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Abstract

This paper is concerned with the regularity of the solutions to the Neumann
problem in Lipschitz domains Q contained in R?. Especially, we consider the specific
scale BZ(L,(2)), 1/7 = s/d+1/p, of Besov spaces. The regularity of the variational
solution in these Besov spaces determines the order of approximation that can be
achieved by adaptive and nonlinear numerical schemes. We show that the solution
to the Neumann problem is much smoother in the specific Besov scale than in the
usual L,-Sobolov scale which justifies the use of adaptive schemes. The proofs are
performed by combining some recent regularity results derived by Zanger [23] with
some specific properties of harmonic Besov spaces.
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1 Introduction

Quite recently, the regularity of the solutions to second order elliptic boundary value
problems

Lu = F in QCRY (1)
u = g on O0f),

where (2 is a Lipschitz domain, in specific Besov spaces has been investigated, see, e.g.,
6, 7, 8, 11]. The aim was to provide some theoretical foundations for the use of adaptive
schemes for the numerical treatment of (1). The order of convergence as measured in
L, of usual (linear) Galerkin schemes obtained, e.g., by finite element spaces based on
uniform grid refinement, is determined by the regularity of the variational solution u to
(1) in the Sobolev scale W*(L,(€2)). Unfortunately, on a general Lipschitz domain, this
Sobolev regularity may not be very high, even if the right-hand side F' is sufficiently
smooth. This fact is caused by singularities near the boundary. Therefore, to increase
efficiency, one often uses adaptive methods, i.e., the underlying grid is only refined in
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regions where the solution lacks smoothness. In this case, one does not use the whole
linear spaces, hence an adaptive scheme can be interpreted as some kind of nonlinear
approzimation. Then the question arises if nonlinear methods indeed provide some gain
of efficiency when compared with linear schemes. So far, the problem is best understood
for numerical schemes based on a wavelet basis ¥ = {1y, A € J}. (We refer to one of
the textbooks [2, 12, 19, 22] for the definition and the basic properties of wavelets). An
adaptive wavelet scheme approximates the solution u to (1) by a linear combination of n
wavelets. Therefore a natural benchmark for its performance is given by the best n-term
approximation. Then one approximates a function f € Lp(Rd) by the nonlinear manifolds
M, of all functions
S=> ayiy
Ael
with I' C J of cardinality n and studies the error

O'n(f)Lp(Rd) = 5161/1&” ||f - S||Lp(Rd)- (2)

For the Lo—metric and an orthonormal wavelet basis, the approximation problem (2) has
a simple solution. We order the wavelet coefficients by their absolute values and choose
[' corresponding to the n largest values. (Similar results also hold for other values of
p, see, e.g., [13] for details). In contrary to linear schemes, the order of approximation
that can be achieved by best n-term approximation is not determined by the Sobolev
regularity but by certain non—classical scales of function spaces. Indeed, the following
characterization has been derived in [14]

i[ns/dan(f)Lp(Rd)]T% < oo if and only if f € BS(L,(R%), 7=(s/d+1/p)~", (3)

n=1

where the B#(L,(R?)) are the Besov spaces (see, e.g., [15, 20] for the definition and the
main properties of Besov spaces).

Of course, best n—term approximation is not directly applicable in our setting for
catching the n biggest wavelet coefficients requires knowing all coefficients of the unknown
solution u. Nevertheless, quite recently, an implementable adaptive wavelet scheme has
been developed which produces asymptotically the same rate of convergence as the best
n—term approximation [3], see also [4, 9, 10]. Having these results and the characterization
(3) in mind, it is therefore natural to ask the following question: what is the regularity of
the solution u to (1) as measured in the scale B:(L,(Q)), 7 = (s/d+1/p)~'7 Especially,
does the solution have a higher smoothness order in these spaces compared to the usual
Sobolev scale? For then, adaptive wavelet methods would definitely perform better than
linear schemes and the use of adaptive schemes is completely justified. The results in
6, 7, 8, 11] indicate that this is indeed the case for many problems. So far, the deepest
results were obtained for the classical Dirichlet problem for harmonic functions:

Av = 0 in £, (4)
v = g on O0f,

see [11] for details. Once these results are established, it is clearly desirable to generalize
them also to the Neumann problem

Av = 0 in Q, (5)
ov
o =Y on 0f2.



However, the proofs in [11] made heavy use of a very systematic study of the homogeneous
and inhomogeneous Dirichlet problem presented by Jerison and Kenig [17]. Unfortunately,
for the Neumann problem, such a systematic study was an open problem for a long time.
Consequently, in his famous book [18], C. Kenig presented this problem as a suggestion for
further researches. Soon afterwards, D. Jerison gave this problem to his Ph.D. student
D. Zanger who solved it completely [23, 24]. Therefore we can now use his results to
establish Besov regularity for both, the homogeneous and the inhomogeneous Neumann
problem, and this is the main objective of this note.

This paper is organized as follows. In Section 2, we recall Zanger’s developments as
far as they are needed for our purposes. Then, in Section 3, we explain how these results
can be exploited to establish nonclassical Besov regularity.

2 Classical Regularity Results

In this section, we want to summarize some of Zanger’s results as far as they are needed
for our purposes. The first step is to introduce the space

By(Lp(092))11 = {h € By(L,(09)) | h(1) = 0}. (6)
Then the main result for the Neumann problem reads as follows.

Theorem 2.1 Consider € such that 0 < € < 1. Define py and py by 1/py = (1 +€)/2 and
1/py = (1 —€)/2. Let o and p be numbers satisfying one of the following:

(a) po <p<pjand )< a<l
(b) 1l<p<pyand2/p—1l—-e<a<l
(c) phy <p<ooand < a<2/p+e.

Let Q be a bounded Lipschitz domain in R for some d > 3 whose complement is
connected. There exists € depending only on the Lipschitz constant of € such that for
g € By H(Ly(0N2))11 there ewists a unique solution to the Neumann problem

Nv = 0 in 9, (7)
2—:; = g on 04,

which satisfies v € BSTHP(L,(1)).

For later use, let us briefly sketch the idea of the proof. It can be performed by combining
estimates for the homogeneous Dirichlet problem with those for the operator sending
Neumann boundary values to the Dirichlet boundary values of the harmonic function
exhibiting those Neumann boundary values, loosely speaking the inverse of the Calderén
operator. We start by recalling the classical method of layer potentials to solve the
Neumann problem. We define the nontangential cone I',(Q) for a > 0 via

F(Q) ={XeQ||X-Q| < (1+a)dist(X,00)}. (8)
If u is a function on 2 we may define its nontangential maximal function M (u) by setting
M(u)(Q) := sup{|u(P)| | P € I'(Q)}. (9)
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We say that u as a nontangential limit at () € 0€) if there is a finite, well-defined limit
as P — @ from within [',(Q) for all a > 0. Furthermore, given h € L,(09), its single
layer potential is the function defined via

Sh(X) = Wd(d_l_ 5 /8 T f(gf(dm do(Q), (10)

where wy is the surface area of the unit sphere in R%. We also need the operators

K*h(P) = p.v.wid B (P |;?’g|(f ) h(@)do (@), (11)
T = %I—K*. (12)

Here n(P) clearly denotes the outward unit normal vector on 0€2. Then the solutions to
the Neumann problem can be constructed as follows, see Dahlberg and Kenig [5] and
Verchota [21] for details.

Theorem 2.2 Let Q2 C R? be a bounded Lipschitz domain whose complement is con-
nected. Then there is € = €(2) > 0 such that, whenever 1 < p < 2+ 4, T is an invertible
mapping from L,(0€) 1 onto L,(0S),+, and S is an invertible mapping from L,(0S2) onto
WY(L,(Q)). Moreover, given g € L,(02)11 with 1 < p < 240 and writing v = ST g,
i.e.,

o) = g [ X - QPG = 1) (0 (@o (@) (13

it follows that v is the unique (modulo constants) harmonic function on Q such that the
nontangential mazimal function M (Vv) is bounded in L,(092) and g—:’l = g nontangentially
a.e. on 0S). Finally, we have

[M (V)00 < Cllgllr,oa)- (14)
In order to determine the Dirichlet boundary values of our single layer potentials one has

Proposition 2.1 If h € L(092) then Sh(X) — Sh(Q) as X — @ nontangentially
for a.e. Q € 0. In particular, if 1 < p < 246, then for all g € L,(0Q),1, v(X) =
ST 'g(X) — ST 'g(Q) for a.e. Q.

For the proof, we refer to [24]. Consequently, for 1 < p < 2+ ¢ we may define the inverse
Calderdn or Neumann to Dirichlet operator T : L,(0);. — W'(L,(02)) by setting

T(g9) == (ST *(9))oq- (15)

One of the main results in [23] states that the inverse Calderén operator moreover acts
as a bounded operator on a whole scale of Besov spaces.

Theorem 2.3 There exists € with 0 < € < 1 so that the inverse Calderén operator T
introduced in (15) satisfies

1 gllBg(r,00) < Cllgll a1, 00y (16)
provided

(a) po <p<pyand )< a<l



(b)) 1<p<pyand2/p—1—-e<a<l
(c) py <p<ooand0 < a<2/p+e,
wherein 1/py = (14+¢€)/2, 1/py = (1 —¢€)/2.

The proof of Theorem 2.1 now follows by combining Theorem 2.3 with the following
fundamental result for the Dirichlet problem which was proved by Jerison and Kenig [17].

Theorem 2.4 Consider € such that 0 < € < 1. Define py and py by 1/py = (1 +¢€)/2 and
1/py = (1—¢€)/2. Let a and p be numbers satisfying one of the following:

(a) po <p<pyand )< a<l
(b) 1<p<pyand2/p—1—-e<a<l
(¢c) ph <p<ooand < a<2/p+e.

Let Q be a bounded Lipschitz domain in R for some d > 3. There exists € depending only
on the Lipschitz constant of S such that for every g € By(L,(0S2)) there exists a unique

harmonic function v such that Trv =g and v € BST/P(L,(2)). Moreover,
[0l getrro iz, ayy < CllgllBg Ly 00)- (17)

The Theorems 2.1 and 2.3 can also be used to derive a regularity result for the inhomo-
geneous Neumann problem

Aw = F in (18)
0
8—1711} = 0 on O09.

Indeed, by a judicious homogenization procedure, (18) can be reduced to a problem of
the form (7). For a detailed elaboration of these ideas, we refer again to [23] where the
following fundamental result is proved, see also Section 3.

Theorem 2.5 Let Q be a bounded Lipschitz domain in R%, d > 3, and let 1 < p < oo
and 1/p+1/p' =1. There is e, 0 < € < 1, depending only on the Lipschitz constant of
Q, such that, for every F € (W *(Ly(Q))iL, there exists a solution w € W*(L,(Q)) to
the inhomogeneous Neumann problem (18) provided one of the following holds:

(a) po <p<ppandl/p<a<l+1/p
(b) l<p<pyand3/p—1l—e<a<l+1/p
(c) phy<p<ooandl/p<a<3/p+e

wherein 1/py = 1/2+¢€/2 and 1/py = 1/2 — €/2. Moreover, for all F € (W* *(Ly(2)))i.
we have the extimate
[wllwew,@) < CIFlweew, @) (19)

Finally, modulo constants, this solution is unique.

Remark 2.1 i.) The space (W?*=*(L,(Q)));. is clearly defined analogously to (6).
ii.) Quite recently, similar results were also derived by Fabes, Mendez, and Mitrea [16].



3 Nonclassical Regularity Results

In this section, we want to derive some nonclassical regularity results for the Neumann
problem, i.e., we want to estimate the regularity of the solution as measured in the specific
Besov scale B:(L.(2)), 1/7 = s/d + 1/p, which determines the approximation order of
adaptive numerical schemes. Let us first discuss the homogeneous case.

Theorem 3.1 Let ) be a bounded Lipschitz domain in R®, d > 3, whose complement is
connected. Let v be the solution to the Neumann problem

Av = 0 on QCRY (20)
% = g on 09,

where g € By (Ly(02)) and a and p satisfy the conditions of Theorem 2.1. Then

s 1 a+1/p)d

v € BI(L,;(Q)), T:<—+5>_, 0<8<((d—1) (21)

d
Proof: The proof can be performed by combining Theorem 2.1 with the following non-
classical regularity result proved in [11] which states a specific property of harmonic Besov
spaces.

Theorem 3.2 Let Q be a bounded Lipschitz domain in R, If v is an harmonic function
on € which is in the Besov class BY(L,(€2)), for some 1 < p < oo and pu > 0, then

s (s 1 - pd
v € BI(L.(Q)), T—<E+Z—9> , 0<8<(d—1)' (22)

Now Theorem 2.1 implies that v € B3*/?(L,(Q2)). However, the solution v to (20) is
clearly an harmonic function. Therefore an application of Theorem 3.2 proves the asser-
tion.

Theorem 3.1 says that we indeed gain regularity in the scale B(L, (1)), 1/7 = s/d+
1/p, compared with the usual scale B;(L,(€2)), s > 0, since the maximal smoothness
parameter according to Theorem 2.1 is multiplied by d/(d — 1). Consequently, the use
of adaptive schemes is completely justified. By interpolation and embeddings for Besov
spaces, we can moreover conclude that v is in a family of Besov spaces BE(Lz(Q2)) for a
certain range of the parameters 7 and §. This is depicted in Figure 1 for the special case
p=2,d=3.1f g € Ly(d9), then v is in B:(L;(£2)) whenever (1/7,3) is in the interior of
the quadrilateral with vertices (1/2,0), (1/2,3/2), (1.25,0), (1.25,2.25). The heavy line
connecting (1/2,0) to (1.25,2.25) corresponds to the spaces B?(L.(€2)) of Theorem 3.1.
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Figure 1: Regularity spaces according to Theorem 3.1, g € Ly(052).

A further improvement of the smoothness index for v can be obtained by repeatedly
applying Theorem 3.2. Indeed, if o and p satisfy the conditions of Theorem 2.1, then we
know that

s 1 a+1/p)d

-1
s _ (
v € BI(L,;(Q)), T—<d+p> , 0<s< T

1__a+1 d <1
n o d—1 p\d-—1 ’

we may apply Theorem 3.2 for another time which yields

see (21). If

s 1\ ! (a+1/p)d?

€ BX(L:(9)), :<— —) , 0< —

v (L), T d+7'1 (d— 1)

We can always keep on going until 7 < 1. By this kind of bootstrapping arguments, we
always obtain a regularity result for 7 < 1. A slightly more sophisticated version of the
bootstrapping strategy yields the following result.

Theorem 3.3 Let Q be a bounded Lipschitz domain. If v is the solution to (20) where
g € By N (Ly(Q?)) and a and p satisfy the conditions of Theorem 2.1, then

: 1 1 -t
veEBi(L:;(Q), 0<s<a+=, p>T>71", 71":= <Z+1 +1> . (23)
= _



Proof: We first observe that the critical value for s in (21) is exactly given by the
intersection of the lines

s=a+ — and 5§ =
T

D

Consequently, if we apply Theorem 3.2 repeatedly and use interpolation and embedding
theorems for Besov spaces, we can conclude that

1 d_d
T

] 1
v € BIL:Q), S<a+=, p>F>1L (24)
T

For any 7 satisfying the condition in (24), we can apply Theorem 3.2 for another time
and obtain

d(Oz+1/7~') 1 S 1
B (L, (9 N
v E T( T( ))7 s < d—]_ ) T d+7~_
Since
+i—i( _|_1)
T T a-1 ’

the result follows again by interpolation and embeddings.

As an example, let us again consider the case p =2, d = 3, and g € Ly(0S2). Theorem
3.3 gives that v is in BE(L;(€2)) for all 5§ and 7 such that (1/7, 3) is in the shaded region
of Figure 2.

1 5
3 L3 2

Figure 2: Regularity spaces according to Theorem 3.3, g € Ly(052).
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The results stated in the Theorems 3.1 and 3.3 can also be used to establish Besov
regularity for the inhomogeneous Neumann problem.

Theorem 3.4 Let Q be a bounded Lipschitz domain in R®. Let € and p)y, be defined as in
Theorem 2.1. Let w be the solution to

Aw = F in QCRY (25)
g—: = 0 on 09,

with F'€ (W* #(Ly(Q)))iL for some non—integer > 1/p.
(a) Suppose that py >p > 1. If p > 1+ 1/p, then

. 1 d—1
w € Bi(L:(92)), O<§<min<u,1+7>, p>T>—0.
T
(b) Suppose that p > py. If p > 3/p + €, then

. 1 d—1
Bi(L:(Q)), 0<3i< '(,2 f>, >F>
w € BZ(Lz(2)) § <min (4, 2/p+et 2 P>
Proof: We shall only prove the first case in detail. The second case can be studied
analogously.
Let us first assume that 2 > p > 1+1/p. Let Rq(f) denote the restriction of a function
f on R? to Q. By using the Newtonian potential N(z) := Cy|z|>~¢, we define

w = N * (R,F). (26)
Then
AW = AN * (RGF) = RGF. (27)
Therefore we can write the solution w to (25) as
w=uw-—-v on €, (28)
where v is the solution to the homogeneous Neumann problem
Av = 0 in QCRY (29)
% = 2—: =g on OS2

Therefore we have to establish Besov regularity for both, @w and v. Let us start with
w. Tt can be shown that RGF € Wr2(L,(R?)), see [23] for details. Hence the classical
elliptic regularity theory implies that @ € W*(L,(R%)) = BY(L,(R?)). We refer to [1] for
further information. Hence w|q € B.(L,(Q2)), and by the embeddings of Besov spaces:
BI(Ly(S2) < BE(Lz(Q)) — Bi(L:(2)), we have w|q € BZ(Lz(2)) for any 5,7 as in
the statement (a). It remains to establish Besov regularity for v. It can be shown that
g € BI7'(Ly(Q)) for all f < 1, compare again with [23]. Therefore an application of
Theorem 3.3 implies that

v € Bi(L:(Q)) 0<§<1+1 p>%>(i+1>1:E
4 ’ 7’ d—1 d+1
and the result follows. The case 1 > 2 can be treated analogously by employing a classical
extension technique as, e.g., outlined in [11].

Remark 3.1 We have formulated Theorem 3.4 only for the ‘interesting’ case of a suf-
ficiently smooth right-hand side. For smaller values of p, our theory is consistent with
Theorem 2.5.



References

[1] S. Agmon, A. Douglis, and L. Nierenberg, Estimates near the boundary for solutions
to elliptic partial differential equations satisfying general boundary conditions, I.,
Comm. Pure Appl. Math. 12 (1959), 623-727.

[2] C.K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.

[3] A.Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator
equations — Convergence rates, Math. Comp. 70 (2001), 27-75.

[4] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods II: Beyond the
elliptic case, IGPM~-Preprint No. 199, RWTH Aachen, 2000.

[5] B.E.J. Dahlberg and C.E. Kenig, Hardy spaces and the Neumann problem in L? for
Laplace’s equation in Lipschitz domains, Annals of Math. 125 (1987), 437-466.

[6] S. Dahlke, Wavelets: Construction Principles and Applications to the Numerical
Treatment of Operator Equations, Shaker Verlag, Aachen, 1997.

[7] S. Dahlke, Besov regularity for second order elliptic boundary value problems with
variable coefficients, Manuscripta Math. 95 (1998), 59-77.

[8] S. Dahlke, Besov regularity for elliptic boundary value problems in polygonal domains,
Appl. Math. Letters 12 (1999), 31-36.

[9] S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale bases and
local error estimation for elliptic problems, Appl. Numer. Math. 8 (1997), 21-47.

[10] S. Dahlke, W. Dahmen, and K. Urban, Adaptive wavelet methods for saddle point
problems — Optimal convergence rates, Report 01-07, Zentrum fiir Technomathe-
matik, Universitat Bremen, 2001.

[11] S. Dahlke and R. DeVore, Besov regularity for elliptic boundary value problems,
Comm. Partial Differential Equations 22(1&2) (1997), 1-16.

[12] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in
Applied Math. 61, SIAM, Philadelphia, 1992.

[13] R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), 51-150.

[14] R. DeVore, B. Jawerth, and V. Popov, Compression of wavelet decompositions, Amer.
J. Math. 114 (1992), 737-785.

[15] R. DeVore and V. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc.
305 (1988), 397-414.

[16] E. Fabes, O. Mendez, and M. Mitrea, Boundary layers on Sobolev—Besov spaces and
Poisson’s equation for the Laplacian in Lipschitz domains, J. of Funct. Anal. 159
(1998), 323-368.

[17] D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz do-
mains, J. of Funct. Anal. 130 (1995), 161-219.

10



(18] C.E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value
Problems, CBMS Regional Conference Series in Math. 83, AMS, Providence, Rhode
Island, 1994.

[19] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics
vol. 37, Cambridge, 1992.

[20] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North—
Holland, Amsterdam, 1978.

[21] G. Verchota, Layer potentials and regularity of the Dirichlet problem for Laplace’s
equation, J. of Funct. Anal. 59 (1984), 572-611.

[22] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge University
Press, 1997.

(23] D. Zanger, The inhomogeneous Neumann problem in Lipschitz domains, Comm.
Partial Differential Equations 25(9&10) (2000), 1771-1808.

[24] D. Zanger, Regularity and Boundary Variations for the Neumann Problem, Ph.D.
thesis, Massachusetts Institute of Technology, 1997.

11



Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte.html
— Vertrieb durch den Autor —

Reports Stand: 10. September 2001

98-01. Peter Benner, Heike Fafibender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Figenvalue Problem,
Juli 1998.

98-02. Heike Falbender:
Sliding Window Schemes for Discrete Least-Squares Approximation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear—Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

98-06. Lars Griine, Fabian Wirth:
On the rate of convergence of infinite horizon discounted optimal value functions, November
1998.

98-07. Peter Benner, Volker Mehrmann, Hongguo Xu:
A Note on the Numerical Solution of Complex Hamiltonian and Skew-Hamiltonian FEigen-
value Problems, November 1998.

98-08. Eberhard Bansch, Burkhard Hohn:
Numerical simulation of a silicon floating zone with a free capillary surface, Dezember 1998.

99-01. Heike Fafbender:
The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar 1999.

99-02. Heike Falbender:
Error Analysis of the symplectic Lanczos Method for the symplectic Eigenvalue Problem,
Marz 1999.

99-03. Eberhard Bénsch, Alfred Schmidt:
Simulation of dendritic crystal growth with thermal convection, Marz 1999.

99-04. Eberhard Bansch:
Finite element discretization of the Navier-Stokes equations with a free capillary surface,
Marz 1999.

99-05. Peter Benner:
Mathematik in der Berufspraxis, Juli 1999.

99-06. Andrew D.B. Paice, Fabian R. Wirth:
Robustness of nonlinear systems and their domains of attraction, August 1999.



99-07. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Comput-
ers, September 1999.

99-08. Ronald Stover:
Collocation methods for solving linear differential-algebraic boundary value problems, Septem-
ber 1999.

99-09. Huseyin Akcay:
Modelling with Orthonormal Basis Functions, September 1999.

99-10. Heike Faflbender, D. Steven Mackey, Niloufer Mackey:
Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigen-
problems, Oktober 1999.

99-11. Peter Benner, Vincente Herndndez, Antonio Pastor:
On the Kleinman Iteration for Nonstabilizable System, Oktober 1999.

99-12. Peter Benner, Heike Faflbender:
A Hybrid Method for the Numerical Solution of Discrete-Time Algebraic Riccati Equations,
November 1999.

99-13. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Numerical Solution of Schur Stable Linear Matriz Equations on Multicomputers, November
1999.

99-14. Eberhard Bansch, Karol Mikula:
Adaptivity in 3D Image Processing, Dezember 1999.

00-01. Peter Benner, Volker Mehrmann, Hongguo Xu:
Perturbation Analysis for the Figenvalue Problem of a Formal Product of Matrices, Januar
2000.

00-02. Ziping Huang:
Finite Element Method for Mized Problems with Penalty, Januar 2000.

00-03. Gianfrancesco Martinico:
Recursive mesh refinement in 3D, Februar 2000.

00-04. Eberhard Bansch, Christoph Egbers, Oliver Meincke, Nicoleta Scurtu:
Taylor-Couette System with Asymmetric Boundary Conditions, Februar 2000.

00-05. Peter Benner:
Symplectic Balancing of Hamiltonian Matrices, Februar 2000.

00-06. Fabio Camilli, Lars Grine, Fabian Wirth:
A regularization of Zubov’s equation for robust domains of attraction, Marz 2000.

00-07. Michael Wolff, Eberhard Bansch, Michael Bohm, Dominic Davis:
Modellierung der Abkuhlung von Stahlbrammen, Marz 2000.

00-08. Stephan Dahlke, Peter Maaf}, Gerd Teschke:
Interpolating Scaling Functions with Duals, April 2000.

00-09. Jochen Behrens, Fabian Wirth:
A globalization procedure for locally stabilizing controllers, Mai 2000.



00-10. Peter Maaf}, Gerd Teschke, Werner Willmann, Gunter Wollmann:
Detection and Classification of Material Attributes — A Practical Application of Wavelet
Analysis, Mai 2000.

00-11. Stefan Boschert, Alfred Schmidt, Kunibert G. Siebert, Eberhard Béansch, Klaus-Werner
Benz, Gerhard Dziuk, Thomas Kaiser:
Simulation of Industrial Crystal Growth by the Vertical Bridgman Method, Mai 2000.

00-12. Volker Lehmann, Gerd Teschke:
Wawvelet Based Methods for Improved Wind Profiler Signal Processing, Mai 2000.

00-13. Stephan Dahlke, Peter Maass:
A Note on Interpolating Scaling Functions, August 2000.

00-14. Ronny Ramlau, Rolf Clackdoyle, Frédéric Noo, Girish Bal:
Accurate Attenuation Correction in SPECT Imaging using Optimization of Bilinear Func-
tions and Assuming an Unknown Spatially-Varying Attenuation Distribution, September
2000.

00-15. Peter Kunkel, Ronald Stover:
Symmetric collocation methods for linear differential-algebraic boundary value problems,
September 2000.

00-16. Fabian Wirth:
The generalized spectral radius and extremal norms, Oktober 2000.

00-17. Frank Stenger, Ahmad Reza Naghsh-Nilchi, Jenny Niebsch, Ronny Ramlau:
A unified approach to the approzimate solution of PDE, November 2000.

00-18. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Parallel algorithms for model reduction of discrete-time systems, Dezember 2000.

00-19. Ronny Ramlau:
A steepest descent algorithm for the global minimization of Tikhonov—Phillips functional,
Dezember 2000.

01-01. Efficient methods in hyperthermia treatment planning:
Torsten Kohler, Peter Maass, Peter Wust, Martin Seebass, Januar 2001.

01-02. Parallel Algorithms for LQ Optimal Control of Discrete-Time Periodic Linear Systems:
Peter Benner, Ralph Byers, Rafael Mayo, Enrique S. Quintana-Orti, Vicente Herndndez,
Februar 2001.

01-03. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Efficient Numerical Algorithms for Balanced Stochastic Truncation, Marz 2001.

01-04. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Partial Stabilization of Large-Scale Discrete-Time Linear Control Systems, Marz 2001.

01-05. Stephan Dahlke:
Besov Regularity for Edge Singularities in Polyhedral Domains, Mai 2001.

01-06. Fabian Wirth:
A linearization principle for robustness with respect to time-varying perturbations, Mai
2001.



01-07. Stephan Dahlke, Wolfgang Dahmen, Karsten Urban:
Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates, Juli
2001.

01-08. Ronny Ramlau:
Morozov’s Discrepancy Principle for Tikhonov regularization of nonlinear operators, Juli
2001.

01-09. Michael Wollff:
Einfihrung des Drucks fir die instationdren Stokes—Gleichungen mittels der Methode von
Kaplan, Juli 2001.

01-10. Stephan Dahlke, Peter Maaf}, Gerd Teschke:
Reconstruction of Reflectivity Desities by Wavelet Transforms, August 2001.

01-11. Stephan Dahlke:
Besov Regularity for the Neumann Problem, August 2001.



