgm2Z: However, from Lemma 2.1 we know that thisset also onstitutes a frame with reiproal frame (ĥ)m = 1(2�)dhm. Therefore, by usingthe identity f = 1(2�) Xm2Zhf; ĥmidhm; (2.13)we may reonstrut fD(!; �) asfD(!; �) = 1(2�) Xm2ZhfD(!; �); ĥm(�)idhm(�)= 1(2�) Xm2Z f̂m(!)dhm(�): (2.14)From (2.14), we an now also reonstrut the density D(�; s). By using the de�nition(2.12) we obtain dD(�; �! )(!) = 1(2�) Xm2Z f̂m(!)dhm(�)j�j3=2j!j�1=2whih yields dD(�; s)(!) = 1(2�) Xm2Z f̂m(!)dhm(!s)j!jjsj3=2= 1(2�) Xm2Z f̂m(!)j!j dhm( �s)(!)jsj1=2: (2.15)Now the result follows by applying the one{dimensional inverse Fourier transform toboth sides of (2.15)D(�; s) = 1(2�) ZR dD(�; s)(!)ei�!d!6



= 1(2�)2 Xm2Z ZR f̂m(!)j!j dhm( �s)(!)jsj1=2ei�!d!= 1(2�)2 Xm2Z Z 0�1�!f̂m(!) dhm( �s)(!)jsj1=2ei�!d!+ 1(2�)2 Xm2Z Z 10 !f̂m(!) dhm( �s)(!)jsj1=2ei�!d!= 1(2�)2 Xm2Z Z 0�1�1i f 0m(!) dhm( �s)(!)jsj1=2ei�!d!+ 1(2�)2 Xm2Z Z 10 1i f 0m(!) dhm( �s)jsj1=2ei�!d!: 2We would like to onlude this setion on reonstrution formulae for wideband radarmodels with a referene to an elegant but rather di�erent approah. Assume that thesignal hm(t) � Æ(t � tm) is a short pulse at time tm. Then, the eho (1.4) at time t isequivalent to the integration of D along the line � = t�stm. I.e. the ehoes resemble theRadon transform of D, they an then be inverted by tomographi inversion proedures,see [6℄.3 Error EstimatesIn the previous setion, we have derived a method to reonstrut the reetivity densityfrom the observed ehoes. However, the appliability of this method to real{life problemsis diminished by the fat that the underlying frame usually ontains in�nitely manyelements. Clearly, in pratie, only a �nite number of frame elements an be transmitted.Hene we are faed with the problem of hoosing appropriate olletions. Furthermore,it is learly desirable to have some information onerning the resulting approximationproperties for di�erent hoies of frames.The derivation of the error bounds rests on a Jakson type estimate for the framefĥmgm2Z. Let us assume that this set of funtions allows an ordering by index setsIJ � Z, s.t. an Jakson type estimate of the formkg � Xm2IJhg; ĥmiĥmkL2(R) <� 2�2J� jgj2H�(R)holds. (In the sequel, ` <� ' will always indiate inequality up to onstant fators). H�denotes the Sobolev spae of order �, see e.g. [1℄.Suh estimates are known for a variety of funtions, e.g. trigonometri polynomialsand hierarhial �nite elements. In the ontext of wavelet analysis, this requirement ismet by orthogonal or biorthogonal wavelets. Let us therefore assume that the framefhmgm2Z onsists of the inverse Fourier transforms of the elements of an orthonormalwavelet basis, i.e.,hm = hm(j;k) = F�1 j;k;  j;k(x) = 2j=2 (2jx� k); j; k 2 Z; (3.1)7



where the funtions  j;k satisfy h j;k;  j0;k0i = Æj;j0Æk;k0: (3.2)We may e.g. use the ompatly supported wavelet basis onstruted by Daubehies [3℄.Then we do not employ all funtions in the resulting frame, but only those up to agiven re�nement level J . For this spei� setting, the following result in the weightedL2{spae L2(R2; d� dsjsj3 ) holds.Theorem 3.1 Let N�1 denote the degree of polynomial exatness of the multiresolutionanalysis fVjgj2Z assoiated with the wavelet  . Suppose that for some �xed � < N theondition G(�; !) := jfD(!; �)j2H�(R) <1 (3.3)is satis�ed. Then, the following error estimate holds:ZR ZR ������D(�; s)� 1(2�)2 Xj�J ZRf̂m(!)ĥm(s!)j!jjsj3=2ei�!d!������2 d� dsjsj3 <� 2�2J� ZR j!jG(�; !)d!:(3.4)If � is an integer, the funtion G(�; !) an be estimated in terms of the density D asfollows: G(�; !) <� X��� j!j1+2��2� ZR j d( ��� ���D)(�; �! )(!)�3=2��j2d�: (3.5)Proof: Classial wavelet analysis provides us with the following Jakson-type estimate:kfD(!; �)� 1(2�) Xj�J f̂m(!)ĥm(�)k2L2(R) <� 2�2J�jfD(!; �)j2H�(R); (3.6)see, e.g., [4℄ for details. Hene, by using (2.12) and substituting � = s! we obtain2�2J�G(�; !) >� k dD(�; �! )(!)j!j1=2j�j�3=2 � 1(2�) Xj�J f̂m(!)ĥm(�)kL2(d�)= ZR ������ dD(�; s)(!)� 1(2�) Xj�J f̂m(!)ĥm(s!)j!jjsj3=2������2 j!jj!j�2 dsjsj3 :(3.7)Therefore multiplying both sides of (3.7) by j!j, integrating with respet to ! andapplying Planherel's Theorem for another time yields2�2J� ZR j!jG(�; !)d! >� ZR ZR ������ dD(�; s)(!)�Xj�J f̂m(!)ĥm(s!)j!jjsj3=2������2 d! dsjsj3 (3.8)= (2�) ZR ZR ������D(�; s)� 1(2�)2 Xj�J ZR f̂m(!)ĥm(s!)j!jjsj3=2ei�!d!������2 d� dsjsj3 :8



It remains to establish (3.5). By using Leibnitz' rule we obtainjfD(!; �)j2H�(R) = ZR ����� ��� �(fD(!; �))�����2 d�= ZR ����� ��� �( dD(�; �! )(!)j!j1=2j�j�3=2)�����2 d�= j!j ZR ����� ��� �(ZRD(�; �! )e�i!�d���3=2)�����2 d�= j!j ZR ������X��� ��! ��� ���(ZRD(�; �! )e�i!�d�)( ��� ���3=2)������2 d�= j!j ZR jX��� ��!(ZR( ��� ���D)(�; �! )!���e�i!�d�)� (�32)(�32 � 1) : : : (�32 � � � 1)��3=2��j2d�= j!j ZR jX��� ��! d( ��� ���D)(�; �! )(!)!��� ��1Yl=0(�32 � l)��3=2��j2d�<� X��� j!j1+2��2� ZR j d( ��� ���D)(�; �! )(!)��3=2��j2d�;and (3.5) is shown. 24 The Multivariate CaseIn this setion, we want to investigate to what extent the analysis presented above anbe generalized to the multivariate ase. In the sequel, we shall espeially fous on the2D-ase. First of all, we have to derive a suitable mathematial model whih desribesthe ehoes produed by a two-dimensional reetivity distribution. Seondly, we haveto analyze how this reetivity density an be reonstruted from these ehoes.4.1 A 2D-ModelFor univariate signals in L2(R), the model (1.4) whih desribes the ehoes produedby a reetivity density is well{established. This model deals with signals whih aremodulated over time, i.e., the signal is a funtion h(t). However, this only allows toreonstrut the veloities in the diretion of the emitted beam, i.e., only the radialomponent of the veloity �eld an be analyzed.It seems that muh less is known for the higher dimensional ases. In general onemight assume, that the signal is emitted in a three dimensional one. In priniple, onemight then emit signals, whih are modulated di�erently for eah beam in this one, i.e.,the emitted signal is a funtion h(t; ; �), where  and � are the angles of the one.9



In this paper, we want to treat a two dimensional model as a �rst step. Here weassume, that the signal is emitted as a fan. Moreover, we assume that the positions ofthe reeting entities, as desribed by the support of the reetivity distribution D, aresuÆiently far away, so that we an treat the fan of beams as a set of parallel beamsinstead. Let us assume, that the beams are aligned on the x-axis, i.e., the emitted signalis modelled by a funtion h(t; x), and that the signal is emitted in the diretion of they-axis.We follow the approah of Setion 1 in order to model mathematially the resultingehoes. Hene let us �rst onsider the ase of a single point objet, whih is moving inthe (x; y){plane. We further assume that the measurement proess lives on a shortertime sale ompared to the veloity of the objet. Hene, we an neglet any aelerationof the objet and we simply assume that the trajetory of the objet is given by(x(t); y(t)) = (x0 + tvx; y0 + tvy): (4.1)Again, we introdue Doppler variabless0 := + vy� vy ; �0 := 2y0� vy : (4.2)At time t the moving objet is at a position with y-oordinate y0 + tvy, i.e., at thisinstant it reets a signal whih was send out at time t � y0+tvy at the orrespondingposition x0 + tvx. Altogether, the objet reets the signals(t) = h(t� y0 + tvy ; x0 + tvx) :This signal then produes an eho at position x = x0 + tvx whih is time delayed byy0+tvy , i.e., this yields an ehoe(t + y0 + tvy ; x0 + tvx) = s(t) = h(t� y0 + tvy ; x0 + tvx) : (4.3)We de�ne the auxiliary parameters�0 := vx1 + s02s0 ; and z0 = x0 � vx�02s0 : (4.4)Lemma 4.1 Suppose that the objet is moving with veloity v = (vx; vy) in the (x; y){plane and that a signal h(x; t) is transmitted. Then the eho produed by the objet isgiven by e(t; z0 + t�0) = h(t� �0s0 ; z0 + t�0) : (4.5)Proof:We start with equation (4.3) and use the substitution t! t+ y0+tvy , whih yieldse(t; x0 +  t� y0+ vy ! vx) = h( t� y0 + vy ! � vy � y0 ; x0 +  t� y0+ vy ! vx) :10



Rewriting this equation in Doppler oordinates and using the auxiliary parameters (4.4)yields e(t; z0 + t�0) = h(t� �0s0 ; z0 + t�0) : (4.6)and the lemma is proved. 2The set of parameters (�0; s0; z0; �0) is in one{to{one orrespondene to the origi-nal variables (x0; vx; y0; vy). Hene, similar to the 1D{ase, we desribe a dense targetenvironment by a reetivity distribution D(�0; s0; z0; �0). Note, that we use a slightlydi�erent notation for the Doppler oordinates in the 2D{ase: the variable s in the1D{model orresponds to the variable 1=s0 in the 2D{ase. This avoids the term ds=s2,moreover, we have negleted the saling term ps. We now obtain the following modelfor desribing the 2D{eho.Corollary 4.1 The eho produed by a reetivity density D(�0; s0; z0; �0) is given bye(t; x) = ZR ZR ZR ZRD(�0; s0; z0; �0)Æ(x� (z0 + �0t))h�t� �0s0 ; z0 + �0t� d�0ds0d�0dz0:(4.7)Proof:We rewrite the eho of a single objet ase(t; x) := Æ(x� (z0 + �0t))h(t� �0s0 ; z0 + �0t): (4.8)Consequently, for the ase of a nontrivial reetivity density, we obtaine(t; x) = ZR ZR ZR ZRD(�0; s0; z0; �0)Æ(x� (z0 + �0t))h(t� �0s0 ; z0 + �0t)d�0ds0d�0dz0:proving the orollary. 24.2 The Reonstrution ProblemOne the model desribed in Corollary 4.1 is given, it is natural to ask for a suitablereonstrution formula to extrat the unknown density D. Again we suggest not totransmit just one signal but a family of signals. However, even then, in ontrary to theunivariate ase, the density annot be ompletely reonstruted. The operator whihmaps a reetivity density to its ehoes is linear, hene it makes sense to haraterizethe nullspae of this mapping.De�nition 4.1 A funtion D 2 L2(R4) is alled a vanishing reetivity distribution ifthe eho (4.7) vanishes for any signal h 2 L2(R2).11



These vanishing reetivity distributions an be haraterized by their integrals overertain 2D{subspaes. Let E(�; x; �) denote the 2D{plane de�ned byE(t; x; �) = f(�0; s0; z0; �0) j �0 = t� �s0; z0 = x� �0t; s0; �0 2 Rg :The nullspae is then haraterized by the following lemma.Lemma 4.2 A funtion D 2 L2(R4) is a vanishing reetivity distribution if and onlyif the integrals of s0D over the 2D{planesfE(t; x; �) j t; x; � 2 Rgvanish, i.e. 0 = ZR ZR s0D(t� �s0; s0; x� �0t; �0) ds0d�0 ;for all (t; x; �) 2 R3.Proof:In order to show that the ehoes of a reetivity distribution vanish for all signalsh 2 L2(IR2), it is suÆient that the ehoes vanish for all separable signalsh(t; x) = h1(t)h2(x) :Inserting this into the model of the eho (4.7) and applying the substitution � = (t ��0)=s0 yieldse(t; x) = ZR ZR ZR ZRD(�0; s0; z0; �0)Æ(x�(z0+�0t)) h1 �t� �0s0 � h2(z0+�0�) d�0ds0d�0dz0= h2(x) ZR ZR ZRD(�0; s0; x� �0t; �0) h1 �t� �0s0 � d�0ds0d�0= h2(x) ZR ZR ZR s0D(t� �s0; s0; x� �0t; �0) h1(�) d�ds0d�0These integrals have to vanish for any hoie of t and x. Moreover, with respet tothe variable � the salar produts with all h1 2 L2(R) have to vanish, i.e. a vanishingreetiviy distribution has to satisfy a.e.0 = ZR ZR s0D(t� �s0; s0; x� �0t; �0) ds0d�0 ;whih yields the desired haraterization of the nullspae by vanishing integrals of D over2D{planes. 2Vanishing integrals an only our if the integrand takes positive and negative values.However, a physially meaningful reetivity distribution is non{negative, and s0 lives onthe positive part of the real line. Nevertheless two positive reetivity distributions D1and D2, whih only di�er by a vanishing reetivity distribution, annot be distinguishedby any ombination of transmitted signals.12



The nullspae is haraterized by a three-dimensional set of onditions. In orderto haraterize the omplement of the nullspae, i.e., the reonstrutable reetivitydistributions, we therefore need to eliminate one of the four variables of D 2 L2(R4).This an be ahieved by reduing the dependeny of D on �0 by �xing the meanveloity as follows: we de�neD(�0; s0; x; t) := ZRD(�0; s0; x� �0t; �0)d�0: (4.9)and assume, that D an be approximated by its zero order termD(�0; s0; x; t) � D(�0; s0; x; v0=); (4.10)ompare with (4.4). Furthermore, we have to assume that the family of transmittedsignals onsists of tensor produtshm;n(x; t) := hm(t)hn(x); (4.11)where both families fhmgm2Z and fhngn2Z form frames in L2(R):The �rst step is to integrate (4.7) with respet to z0, this yieldse(�; x) = ZR ZR ZRD(�0; s0; x� �0t; �0)hm;n �� � �0s0 ; x� d�0d�0ds0= ZR ZRD(�0; s0; x; t)hm �� � �0s0 � hn(x)d�0ds0� hn(x) ZR ZRD(�0; s0; x; v0=)hm �� � �0s0 � d�0ds0: (4.12)Now the quantity D(�0; s0; x; v0=) an be reonstruted by using the method explainedin Setion 2.5 Numerial ExperimentsIn this setion, we want to demonstrate the appliability of our reonstrution formulaeand of the error estimates presented above. The appliation of our theory to real-life data is still in its elaboration. In partiular, 2D{data for signals, whih an bemodulated arbitrarily in time t and position x, are not available. Nevertheless, to testthe algorithm, we proeed as follows: We �x in advane an (arti�ial) density D inrange Doppler oordinates and a suitable frame fhmgm2Z, ompute the orrespondingehoes and apply the reonstrution proedure to these ehoes. The true density isknown in this ase, hene, we an estimate and ompare the error bounds of di�erentapproximation shemes.First of all, we �x a density D whih �ts into the setting of our theory: As anmanageable example we hoose D asD(�; s) := ei�!0e��2=21[�s1;s2℄(s) ;13



Figure 1: Representation of dD(�; s)(!) and dD(�; s)(!)jsj�3=2 on the disrete grid[5:00; 15:00℄� [0:85; 1:00℄.

Figure 2: The simulated ehoes ff̂mgm2Z for the Haar frame (left-hand side) and for theDaubehies-5-frame (right-hand side). The higher sales are not displayed.where 1[�s1;s2℄ represents the harateristi funtion of the losed interval [�s1; s2℄ and!0 desribes a shift in Fourier domain. In the sequel, we hoose s1 = 0:90 and s2 = 0:95.This reetivity distribution D satis�es the assumptions of Theorem 2.2.The outgoing signals have to be a frame. However, sine we also want to hek theerror estimate in Theorem 3.1, a good hoie for the frame ishm(t) = hm(j;k)(t) := F�1 j;k(t) ;where F�1 j;k is the inverse Fourier transform of some dilated and translated wavelet,see formula (3.1). In our simulations we used the Haar basis, the Daubehies waveletsof order two, ompare [3℄, and biorthogonal wavelets as onstruted in [2℄, respetively.Based on the underlying density D we now have to generate families of ehoesffmgm2Z whih represent the baksattered signals of the transmitted frame fhmgm2Z.Using the substitution (2.12) we approximate the ehoesf̂m(!) = ZRnf0g dD(�; s)(!)ĥm(s!)jsj�3=2ds14



Figure 3: Partial reonstrutions based on simulated ehoes with respet to theHaar frame. The shown images orrespond to the reonstruted densities for J =�3;�2;�1; 0; 1; 2; 3; 4 and 6 (from top left to bottom right).by the orresponding Riemann sums for evaluating these L2{inner produts. A oarseapproximation is then given byf̂j;k(!) � Xsl2�s dD(�; sl)(!) j;k(!sl)jslj�3=2hl (5.1)= Xsl2�s e�(!�!0)2=21[0:90;0:95℄(sl)2j=2 (2j!sl � k)jslj�3=2hl ;where �s desribes the grid with respet to the variable s and hl = sl � sl�1.Numerially we have to trunate the evaluation of the ehoes at some index (j; k).The numerial implementations start at resolution level jmin = �3 and end at jmax = 6.On the �rst approximation level jmin = �3 we use the ehoes produed by translates ofthe orresponding generator funtion '.For our disretization, we hoose sl = 0:85 + hl, where hl = l � 0:00035 and l =0; : : : ; 429, and wr = 5:00 + vr, where vr = r � 0:025 and r = 0; : : : ; 399. Hene, we haveto hoose the translation parameter k in suh a way that { for all relevant j, r and l {15



Figure 4: Partial reonstrutions based on simulated ehoes with respet to theDaubehies frame (N=2). The shown images orrespond to the reonstruted densi-ties for J = �3;�2;�1; 0; 1; 2; 3; 4 and 6 (from top left to bottom right).the value of 2j!rsl � k overs the support of  and '. Figure 1 displays the funtionsdD(�; s)(!) and dD(�; s)(!)jsj�3=2 on the retangle [5:00; 15:00℄� [0:85; 1:00℄. The resultingehoes approximated by (5.1) are visualized in Figure 2.Now we are ready to apply the reonstrution formula stated in Theorem 2.2. Inorder to keep the tehnial diÆulties at a reasonable level, we restrit ourselves to thereonstrution in the Fourier domain:dD(�; s)(!) = Xm2Z f̂m(!)dhm(!s)j!jjsj3=2 :The quality of the reonstrution is estimated by omputing the left hand side of the errorestimate of Theorem 3.1. The appraisal has to be taken modulo the integration and saleprojetion error. The error estimation in Theorem 3.1 was stated in the time domain,Planherel's Theorem however translates this into an idential estimate in the Fourierdomain representation, see (3.8). Additionally, Theorem 3.1 predits an exponentialdeay of the error rate, the onstants of the estimate depend on the regularity of the16



Figure 5: Partial reonstrutions based on simulated ehoes with respet to theBior2.4 frame. The shown images orrespond to the reonstruted densities for J =�3;�2;�1; 0; 1; 2; 3; 4 and 6 (from top left to bottom right).frame. Indeed, we observe that the weighted L2{error dereases in the predited way asthe frame regularity inreases: We start by presenting a sale-wise reonstrution, seeFigures 3, 4, 5 and 6. It turns out that the algorithm onverges for all simulated ases.Following Theorem 3.1 we study the error depending on the sale J and on the frameregularity �, respetively. Therefore it is neessary to plotZR ZR ������ dD(�; s)(!)�Xj�J f̂m(!)ĥm(s!)j!jjsj3=2������2 d! dsjsj3 :From Figure 7, left image, we observe that the error indeed dereases exponentially.From the logarithmi plot, right image, we an estimate the parameter � as the slopeof the linear least square �t. We dedue the validity of the proposed wavelet basedreonstrution algorithm and of the given error estimate.17



Figure 6: Partial reonstrutions based on simulated ehoes with respet to theBior2.8 frame. The shown images orrespond to the reonstruted densities for J =�3;�2;�1; 0; 1; 2; 3; 4 and 6 (from top left to bottom right).
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6 The Narrowband ApproahThe wideband model, whih desribes ehoes for arbitrary signals h, an be simpli�edfor most real-life situations. The ommonly used narrowband approximation deals withsignals of the form h(t) = e�i!t�(t) ;where the arrier frequeny ! is assumed to be muh larger then the omparativelynarrowbanded frequenies of the modulation funtion  .Furthermore, most objets of interest in radar travel with a speed muh smaller thanlight. Thus jvj= << 1 and � � 2R0 : (6.1)Now we have to treat the positive and negative frequenies of  separately�̂P := �̂(!)�[0;1)(!); �̂R(!) := �̂(!)�(�1;0℄(!): (6.2)Removing the arrier frequeny ! from both, the signal  and the eho f , and negletingtime independent sale fators leads to the standard narrowband model for the eho fof a single moving objetf(t) =  n�P (t� �)e�i�t + �R(t� �)e+i�to ;where � = 2!v=, see e.g. the lassial textbooks [17, 16℄ and [7℄ for details. Thevariables (�; �) are alled the narrowband Doppler oordinates.Consequently, the narrow{band model for the eho produed by a reetivity densityDNB(�; �) is given byf(t) = ZR ZR n�P (t� �)e�i�t + �R(t� �)e+i�toDNB(�; �)d�d� : (6.3)We may deompose the spae L2(R) asL2(R) ' L2;P (R)� L2;R(R) (6.4)where L2;P (R) := ff 2 L2(R) j supp f̂ � [0;1); i.e.; f̂P = f̂g (6.5)L2;R(R) := ff 2 L2(R); j f̂R = f̂g (6.6)Then DNB(�; �) an be reonstruted as follows.Theorem 6.1 Let fhmgm2Z; fgmgm2Z be sets of outgoing signals in L2;P (R) and L2;R(R),respetively. Let us furthermore assume that fhmgm2Z; fgmgm2Z form frames in thesespae, and let fhmgm2Z and fgmgm2Z denote the orresponding dual frames. The ehoes19



of fhmgm2Z are denoted by fP;m, the ehoes of fgmgm2Z are denoted by fR;m. Let usassume that the reetivity density DNB(�; �) satis�es the following onditionshm(t� �)DNB(�; �) 2 L1(d�d�); dDNB(�; �)(!) 2 L1(d!): (6.7)Then DNB(�; �) an be reonstruted as followsDNB(�; �) = 12� Xm2Z ZR fP;m(t)hm(t� �)ei�tdt+ 12� Xm2Z ZR fR;m(�t)gm(�t� �)ei�tdt : (6.8)Proof: We proeed by following the lines of the proof of Theorem 2.2. Using (6.3) yieldsfP;m(t) = ZR ZR e�i�thm(t� �)DNB(�; �)d�d�= ZR hm(t� �)�ZR e�i�tDNB(�; �)d�� d�= ZR hm(t� �) dDNB(�; �)(t)d�= ZR hm(�) dDNB(�; t� �)(t)d�= hhm(�); ( gDNB(t; �))P i;where gDNB(t; �) := dDNB(�; t� �)(t): (6.9)Consequently, by using the reiproal frame fhmgm2Z we obtain( gDNB(t; �))P = Xm2Zh( gDNB(t; �))P ; hm(�)ihm(�)= Xm2Z fP;m(t)hm(�);and therefore ( dDNB(�; �)(t))P = Xm2Z fP;m(t)hm(t� �): (6.10)A similar alulation yields(DNB(t; �))R = Xm2Zh(DNB(t; �))R; gm(�)igm(�)= Xm2Z fR;m(t)gm(�)where DNB(t; �) := dDNB(�; t� �)(�t): (6.11)20



Consequently, we obtain( dDNB(�; �)(�t))R = Xm2Z fR;m(t)gm(t� �) (6.12)so that ( dDNB(�; �)(t))R = Xm2Z fR;m(�t)gm(�t� �) (6.13)and dDNB(�; �)(t) = ( dDNB(�; �)(t))R + dDNB(�; �)(t)P= Xm2Z fP;m(t)hm(t� �) + Xm2Z fR;m(�t)gm(�t� �):Again the result follows by applying the inverse Fourier transformDNB(�; �) = 12� ZR dDNB(�; �)(t)ei�tdt= 12� Xm2Z ZR fP;m(t)hm(t� �)ei�tdt+ 12� Xm2Z ZR fR;m(�t)gm(�t� �)ei�tdt:2Referenes[1℄ R.A. Adams, Sobolev Spaes, Aademi Press, New York, 1975.[2℄ A. Cohen, I. Daubehies, and J. Feauveau, Biorthogonal bases of ompatly sup-ported wavelets, Comm. Pure Appl. Math. 45 (1992), 485{560.[3℄ I. Daubehies, Ten Letures on Wavelets, CBMS{NSF Regional Conferene Seriesin Applied Math. 61, SIAM, Philadelphia, 1992.[4℄ R. DeVore, Nonlinear approximation, Ata Numeria 7 (1998), 51{150.[5℄ R. J. DuÆn and A. C. Shaefer, A lass of nonharmoni Fourier Series, Trans. Amer.Math. So. 72 (1952), 341{366.[6℄ E. Feig and F.A. Gr�unbaum, Tomographi methods in range-Doppler radar, InverseProblems 2 (1986), 185{195.[7℄ G. Kaiser, A Friendly Guide to Wavelets, Birkh�auser, Boston, Basel, Berlin, 1994.[8℄ G Kaiser, Physial wavelets and radar { a variational approah to remote{sensing,IEEE Antennas and Propagation Magazin 38 (1996), 15{24.[9℄ E. J. Kelly and R.P. Wishner, Mathed{�lter theory for high{veloity targets, IEEETrans. Military Elet. 9 (1965), 56{59.21
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