Adaptive Wavelet Methods for Saddle Point Problems™

Stephan Dahlke Reinhard Hochmuth Karsten Urban
February 23, 1999

Abstract

Recently, adaptive wavelet strategies for symmetric, positive definite operators
have been introduced that were proven to converge. This paper is devoted to the
generalization to saddle point problems which are also symmetric, but indefinite.

Firstly, we derive explicit criteria for adaptively refined wavelet spaces in order
to fulfill the Ladyshenskaja—Babuska—Brezzi (LBB) condition and to be fully equili-
brated. Then, we investigate a posteriori error estimates and generalize the known
adaptive wavelet strategy to saddle point problems. The convergence of this strat-
egy for elliptic operators essentially relies on the positive definite character of the
operator. As an alternative, we introduce an adaptive variant of Uzawa’s algorithm
and prove its convergence.

Finally, we detail our results for two concrete examples of saddle point prob-
lems, namely the mixed formulation of the Stokes problem and second order elliptic
boundary value problems where the boundary conditions are appended by Lagrange
multipliers.

Keywords: Adaptive schemes, a posteriori error estimates, multiscale methods, wave-
lets, saddle point problems, Uzawa’s algorithm, Stokes problem, Lagrange multipliers.

AMS subject classification: 42C15, 65N55.

1 Introduction

The variational formulation of many problems in mechanics, physics and technology leads
to a saddle point problem. For example, mixed methods are widely used in structural
and fluid mechanics, [5, 7]. Although significant progress has been made in the numerical
treatment of such equations, they still form a class of challenging problems. The indefinite
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character of saddle point problems requires some care in the choice of the discretization
in order to obtain a stable numerical method. Moreover, the efficient solvers that are
available for symmetric positive definite operators, have to be appropriately modified.

In addition, many saddle point problems show a large scale behaviour in the sense
that the solution has some global (low frequency) part and well localized (high frequency)
details which may come from singularities of the problem data such as jumping coefficients,
non-smooth domains and right—hand sides. These problems demand the use of adaptive
strategies in order to resolve the local details of the solution up to a given accuracy while
preserving efficiency.

In this paper, we treat these problems by means of wavelet analysis. The first applica-
tions of wavelet methods were in image and signal processing. During the last years, they
have also been shown to offer some potential for the numerical treatment of partial dif-
ferential and integral equations, see [13, 21] and the references therein. Among them, the
maybe most important features for adaptive solution methods for saddle point problems
are:

o Convergent and efficient adaptive wavelet methods for positive definite problems.
e Construction of adapted wavelet bases.

Let us describe this in more detail. Recently, an adaptive wavelet strategy has been
introduced for symmetric positive definite operators, [19], see also [18]. It was proven
there that this strategy gives rise to a convergent adaptive algorithm. The original method
in [19] was somewhat modified in [14] resulting in a strategy that in addition was proven
to be asymptotically optimal efficient.

The construction of (biorthogonal) wavelet bases leaves some freedom that can be ex-
ploited to fulfill additional requirements that e.g. are forced by the problem to solve. As
one example, we mention the construction of divergence- and curl-{ree wavelets [37, 39, 41]
and of wavelet trial spaces for the Stokes problem that fulfill the Ladyshenskaja—Babuska—
Brezzi (LBB) condition, [23].

From what is said above it seems natural for us to consider the construction of adap-
tive wavelet strategies for saddle point problems. In this paper, we focus on two main
questions:

o [s it possible to derive general and explicit criteria for adaptive wavelet discretiza-
tions of saddle point problems in order to fulfill (LBB)? Moreover, is the same
possible for the Full Equilibrium Property (FEP) (see Definition 2.3 below)?

o Is there an adaptive wavelet strategy for saddle point problems that can be proven
to converge?

We answer both questions positively in this paper. After collecting some preliminaries
in Section 2, we prove general and explicit criteria for (LBB) and (FEP) in Section 3 in
the context of adaptively chosen biorthogonal wavelet bases. We will detail these criteria
for two concrete examples. In Section 6, we consider the mixed formulation of the Stokes
problem and in Section 7, we treat second order elliptic boundary value problems where
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boundary conditions are appended by Lagrange multipliers. In both examples we exploit
the possibility of adapting wavelet bases to the particular problem.

In order to answer the second question from above, we first introduce an a posteriori
error analysis in Section 4 which in fact is a generalization of the result in [19]. Also, the
adaptive refinement strategy in [19] can be generalized to saddle point problems. It is
still an open problem to prove the convergence of this strategy for saddle point problems.
Alternatively, we propose an adaptive variant of Uzawa’s algorithm in Section 5 and we
prove its convergence. Also this method may be viewed as a generalization of the results
in [19] since the adaptive Uzawa algorithm uses a convergent adaptive strategy for the
elliptic part as a main ingredient.

2 Preliminaries

In this section, we collect all the auxiliary facts on both, on saddle point problems and
on wavelets, that will be needed in the sequel.

2.1 Setting

We consider the following saddle point problem: Given two Hilbert spaces X and M,
some continuous bilinear forms

a: X xX =R, b: X xM—R

and f € X' as well as g € M'. Here, Y’ denotes the dual space for some Banach space Y.
Moreover, we assume X C Hy, M C Hy;, where Hy, Hy; are Hilbert spaces such that

X — Hy = X/, M — Hy — M. (2.1)
Then, one has to determine a pair [u, p] € X x M such that

a(u,v) +b(v,p) = (fv)xxx forallve X,

2.2
b(u, q) = (g,Q)mxm forall g € M, (2.2)

where (-, -)y/xy denotes the dual pairing. We assume the bilinear form «a(-, -) to be elliptic
on the subspace

Vi={ve X :bv,q)=0forallge M} C X,

i.e., there exists a constant a > 0 such that
a(v,v) > allvllk (2.3)

holds for all v € V. Since we are ultimately interested in problems of the kind (2.2) that
are uniquely solvable, we finally assume that X and M fulfill the inf-sup condition:

b
inf sup 29
9€M yex ||v||x |lq||nm

(2.4)
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for some constant 3 > 0.
The following equivalent formulation will be very useful for our analysis. Defining the
operators

A X = X', (Au,v)xixx = a(u,v), veEX,
B: X =M, (Bu,q)ymxyu = blu,q), q€ M,
B M — X', (B'p,v)xixx := blv,p), veEX,

the problem (2.2) is equivalent to find [u, p] € X x M =: H such that

Au+ B'p = [ in X',

Bu = ¢g in M. (2.5)

If (2.2) is well-posed, the operator

A ( P ) (2.6)

is boundedly invertible with respect to the usual graph norm, i.e., there exist constants
ca,C 4 such that

call ATw, pD v < {llws pllin < Call Alu, pD)l e (2.7)

where ||[u, p]||7, := l|ullx + ||pll3;- We will often use the notation A < B to abbreviate
A < ¢B with some constant ¢ > 0, and for A < B < A, we write A ~ B. Hence, (2.7)
may also be expressed by || A([w, p])||w ~ |[[w, p]||«-

The Schur complement. In many cases of interest, the operator A is invertible and
it makes sense to consider the operator S := BA™'B’, which is known as the Schur
complement. Then, we define the energy norm on X x M for the operator A by

. glllZ = lolli + llalls. [v.q] € X x M, (2.8)

where ||-]| 4, ||-]|s denote the energy norm corresponding to A and the Schur complement S,
respectively. We include the proof of the following fact for completeness and convenience.

Proposition 2.1 If A is boundedly invertible on X, i.e.,
[Avllx: ~[[ollx,  velX, (2.9)
B’ is bounded and the inf-sup condition (2.4) holds, then

lalls ~ llallar, g€ M. (2.10)

Proof. We first establish the upper estimate. Due to the boundedness of B’ and of A™!,
we have

lalls = (Sq. @) arcnr = (A7 B'q, B'g)xwxr < AT Blllx[|Blallx < [1B'allx < llalla



Adaptive Wavelet Methods for Saddle Point Problems 5

To show the lower estimate, we use the boundedly invertibility and the inf-sup condition:
lalls = (A7 B'q, B'g)xux 2 IIB'allx 2 llally-

This completes the proof. O

This result shows the equivalence of || - || 4 to the graph norm || - ||% Since we always
assume that (2.2) is well posed, we also have that A is boundedly invertible with respect
to || - || a, i.e.,

[A([v, aDllxxarr ~ oy dlllxxar ~ NI, gllla,

which is an immediate consequence of Proposition 2.1 and the well-posedness of (2.2).

An equivalent formulation. An equivalent formulation of (2.2) can be introduced by
the bilinear form

L([u,pl, [v,q]) == a(u,v) + b(v, p) + b(u, ), (2.11)

which is defined for [u,p],[v,q] € X x M. Now, (2.2) can be rewritten in terms of the
bilinear form L(-,-): Given f € X, g € M’ find a pair [u,p] € X x M such that

,C([u,p], [U7Q]) = <f7U>X’><X + <g,q>M’><M7 [U,q] e X x M. (212)

A short reflection shows that (2.2) and (2.12) are indeed equivalent: The conclusion from
(2.2) to (2.12) can be made by adding up the two equations in (2.2). For the other
direction one can take test functions with ¢ = 0 and v = 0, respectively, to obtain (2.2).
The following lemma shows that £ also fulfills an inf-sup condition. We will use this fact
later on.

Lemma 2.2 ([34]) There exists is a constant 3 € R with

L([u,p],[v,q]) > 3> 0. a (2.13)

inf sup
enl€X <M [y e xxar (ullx + lIpllan)(lvllx + [lallar)

2.2 Multiscale methods and wavelets

Let us now summarize the basic notations for multiscale methods that are needed in this
paper. For a survey of multiscale methods and wavelets, we refer to [13, 21].

Given some Hilbert space H, we call a system of functions ®; := {p;x : & € A},
J > jo, Aj some (finite) set of indices, (primal) single scale system, if ®; is refinable, i.e.,
there exists a matrix M;q € RIA5+11%185] gych that

O; = M@y (2.14)

Here, jo € N denotes some coarse level. Equation (2.14) in particular implies that the
induced spaces

S; = S(®;) := span(d,)
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are nested: S; C S;41. We always assume that the union of all S; is dense in H. Moreover,
we assume the existence of a dual single scale system ®; = {@;r; k € A}, such that

(®;,®;) = <(99]‘,k795]‘,k')H> =1, (2.15)

kR EA,

where [ denotes the identity matrix of corresponding size.

Biorthogonal wavelet spaces W, W, are then defined by
Wi =Sy © S, Wji= 8541 055, 85 LW, 55 LW, (2.16)

where the orthogonality is to be understood with respect to the H—inner product. Con-
structing biorthogonal wavelets then amounts finding bases

\I/]‘ = {¢]7k ke v]‘}, \i/]‘ = {@/NJJ‘JC ke v]‘}, (V] = Aj-H \ A]) (217)
of Wj, Wj, respectively, such that
(U;,9;) =1 (2.18)

and the collections

U= {¢): A€V}, U= {y: X eV}, Vi={A=U,k):j>Jjo—1,keV,}

) ) (2.19)
(Wim1 := @y, U1 := &) form Riesz bases for H, i.e., they form a basis for H and the
following norm equivalence holds

1/2
HJWMZHE)WMLNHMMWZ<XNMﬁ . (2.20)
AEV

AEV

Often, W, U will be termed biorthogonal wavelet system or simply multiscale basis. In
many cases, an equation similar to (2.20) also holds for a whole range of Sobolev or Besov

spaces including H (see [20] and also (2.22), (2.23) below).
For any subset A C V, we define the corresponding set of wavelets by

WA2:{¢A2AEA}, @Aiz{ﬂz)/\i)\EA},
and the induced spaces by Sy := S(W,) and Sy = S(\TIA).

2.3 Multiscale discretization of saddle point problems

In order to discretize (2.2), we want to use trial and test spaces that are induced by
multiscale bases. To be more specific, we assume that there exist wavelet bases ¥ = {¢, :
Ae VXL and © = {9, : u € VM} that form Riesz bases for Hy and Hyy, respectively,
see (2.1). In the sequel, we shall restrict ourselves mainly to the case that X and M are
Sobolev spaces defined on suitable domains or manifolds Q; C R”, Q; C R™, i.e.,

X =HY(Q), M=H(), stcR. (2.21)
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Then, we also assume that the Riesz bases give rise to the following norm equivalences:

ld" w2, ~ S 2R, e[t (2.22)
AEVX

HCTQHZ,QQ ~ Z 22U|M|civ S [_575]7 (223)
pevM

where || - ||, denotes the norm in the Sobolev space H™ (), m € R. Since it should
be clear from the context, we will omit the dependencies of the norms on £2; and 5,
respectively, in the sequel. Now, the trial spaces (Xx, My) C (X, M) are defined by a
pair of index sets

A= (A AM) (Vv VM),

The LBB condition. It is well-known that trial spaces for the stable numerical solution
of (2.2) need to fulfill the Ladyshenskaja—Babuska—Brezzi (LBB) condition

b
inf sup (U/\7QA)

> (2.24)
NEMA oy, X, HU/\HX Hq/\HM

for some constant # > 0 independent of A.

Full equilibrium property. For the numerical treatment of saddle point problems as
well as for the analysis of discretizations, the following property is very useful.

Definition 2.3 A discretization (Xa, My) is said to have the Full Equilibrium Property
(FEP) if for ux € Xa the equality b(ua,qpn) = 0 for all gn € My already implies that
up €V, i.e., b(ua,q) =0 for all g € M. The spaces are also called equilibrated.

Roughly speaking, this means that Ker By C Ker B, which is, of course a very strong
property. There are many different names in the literature for this property. We choose
(FEP), which is used in applications of mixed methods in structural mechanics.

3 Multiscale bases, the LBB and FEP condition

This section is devoted to conditions on the particular choice of multiscale trial spaces
in order to fulfill (LBB) and (FEP). It will turn out that biorthogonality is the main
technical tool to derive explicit criteria.

3.1 The LBB condition

The LBB condition has already been studied in the wavelet context in [4, 23]. Both papers
are however restricted to the Stokes problem. While [23] does not consider adaptively
refined spaces, in [4] this problem is treated using ideas from [23]. But the conditions
derived in [4] are still somewhat implicit. Here, we will deal with arbitrary saddle point
problems and we derive explicit criteria for the adaptively refined spaces in order to fulfill
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(LBB). The basic idea, namely to use biorthogonality and the following well-known result
by M. Fortin can already be found in [23].

Proposition 3.1 ([29]) The LBB condition holds if and only if there exists an operator
Qa € L(X, Xa) satisfying

b(U _ QAU7QA) = 0 f07“ Clll v E X, qA € MA7 and (31)
1@allexxy = L

independent of A. 0O

For the spaces X, defined above, there is a natural choice for the operator (), given by

Qav = Z (v, P2 x wx7 i (3.3)

AEAX

Due to the norm equivalences (2.22), condition (3.2) is always fulfilled:

lQavlix ~ > 22w, da)xux® < Y 22w da)xuxl® S Ioll%

AEAX AEV
For any subset X C X we will use the notations
Xtri={ge M: blv,q)=0 forallve X}, (3.4)
and similar for M C M
MY :={v e X:bv,q) =0 forall gc M}. (3.5)
Moreover, we use the standard definition of the polar space for any subset X C X
XV={a" e X' : (2, v)xiux =0 forallve X}, (3.6)
and similarly for subsets in M. By definition, we have
X3t = B(Xa)® and My = B'(My)". (3.7)
Now, we obtain the desired result.

Theorem 3.2 The multiscale spaces X, My defined above fulfill the LBB condition
(2.24) provided that one of the following equivalent conditions holds:

(a) My C (X © Xa)te,
(b) B'(My) C Xa,
(¢) B(X© X)) C M & M,.
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Proof. Due to the Riesz basis property, we have for v € X and gy € My

b(v — Qav,qn) = Z (0,2 ) xxx b(¥r, qa) = 0 (3.8)

AEV\A

if and only if
b(vy,qa) =0 for all v, € X & Xy, ga € My,
which is equivalent to (a). It remains to verify the equivalence of (a)-(c). In fact, using

Mg = M & M, and )N(R = X © X, the assertion is an immediate consequence of the
well-known equivalences

Y C B(L)" < B(Y)C L’ « B(L)CY"° (3.9)

for any subset Y C M and L C X. O

3.2 Full equilibrium

It is obvious that equilibrated discretizations allow the use of more powerful analytical
tools for studying the approximation of saddle point problems. For instance, one may
obtain error estimates only for the variable u without using the graph norm, see e.g.
[5] and (4.24) below. However, it is in general a non trivial task to realize equilibrated
discretizations. Hence, we investe in the development of sufficient criteria when using
multiscale bases. Again, it turns out that biorthogonality is a useful tool.

Theorem 3.3 If a multiscale discretization given by the set of indices A = (A%, AM)
fulfills one of the following equivalent conditions

B(X4) C My, (3.10)
B'(M & My) C X' o Xy, (3.11)

then the discretization is equilibrated.
Proof. Indeed, if (3.10) holds, this means that (Bva, q)amrxm = 0 for all ¢ € M & My

for some vy € Xj. This shows that (Buva,ga)mixam = 0 for all ga € My already implies
Buvay = 0. The stated equivalence of (3.10) and (3.11) follows by (3.9). O

We may combine Theorem 3.2 and 3.3, so that we easily obtain the following result.

Corollary 3.4 If the spaces Xy and My fulfill B'(My) = X, or equivalently, B(X,) =
My, both (LBB) and (FEP) are valid. 0O
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One example. Let us illustrate the above conditions by one simple example. Let us
assume that we have two basis functions ¥,,, ¢, € X, such that By, = By, = ¢, for
some dual basis function ¥, € M’" and some ¢ # 0. Let us now assume that

vy € Xay, by, € Xa (3.12)

Using condition (c) in Theorem 3.2 applied to t,,, it follows that O, ¢ M, for ensuring
the LBB condition. On the other hand, using (3.10) applied to ¢, for checking (FEP)
, one would obtain ¥/, € M, which contradicts the condition (¢) in Theorem 3.2. This
shows that (3.12) is not possible for a stable and equilibrated discretization. The ‘inverse’
images with respect to B of a certain basis function ¥/, either all have to belong to X, or
none of them.

4 A posteriori error estimates and a refinement strat-
egy

As already mentioned, a convergent adaptive wavelet strategy for symmetric, positive
definite operators has been introduced in [19]. However, a closer look to the proofs in
[19] shows that the results concerning the construction of an adaptive refinement strategy
(without proof of convergence) can easily be generalized to a more general setting (includ-
ing saddle point problems). In this section, we will therefore briefly review the relevant
results but we omit the proofs since they can easily be deduced from [19]. Finally, we
describe the application of these results to saddle point problems.

4.1 The general setting

Let us now describe the setting that we consider in this section. Let L : H — H’ be a
linear boundedly invertible operator, i.e.,

crl| Ll < l[zlla < CrllLalm, @€ H, (4.1)

where 0 < ¢;, < ('}, are absolute constants and H is some Hilbert space. We consider the
problem

Lx ==z (4.2)

for a given » € H'. Moreover, we assume the existence of biorthogonal wavelet bases
U={y: Ae VL U ={: A&V} such that ¥ characterizes H', i.e., there exist
absolut constants 0 < ¢y < Cy, such that

1/2 1/2
eo (Y it vadl) T < Hlyllar < Co (3 Ity o)) (43)
AEV AEV

for any y € H', where ~, are suitable weight factors and (-, -) denotes the dual pairing of
H and H'.
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Now, we consider the Galerkin approximation of (4.2), i.e., we look for some x5 € Sy :=

S(Wy) such that
LAJ}A = ZA, (44)

where Ly, zj are the usual Galerkin projections of L and z, i.e., Ly = ((Ltdar, ¥2))a ven
and zp = ((z,%1))aea, respectively. Note that p is indeed the Galerkin solution, i.e., we
have the Galerkin orthogonality

(L(x —xp),ya) =0  forall yp € Si. (4.5)

4.2 A posteriori error estimates

Now, using (4.1), (4.3) and the Galerkin orthogonality already gives rise to an a posteriori
error estimate:

Proposition 4.1 Under the above assumptions, one has for

o= [m(L(x —aa)¥a)[, A€V, (4.6)
the estimate
1/2 1/2
AEV\A AEV\A

Equation (4.7) states that we already have an efficient and reliable error estimator.
However, this is numerically useless, since V' \ A is a set of infinite cardinality so that the
estimator is not accessible. Hence, the idea is to reduce the infinte sums in (4.7) to finite
ones allowing some additional error that is under control. In order to do so, we have to
pose one more assumption on L and ¥. To be precise, we call L quasi sparse w.r.t. U, if

o—a A=V

o= (INHRADE L abs < -
|< 77ZJ/\ 777Z)/\>| ~ (1 _I_ 2m1n(|/\|7|/\/|))di8t(|:|/\7 |:|/\/)T7

(4.8)

where O := supp ¢, and the constants ¢, o and 7 depend on L and W (see [19], Section
4.3, for details). Let us remark that (4.8) is in fact valid for a wide class of differential
and integral operators. Then, one can show ([19], Lemma 4.2 and Remark 4.2) that for
each A € V and a given tolerance ¢ > 0 there exists a finite influence set J. C V such
that the quantities

exvi= Y (L) v, aw = (e, ), (4.9)

NEAT,

satisfy
1/2

Yo el | <Ceclaalu (4.10)
AEVAA
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for some constant C. > 0.
Now, we may define the finite index set, which will reduce the infinite sum in (4.7). To
be specific, let
Npe i ={A e V\A: ANT . #£0}. (4.11)

Thus, setting

Znvi= (Y IMIZ)W, (4.12)

AEV\A

one can prove (see [19], Theorem 4.1):

Proposition 4.2 Defining

phe)=|n Y (Lwean|,  AEVA, (4.13)
MeANTy .
the following estimates hold:
) 1/2
o —aalln < CLCo | (X on(A2)?) T+ Zn +2C el (4.14)
AGADLE

and

1/2 1
( 3 gA(A,5)2> < e —aallm+ Zny +2Co|lealln. O (4.15)

Cr C
NEN, .« Lew

Now, (4.14) and (4.15) state that the sum over g\(A,¢) is an efficient and reliable error
estimator up to a fixed tolerance. On the other hand, in contrary to (4.7), it is now
reduced to a finite sum over N, ., so that it is in fact numerically accessible.

4.3 An adaptive refinement strategy

Now, we may use the latter proposition to formulate a refinement strategy (see [19],
Theorem 4.2).

Proposition 4.3 Under the above assumptions, we have: Let eps > 0 be a given tolerance
and fix any ¥* € (0,1). Then, defining C, := -1~ + % and choosing p* > 0 such that

CrCy
* 1—29*
H Ce S m, we set
preps
=— 4.16
"= 3 Tualn 19

Suppose that A C V is chosen so that

1
Zp < 5/,L*eps. (4.17)
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Then whenever A € V, A C A is chosen so that

(> gA(A,5)2>1/22(1—19*)< 3 gA(A,5)2>1/2, (4.18)

AEAONA75 AeJVA,a

there exists a constant k € (0,1) such that either

|lza —23llg = & ||z — zall (4.19)
or 1/2 1/2
( 3 gA(A,5)2> . ( 3 gA(A,€)2> < eps. O (4.20)
AENA75 AGV\A

In [19], the distance property (4.19) is used to prove the convergence of the above
strategy for symmetric positive definite operators (see also Section 5 below). In our
general setting, a convergence result can not be expected.

4.4 Saddle point problems

Now, we apply the above results to the saddle point operator A in (2.6). Obviously,
assumption (4.1) is fulfilled by (2.7). As a wavelet basis on H = H, we choose ¥ x © and
then (2.22) and (2.23) imply (4.3) for the weight factors

2—t|/\| X "
M = gmslul ) [\, u] € V2 x VI,

and y = [v,q] € X x M = H. In fact, for [v/,¢'] € X' x M', we have

I d M = 1%+ gl
~ Z 2_2t|/\||<vla¢/\>X'><X|2+ Z 2_25|“||<qlﬂ9u>M'xM|2
AEVX nevM

2

- ¥

[N\ u]eVXxvM

- Z |7[/\7M]<[U/7q/]7 [¢A7ﬁu]>}{/xy|2.

A p]evVXx VM

( 27 h ) xorsex )

2—s|u| <q/7 19M>M'><M

Now, we define the residual

R ,:(TA)‘:A<UA—U>:A<UA>_<]C>:(AUA—l-B/pA—f) (421)
AT ) pa— P Pa q Buy — g T

and the quantities

ox = [{ra, ¥a)xex|, A eV, Gu = [pas O)arrxu|, € VM. (4.22)
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Theorem 4.4 For the above discretization (Xa, My), the following error estimate is

valid:

1/2 1/2
HU_UAHX‘|‘Hp_pAHMN< 3 2—2t|/\|gi> +< > 2—25W|§j> .0 (4.23)

AEVX\AX UEVMAAM

As a consequence, we get the following result:

Corollary 4.5 For equilibrated discretizations, the following equivalence holds for g = 0:

1/2
Ju—uallx ~ (3 2 e3) T O (4.24)
AEVX\AX

Remark 4.6 In view of Proposition 2.1, the estimates (4.23), (4.24) also hold if we
replace ||u — ua||x + ||p — pallamr by the energy norm ||[u — ua, p — pa]|la and ||u — ua||x by
||u — upl|a, respectively, provided that the assumptions of Proposition 2.1 are fulfilled.

Finally, we apply the results concerning the adaptive strategy to saddle point problems.
Firstly, we have to assume that both A and B are quasi sparse in the sense of (4.8), where
for B we have to replace t in (4.8) by s. Then, for uy := <u,;/N)A/>XlxX, N e VX, and
puw = (p, 5u'>M'xM7 i € VM the quantity in (4.9) becomes

€] =

Z ( U (A o) xrwx + pu (B'0 0,00 xisx >
wy (B, V) v ’

[V ]E(AXNT ) < (AMA\T M)

where j{fs C V¥ and jﬁ_ C VM are suitable finite influence sets. Next, setting fy :=
(fio\)xixx, A € VX and g, := (g,9, ), 1 € VM equation (4.12) reads

1/2
7= ( > 27| 2 4 272 g, 7)
[Pl €(VXAAX) X (VMAAM)

Finally, the error quantities gy (A, ¢) defined in (4.13) take the form

(A e) = ‘ 2. < 27y (A, ) xrsx + 27 (B, 00 ) xiwx
(AR AT X (M)
)|

With these definitions, Proposition 4.3 easily applies.
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5 Convergence of adaptive schemes

So far, we have set up an a posteriori error analysis for adaptively refined wavelet spaces
and introduced explicit conditions for the crucial properties (LBB) and (FEP). However,
it remains to study the convergence of such an adaptive algorithm. In [19], the above
described adaptive wavelet strategy for positive definite operators was proven to converge.
Now, one might think that the generalization to saddle point problems is an easy task.

Unfortunately, we did not succeed in adapting the arguments used in [19] to saddle point
problems. Let us briefly point out the main differences when going from a positive definite
to an indefinite problem. We consider the problem Au = f, where A : H{(Q) — H™'(Q)
is some positive definite, boundedly invertible operator and f € H™'() are the given
data, while the function v € H}(2) has to be seeked. Taking as above a wavelet basis
U ={¢): A eV} C H(Q), we denote by uy the Galerkin solution w.r.t. a (finite) set
ACV.

In the previous section, we have described a strategy how to enlarge A to some A D A
such that the distance property holds, i.e., there exists some 0 < £ < 1 such that

lua — uglla 2 wflu = ualla,

see Proposition 4.3, (4.19). Note that here the energy norm || - |4 is used, which already
assumes that A is positive definite. Now, one proceeds using Galerkin orthogonality

a(up —uj,u—uz) =0 (5.1)
to conclude
lu = ugllh = llu—ually = llua —uzlld < (1= &*)[lu—uall?,

which proves the saturation property, i.e., a strict error reduction since 0 < 1 — x? < 1.

Unfortunately, (5.1) is no longer true when A is replaced by the operator A in (2.6)
which represents a saddle point operator. Now, one could try to use that A is positive
definite on V' = Ker(B). This approach in fact gives rise to a convergent adaptive algo-
rithm (which can be numerically performed) for computing u provided that a basis for
V' is explicitly available. This of course contradicts the philosophy of the saddle point
approach and is not what we aimed at.

As a second approach, one could consider the reduced problem for p, i.e.,

Sp=BA™'f—g,

involving the Schur complement S. But also this approach seems to have some ultimate
obstacles. Firstly, due to the presence of A™!, the entries of the corresponding stiffness
matrix (59,9, )mr«a can not be easily computed (and the same is true for the right
hand side). Now, one could approximate A~' by some Ay'. But then one ends up with
the problem that the discretization of S is not the same as discretizing the three factors
separately, i.e.,

ByA'B) # Sa. (5.2)
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This means that the computed solution does not correspond to the Galerkin solution
w.r.t. A. This, however, is essential for (5.1). Note that the non—equality in (5.2) still
holds if one could replace By, B) by B and B’, respectively, which is indeed possible if
(FEP) holds.

Next, one could try to study the error between the real Galerkin solution py w.r.t. Sy
and the perturbed one p3 w.r.t. ByAy'B4 (which is available for example by Uzawa’s
algorithm). We have not been able to give meaningful quantitative criteria for the index
set A such that this error is below some given tolerance.

Another approach is to make use of (FEP) which is a very strong property so that one
could hope to derive a convergent strategy at least for u. Indeed, exploiting (LBB), we
obtain for the operator Qx € L(X, X,) in Proposition 3.1

b(Qau — un,qa) = b(Qau, qa) — (g, ga)mrxnr = b(u, qa) — (9, ga)mrxnr = 0 (5.3)

for all g» € M,, where u, up are the solutions of the continuous and discrete problem
(2.5), respectively. Hence, (FEP) implies

b(Qau —up,q) =0 for all ¢ € M. (5.4)
Since Qau — up € Xy, we obtain a(Qau — up,u — up) = 0, which, in turn, implies

|Qaw —ully = 1Qau — uall% + llu — uall. (5.5)

This latter equation immediately implies

lu —uslla S [lu = Qaulla (5.6)

and since ()4 was nothing but the biorthogonal projector on X4, the Riesz basis property
ensures that u, converges to u. However, this is also not what we really want to achieve
due to two reasons. Firstly, the right hand side of (5.6) contains quantities depending on
the unknown solution u. This means, the choice of the index sets A depend directly on
u, which is not available in numerical calculations. Secondly, (5.6) gives no quantitative
estimate which allows to predict the number of iterations an adaptive algorithm has to
perform at most to reach a prescribed error tolerance.

Hence, we looked for a new approach that circumvents all the above listed problems
and drawbacks. In this section, we introduce an alternative, namely an adaptive version
of Uzawa’s algorithm. The analysis of this method leads us to the desired result, namely
a convergent adaptive refinement strategy for saddle point problems.

5.1 An adaptive Uzawa algorithm

The Uzawa algorithm is a well-known iterative solver for saddle point problems, [2]. We
aim at using this algorithm as an outer iteration for an adaptive method. To this end, we
consider the Uzawa algorithm for (infinite dimensional) Hilbert spaces. In a second step,
we formulate our adaptive version of Uzawa’s algorithm. This adaptive version creates
some additional errors that need to be controlled over the iteration.
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5.1.1 Uzawa algorithm in Hilbert spaces

Originally, the Uzawa algorithm was formulated for saddle point problems involving ma-
trices of finite dimension, [2]. Here, we consider its formulation in infinite dimensional
Hilbert spaces X and M. Given any bounded linear operator R : M’ — M (whose
role will be discussed later) and o € R, we consider the following variant of the Uzawa
algorithm:

Algorithm 5.1 Given any p© € M, we compute u and p9 fori=1,2,..., by

Aut) = - BplY, (5.7)
p = pli=Y 4 aRBuW. (5.8)

The convergence of this algorithm is well-known if R is the Riesz operator (see [7]
and the references therein). However, since for the subsequent error analysis it will be
important to keep track of the influence of the data to the error, we need an explicit
error estimate here. Hence, we state the following result and include also the proof for
completeness and convenience.

Theorem 5.2 Suppose that RS s selfadjoint and positive definite and 0 < o < ZHRSH[_]\/I[]
(S again being the Schur complement). Then the Algorithm 5.1 converges. To be precise,
for p© := 0 and setting q := || Id — a RS, we obtain the following error estimate

i

q

I = pllar < A7 Fllx e BBl an— PR (5.9)
Proof. By induction, it is easy to show that
i-1

p) = (Id — aRS) p® + <Z(1d - aRS)k>aRBA—1f. (5.10)

k=0

Now, let H be a Hilbert space. Then, for any linear bounded and selfadjoint operator
T : H — H, the following equation is well-known [1]

sup{[A] : A € o(T)} = ||T|my; (5.11)

where the norm is the operator norm induced by the norm in H and o(7T') denotes the
spectrum of T'. Now, we use the fact that RS is selfadjoint and hence

sup{[A| : A € o(aRS)} = ||aRS||n = af|[RS||py < 2. (5.12)
The assumptions on a and on RS imply that o(/d — aRS) C (—1,1), since
sup{A: A€ o(Id—aRS)} =1—a inf{\: A € o(RS)} < 1
and

inf{A\: A€ o(ld—aRS)} =1 —asup{|A|: A€ a(RS)} =1—a||RS||pg > —1.
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Consequently, we obtain
q=|[Id — aRS||pp = sup{|A| : A € o(Id — aRS)} < 1.

This finally implies, using ¢ < 1 and p(® =0

i—1
lp— D = HS*BAth-E:ud—aﬂsﬁaRBA*fww
k=0
< A H [d—aRSkaRBH
Y Farm|
_ q
< Al laRBlsany .

which proves (5.9). O

Let us add some comments on the role of the operator R in (5.8). One natural choice is
the Riesz operator. However, we do not want to restrict Algorithm 5.1 to this case only.
The reason for this is the fact that by Theorem 3.2 and 3.3 we have explicit conditions
at hand to check (LBB) and (FEP). In performing (5.8) for some discretization, one has
to guarantee that this discretization fulfills (LBB). Hence, the freedom in the choice of R
may also be used to ensure (LBB) and also (FEP).

5.1.2 Adaptive version

Now, in general, we cannot compute ul? and pl? in each step exactly but only with

some approximations. Note that u(?) and p@ are elements of infinite dimensional spaces.

We in fact compute approximations UE\Z,)v pE\Z,) with respect to finite dimensional subsets

A; = (AX,AM) € VX x VM. The aim of this subsection is to study the overall error in the

Uzawa iteration introduced by this approximation, where A; will be chosen adaptively.
To be precise, we set

il i= AN = BT
(which is not computable) and we assume that we approximate (9 by
uf) = A3Q(F = Bp))
up to a certain error, i.e.,
ci=ul) =D allx < qles, (5.13)

where we may choose ¢;. Here, Q). denotes the adjoint of the projector Qa, : X — Xj,.
Now, we can formulate our adaptive Uzawa iteration:

Algorithm 5.3 Let AY =0 and pf&) = p® =0. Then, fori=1,2,..., and given AM,,
proceed as follows:
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1. Determine by an adaptive algorithm a set of indices AX such that for uX

by . .
An) = Q) (f = BpTY),

one has ||¢;||x < ¢'e;.

19

determined

(5.14)

2. Determine an index set AM such that RB(Xyx,) € My, and such that the LBB

condition holds. Then, set

Py =pi ) + aRBuY).

Theorem 5.4 Assume that ¢; are chosen such that

0
Z€¢§C<OO
=0

for some constant C > 0. Then, we have

1P — p{

— pallm < CllaRB||xandq's

where pl® = pf&) and p\9 is defined by (5.10).

Proof. As above, it is readily seen that

P =1l = (1d = aRS)(p Y = 7)) — aRBe.

(0)

By iteration and assuming that p(®) = Pa, » We obtain

1—1
p) = pt =N "(1d — aRS)*aRBe;_y.

k=0

Inserting our assumption on ||¢|x, we conclude that

[p@ —p)

k=0
which proves the result. O

Finally we obtain our desired result:

1—1
u < NaRBllxand Y e < CllaRB|xamd',

(5.15)

(5.16)

(5.17)

(5.18)

Theorem 5.5 Under the above assumptions, we obtain the following error estimates for

the adaptive Uzawa Algorithm 5.3:
(a) The Algorithm 5.3 converges, i.e., we have

(1)

lp—pillv < ¢
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(b) The solution of the saddle point problem can be approzimated with any desired ac-
curacy:

)

B

H (i+1)

u—uy Ny + e = v S 4

Proof. Using the triangle inequality and the Theorems 5.2 and 5.4 gives

Nar < llp = pDar + 97 = pY)

q
I—gq
. ~ 1
= ¢ llaRBlxan (147 flxy— +C);

Ip —pl M

< AT lx e RB]lpyan

+ ClleRB||x g’

which proves part (a) of the claim. For proving (b), we use standard arguments to obtain
lu =@l S B = Bllx S 4
where we have used (a) in the last step. Finally, using triangle inequality and (5.13) yields

e — a7 D)x < flu— @y + @ — )y < g

which proves the desired result. O

Now, several remarks on the above results are in order:

e As can be seen in (5.14), a convergent adaptive strategy for the positive definite op-
erator A builds the kernel of our method. By assuming that this algorithm reduces
the error to ||¢;||x < ¢'c;, we implicitly assumed the convergence of the inner itera-
tion, i.e., we assume that there exists a strategy to build A® which allows this error
reduction. As already pointed out, the algorithm in [19] meets this requirement.
Also the question arises how large the set A is, i.e., how many degrees of freedom
are neccessary to reach the desired accuracy. This is a property of the adaptive
strategy used for (5.14) and the possible fill-ins due to (LBB). For example, the
method introduced in [14] for positive definite operators was proven to have as-
ymptotically optimal complexity. However, we will not study the complexity of our
adaptive Uzawa algorithm here and devote this to a forthcoming paper.

o Clearly, the essential quantity ¢ = |[/d — aRS||x,m) < 1 determining the speed of
convergence will often not be available exactly. One could however estimate ¢ in
order to obtain a priori a maximum number of (outer) Uzawa iterations to reach
the desired accuracy. Of course, an estimate for ¢ depends on the various data for
a particular saddle point problem.

o At a first look one might get the impression that the performance of Algorithm 5.3
depends only on p whereas the choice of the adaptive index sets A; depends only on
u. However, the situation is somewhat more involved. Since the behaviour of the
right hand side influences the choice of A;, it can be seen by (5.14) that p in fact
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effects the adaptive refinement. On the other hand, u influences also the Uzawa
algorithm since in (5.8) we have to make sure that (LBB) is valid, i.e., we have
to determine AM for a given A such that (AX, AM) gives rise to spaces fulfilling

(LBB).

e Finally, we comment on the relationship of the above algorithm to the inexact
Uzawa algorithm. The latter one has recently been studied e.g. in [6, 28], where
an error analysis is given if the elliptic subproblem corresponding to (5.7) is only
solved up to some tolerance (in this sense inexact). Moreover, the preconditioning
of this method is considered there. One might think that our algorithm is simply a
variant of such an inexact Uzawa iteration. However, again, we point out that our
method works in infinite dimensional Hilbert spaces and the error analysis considers
the inexact solution of the continuous elliptic problem in (5.7). To our knowledge,
inexact Uzawa iterations are based on finite dimensional spaces.

6 Application No. 1: The Stokes problem

In this section, we detail our general criteria for (LBB) and (FEP) for the mixed formu-
lation of the Stokes problem. Let us first apply Theorem 3.2 and 3.3 to this special case.
We will use the particular multiscale discretization introduced in [23] fulfilling the LBB
condition. Firstly, we will review this construction and then we apply Theorem 3.2 and
3.3 to obtain concrete conditions for this discretization.

Let us start by reviewing the Stokes problem and its mixed formulation. For simplicity,
we assume homogeneous boundary conditions, but the theory is of course not restricted
to this special case.

Problem 6.1 Given a vector field £ € H™' ()", one has to determine the velocity u €
H ()" and the pressure p € L2(Q) := {q € L*(Q) : Jq a(x) de = 0} such that

—Au+Vp = f inQ,

V-u — 0 O, (6.1)
where Q C R™ is the bounded Lipschitz domain of interest.
Thus, its mixed formulation is given by (2.2) for the particular choice
8u2 81}2
a(u,v) = (Vu,Vv)yg = 231/ 8:1;] 8:1;] (2)dax
7]
b(v,q) (Vv Z / ) v,
= dzx,
4 ) (] 81}2
for w = (uy,...,u,)? and v = (vq,...,v,)T. For simplicity, let us restrict ourselves to

the case Q@ = (0,1)". More general domains may be treated by domain decomposition
approaches using the cube as a reference domain, see [9, 10, 11, 17, 25, 27]. Hence, wavelet
bases on cubes also serve as reference basis elements in this approach.
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6.1 Stable multiscale spaces for the Stokes problem

In this section, we briefly review the construction of biorthogonal wavelet bases in H (div; ()
which can be used to generate multiscale bases for velocities and pressures, respectively.
For the sake of simplicity, we again only describe this construction for = (0,1)" here
and refer to [41] for extensions to more general domains.

Derivatives and primitives. The key for the subsequent construction is the following
result for wavelet bases on (0, 1), which can be found e.g. in [26, 38, 40]. Roughly speak-
ing, it states that certain wavelet systems on the interval are linked by derivatives and
primitives. This powerful mechanism is the key ingredient not only for the construction
of wavelet bases for the mixed formulation of the Stokes problem, which we will review
now, but also for the construction of divergence free wavelets, [37, 39]. To our knowledge,
the result has so far been proven for three examples of wavelet systems on (0, 1):

(a) Orthonormal wavelets on (0,1), [16]. In this case, all what is said below, holds for
T="7.

(b) Systems arising by iteratively applying Theorem 6.2 below to the systems in (a) and
the arising results. lL.e., these are biorthogonal systems arising from orthonormal
ones by differentiation and integration.

(c¢) Biorthogonal spline wavelets on (0, 1), [24, 26].

Theorem 6.2 Letu = {fjk kel;}, j (W= {éjlk : k € Z;} be one of the above listed
systems of univariate Scahng functions and T = { ;. k ke Jit, :f;l) = {ﬁj(lk) s ke J;}

be the induced biorthogonal wavelet system on (0,1) such that é;l) C H}(0,1). Then,
(0) =(0)

there exists a second system of dual scaling functions =57, =27 and induced biorthogonal

wavelets T;O), T;O) (w.r.t. the same set of indices I;, J;, respectively) such that

d=(1)  _ =(0) d=(0) _ =(1)
w=; = D=, de=i _DJTO =5
d (1) (0) d ~(0) T (1) (6:2)
w = D X5, wl = —Da T
where Dj. € GL(|Tje| X |Tiel), € = 0,1, are sparse, regular matrices and
I]‘, € = 0,
Tie = {j] e=1. .

d =(0) . _ (if(o)

Here and in the sequel, we use the short hand notation --=7 =6 x Jkez; and similar
for all other systems of functions. It will be necessary to detail the first equation in (6.2),
namely

d
d:z;ﬁ( b= g = > dk ) ]ek,, ke Jje, e=0,1, (6.3)

keV(A
with some (small) set of indices V(\) C jje and

ﬁ],e,k = {fj,k, ¢=0,
n;k e=1.
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Systems on the cube. The next step is to use tensor products to construct biorthog-
onal wavelet systems on the unit cube (0,1)". The aim is to use the systems described
above in an appropriate way so that a formula similar to (6.2) holds for the partial deriva-
tives. Hence, we use the systems induced by =), Z(1) as well as =),

product framework. For v = (y1,...,7,)" € {0,1}" =: ™, we define

=) within a tensor

) 61,:1,

0
77](‘,]@7 Y =0, e =1,

(7) :: 19 19’71/ = 64
¢A (l’) H Jev, k" 7 drew ky 5](7116);,7 Y = 17 €y = 07 ( )

fj(‘?k)yv Y =0, € =0,

and A = (Ar,..., )T, A, = (4, e, k). All systems of functions \IIE’Y) as well as its duals
are defined in a straightforward manner. The corresponding set of indices is given by

U v (6.5)

724o—1

where

v]o—l = {)‘ = (jo,O,k) RS I}‘E}v

and for j > j9, we set
Vi={A =0, )50 =0Ghen k) e=(er,...,e.)" € E"\ {0}, k, € T;0. }.

Now, Theorem 6.2 implies:

Corollary 6.3 For the above defined systems of wavelets, we obtain

0 : S 0 = ~_§. N
v — pOg(Y-9) PY=90) — _( T {(Y) 6.6
- = (D), (66
where §; = (517¢,...,5n7¢)T, 1 <1 < n denotes the canonical unit vector in R™. The

matrices DY can be obtained by D;o and D;y in (6.2) in a straightforward way. O

In view of (6.3), we can express (6.6) as

3T = (@) = (@) ¥ i)

v=1 v#£1 ELeV(X;)

_ ]51 T )
- Z d ]ek+5 k=) (6.7)

ELeV(X;)
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Vector fields. For the space L*(2) of square integrable vector fields, we denote wavelet
systems by boldface characters, i.e., by ¥ (and similar for all other vector valued function
spaces). Moreover, we have to equip the index A € V labeling the scalar wavelets with
some additional index indicating the component of the vector field. For example, let
ybl = {;/)[;] c XN e v ol = {;/N)[;] : A€ VM 1 < v < n, be (possibly different)
biorthogonal systems in L?*(£2). Then, the vector fields

Py = il s, Py = oils;, Aevi1<i<n,

obviously form a biorthogonal wavelet basis for L?(). Denoting by

v={J UGN A=32),

=1 \evli

the corresponding set of indices, we have
U={y:AEV}), T={fy: AV}

Now, in view of Theorem 6.2, setting V := {(¢s,A) : ¢ = 1,...,n; A € V} with V
defined by (6.5) and using the above mentioned systems adapted to differentiation and
integration, we define

~div

Py = %/Jg&i) 0, Px = J)g&,‘) 4, AeV. (6.8)

It was proven that the wavelet systems ¥4, \ildiv defined by (6.8) in a straightforward
way, form a biorthogonal basis for H (div; ), [23, 40, 41].

6.2 Mixed wavelet discretizations

Now, we want to use the above described wavelet bases to obtain a mixed wavelet dis-
cretization of the Stokes problem. In [23] it was shown that the ‘full” spaces

~ div

My =50, and X = S(FA) (6.9)
indeed satisfy the LBB condition, where
Aj={AeV: A<} Aj={AeV: [A <}

and |[A| :=j for A = (i, A), A = (4, k). Moreover, in order to use T and 0O to discretize
(6.1), these functions do not only have to give rise to spaces that fulfill (LBB). They also
have to fulfill appropriate boundary conditions. Since X = H (), the velocities need to
have vanishing traces at I' := 9€2, which leads to the demand that the univariate systems
=0 and =D need to fulfill homogeneous Dirichlet boundary conditions at = 0,1. On
the other hand, the pressures are functions in M = L3(2), so that no boundary conditions
have to be prescribed. Again, this implies that =0 has to span all of L*(). However,
it was shown in [26] how to modify the construction of biorthogonal wavelets on the
interval from [24] in order to fulfill these complementary boundary conditions. Finally,
the pressure is forced to have a vanishing integral in a postprocessing.
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Norm equivalences. Let us finally recall the norm equivalences for the above trial
bases. It was shown in [23] that (2.22) and (2.23) are indeed satisfied for at least t = 1
and s = 0.

6.3 Adaptivity and the LBB condition

So far, the spaces in (6.9) are defined w.r.t. a full level, i.e., they are not adaptively chosen.
As already mentioned, the validity of (LBB) for these spaces was shown in [23]. In [4],
this result was extended to the adaptive case resulting in some condition on the set of
indices. However, the condition in [4] is still somewhat implicit since one has to check if
certain inner products vanish. Here, we give an explicit condition on the corresponding
set of indices.

Corollary 6.4 Let My C L3(2) be given in terms of some set of indices AM ¢ VM = V.
Then, the LBB condition is satisfied provided that

A DODB(AMYy :={A=(@,N) eV, A= (Je,k): Tu=

(6.10)

Proof. We have to check the condition (a) in Theorem 3.2. Now, for A € V and pp € V,

we have

~div ~div a ~ .
Bx ) = (VP en = (—zb&‘s’wi‘”)m
D

KlEA(N)

— 75€i
- dk lk/ H(Ski“k:‘/’

i'£d

if kI € A(\;) and b(@Ziv,;/)LO)) = 0 else. Consequently, we obtain b(¢dlv ;/)LO)) = 0 for
all p € AMif X € V \ B/(AM). This, in particular, implies that for u € A one has

;/JLO) € (X & X,)*, which, in view of condition (a) in Theorem 3.2 proves our assertion.

6.4 Adaptivity and the equilibrium condition
Applying our general criteria for (FEP), we obtain

Corollary 6.5 The discretization induced by (AX,AM) C VX x VM = V x V fulfills
(FEP) provided that

AMoB(A) = | U Grek+dik - k). (6.11)

(J,e,k)EAX KlEA(N)
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Proof. We have already seen that

]51 T
k/g: d, ]ek+5 k! —ki))

holds for any A € V. Hence, (6.11) implies B(Xx) C My, which, by Theorem 3.3 proves

the assertion. O

Finally, we combine the above results and obtain
Corollary 6.6 [f AM = B(AX), then both (LBB) and (FEP) are vaild.

Proof. Obviously, we only have to check (LBB). Now, given any A = (i, ) € B(AM),
A = (J,¢e,k). Then, by assumption, we have that u := (5, ¢, k+8;(ki—k;)) € AM = B/(AM)
for some k! € A();). Hence, by definition of B(A*), we have that A € AX which proves
(LBB). O

We see that the two conditions (LBB) and (FEP) are in fact contrary in nature. While
the condition for (LBB) determines AX for a given AM by the condition AX D B/(AM),
the condition for (FEP) acts in the opposite way. In fact, given AX, one can determine

AM by B(AX) C AM.

7 Application No. 2: Appending boundary condi-
tions by Lagrange multipliers

As a second example, we consider the inhomogeneous Dirichlet problem in a bounded
Lipschitz domain  C R”™ with piecewise smooth boundary I' := 9. In particular, I' is
assumed to be Lipschitzian and hence there exists a continuous trace operator o : u
You = ulp @ H*(Q) — H*~Y*(I), s € (1/2,1], with a continuous right inverse 75. By
(-, ) we denote the dual pairing between H*(Q) and H=*(Q) := (H*(Q))’, s > 0, such
that ( fQ x) dx for smooth functions u and v. Analogously, (-,-) denotes the
dual palrmg between HS(F) and H~*(I'), such that ( = [.p(x) q(x) do, for functions
p and ¢ in L*(T"). Within this setting, we consider the followmg

Problem 7.1 Given two functions f € H™*(Q) and g € HY*(T), determine u € H*(Q)
such that

—Au+u = [ inQ,
u = g onl,
holds.

The ‘standard’ weak formulation of this boundary value problem is formulated in affine
subspaces of H'({2) related to the boundary condition posed by the function g. In certain
applications it turns out that it is advantageous to consider the weak mixed formulation
arising from appending the boundary conditions by Lagrange multipliers. This has also
been studied in the wavelet context for example in [22, 34, 36].

A mixed formulation for the inhomogeneous Dirichlet problem reads as follows:
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Problem 7.2 For given [f,g] € H™'(Q) x HY*(I') find functions [u,p] € H'(Q) x
H=Y*(T) such that

o) +Mop) = (L) ve HYQ), -
b(u, q) = —(¢,9), q€ H'¥T), '
where a(u,v) = (Vu, Vo)o.g + (u,v)eq and b(v,q) := —{q,vv) for u,v € H'(Q), q €
H=Y2(T).

It is well-known that appending boundary conditions by Lagrange multipliers as in
the above mixed formulation gives rise to a uniquely solvable problem which fits to our
abstract setting introduced in Section 2.1. In particular, one has X = HY(Q), M =
H=YYT), Hy := L*(Q), Hy := L*(T) and V := H}(Q).

For the sake of simplicity, we restrict ourselves to domains @ C R?. However, everything
what will be stated in the sequel easily generalizes to higher dimensions. Firstly, we
describe a discretization of Problem 7.2 for €2 := (0,1)%. Secondly, we consider distorted
domains  C R? which are isomorphic to Q. Finally, we use these domains in a domain
decomposition context to derive analogous results for more general domains.

7.1 Wavelet discretization on Q = (0,1)?

Let us assume that () and the four patches of the boundary fi, 1 = 1,...,4, are ori-
ented as shown in the left part of Figure 1 below. Moreover, we choose the following
parametrizations p; : [0,1] — I'; by

prt) = (1), palt) s= (0,0). falt) = (10), pult) := (L,1), 10,1,

On a first view, the orientation of the latter mappings might seem a little curious. Its
usefulness will become clear later (see (7.6) below).

The simplest wavelet discretization for X = Hl(fl) probably consists of tensor products
of univariate wavelet and scaling functions on [0, 1]. Examples of such wavelet bases can
be found in the literature, e.g., in [16, 24, 26, 33], and we will not go into the technical
details here. Another possibility would be to choose the so called hyperbolic bases, which
are advantageous w.r.t. nonlinear approximation of functions with anisotropic smoothness,
[35].

In any case, it remains to construct a suitable wavelet basis on I During the past years,
several constructions of wavelets on general domains and manifolds have been introduced
[9, 10, 11, 17, 25, 27]. In this section, we will follow the approach in [9, 10] to obtain a
suitable wavelet basis on ['. Let us briefly review the main ingredients.

One starts by any biorthogonal wavelet basis on [0,1]. The next step is to modify this
basis such that in addition it has the property that on a single level only one scaling
function and one wavelet does not vanish at * = 0 and = = 1, respectively. Let us denote
by

E]I = {fj,k . k - I]I}, T]I = {77]‘7k . k - jf}
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those scaling functions and wavelets that vanish at the end points, i.e.,
Er(0)=&x(1) =0,k €Zf,  np(0) = nin(1) =0, k € T,

while IJL, IJR, ij and ij denote the indices of those scaling functions and wavelets which
do not vanish at the left and right end point, respectively. The ‘inner’ functions are simply

Ao &r(t), ifkell,
HUIER S (72)

A similar definition is given for the dual functions. For those functions that do not
vanish on the boundary, a matching is performed. To be prease the functions &,

mapped to fi, ie.,

fm, k € IL IR as well as 15, Nk k € jL,jR are mapped to ['; in the same way as
(7.2). Then these mapped functions are matched by building suitable linear combinations
(note that only two functions per patch ['; enter these linear combination, i.e., four such
functions per corner of Q) The coefficients are chosen in such a way that the matched
functions are continuous and biorthogonal. The corresponding matching coefficients can
e.g. be found in [10]. The resulting functions will be labeled by the set Z¢ for the four
scaling functions corresponding to the four corners and by ij and ij for the matched
wavelets. We set J;,_1 1= IjIO UZ¢and J; = ij U jf U ij, J 2 Jo. Then, we end up
with a wavelet basis

O:={d,: peV'} O:={J,: peV,
where VI := @1; U @g and
@1; ={pa:=0,5k):i=1,....4, k GIjlo or k € jf for 7 > jo, resp.}
denotes those functions vanishing at the four corners and

Ve=Tughugh g = J IS Ke{L R},
J>jo
indicate the matched fucntions around the corners. Finally, we introduce the notation

#={i €{l,..., 4} J,p, £ 0}

indicating the set of the particular patches [; the corresponding function ¥, is defined
on. The wavelet bases ©, © indeed fulfill the norm equivalences (2.23) for s = 1/2, [9].
Now, it remains to choose a wavelet basis for Hl(ﬂ) which fits to ©, © on [ in the

sense of (LBB) and (FEP) . For e = (e1,e2) € {0,1}*\ {0} and J,, := {?7 j(: ZZ: i (1)7
Jo [ 9
we sef X . o
VQ = {)\ = ()‘17)‘2)7)‘i = (.]7 eivki) : kl S ¥7]75i7 L= 172}7
as well as
VN ~ A 2 . §‘7ki, if €; = 0,
77/);\(1') = (9;\1(1'1)(9;\2(1'2)7 )\Z = (.]7€i7ki)7 0;\1‘ = {n]]',km if e = 1.
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Finally, for AX ¢ V2 and AM ¢ @F, we define

Xy =S(Wix), My :=S5(0;u)

With these definitions at hand, we obtain for A e ve

05, (1) 05 (1), if&ely,
. 05,(0) 05 (2), if & €Ty,
5 = ' . 7.3
70¢A(x) 0;\1(:%1) 2(0)7 HE c F37 ( )
05, (1) 05 (&2), if & € Iy,

The LBB condition on ). With all the above preparations, it can easily be seen
that the ‘full’” spaces induced by the set of indices V¥ := {A € V* : |A] < j} and
@5 .= {j e VI : || < j} (with obvious definitions of || ft|) fulfill (LBB). For the

adaptive case, we obtain

Corollary 7.3 The spaces Xa and My fulfill (LBB), if
AY D BI(AM),

where

A~

B(AMY:={A=(A, ) eV®:Tv=12: )\, €A and @Z)ilf#;y # 0}.

Proof. In view of (7.3), we have for A e Ve and Qe @1;, {1} = #[

1
b(;/);,ﬁﬂ) = ¢(A, 1) / Hxi(t) (1) dt, (7.4)
0
where

0;2(1), ifie=1,
. B 0;1(0), if 1 =2,
c()\al) - 9;\2(0)7 ifi = 3,
0;1(1), if 1 = 4.

Obviously, (7.4) vanishes for all /i € @1; provided that deve \ B'(AM). For 1 € @5, we

obtain

b = Y ety | o, (1)), (7.5)

iEH#D

which also vanishes provided that A ¢ B’(AM). This proves the claim. O
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Full equilibrium on . In a similar manner, we obtain

Corollary 7.4 If AX and AM fulfill B(AX) C AM_ then the generated spaces are equili-
brated, where

BAY) = | UleeVv':h =i}
;EAX 112172
Vo5 70
Proof. The equations (7.4) and (7.5) in the proof of the above Corollary 7.3 and the
biorthogonality on [0, 1] show that the assumption indeed implies B(XA) C Mé, which
proves the claim. Note that the trace of 15 is continuous at the corners, so that © in fact

is a dual basis to BU. O
Finally, putting everything together leads to the following result:

Corollary 7.5 The assumption B(AX) = AM implies (LBB) and (FEP) .

Proof. We only have to prove (LBB). To this end, let \eB (AM) Then, A, € AM =
B(AX) for some v = 1,2. Since B(AX) consists of the union over all ) € /\X, we obtain
X € AX which proves (LBB). O

7.2 Distorted domains ) C R?

Now, we consider domains  C R?, that are the parametric i image of the reference domam
(), i.e., there exists a function 7 € Cl(ﬂ) such that 0= G( ) and |JG(&)

In particular, the parametric mapping G : O — Q is constructed with the aid of a method
introduced by Gordon and Hall, [31, 32] using transfinite interpolation, see also [8]. Given
any parametric mappings m; : I, — I';y 0 =1,...,4 (recall their orientation as indicated
in Figure 1), the mapping is given by

G(i’l,i'z) = i’g 7T1(i'1) —|— (1 — i’g) 7T3(i'1)

An analogous 3d-formulation can be found in [31, 32]. The advantage of this approach for
our example is obvious, namely that the mappings of the pieces of the boundary enter in
a natural and easy way into the mapping of the domain. Hence, we can restrict ourselves
to the consideration of the image of I'.

Let us now assume that I'; is parametrized by 4; : [(1 — 1),i] — [; in a straightforward
manner so that " is parametrized over [ := [0,4] with some canonical mapping ¥ : [ — [
satisfying |¥'(¢)] = 1 (piecewise) for all € I. Then, we obtain for any integrable function

[at@yao: = [t w7)

gon I
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I3

fg Zq
Figure 1: Mapping of the rectangle 0= (0,1)% into a quadrilateral  with curved bound-

aries.

Adapting the bilinear form. First, we follow the ideas in [9, 10, 11, 17, 25], that (for

this example) may be sketched as follows: one builds biorthogonal wavelet systems \i/, W
on the reference cube () as above and then simply defines systems ¥, ¥ on () by mapping:

Pla) = PG (@), 2 €Q, del
Defining the dual system ¥ in the same way gives rise to a system ¥, ¥ on Q which is
biorthogonal w.r.t. a modified inner product, namely [u, v]q := /u(:z;) v(x) |JG(2)| dx.

It can be shown that the norm induced by this latter inner prod%ct is in fact equivalent
to the usual L?(Q)-norm.

However, this has a drawback for the example treated in this section. Since our condi-
tions for checking (LBB) as well as (FEP) are based on biorthogonality w.r.t. the usual
L*(Q)-inner product (-,-), we cannot directly apply our conditions. Let us make this a
little bit more precise. Using similar arguments as for obtaining (7.7), we conclude for
any integrable function ¢ on I' with v := GG o 4 that

/rg(x)d% = /g(v(t))lv’(tﬂdt.

1

Setting as above ¢(2) := ¢g(G(#)) and taking into account that g(v(¢)) = ¢(G~*(y(1))) =

G(3(1)) leads to
/F g(a) do, = / 4(2)

Hence, biorthogonality on [ implies biorthogonality on I' only for linear mappings G which

dO'i,.

JG(%)

represent of course only a very limited number of domains §2, namely parallelepipeds.
However, this problem can be solved by adapting the bilinear form b(-,-) as follows: To
begin with, we replace (-,-) by (-, -)r defined by

P = / ple) ae) |7 (v () do (7.8)
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for piecewise smooth functions p and g on I'. Analogously we introduce bo(-,-) : H=/3(T')x

HY(Q) = R by
ba(v,q) = — / o(x) (300 (@) (7 ()] dor, (7.9)

p
1

for piecewise smooth functions ¢ on I' and v on Q. Formally, we could introduce (-,
and bg(+,-) using the definitions (7.8) and (7.9), respectively. However, since |§'(t)| =
these forms coincide with the original ones.

Y

Now, we note that the biorthogonality relations with respect to b(-,-) on O imply those
on ) with respect to bg(-,-), since

batosa) = — [[ale) oo 7 ]l
- _/fq(G(i’))U(G(i?))I’V’(’y‘l(G(:i:)))rl W G dos (T10)

= —{¢700)r = =(4,70) = b(8,4)

for v € H'(Q) and ¢ € H~Y*(I)

Next, we introduce an adapted mixed formulation with respect to (-, -)r and bq(-,-)

Problem 7.6 For given [f,g] € H™'(Q) x HY*(I') find functions [u,p] € H'(Q) x
H=Y*(T") such that

a(u,v) +ba(v,p) = (fv), veH (D),

ba(u, q) = —{q,9)r, q€ HV*T). (7.11)

Clearly, both mixed problems are equivalent in the sense that they provide the same
solution v € H'(). But one should notice that the interpretation of the Lagrange
multiplier is changed, since the bilinear form b(-, -) is changed to bqo(+,-). To be precise, it
is well-known that for smooth data f, the Langrange multiplier p in Problem 7.2 can be
interpreted as the normal derivative of the solution u on the boundary I'. On the other
hand, in Problem 7.6 the situation is as follows: for f € L*()) one obtains for the solution
[w,p] € H'() x H-Y*(T') the identity

—(Au, Q) + (u,¢) = (f,¢), ¢ €5,
i.e., in particular Au = —f 4+ u € L*(Q). Thus, we have for v € H'(Q) by (7.11)
{(p,yov)r = —ba(v,p) = (Vu,Vv) + (u,v) — (f,v) = (Au,v) + (Vu, Vo),

which implies by the Green formula

p= T O 0% e B,

i.e., one has to multiply the normal derivative of the solution u by the factor |v/(y7*(+))|.
Now we have to check whether the inf-sup condition still holds with respect to bg(-,-).



Adaptive Wavelet Methods for Saddle Point Problems 33

Theorem 7.7 Under the above assumptions, there exists a constant 3 > 0 such that

. bQ(U7Q)
inf sup
aeH=12(0) e (@) |9l -1z V][ @)

> 3. (7.12)

Proof. Let v € H'(Q) be the variational solution of the Neumann problem

—Av+v = 0, in Q,
v = ¢ V(7' C)L on I

Then, one has by definition

(7.13)

bQ(U7Q) = _<Q770U>F = HUH?'Jl(Q) (714)
as well as
vl = lla- YO M- m)-
On the other hand, one obtains by

q9,P)Q
lallg-120y = sup a9l
©eH/2(T) H‘PHHW(F)

lg() - O D a2 e Y O O e
peH1/2(T) oMl 172

laC) - 17 (v DN =12

IA

A

the estimate
lollarey 2 llalla-1ey- (7.15)
The identity (7.14) and the estimate (7.15) imply the inf-sup condition (7.12). O

Now, in view of (7.10), all results in the Corollaries 7.3, 7.4 and 7.5 remain valid for the
Problem 7.6. Finally, the norm equivalences in ) and on I' allow to use the a posteriori
error estimates to construct an adaptive wavelet strategy.

7.3 More general domains

Let us briefly indicate some generalizations of the above presented results to more general
domains (2.

7.3.1 Domain decomposition

The results in the latter two sections can easily be used to obtain pairs of wavelet spaces
that fulfill (LBB) and (FEP) also for more general domains €. In fact, one may use one
of the constructions of wavelets on domains and manifolds in [9, 10, 17, 25] featuring do-
main decomposition approaches. The basic idea is very similar to the above construction
of wavelets on [, namely mapping and matching. For (LBB) and (FEP), we only have
to consider functions on ) that have a non—trivial trace on I' = 9€). As long as this
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trace vanishes at the corners of ), the same reasoning as in the previous section applies.
Accross the interelement boundaries a matching is performed so that the resulting func-
tions (and hence also their traces) are globally continuous. Since both (LBB) and (FEP)
only reflect subsets where b(-,-) vanishes, the discussion indeed reduces to the single sub-
domains, which have been considered in the previous section. We will not formulate the
corresponding results in detail here, since this would force us to introduce some additional
technicalities whereas the above guidelines should be sufficiently clear.

7.3.2 Biorthogonality on 2

Recently, a new approach for constructing wavelets on domains and manifolds has been
introduced, [27]. This method differs from those in [9, 10, 17, 25] that have already been
discussed above. The advantage is that the wavelet bases in [27] are constructed such
that they are biorthogonal w.r.t. the L?-inner product on the domain Q. Hence, one may
consider (LBB) and (FEP) directly w.r.t. b(-,-) without modifying this bilinear form.

However, the relationship between X, and its trace space is not so easy as in the above
presented case. This connection turns out to be more complicated. Since this would go
beyond the scope of the present paper this subject will be treated elsewhere.

7.3.3 Imbedding strategies

Another approach to deal with wavelet methods on complex domains is to imbed the
domain © into a larger but simple domain OO D © (such as a cube). Then, one uses a
wavelet basis on O and is left to find appropriate bases on I' in order to fulfill (LBB)
and (FEP). Uniform wavelet spaces in H'/?(I') and H'(0J) have e.g. been studied in [22]
resulting in general criteria for (LBB) for the ‘full’ spaces. Now, using tensor product bases
on [, the spaces on I' and the trace space of H'(() may not be related in such a nice way
as described above. As a consequence, our above criteria do not apply directly. Hence,
the question arises if the (technical) construction of wavelet bases on § pays compared
with the (less technical) construction of such a basis on O. It was shown above that we
obtain explicit criteria (in terms of single indices) for (LBB) and (FEP) for adaptively
refined wavelet spaces. This is of course very helpful for implementations and in our
opinion justifies the above presented approach even though the preprocessing might be
more involved.

Acknowledgement: We would like to thank Franco Brezzi for valuable comments.
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