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Besov Regularity for the Neumann ProblemStephan Dahlke�Fahbereih 3, ZeTeMUniversit�at BremenPostfah 33 04 4028334 BremenGermanyAbstratThis paper is onerned with the regularity of the solutions to the Neumannproblem in Lipshitz domains 
 ontained inRd. Espeially, we onsider the spei�sale Bs� (L� (
)); 1=� = s=d+1=p; of Besov spaes. The regularity of the variationalsolution in these Besov spaes determines the order of approximation that an beahieved by adaptive and nonlinear numerial shemes. We show that the solutionto the Neumann problem is muh smoother in the spei� Besov sale than in theusual Lp{Sobolov sale whih justi�es the use of adaptive shemes. The proofs areperformed by ombining some reent regularity results derived by Zanger [23℄ withsome spei� properties of harmoni Besov spaes.Key Words: Ellipti boundary value problems, adaptive methods, Besov spaes.AMS Subjet Classi�ation: Primary 35B65, seondary 41A46, 46E35.1 IntrodutionQuite reently, the regularity of the solutions to seond order ellipti boundary valueproblems Lu = F in 
 � Rd; (1)u = g on �
;where 
 is a Lipshitz domain, in spei� Besov spaes has been investigated, see, e.g.,[6, 7, 8, 11℄. The aim was to provide some theoretial foundations for the use of adaptiveshemes for the numerial treatment of (1). The order of onvergene as measured inLp of usual (linear) Galerkin shemes obtained, e.g., by �nite element spaes based onuniform grid re�nement, is determined by the regularity of the variational solution u to(1) in the Sobolev sale W s(Lp(
)): Unfortunately, on a general Lipshitz domain, thisSobolev regularity may not be very high, even if the right{hand side F is suÆientlysmooth. This fat is aused by singularities near the boundary. Therefore, to inreaseeÆieny, one often uses adaptive methods, i.e., the underlying grid is only re�ned in�This work has been supported by Deutshe Forshungsgemeinshaft, Grant Da 360/4{1.1



regions where the solution laks smoothness. In this ase, one does not use the wholelinear spaes, hene an adaptive sheme an be interpreted as some kind of nonlinearapproximation. Then the question arises if nonlinear methods indeed provide some gainof eÆieny when ompared with linear shemes. So far, the problem is best understoodfor numerial shemes based on a wavelet basis 	 = f �; � 2 J g. (We refer to one ofthe textbooks [2, 12, 19, 22℄ for the de�nition and the basi properties of wavelets). Anadaptive wavelet sheme approximates the solution u to (1) by a linear ombination of nwavelets. Therefore a natural benhmark for its performane is given by the best n{termapproximation. Then one approximates a funtion f 2 Lp(Rd) by the nonlinear manifoldsMn of all funtions S = X�2� a� �with � � J of ardinality n and studies the error�n(f)Lp(Rd) := infS2Mn kf � SkLp(Rd): (2)For the L2{metri and an orthonormal wavelet basis, the approximation problem (2) hasa simple solution. We order the wavelet oeÆients by their absolute values and hoose� orresponding to the n largest values. (Similar results also hold for other values ofp, see, e.g., [13℄ for details). In ontrary to linear shemes, the order of approximationthat an be ahieved by best n{term approximation is not determined by the Sobolevregularity but by ertain non{lassial sales of funtion spaes. Indeed, the followingharaterization has been derived in [14℄1Xn=1[ns=d�n(f)Lp(Rd)℄� 1n <1 if and only if f 2 Bs� (L� (Rd)); � = (s=d+ 1=p)�1; (3)where the Bs� (L� (Rd)) are the Besov spaes (see, e.g., [15, 20℄ for the de�nition and themain properties of Besov spaes).Of ourse, best n{term approximation is not diretly appliable in our setting forathing the n biggest wavelet oeÆients requires knowing all oeÆients of the unknownsolution u. Nevertheless, quite reently, an implementable adaptive wavelet sheme hasbeen developed whih produes asymptotially the same rate of onvergene as the bestn{term approximation [3℄, see also [4, 9, 10℄. Having these results and the haraterization(3) in mind, it is therefore natural to ask the following question: what is the regularity ofthe solution u to (1) as measured in the sale Bs� (L� (
)); � = (s=d+ 1=p)�1? Espeially,does the solution have a higher smoothness order in these spaes ompared to the usualSobolev sale? For then, adaptive wavelet methods would de�nitely perform better thanlinear shemes and the use of adaptive shemes is ompletely justi�ed. The results in[6, 7, 8, 11℄ indiate that this is indeed the ase for many problems. So far, the deepestresults were obtained for the lassial Dirihlet problem for harmoni funtions:4v = 0 in 
; (4)v = g on �
;see [11℄ for details. One these results are established, it is learly desirable to generalizethem also to the Neumann problem4v = 0 in 
; (5)�v�n = g on �
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However, the proofs in [11℄ made heavy use of a very systemati study of the homogeneousand inhomogeneous Dirihlet problem presented by Jerison and Kenig [17℄. Unfortunately,for the Neumann problem, suh a systemati study was an open problem for a long time.Consequently, in his famous book [18℄, C. Kenig presented this problem as a suggestion forfurther researhes. Soon afterwards, D. Jerison gave this problem to his Ph.D. studentD. Zanger who solved it ompletely [23, 24℄. Therefore we an now use his results toestablish Besov regularity for both, the homogeneous and the inhomogeneous Neumannproblem, and this is the main objetive of this note.This paper is organized as follows. In Setion 2, we reall Zanger's developments asfar as they are needed for our purposes. Then, in Setion 3, we explain how these resultsan be exploited to establish nonlassial Besov regularity.2 Classial Regularity ResultsIn this setion, we want to summarize some of Zanger's results as far as they are neededfor our purposes. The �rst step is to introdue the spaeBsp(Lp(�
))1? := fh 2 Bsp(Lp(�
)) j h(1) = 0g: (6)Then the main result for the Neumann problem reads as follows.Theorem 2.1 Consider � suh that 0 < � � 1: De�ne p0 and p00 by 1=p0 = (1+ �)=2 and1=p00 = (1� �)=2: Let � and p be numbers satisfying one of the following:(a) p0 < p < p00 and 0 < � < 1(b) 1 < p � p0 and 2=p� 1� � < � < 1() p00 � p <1 and 0 < � < 2=p+ �.Let 
 be a bounded Lipshitz domain in Rd for some d � 3 whose omplement isonneted. There exists � depending only on the Lipshitz onstant of 
 suh that forg 2 B��1p (Lp(�
))1? there exists a unique solution to the Neumann problem4v = 0 in 
; (7)�v�n = g on �
;whih satis�es v 2 B�+1=pp (Lp(
)):For later use, let us briey sketh the idea of the proof. It an be performed by ombiningestimates for the homogeneous Dirihlet problem with those for the operator sendingNeumann boundary values to the Dirihlet boundary values of the harmoni funtionexhibiting those Neumann boundary values, loosely speaking the inverse of the Calder�onoperator. We start by realling the lassial method of layer potentials to solve theNeumann problem. We de�ne the nontangential one �a(Q) for a > 0 via�a(Q) := fX 2 
 j jX �Qj < (1 + a)dist(X; �
)g: (8)If u is a funtion on 
 we may de�ne its nontangential maximal funtionM(u) by settingM(u)(Q) := supfju(P )j j P 2 �1(Q)g: (9)3



We say that u as a nontangential limit at Q 2 �
 if there is a �nite, well{de�ned limitas P �! Q from within �a(Q) for all a > 0: Furthermore, given h 2 L1(�
), its singlelayer potential is the funtion de�ned viaSh(X) := �1!d(d� 2) Z�
 h(Q)jX �Qj(d�2) d�(Q); (10)where !d is the surfae area of the unit sphere in Rd. We also need the operatorsK�h(P ) := p.v. 1!d Z�
 hP �Q; n(P )ijP �Qjd h(Q)d�(Q); (11)T := 12I �K�: (12)Here n(P ) learly denotes the outward unit normal vetor on �
: Then the solutions tothe Neumann problem an be onstruted as follows, see Dahlberg and Kenig [5℄ andVerhota [21℄ for details.Theorem 2.2 Let 
 � Rd be a bounded Lipshitz domain whose omplement is on-neted. Then there is � = �(
) > 0 suh that, whenever 1 < p < 2 + Æ; T is an invertiblemapping from Lp(�
)1? onto Lp(�
)1?, and S is an invertible mapping from Lp(�
) ontoW 1(Lp(
)): Moreover, given g 2 Lp(�
)1? with 1 < p < 2 + Æ and writing v = ST�1g,i.e., v(X) = 1!d(d� 2) Z�
 jX �Qj2�d(12I �K�)�1(g)(Q)d�(Q); (13)it follows that v is the unique (modulo onstants) harmoni funtion on 
 suh that thenontangential maximal funtionM(rv) is bounded in Lp(�
) and �v�n = g nontangentiallya.e. on �
: Finally, we have kM(ru)kLp(�
) � CkgkLp(�
): (14)In order to determine the Dirihlet boundary values of our single layer potentials one hasProposition 2.1 If h 2 L1(�
) then Sh(X) �! Sh(Q) as X �! Q nontangentiallyfor a.e. Q 2 �
: In partiular, if 1 < p < 2 + Æ, then for all g 2 Lp(�
)1? ; v(X) =ST�1g(X) �! ST�1g(Q) for a.e. Q.For the proof, we refer to [24℄. Consequently, for 1 < p < 2+ Æ we may de�ne the inverseCalder�on or Neumann to Dirihlet operator � : Lp(�
)1? �!W 1(Lp(�
)) by setting�(g) := (ST�1(g))j�
: (15)One of the main results in [23℄ states that the inverse Calder�on operator moreover atsas a bounded operator on a whole sale of Besov spaes.Theorem 2.3 There exists � with 0 < � � 1 so that the inverse Calder�on operator �introdued in (15) satis�es k�gkB�p (Lp(�
)) � CkgkB��1p (Lp(�
)); (16)provided(a) p0 < p < p00 and 0 < � < 1 4



(b) 1 < p � p00 and 2=p� 1� � < � < 1() p00 < p <1 and 0 < � < 2=p+ �,wherein 1=p0 = (1 + �)=2; 1=p00 = (1� �)=2:The proof of Theorem 2.1 now follows by ombining Theorem 2.3 with the followingfundamental result for the Dirihlet problem whih was proved by Jerison and Kenig [17℄.Theorem 2.4 Consider � suh that 0 < � � 1: De�ne p0 and p00 by 1=p0 = (1+ �)=2 and1=p00 = (1� �)=2: Let � and p be numbers satisfying one of the following:(a) p0 < p < p00 and 0 < � < 1(b) 1 < p � p0 and 2=p� 1� � < � < 1() p00 � p <1 and 0 < � < 2=p+ �.Let 
 be a bounded Lipshitz domain in Rd for some d � 3: There exists � depending onlyon the Lipshitz onstant of 
 suh that for every g 2 B�p (Lp(�
)) there exists a uniqueharmoni funtion v suh that Tr v = g and v 2 B�+1=pp (Lp(
)): Moreover,kvkB�+1=pp (Lp(
)) � CkgkB�p (Lp(�
)): (17)The Theorems 2.1 and 2.3 an also be used to derive a regularity result for the inhomo-geneous Neumann problem 4w = F in 
; (18)�w�n = 0 on �
:Indeed, by a judiious homogenization proedure, (18) an be redued to a problem ofthe form (7). For a detailed elaboration of these ideas, we refer again to [23℄ where thefollowing fundamental result is proved, see also Setion 3.Theorem 2.5 Let 
 be a bounded Lipshitz domain in Rd; d � 3, and let 1 < p < 1and 1=p + 1=p0 = 1. There is �; 0 < � � 1; depending only on the Lipshitz onstant of
, suh that, for every F 2 (W 2��(Lp0(
))�1?, there exists a solution w 2 W �(Lp(
)) tothe inhomogeneous Neumann problem (18) provided one of the following holds:(a) p0 < p < p00 and 1=p < � < 1 + 1=p(b) 1 < p � p00 and 3=p� 1� � < � < 1 + 1=p() p00 � p <1 and 1=p < � < 3=p+ �wherein 1=p0 = 1=2+ �=2 and 1=p00 = 1=2� �=2: Moreover, for all F 2 (W 2��(Lp0(
)))�1?we have the extimate kwkW�(Lp(
)) � CkFk(W 2��(Lp0 (
)))� : (19)Finally, modulo onstants, this solution is unique.Remark 2.1 i.) The spae (W 2��(Lp0(
)))�1? is learly de�ned analogously to (6).ii.) Quite reently, similar results were also derived by Fabes, Mendez, and Mitrea [16℄.5



3 Nonlassial Regularity ResultsIn this setion, we want to derive some nonlassial regularity results for the Neumannproblem, i.e., we want to estimate the regularity of the solution as measured in the spei�Besov sale Bs� (L� (
)); 1=� = s=d + 1=p; whih determines the approximation order ofadaptive numerial shemes. Let us �rst disuss the homogeneous ase.Theorem 3.1 Let 
 be a bounded Lipshitz domain in Rd; d � 3; whose omplement isonneted. Let v be the solution to the Neumann problem4v = 0 on 
 � Rd; (20)�v�n = g on �
;where g 2 B��1p (Lp(�
)) and � and p satisfy the onditions of Theorem 2.1. Thenv 2 Bs� (L� (
)); � =  sd + 1p!�1 ; 0 < s < (�+ 1=p)d(d� 1) : (21)Proof: The proof an be performed by ombining Theorem 2.1 with the following non-lassial regularity result proved in [11℄ whih states a spei� property of harmoni Besovspaes.Theorem 3.2 Let 
 be a bounded Lipshitz domain in Rd. If v is an harmoni funtionon 
 whih is in the Besov lass B�p (Lp(
)), for some 1 < p <1 and � > 0, thenv 2 Bs� (L� (
)); � =  sd + 1p!�1 ; 0 < s < �d(d� 1) : (22)Now Theorem 2.1 implies that v 2 B�+1=pp (Lp(
)): However, the solution v to (20) islearly an harmoni funtion. Therefore an appliation of Theorem 3.2 proves the asser-tion.Theorem 3.1 says that we indeed gain regularity in the sale Bs� (L� (
)); 1=� = s=d+1=p; ompared with the usual sale Bsp(Lp(
)); s > 0; sine the maximal smoothnessparameter aording to Theorem 2.1 is multiplied by d=(d � 1). Consequently, the useof adaptive shemes is ompletely justi�ed. By interpolation and embeddings for Besovspaes, we an moreover onlude that v is in a family of Besov spaes B~s~� (L~� (
)) for aertain range of the parameters ~� and ~s. This is depited in Figure 1 for the speial asep = 2, d = 3: If g 2 L2(�
), then v is in B~s~� (L~� (
)) whenever (1=~� ; ~s) is in the interior ofthe quadrilateral with verties (1=2; 0), (1=2; 3=2), (1:25; 0), (1:25; 2:25). The heavy lineonneting (1=2; 0) to (1:25; 2:25) orresponds to the spaes Bs� (L� (
)) of Theorem 3.1.
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Figure 1: Regularity spaes aording to Theorem 3.1, g 2 L2(�
):A further improvement of the smoothness index for v an be obtained by repeatedlyapplying Theorem 3.2. Indeed, if � and p satisfy the onditions of Theorem 2.1, then weknow that v 2 Bs� (L� (
)); � =  sd + 1p!�1 ; 0 < s < (�+ 1=p)dd� 1 ;see (21). If 1�1 := �d� 1 + 1p  dd� 1! < 1;we may apply Theorem 3.2 for another time whih yieldsv 2 Bs� (L� (
)); � = �sd + 1�1��1 ; 0 < s < (�+ 1=p)d2(d� 1)2 :We an always keep on going until � � 1: By this kind of bootstrapping arguments, wealways obtain a regularity result for � < 1: A slightly more sophistiated version of thebootstrapping strategy yields the following result.Theorem 3.3 Let 
 be a bounded Lipshitz domain. If v is the solution to (20) whereg 2 B��1p (Lp(
)) and � and p satisfy the onditions of Theorem 2.1, thenv 2 B~s~� (L~� (
)); 0 < ~s < � + 1~� ; p � ~� > � �; � � := ��+ 1d� 1 + 1��1 : (23)
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Proof: We �rst observe that the ritial value for s in (21) is exatly given by theintersetion of the lines s = � + 1� and s = d� � dp:Consequently, if we apply Theorem 3.2 repeatedly and use interpolation and embeddingtheorems for Besov spaes, we an onlude thatv 2 B~s~� (L~� (
)); ~s < � + 1~� ; p � ~� > 1: (24)For any ~� satisfying the ondition in (24), we an apply Theorem 3.2 for another timeand obtain v 2 Bs� (L� (
)); s < d(� + 1=~�)d� 1 ; 1� = sd + 1~� :Sine � + 1� � = dd� 1(� + 1);the result follows again by interpolation and embeddings.As an example, let us again onsider the ase p = 2; d = 3; and g 2 L2(�
): Theorem3.3 gives that v is in B~s~� (L~� (
)) for all ~s and ~� suh that (1=~� ; ~s) is in the shaded regionof Figure 2.
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Figure 2: Regularity spaes aording to Theorem 3.3, g 2 L2(�
):8



The results stated in the Theorems 3.1 and 3.3 an also be used to establish Besovregularity for the inhomogeneous Neumann problem.Theorem 3.4 Let 
 be a bounded Lipshitz domain in Rd. Let � and p00 be de�ned as inTheorem 2.1. Let w be the solution to4w = F in 
 � Rd; (25)�w�n = 0 on �
;with F 2 (W 2��(Lp0(
)))�1? for some non{integer � > 1=p.(a) Suppose that p00 > p > 1: If � � 1 + 1=p, thenw 2 B~s~� (L~� (
)); 0 < ~s < min��; 1 + 1~� � ; p � ~� > d� 1d+ 1 :(b) Suppose that p � p00: If � � 3=p+ �, thenw 2 B~s~� (L~� (
)); 0 < ~s < min��; 2=p+ � + 1~� � ; p � ~� > d� 12=p+ � + d:Proof: We shall only prove the �rst ase in detail. The seond ase an be studiedanalogously.Let us �rst assume that 2 > � � 1+1=p: Let R
(f) denote the restrition of a funtionf on Rd to 
: By using the Newtonian potential N(x) := Cdjxj2�d, we de�ne~w = N � (R�
F ): (26)Then 4 ~w = 4N � (R�
F ) = R�
F: (27)Therefore we an write the solution w to (25) asw = ~w � v on 
; (28)where v is the solution to the homogeneous Neumann problem4v = 0 in 
 � Rd; (29)�v�n = � ~w�n := g on �
:Therefore we have to establish Besov regularity for both, ~w and v. Let us start with~w. It an be shown that R�
F 2 W ��2(Lp(Rd)), see [23℄ for details. Hene the lassialellipti regularity theory implies that ~w 2 W �(Lp(Rd)) = B�p (Lp(Rd)): We refer to [1℄ forfurther information. Hene ~wj
 2 B�p (Lp(
)), and by the embeddings of Besov spaes:B�p (Lp(
)) ,! B�p (L~� (
)) ,! B~s~� (L~� (
)); we have ~wj
 2 B~s~� (L~� (
)) for any ~s; ~� as inthe statement (a). It remains to establish Besov regularity for v. It an be shown thatg 2 B��1p (Lp(
)) for all � < 1, ompare again with [23℄. Therefore an appliation ofTheorem 3.3 implies thatv 2 B~s~� (L~� (
)); 0 < ~s < 1 + 1~� ; p > ~� > � 2d� 1 + 1��1 = d� 1d+ 1and the result follows. The ase � > 2 an be treated analogously by employing a lassialextension tehnique as, e.g., outlined in [11℄.Remark 3.1 We have formulated Theorem 3.4 only for the `interesting' ase of a suf-�iently smooth right{hand side. For smaller values of �, our theory is onsistent withTheorem 2.5. 9



Referenes[1℄ S. Agmon, A. Douglis, and L. Nierenberg, Estimates near the boundary for solutionsto ellipti partial di�erential equations satisfying general boundary onditions, I.,Comm. Pure Appl. Math. 12 (1959), 623{727.[2℄ C.K. Chui, An Introdution to Wavelets, Aademi Press, Boston, 1992.[3℄ A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for ellipti operatorequations { Convergene rates, Math. Comp. 70 (2001), 27{75.[4℄ A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods II: Beyond theellipti ase, IGPM{Preprint No. 199, RWTH Aahen, 2000.[5℄ B.E.J. Dahlberg and C.E. Kenig, Hardy spaes and the Neumann problem in Lp forLaplae's equation in Lipshitz domains, Annals of Math. 125 (1987), 437{466.[6℄ S. Dahlke, Wavelets: Constrution Priniples and Appliations to the NumerialTreatment of Operator Equations, Shaker Verlag, Aahen, 1997.[7℄ S. Dahlke, Besov regularity for seond order ellipti boundary value problems withvariable oeÆients, Manusripta Math. 95 (1998), 59{77.[8℄ S. Dahlke, Besov regularity for ellipti boundary value problems in polygonal domains,Appl. Math. Letters 12 (1999), 31{36.[9℄ S. Dahlke, W. Dahmen, R. Hohmuth, and R. Shneider, Stable multisale bases andloal error estimation for ellipti problems, Appl. Numer. Math. 8 (1997), 21{47.[10℄ S. Dahlke, W. Dahmen, and K. Urban, Adaptive wavelet methods for saddle pointproblems { Optimal onvergene rates, Report 01{07, Zentrum f�ur Tehnomathe-matik, Universit�at Bremen, 2001.[11℄ S. Dahlke and R. DeVore, Besov regularity for ellipti boundary value problems,Comm. Partial Di�erential Equations 22(1&2) (1997), 1{16.[12℄ I. Daubehies, Ten Letures on Wavelets, CBMS{NSF Regional Conferene Series inApplied Math. 61, SIAM, Philadelphia, 1992.[13℄ R. DeVore, Nonlinear approximation, Ata Numeria 7 (1998), 51{150.[14℄ R. DeVore, B. Jawerth, and V. Popov, Compression of wavelet deompositions, Amer.J. Math. 114 (1992), 737{785.[15℄ R. DeVore and V. Popov, Interpolation of Besov spaes, Trans. Amer. Math. So.305 (1988), 397{414.[16℄ E. Fabes, O. Mendez, and M. Mitrea, Boundary layers on Sobolev{Besov spaes andPoisson's equation for the Laplaian in Lipshitz domains, J. of Funt. Anal. 159(1998), 323{368.[17℄ D. Jerison and C.E. Kenig, The inhomogeneous Dirihlet problem in Lipshitz do-mains, J. of Funt. Anal. 130 (1995), 161{219.10



[18℄ C.E. Kenig, Harmoni Analysis Tehniques for Seond Order Ellipti Boundary ValueProblems, CBMS Regional Conferene Series in Math. 83, AMS, Providene, RhodeIsland, 1994.[19℄ Y. Meyer, Wavelets and Operators, Cambridge Studies in Advaned Mathematisvol. 37, Cambridge, 1992.[20℄ H. Triebel, Interpolation Theory, Funtion Spaes, Di�erential Operators, North{Holland, Amsterdam, 1978.[21℄ G. Verhota, Layer potentials and regularity of the Dirihlet problem for Laplae'sequation, J. of Funt. Anal. 59 (1984), 572{611.[22℄ P. Wojtaszzyk, A Mathematial Introdution to Wavelets, Cambridge UniversityPress, 1997.[23℄ D. Zanger, The inhomogeneous Neumann problem in Lipshitz domains, Comm.Partial Di�erential Equations 25(9&10) (2000), 1771{1808.[24℄ D. Zanger, Regularity and Boundary Variations for the Neumann Problem, Ph.D.thesis, Massahusetts Institute of Tehnology, 1997.

11



Berihte aus der Tehnomathematik ISSN 1435-7968http://www.math.uni-bremen.de/zetem/berihte.html| Vertrieb durh den Autor |Reports Stand: 10. September 200198{01. Peter Benner, Heike Fa�bender:An Impliitly Restarted Sympleti Lanzos Method for the Sympleti Eigenvalue Problem,Juli 1998.98{02. Heike Fa�bender:Sliding Window Shemes for Disrete Least-Squares Approximation by Trigonometri Poly-nomials, Juli 1998.98{03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Ort��:Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.98{04. Peter Benner:Computational Methods for Linear{Quadrati Optimization, August 1998.98{05. Peter Benner, Ralph Byers, Enrique S. Quintana-Ort��, Gregorio Quintana-Ort��:Solving Algebrai Riati Equations on Parallel Computers Using Newton's Method withExat Line Searh, August 1998.98{06. Lars Gr�une, Fabian Wirth:On the rate of onvergene of in�nite horizon disounted optimal value funtions, November1998.98{07. Peter Benner, Volker Mehrmann, Hongguo Xu:A Note on the Numerial Solution of Complex Hamiltonian and Skew-Hamiltonian Eigen-value Problems, November 1998.98{08. Eberhard B�ansh, Burkhard H�ohn:Numerial simulation of a silion oating zone with a free apillary surfae, Dezember 1998.99{01. Heike Fa�bender:The Parameterized SR Algorithm for Sympleti (Buttery) Matries, Februar 1999.99{02. Heike Fa�bender:Error Analysis of the sympleti Lanzos Method for the sympleti Eigenvalue Problem,M�arz 1999.99{03. Eberhard B�ansh, Alfred Shmidt:Simulation of dendriti rystal growth with thermal onvetion, M�arz 1999.99{04. Eberhard B�ansh:Finite element disretization of the Navier-Stokes equations with a free apillary surfae,M�arz 1999.99{05. Peter Benner:Mathematik in der Berufspraxis, Juli 1999.99{06. Andrew D.B. Paie, Fabian R. Wirth:Robustness of nonlinear systems and their domains of attration, August 1999.



99{07. Peter Benner, Enrique S. Quintana-Ort��, Gregorio Quintana-Ort��:Balaned Trunation Model Redution of Large-Sale Dense Systems on Parallel Comput-ers, September 1999.99{08. Ronald St�over:Colloation methods for solving linear di�erential-algebrai boundary value problems, Septem-ber 1999.99{09. Huseyin Akay:Modelling with Orthonormal Basis Funtions, September 1999.99{10. Heike Fa�bender, D. Steven Makey, Niloufer Makey:Hamilton and Jaobi ome full irle: Jaobi algorithms for strutured Hamiltonian eigen-problems, Oktober 1999.99{11. Peter Benner, Vinente Hern�andez, Antonio Pastor:On the Kleinman Iteration for Nonstabilizable System, Oktober 1999.99{12. Peter Benner, Heike Fa�bender:A Hybrid Method for the Numerial Solution of Disrete-Time Algebrai Riati Equations,November 1999.99{13. Peter Benner, Enrique S. Quintana-Ort��, Gregorio Quintana-Ort��:Numerial Solution of Shur Stable Linear Matrix Equations on Multiomputers, November1999.99{14. Eberhard B�ansh, Karol Mikula:Adaptivity in 3D Image Proessing, Dezember 1999.00{01. Peter Benner, Volker Mehrmann, Hongguo Xu:Perturbation Analysis for the Eigenvalue Problem of a Formal Produt of Matries, Januar2000.00{02. Ziping Huang:Finite Element Method for Mixed Problems with Penalty, Januar 2000.00{03. Gianfraneso Martinio:Reursive mesh re�nement in 3D, Februar 2000.00{04. Eberhard B�ansh, Christoph Egbers, Oliver Meinke, Nioleta Surtu:Taylor-Couette System with Asymmetri Boundary Conditions, Februar 2000.00{05. Peter Benner:Sympleti Balaning of Hamiltonian Matries, Februar 2000.00{06. Fabio Camilli, Lars Gr�une, Fabian Wirth:A regularization of Zubov's equation for robust domains of attration, M�arz 2000.00{07. Mihael Wol�, Eberhard B�ansh, Mihael B�ohm, Domini Davis:Modellierung der Abk�uhlung von Stahlbrammen, M�arz 2000.00{08. Stephan Dahlke, Peter Maa�, Gerd Teshke:Interpolating Saling Funtions with Duals, April 2000.00{09. Johen Behrens, Fabian Wirth:A globalization proedure for loally stabilizing ontrollers, Mai 2000.



00{10. Peter Maa�, Gerd Teshke, Werner Willmann, G�unter Wollmann:Detetion and Classi�ation of Material Attributes { A Pratial Appliation of WaveletAnalysis, Mai 2000.00{11. Stefan Boshert, Alfred Shmidt, Kunibert G. Siebert, Eberhard B�ansh, Klaus-WernerBenz, Gerhard Dziuk, Thomas Kaiser:Simulation of Industrial Crystal Growth by the Vertial Bridgman Method, Mai 2000.00{12. Volker Lehmann, Gerd Teshke:Wavelet Based Methods for Improved Wind Pro�ler Signal Proessing, Mai 2000.00{13. Stephan Dahlke, Peter Maass:A Note on Interpolating Saling Funtions, August 2000.00{14. Ronny Ramlau, Rolf Clakdoyle, Fr�ed�eri Noo, Girish Bal:Aurate Attenuation Corretion in SPECT Imaging using Optimization of Bilinear Fun-tions and Assuming an Unknown Spatially-Varying Attenuation Distribution, September2000.00{15. Peter Kunkel, Ronald St�over:Symmetri olloation methods for linear di�erential-algebrai boundary value problems,September 2000.00{16. Fabian Wirth:The generalized spetral radius and extremal norms, Oktober 2000.00{17. Frank Stenger, Ahmad Reza Naghsh-Nilhi, Jenny Niebsh, Ronny Ramlau:A uni�ed approah to the approximate solution of PDE, November 2000.00{18. Peter Benner, Enrique S. Quintana-Ort��, Gregorio Quintana-Ort��:Parallel algorithms for model redution of disrete{time systems, Dezember 2000.00{19. Ronny Ramlau:A steepest desent algorithm for the global minimization of Tikhonov{Phillips funtional,Dezember 2000.01{01. EÆient methods in hyperthermia treatment planning:Torsten K�ohler, Peter Maass, Peter Wust, Martin Seebass, Januar 2001.01{02. Parallel Algorithms for LQ Optimal Control of Disrete-Time Periodi Linear Systems:Peter Benner, Ralph Byers, Rafael Mayo, Enrique S. Quintana-Ort��, Viente Hern�andez,Februar 2001.01{03. Peter Benner, Enrique S. Quintana-Ort��, Gregorio Quintana-Ort��:EÆient Numerial Algorithms for Balaned Stohasti Trunation, M�arz 2001.01{04. Peter Benner, Maribel Castillo, Enrique S. Quintana-Ort��:Partial Stabilization of Large-Sale Disrete-Time Linear Control Systems, M�arz 2001.01{05. Stephan Dahlke:Besov Regularity for Edge Singularities in Polyhedral Domains, Mai 2001.01{06. Fabian Wirth:A linearization priniple for robustness with respet to time-varying perturbations, Mai2001.



01{07. Stephan Dahlke, Wolfgang Dahmen, Karsten Urban:Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergene Rates, Juli2001.01{08. Ronny Ramlau:Morozov's Disrepany Priniple for Tikhonov regularization of nonlinear operators, Juli2001.01{09. Mihael Wol�:Einf�uhrung des Druks f�ur die instation�aren Stokes{Gleihungen mittels der Methode vonKaplan, Juli 2001.01{10. Stephan Dahlke, Peter Maa�, Gerd Teshke:Reonstrution of Reetivity Desities by Wavelet Transforms, August 2001.01{11. Stephan Dahlke:Besov Regularity for the Neumann Problem, August 2001.


