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h 3, ZeTeMUniversit�at BremenPostfa
h 33 04 4028334 BremenGermanyAbstra
tThis paper is 
on
erned with the regularity of the solutions to the Neumannproblem in Lips
hitz domains 
 
ontained inRd. Espe
ially, we 
onsider the spe
i�
s
ale Bs� (L� (
)); 1=� = s=d+1=p; of Besov spa
es. The regularity of the variationalsolution in these Besov spa
es determines the order of approximation that 
an bea
hieved by adaptive and nonlinear numeri
al s
hemes. We show that the solutionto the Neumann problem is mu
h smoother in the spe
i�
 Besov s
ale than in theusual Lp{Sobolov s
ale whi
h justi�es the use of adaptive s
hemes. The proofs areperformed by 
ombining some re
ent regularity results derived by Zanger [23℄ withsome spe
i�
 properties of harmoni
 Besov spa
es.Key Words: Ellipti
 boundary value problems, adaptive methods, Besov spa
es.AMS Subje
t Classi�
ation: Primary 35B65, se
ondary 41A46, 46E35.1 Introdu
tionQuite re
ently, the regularity of the solutions to se
ond order ellipti
 boundary valueproblems Lu = F in 
 � Rd; (1)u = g on �
;where 
 is a Lips
hitz domain, in spe
i�
 Besov spa
es has been investigated, see, e.g.,[6, 7, 8, 11℄. The aim was to provide some theoreti
al foundations for the use of adaptives
hemes for the numeri
al treatment of (1). The order of 
onvergen
e as measured inLp of usual (linear) Galerkin s
hemes obtained, e.g., by �nite element spa
es based onuniform grid re�nement, is determined by the regularity of the variational solution u to(1) in the Sobolev s
ale W s(Lp(
)): Unfortunately, on a general Lips
hitz domain, thisSobolev regularity may not be very high, even if the right{hand side F is suÆ
ientlysmooth. This fa
t is 
aused by singularities near the boundary. Therefore, to in
reaseeÆ
ien
y, one often uses adaptive methods, i.e., the underlying grid is only re�ned in�This work has been supported by Deuts
he Fors
hungsgemeins
haft, Grant Da 360/4{1.1



regions where the solution la
ks smoothness. In this 
ase, one does not use the wholelinear spa
es, hen
e an adaptive s
heme 
an be interpreted as some kind of nonlinearapproximation. Then the question arises if nonlinear methods indeed provide some gainof eÆ
ien
y when 
ompared with linear s
hemes. So far, the problem is best understoodfor numeri
al s
hemes based on a wavelet basis 	 = f �; � 2 J g. (We refer to one ofthe textbooks [2, 12, 19, 22℄ for the de�nition and the basi
 properties of wavelets). Anadaptive wavelet s
heme approximates the solution u to (1) by a linear 
ombination of nwavelets. Therefore a natural ben
hmark for its performan
e is given by the best n{termapproximation. Then one approximates a fun
tion f 2 Lp(Rd) by the nonlinear manifoldsMn of all fun
tions S = X�2� a� �with � � J of 
ardinality n and studies the error�n(f)Lp(Rd) := infS2Mn kf � SkLp(Rd): (2)For the L2{metri
 and an orthonormal wavelet basis, the approximation problem (2) hasa simple solution. We order the wavelet 
oeÆ
ients by their absolute values and 
hoose� 
orresponding to the n largest values. (Similar results also hold for other values ofp, see, e.g., [13℄ for details). In 
ontrary to linear s
hemes, the order of approximationthat 
an be a
hieved by best n{term approximation is not determined by the Sobolevregularity but by 
ertain non{
lassi
al s
ales of fun
tion spa
es. Indeed, the following
hara
terization has been derived in [14℄1Xn=1[ns=d�n(f)Lp(Rd)℄� 1n <1 if and only if f 2 Bs� (L� (Rd)); � = (s=d+ 1=p)�1; (3)where the Bs� (L� (Rd)) are the Besov spa
es (see, e.g., [15, 20℄ for the de�nition and themain properties of Besov spa
es).Of 
ourse, best n{term approximation is not dire
tly appli
able in our setting for
at
hing the n biggest wavelet 
oeÆ
ients requires knowing all 
oeÆ
ients of the unknownsolution u. Nevertheless, quite re
ently, an implementable adaptive wavelet s
heme hasbeen developed whi
h produ
es asymptoti
ally the same rate of 
onvergen
e as the bestn{term approximation [3℄, see also [4, 9, 10℄. Having these results and the 
hara
terization(3) in mind, it is therefore natural to ask the following question: what is the regularity ofthe solution u to (1) as measured in the s
ale Bs� (L� (
)); � = (s=d+ 1=p)�1? Espe
ially,does the solution have a higher smoothness order in these spa
es 
ompared to the usualSobolev s
ale? For then, adaptive wavelet methods would de�nitely perform better thanlinear s
hemes and the use of adaptive s
hemes is 
ompletely justi�ed. The results in[6, 7, 8, 11℄ indi
ate that this is indeed the 
ase for many problems. So far, the deepestresults were obtained for the 
lassi
al Diri
hlet problem for harmoni
 fun
tions:4v = 0 in 
; (4)v = g on �
;see [11℄ for details. On
e these results are established, it is 
learly desirable to generalizethem also to the Neumann problem4v = 0 in 
; (5)�v�n = g on �
:2



However, the proofs in [11℄ made heavy use of a very systemati
 study of the homogeneousand inhomogeneous Diri
hlet problem presented by Jerison and Kenig [17℄. Unfortunately,for the Neumann problem, su
h a systemati
 study was an open problem for a long time.Consequently, in his famous book [18℄, C. Kenig presented this problem as a suggestion forfurther resear
hes. Soon afterwards, D. Jerison gave this problem to his Ph.D. studentD. Zanger who solved it 
ompletely [23, 24℄. Therefore we 
an now use his results toestablish Besov regularity for both, the homogeneous and the inhomogeneous Neumannproblem, and this is the main obje
tive of this note.This paper is organized as follows. In Se
tion 2, we re
all Zanger's developments asfar as they are needed for our purposes. Then, in Se
tion 3, we explain how these results
an be exploited to establish non
lassi
al Besov regularity.2 Classi
al Regularity ResultsIn this se
tion, we want to summarize some of Zanger's results as far as they are neededfor our purposes. The �rst step is to introdu
e the spa
eBsp(Lp(�
))1? := fh 2 Bsp(Lp(�
)) j h(1) = 0g: (6)Then the main result for the Neumann problem reads as follows.Theorem 2.1 Consider � su
h that 0 < � � 1: De�ne p0 and p00 by 1=p0 = (1+ �)=2 and1=p00 = (1� �)=2: Let � and p be numbers satisfying one of the following:(a) p0 < p < p00 and 0 < � < 1(b) 1 < p � p0 and 2=p� 1� � < � < 1(
) p00 � p <1 and 0 < � < 2=p+ �.Let 
 be a bounded Lips
hitz domain in Rd for some d � 3 whose 
omplement is
onne
ted. There exists � depending only on the Lips
hitz 
onstant of 
 su
h that forg 2 B��1p (Lp(�
))1? there exists a unique solution to the Neumann problem4v = 0 in 
; (7)�v�n = g on �
;whi
h satis�es v 2 B�+1=pp (Lp(
)):For later use, let us brie
y sket
h the idea of the proof. It 
an be performed by 
ombiningestimates for the homogeneous Diri
hlet problem with those for the operator sendingNeumann boundary values to the Diri
hlet boundary values of the harmoni
 fun
tionexhibiting those Neumann boundary values, loosely speaking the inverse of the Calder�onoperator. We start by re
alling the 
lassi
al method of layer potentials to solve theNeumann problem. We de�ne the nontangential 
one �a(Q) for a > 0 via�a(Q) := fX 2 
 j jX �Qj < (1 + a)dist(X; �
)g: (8)If u is a fun
tion on 
 we may de�ne its nontangential maximal fun
tionM(u) by settingM(u)(Q) := supfju(P )j j P 2 �1(Q)g: (9)3



We say that u as a nontangential limit at Q 2 �
 if there is a �nite, well{de�ned limitas P �! Q from within �a(Q) for all a > 0: Furthermore, given h 2 L1(�
), its singlelayer potential is the fun
tion de�ned viaSh(X) := �1!d(d� 2) Z�
 h(Q)jX �Qj(d�2) d�(Q); (10)where !d is the surfa
e area of the unit sphere in Rd. We also need the operatorsK�h(P ) := p.v. 1!d Z�
 hP �Q; n(P )ijP �Qjd h(Q)d�(Q); (11)T := 12I �K�: (12)Here n(P ) 
learly denotes the outward unit normal ve
tor on �
: Then the solutions tothe Neumann problem 
an be 
onstru
ted as follows, see Dahlberg and Kenig [5℄ andVer
hota [21℄ for details.Theorem 2.2 Let 
 � Rd be a bounded Lips
hitz domain whose 
omplement is 
on-ne
ted. Then there is � = �(
) > 0 su
h that, whenever 1 < p < 2 + Æ; T is an invertiblemapping from Lp(�
)1? onto Lp(�
)1?, and S is an invertible mapping from Lp(�
) ontoW 1(Lp(
)): Moreover, given g 2 Lp(�
)1? with 1 < p < 2 + Æ and writing v = ST�1g,i.e., v(X) = 1!d(d� 2) Z�
 jX �Qj2�d(12I �K�)�1(g)(Q)d�(Q); (13)it follows that v is the unique (modulo 
onstants) harmoni
 fun
tion on 
 su
h that thenontangential maximal fun
tionM(rv) is bounded in Lp(�
) and �v�n = g nontangentiallya.e. on �
: Finally, we have kM(ru)kLp(�
) � CkgkLp(�
): (14)In order to determine the Diri
hlet boundary values of our single layer potentials one hasProposition 2.1 If h 2 L1(�
) then Sh(X) �! Sh(Q) as X �! Q nontangentiallyfor a.e. Q 2 �
: In parti
ular, if 1 < p < 2 + Æ, then for all g 2 Lp(�
)1? ; v(X) =ST�1g(X) �! ST�1g(Q) for a.e. Q.For the proof, we refer to [24℄. Consequently, for 1 < p < 2+ Æ we may de�ne the inverseCalder�on or Neumann to Diri
hlet operator � : Lp(�
)1? �!W 1(Lp(�
)) by setting�(g) := (ST�1(g))j�
: (15)One of the main results in [23℄ states that the inverse Calder�on operator moreover a
tsas a bounded operator on a whole s
ale of Besov spa
es.Theorem 2.3 There exists � with 0 < � � 1 so that the inverse Calder�on operator �introdu
ed in (15) satis�es k�gkB�p (Lp(�
)) � CkgkB��1p (Lp(�
)); (16)provided(a) p0 < p < p00 and 0 < � < 1 4



(b) 1 < p � p00 and 2=p� 1� � < � < 1(
) p00 < p <1 and 0 < � < 2=p+ �,wherein 1=p0 = (1 + �)=2; 1=p00 = (1� �)=2:The proof of Theorem 2.1 now follows by 
ombining Theorem 2.3 with the followingfundamental result for the Diri
hlet problem whi
h was proved by Jerison and Kenig [17℄.Theorem 2.4 Consider � su
h that 0 < � � 1: De�ne p0 and p00 by 1=p0 = (1+ �)=2 and1=p00 = (1� �)=2: Let � and p be numbers satisfying one of the following:(a) p0 < p < p00 and 0 < � < 1(b) 1 < p � p0 and 2=p� 1� � < � < 1(
) p00 � p <1 and 0 < � < 2=p+ �.Let 
 be a bounded Lips
hitz domain in Rd for some d � 3: There exists � depending onlyon the Lips
hitz 
onstant of 
 su
h that for every g 2 B�p (Lp(�
)) there exists a uniqueharmoni
 fun
tion v su
h that Tr v = g and v 2 B�+1=pp (Lp(
)): Moreover,kvkB�+1=pp (Lp(
)) � CkgkB�p (Lp(�
)): (17)The Theorems 2.1 and 2.3 
an also be used to derive a regularity result for the inhomo-geneous Neumann problem 4w = F in 
; (18)�w�n = 0 on �
:Indeed, by a judi
ious homogenization pro
edure, (18) 
an be redu
ed to a problem ofthe form (7). For a detailed elaboration of these ideas, we refer again to [23℄ where thefollowing fundamental result is proved, see also Se
tion 3.Theorem 2.5 Let 
 be a bounded Lips
hitz domain in Rd; d � 3, and let 1 < p < 1and 1=p + 1=p0 = 1. There is �; 0 < � � 1; depending only on the Lips
hitz 
onstant of
, su
h that, for every F 2 (W 2��(Lp0(
))�1?, there exists a solution w 2 W �(Lp(
)) tothe inhomogeneous Neumann problem (18) provided one of the following holds:(a) p0 < p < p00 and 1=p < � < 1 + 1=p(b) 1 < p � p00 and 3=p� 1� � < � < 1 + 1=p(
) p00 � p <1 and 1=p < � < 3=p+ �wherein 1=p0 = 1=2+ �=2 and 1=p00 = 1=2� �=2: Moreover, for all F 2 (W 2��(Lp0(
)))�1?we have the extimate kwkW�(Lp(
)) � CkFk(W 2��(Lp0 (
)))� : (19)Finally, modulo 
onstants, this solution is unique.Remark 2.1 i.) The spa
e (W 2��(Lp0(
)))�1? is 
learly de�ned analogously to (6).ii.) Quite re
ently, similar results were also derived by Fabes, Mendez, and Mitrea [16℄.5



3 Non
lassi
al Regularity ResultsIn this se
tion, we want to derive some non
lassi
al regularity results for the Neumannproblem, i.e., we want to estimate the regularity of the solution as measured in the spe
i�
Besov s
ale Bs� (L� (
)); 1=� = s=d + 1=p; whi
h determines the approximation order ofadaptive numeri
al s
hemes. Let us �rst dis
uss the homogeneous 
ase.Theorem 3.1 Let 
 be a bounded Lips
hitz domain in Rd; d � 3; whose 
omplement is
onne
ted. Let v be the solution to the Neumann problem4v = 0 on 
 � Rd; (20)�v�n = g on �
;where g 2 B��1p (Lp(�
)) and � and p satisfy the 
onditions of Theorem 2.1. Thenv 2 Bs� (L� (
)); � =  sd + 1p!�1 ; 0 < s < (�+ 1=p)d(d� 1) : (21)Proof: The proof 
an be performed by 
ombining Theorem 2.1 with the following non-
lassi
al regularity result proved in [11℄ whi
h states a spe
i�
 property of harmoni
 Besovspa
es.Theorem 3.2 Let 
 be a bounded Lips
hitz domain in Rd. If v is an harmoni
 fun
tionon 
 whi
h is in the Besov 
lass B�p (Lp(
)), for some 1 < p <1 and � > 0, thenv 2 Bs� (L� (
)); � =  sd + 1p!�1 ; 0 < s < �d(d� 1) : (22)Now Theorem 2.1 implies that v 2 B�+1=pp (Lp(
)): However, the solution v to (20) is
learly an harmoni
 fun
tion. Therefore an appli
ation of Theorem 3.2 proves the asser-tion.Theorem 3.1 says that we indeed gain regularity in the s
ale Bs� (L� (
)); 1=� = s=d+1=p; 
ompared with the usual s
ale Bsp(Lp(
)); s > 0; sin
e the maximal smoothnessparameter a

ording to Theorem 2.1 is multiplied by d=(d � 1). Consequently, the useof adaptive s
hemes is 
ompletely justi�ed. By interpolation and embeddings for Besovspa
es, we 
an moreover 
on
lude that v is in a family of Besov spa
es B~s~� (L~� (
)) for a
ertain range of the parameters ~� and ~s. This is depi
ted in Figure 1 for the spe
ial 
asep = 2, d = 3: If g 2 L2(�
), then v is in B~s~� (L~� (
)) whenever (1=~� ; ~s) is in the interior ofthe quadrilateral with verti
es (1=2; 0), (1=2; 3=2), (1:25; 0), (1:25; 2:25). The heavy line
onne
ting (1=2; 0) to (1:25; 2:25) 
orresponds to the spa
es Bs� (L� (
)) of Theorem 3.1.
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Figure 1: Regularity spa
es a

ording to Theorem 3.1, g 2 L2(�
):A further improvement of the smoothness index for v 
an be obtained by repeatedlyapplying Theorem 3.2. Indeed, if � and p satisfy the 
onditions of Theorem 2.1, then weknow that v 2 Bs� (L� (
)); � =  sd + 1p!�1 ; 0 < s < (�+ 1=p)dd� 1 ;see (21). If 1�1 := �d� 1 + 1p  dd� 1! < 1;we may apply Theorem 3.2 for another time whi
h yieldsv 2 Bs� (L� (
)); � = �sd + 1�1��1 ; 0 < s < (�+ 1=p)d2(d� 1)2 :We 
an always keep on going until � � 1: By this kind of bootstrapping arguments, wealways obtain a regularity result for � < 1: A slightly more sophisti
ated version of thebootstrapping strategy yields the following result.Theorem 3.3 Let 
 be a bounded Lips
hitz domain. If v is the solution to (20) whereg 2 B��1p (Lp(
)) and � and p satisfy the 
onditions of Theorem 2.1, thenv 2 B~s~� (L~� (
)); 0 < ~s < � + 1~� ; p � ~� > � �; � � := ��+ 1d� 1 + 1��1 : (23)
7



Proof: We �rst observe that the 
riti
al value for s in (21) is exa
tly given by theinterse
tion of the lines s = � + 1� and s = d� � dp:Consequently, if we apply Theorem 3.2 repeatedly and use interpolation and embeddingtheorems for Besov spa
es, we 
an 
on
lude thatv 2 B~s~� (L~� (
)); ~s < � + 1~� ; p � ~� > 1: (24)For any ~� satisfying the 
ondition in (24), we 
an apply Theorem 3.2 for another timeand obtain v 2 Bs� (L� (
)); s < d(� + 1=~�)d� 1 ; 1� = sd + 1~� :Sin
e � + 1� � = dd� 1(� + 1);the result follows again by interpolation and embeddings.As an example, let us again 
onsider the 
ase p = 2; d = 3; and g 2 L2(�
): Theorem3.3 gives that v is in B~s~� (L~� (
)) for all ~s and ~� su
h that (1=~� ; ~s) is in the shaded regionof Figure 2.
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Figure 2: Regularity spa
es a

ording to Theorem 3.3, g 2 L2(�
):8



The results stated in the Theorems 3.1 and 3.3 
an also be used to establish Besovregularity for the inhomogeneous Neumann problem.Theorem 3.4 Let 
 be a bounded Lips
hitz domain in Rd. Let � and p00 be de�ned as inTheorem 2.1. Let w be the solution to4w = F in 
 � Rd; (25)�w�n = 0 on �
;with F 2 (W 2��(Lp0(
)))�1? for some non{integer � > 1=p.(a) Suppose that p00 > p > 1: If � � 1 + 1=p, thenw 2 B~s~� (L~� (
)); 0 < ~s < min��; 1 + 1~� � ; p � ~� > d� 1d+ 1 :(b) Suppose that p � p00: If � � 3=p+ �, thenw 2 B~s~� (L~� (
)); 0 < ~s < min��; 2=p+ � + 1~� � ; p � ~� > d� 12=p+ � + d:Proof: We shall only prove the �rst 
ase in detail. The se
ond 
ase 
an be studiedanalogously.Let us �rst assume that 2 > � � 1+1=p: Let R
(f) denote the restri
tion of a fun
tionf on Rd to 
: By using the Newtonian potential N(x) := Cdjxj2�d, we de�ne~w = N � (R�
F ): (26)Then 4 ~w = 4N � (R�
F ) = R�
F: (27)Therefore we 
an write the solution w to (25) asw = ~w � v on 
; (28)where v is the solution to the homogeneous Neumann problem4v = 0 in 
 � Rd; (29)�v�n = � ~w�n := g on �
:Therefore we have to establish Besov regularity for both, ~w and v. Let us start with~w. It 
an be shown that R�
F 2 W ��2(Lp(Rd)), see [23℄ for details. Hen
e the 
lassi
alellipti
 regularity theory implies that ~w 2 W �(Lp(Rd)) = B�p (Lp(Rd)): We refer to [1℄ forfurther information. Hen
e ~wj
 2 B�p (Lp(
)), and by the embeddings of Besov spa
es:B�p (Lp(
)) ,! B�p (L~� (
)) ,! B~s~� (L~� (
)); we have ~wj
 2 B~s~� (L~� (
)) for any ~s; ~� as inthe statement (a). It remains to establish Besov regularity for v. It 
an be shown thatg 2 B��1p (Lp(
)) for all � < 1, 
ompare again with [23℄. Therefore an appli
ation ofTheorem 3.3 implies thatv 2 B~s~� (L~� (
)); 0 < ~s < 1 + 1~� ; p > ~� > � 2d� 1 + 1��1 = d� 1d+ 1and the result follows. The 
ase � > 2 
an be treated analogously by employing a 
lassi
alextension te
hnique as, e.g., outlined in [11℄.Remark 3.1 We have formulated Theorem 3.4 only for the `interesting' 
ase of a suf-�
iently smooth right{hand side. For smaller values of �, our theory is 
onsistent withTheorem 2.5. 9
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