
Adaptive Wavelet Methods for Saddle Point Problems�Stephan Dahlke Reinhard Hochmuth Karsten UrbanFebruary 23, 1999AbstractRecently, adaptive wavelet strategies for symmetric, positive de�nite operatorshave been introduced that were proven to converge. This paper is devoted to thegeneralization to saddle point problems which are also symmetric, but inde�nite.Firstly, we derive explicit criteria for adaptively re�ned wavelet spaces in orderto ful�ll the Ladyshenskaja{Babu�ska{Brezzi (LBB) condition and to be fully equili-brated. Then, we investigate a posteriori error estimates and generalize the knownadaptive wavelet strategy to saddle point problems. The convergence of this strat-egy for elliptic operators essentially relies on the positive de�nite character of theoperator. As an alternative, we introduce an adaptive variant of Uzawa's algorithmand prove its convergence.Finally, we detail our results for two concrete examples of saddle point prob-lems, namely the mixed formulation of the Stokes problem and second order ellipticboundary value problems where the boundary conditions are appended by Lagrangemultipliers.Keywords: Adaptive schemes, a posteriori error estimates, multiscale methods, wave-lets, saddle point problems, Uzawa's algorithm, Stokes problem, Lagrange multipliers.AMS subject classi�cation: 42C15, 65N55.1 IntroductionThe variational formulation of many problems in mechanics, physics and technology leadsto a saddle point problem. For example, mixed methods are widely used in structuraland 
uid mechanics, [5, 7]. Although signi�cant progress has been made in the numericaltreatment of such equations, they still form a class of challenging problems. The inde�nite�The work of the �rst two authors has been supported by Deutsche Forschungsgemeinschaft (DFG)under Grants Da 117/13-1 and Ho 1846/1-1, respectively. Moreover, this work was supported by theEuropean Commission within the TMR project (Training and Mobility for Researchers) Wavelets andMultiscale Methods in Numerical Analysis and Simulation, No. ERB FMRX CT98 018T4 and by theGerman Academic Exchange Service (DAAD) within the Vigoni{ProjectMultilevel{Zerlegungsverfahrenf�ur Partielle Di�erentialgleichungen. This paper was partially written when the third author was aresidence at the Istituto di Analisi Numerica del C.N.R. in Pavia, Italy.1



2 S. Dahlke, R. Hochmuth, K. Urbancharacter of saddle point problems requires some care in the choice of the discretizationin order to obtain a stable numerical method. Moreover, the e�cient solvers that areavailable for symmetric positive de�nite operators, have to be appropriately modi�ed.In addition, many saddle point problems show a large scale behaviour in the sensethat the solution has some global (low frequency) part and well localized (high frequency)details which may come from singularities of the problem data such as jumping coe�cients,non{smooth domains and right{hand sides. These problems demand the use of adaptivestrategies in order to resolve the local details of the solution up to a given accuracy whilepreserving e�ciency.In this paper, we treat these problems by means of wavelet analysis. The �rst applica-tions of wavelet methods were in image and signal processing. During the last years, theyhave also been shown to o�er some potential for the numerical treatment of partial dif-ferential and integral equations, see [13, 21] and the references therein. Among them, themaybe most important features for adaptive solution methods for saddle point problemsare:� Convergent and e�cient adaptive wavelet methods for positive de�nite problems.� Construction of adapted wavelet bases.Let us describe this in more detail. Recently, an adaptive wavelet strategy has beenintroduced for symmetric positive de�nite operators, [19], see also [18]. It was proventhere that this strategy gives rise to a convergent adaptive algorithm. The original methodin [19] was somewhat modi�ed in [14] resulting in a strategy that in addition was provento be asymptotically optimal e�cient.The construction of (biorthogonal) wavelet bases leaves some freedom that can be ex-ploited to ful�ll additional requirements that e.g. are forced by the problem to solve. Asone example, we mention the construction of divergence- and curl{free wavelets [37, 39, 41]and of wavelet trial spaces for the Stokes problem that ful�ll the Ladyshenskaja{Babu�ska{Brezzi (LBB) condition, [23].From what is said above it seems natural for us to consider the construction of adap-tive wavelet strategies for saddle point problems. In this paper, we focus on two mainquestions:� Is it possible to derive general and explicit criteria for adaptive wavelet discretiza-tions of saddle point problems in order to ful�ll (LBB)? Moreover, is the samepossible for the Full Equilibrium Property (FEP) (see De�nition 2.3 below)?� Is there an adaptive wavelet strategy for saddle point problems that can be provento converge?We answer both questions positively in this paper. After collecting some preliminariesin Section 2, we prove general and explicit criteria for (LBB) and (FEP) in Section 3 inthe context of adaptively chosen biorthogonal wavelet bases. We will detail these criteriafor two concrete examples. In Section 6, we consider the mixed formulation of the Stokesproblem and in Section 7, we treat second order elliptic boundary value problems where



Adaptive Wavelet Methods for Saddle Point Problems 3boundary conditions are appended by Lagrange multipliers. In both examples we exploitthe possibility of adapting wavelet bases to the particular problem.In order to answer the second question from above, we �rst introduce an a posteriorierror analysis in Section 4 which in fact is a generalization of the result in [19]. Also, theadaptive re�nement strategy in [19] can be generalized to saddle point problems. It isstill an open problem to prove the convergence of this strategy for saddle point problems.Alternatively, we propose an adaptive variant of Uzawa's algorithm in Section 5 and weprove its convergence. Also this method may be viewed as a generalization of the resultsin [19] since the adaptive Uzawa algorithm uses a convergent adaptive strategy for theelliptic part as a main ingredient.2 PreliminariesIn this section, we collect all the auxiliary facts on both, on saddle point problems andon wavelets, that will be needed in the sequel.2.1 SettingWe consider the following saddle point problem: Given two Hilbert spaces X and M ,some continuous bilinear formsa : X �X ! R; b : X �M ! Rand f 2 X 0 as well as g 2M 0. Here, Y 0 denotes the dual space for some Banach space Y .Moreover, we assume X � HX , M � HM , where HX , HM are Hilbert spaces such thatX ,! HX ,! X 0; M ,! HM ,!M 0: (2.1)Then, one has to determine a pair [u; p] 2 X �M such thata(u; v) + b(v; p) = hf; viX 0�X for all v 2 X;b(u; q) = hg; qiM 0�M for all q 2M; (2.2)where h�; �iY 0�Y denotes the dual pairing. We assume the bilinear form a(�; �) to be ellipticon the subspace V := fv 2 X : b(v; q) = 0 for all q 2Mg � X;i.e., there exists a constant � > 0 such thata(v; v)� �kvk2X (2.3)holds for all v 2 V . Since we are ultimately interested in problems of the kind (2:2) thatare uniquely solvable, we �nally assume that X and M ful�ll the inf{sup condition:infq2M supv2X b(v; q)kvkX kqkM � � (2.4)



4 S. Dahlke, R. Hochmuth, K. Urbanfor some constant � > 0.The following equivalent formulation will be very useful for our analysis. De�ning theoperators A : X ! X 0; hAu; viX 0�X := a(u; v); v 2 X;B : X !M 0; hBu; qiM 0�M := b(u; q); q 2M;B0 :M ! X 0; hB0p; viX 0�X := b(v; p); v 2 X;the problem (2:2) is equivalent to �nd [u; p] 2 X �M =: H such thatAu+B0p = f in X 0;Bu = g in M 0: (2.5)If (2.2) is well{posed, the operator A := � A B0B 0 � (2.6)is boundedly invertible with respect to the usual graph norm, i.e., there exist constantscA; CA such that cAkA([u; p])kH0 � k[u; p]kH � CAkA([u; p])kH0; (2.7)where k[u; p]k2H := kuk2X + kpk2M . We will often use the notation A <� B to abbreviateA � cB with some constant c > 0, and for A <� B <� A, we write A � B. Hence, (2:7)may also be expressed by kA([u; p])kH0 � k[u; p]kH.The Schur complement. In many cases of interest, the operator A is invertible andit makes sense to consider the operator S := BA�1B0, which is known as the Schurcomplement. Then, we de�ne the energy norm on X �M for the operator A byk[v; q]k2A := kvk2A + kqk2S; [v; q] 2 X �M; (2.8)where k�kA, k�kS denote the energy norm corresponding to A and the Schur complementS,respectively. We include the proof of the following fact for completeness and convenience.Proposition 2.1 If A is boundedly invertible on X, i.e.,kAvkX 0 � kvkX; v 2 X; (2.9)B0 is bounded and the inf{sup condition (2:4) holds, thenkqkS � kqkM; q 2M: (2.10)Proof. We �rst establish the upper estimate. Due to the boundedness of B 0 and of A�1,we havekqk2S = hSq; qiM 0�M = hA�1B0q;B0qiX�X 0 � kA�1B0qkXkB0qkX 0 <� kB0qk2X 0 <� kqk2M:



Adaptive Wavelet Methods for Saddle Point Problems 5To show the lower estimate, we use the boundedly invertibility and the inf{sup condition:kqk2S = hA�1B0q;B0qiX�X 0 >� kB0qk2X 0 >� kqk2M :This completes the proof.This result shows the equivalence of k � kA to the graph norm k � kH Since we alwaysassume that (2:2) is well posed, we also have that A is boundedly invertible with respectto k � kA, i.e., kA([v; q])kX 0�M 0 � k[v; q]kX�M � k[v; q]kA;which is an immediate consequence of Proposition 2.1 and the well{posedness of (2:2).An equivalent formulation. An equivalent formulation of (2:2) can be introduced bythe bilinear form L([u; p]; [v; q]) := a(u; v) + b(v; p) + b(u; q); (2.11)which is de�ned for [u; p]; [v; q] 2 X �M . Now, (2:2) can be rewritten in terms of thebilinear form L(�; �): Given f 2 X, g 2M 0 �nd a pair [u; p] 2 X �M such thatL([u; p]; [v; q]) = hf; viX 0�X + hg; qiM 0�M ; [v; q] 2 X �M: (2.12)A short re
ection shows that (2:2) and (2:12) are indeed equivalent: The conclusion from(2:2) to (2:12) can be made by adding up the two equations in (2:2). For the otherdirection one can take test functions with q = 0 and v = 0, respectively, to obtain (2:2).The following lemma shows that L also ful�lls an inf{sup condition. We will use this factlater on.Lemma 2.2 ([34]) There exists is a constant ~� 2 R+ withinf[u;p]2X�M sup[v;q]2X�M L([u; p]; [v; q])(kukX + kpkM )(kvkX + kqkM) � ~� > 0: (2.13)2.2 Multiscale methods and waveletsLet us now summarize the basic notations for multiscale methods that are needed in thispaper. For a survey of multiscale methods and wavelets, we refer to [13, 21].Given some Hilbert space H, we call a system of functions �j := f'j;k : k 2 �jg,j � j0, �j some (�nite) set of indices, (primal) single scale system, if �j is re�nable, i.e.,there exists a matrixMj;0 2 Rj�j+1j�j�j j such that�j =MTj;0�j+1: (2.14)Here, j0 2 N denotes some coarse level. Equation (2:14) in particular implies that theinduced spaces Sj := S(�j) := span(�j)



6 S. Dahlke, R. Hochmuth, K. Urbanare nested: Sj � Sj+1. We always assume that the union of all Sj is dense inH. Moreover,we assume the existence of a dual single scale system ~�j = f ~'j;k; k 2 �jg, such thath�j ; ~�ji := �('j;k; ~'j;k0)H�k;k02�j = I; (2.15)where I denotes the identity matrix of corresponding size.Biorthogonal wavelet spaces Wj ; ~Wj are then de�ned byWj := Sj+1 	 Sj ; ~Wj := ~Sj+1 	 ~Sj; Sj ? ~Wj; ~Sj ?Wj ; (2.16)where the orthogonality is to be understood with respect to the H{inner product. Con-structing biorthogonal wavelets then amounts �nding bases	j := f j;k : k 2 rjg; ~	j := f ~ j;k : k 2 rjg; (rj := �j+1 n�j) (2.17)of Wj, ~Wj, respectively, such that h	j; ~	ji = I (2.18)and the collections	 := f � : � 2 rg; ~	 := f ~ � : � 2 rg; r := f� = (j; k) : j � j0 � 1; k 2 rjg(2.19)(	j0�1 := �j0 ; ~	j0�1 := ~�j0) form Riesz bases for H, i.e., they form a basis for H and thefollowing norm equivalence holdskdT	kH = 


X�2rd� �


H � kdk`2(r) =  X�2r jd�j2!1=2 : (2.20)Often, 	, ~	 will be termed biorthogonal wavelet system or simply multiscale basis. Inmany cases, an equation similar to (2:20) also holds for a whole range of Sobolev or Besovspaces including H (see [20] and also (2:22), (2:23) below).For any subset � � r, we de�ne the corresponding set of wavelets by	� := f � : � 2 �g; ~	� := f ~ � : � 2 �g;and the induced spaces by S� := S(	�) and ~S� := S( ~	�).2.3 Multiscale discretization of saddle point problemsIn order to discretize (2:2), we want to use trial and test spaces that are induced bymultiscale bases. To be more speci�c, we assume that there exist wavelet bases 	 = f � :� 2 rXg and � = f#� : � 2 rMg that form Riesz bases for HX and HM , respectively,see (2:1). In the sequel, we shall restrict ourselves mainly to the case that X and M areSobolev spaces de�ned on suitable domains or manifolds 
1 � Rn, 
2 � Rm, i.e.,X = H t(
1); M = Hs(
2); s; t 2 R: (2.21)



Adaptive Wavelet Methods for Saddle Point Problems 7Then, we also assume that the Riesz bases give rise to the following norm equivalences:kdT	k2�;
1 � X�2rX 22� j�jd2�; � 2 [�t; t]; (2.22)kcT�k2�;
2 � X�2rM 22�j�jc2�; � 2 [�s; s]; (2.23)where k � km;
 denotes the norm in the Sobolev space Hm(
), m 2 R. Since it shouldbe clear from the context, we will omit the dependencies of the norms on 
1 and 
2,respectively, in the sequel. Now, the trial spaces (X�;M�) � (X;M) are de�ned by apair of index sets � := (�X ;�M) � (rX;rM):The LBB condition. It is well{known that trial spaces for the stable numerical solutionof (2:2) need to ful�ll the Ladyshenskaja{Babu�ska{Brezzi (LBB) conditioninfq�2M� supv�2X� b(v�; q�)kv�kX kq�kM � � (2.24)for some constant � > 0 independent of �.Full equilibrium property. For the numerical treatment of saddle point problems aswell as for the analysis of discretizations, the following property is very useful.De�nition 2.3 A discretization (X�;M�) is said to have the Full Equilibrium Property(FEP) if for u� 2 X� the equality b(u�; q�) = 0 for all q� 2 M� already implies thatu� 2 V , i.e., b(u�; q) = 0 for all q 2M . The spaces are also called equilibrated.Roughly speaking, this means that KerB� � KerB, which is, of course a very strongproperty. There are many di�erent names in the literature for this property. We choose(FEP), which is used in applications of mixed methods in structural mechanics.3 Multiscale bases, the LBB and FEP conditionThis section is devoted to conditions on the particular choice of multiscale trial spacesin order to ful�ll (LBB) and (FEP). It will turn out that biorthogonality is the maintechnical tool to derive explicit criteria.3.1 The LBB conditionThe LBB condition has already been studied in the wavelet context in [4, 23]. Both papersare however restricted to the Stokes problem. While [23] does not consider adaptivelyre�ned spaces, in [4] this problem is treated using ideas from [23]. But the conditionsderived in [4] are still somewhat implicit. Here, we will deal with arbitrary saddle pointproblems and we derive explicit criteria for the adaptively re�ned spaces in order to ful�ll



8 S. Dahlke, R. Hochmuth, K. Urban(LBB). The basic idea, namely to use biorthogonality and the following well{known resultby M. Fortin can already be found in [23].Proposition 3.1 ([29]) The LBB condition holds if and only if there exists an operatorQ� 2 L(X;X�) satisfyingb(v �Q�v; q�) = 0 for all v 2 X; q� 2M�; and (3.1)kQ�kL(X;X) <� 1; (3.2)independent of �.For the spaces X� de�ned above, there is a natural choice for the operator Q� given byQ�v := X�2�Xhv; ~ �iX�X 0  �: (3.3)Due to the norm equivalences (2:22), condition (3:2) is always ful�lled:kQ�vk2X � X�2�X 22tj�jjhv; ~ �iX�X 0j2 � X�2r 22tj�jjhv; ~ �iX�X 0j2 <� kvk2X:For any subset �X � X we will use the notations�X?b := fq 2M : b(v; q) = 0 for all v 2 �Xg; (3.4)and similar for �M �M�M?b := fv 2 X : b(v; q) = 0 for all q 2 �Mg: (3.5)Moreover, we use the standard de�nition of the polar space for any subset �X � X�X0 := fx0 2 X 0 : hx0; viX 0�X = 0 for all v 2 �Xg; (3.6)and similarly for subsets in M . By de�nition, we haveX?b� = B(X�)0 and M?b� = B0(M�)0: (3.7)Now, we obtain the desired result.Theorem 3.2 The multiscale spaces X�, M� de�ned above ful�ll the LBB condition(2:24) provided that one of the following equivalent conditions holds:(a) M� � (X 	X�)?b ,(b) B0(M�) � ~X�,(c) B(X 	X�) �M 0 	 ~M�.



Adaptive Wavelet Methods for Saddle Point Problems 9Proof. Due to the Riesz basis property, we have for v 2 X and q� 2M�b(v �Q�v; q�) = X�2rn�hv; ~ �iX�X 0 b( �; q�) = 0 (3.8)if and only if b(v�; q�) = 0 for all v� 2 X 	X�; q� 2M�;which is equivalent to (a). It remains to verify the equivalence of (a){(c). In fact, usingM0� = M 0 	 ~M� and ~X0� = X 	 X�, the assertion is an immediate consequence of thewell{known equivalencesY � B(L)0 () B0(Y ) � L0 () B(L) � Y 0 (3.9)for any subset Y �M and L � X.3.2 Full equilibriumIt is obvious that equilibrated discretizations allow the use of more powerful analyticaltools for studying the approximation of saddle point problems. For instance, one mayobtain error estimates only for the variable u without using the graph norm, see e.g.[5] and (4:24) below. However, it is in general a non trivial task to realize equilibrateddiscretizations. Hence, we investe in the development of su�cient criteria when usingmultiscale bases. Again, it turns out that biorthogonality is a useful tool.Theorem 3.3 If a multiscale discretization given by the set of indices � = (�X ;�M)ful�lls one of the following equivalent conditionsB(X�) � ~M�; (3.10)B0(M 	M�) � X 0 	 ~X�; (3.11)then the discretization is equilibrated.Proof. Indeed, if (3:10) holds, this means that hBv�; qiM 0�M = 0 for all q 2 M 	M�for some v� 2 X�. This shows that hBv�; q�iM 0�M = 0 for all q� 2 M� already impliesBv� = 0. The stated equivalence of (3:10) and (3:11) follows by (3:9).We may combine Theorem 3.2 and 3.3, so that we easily obtain the following result.Corollary 3.4 If the spaces X� and M� ful�ll B0(M�) = ~X�, or equivalently, B(X�) =~M�, both (LBB) and (FEP) are valid.



10 S. Dahlke, R. Hochmuth, K. UrbanOne example. Let us illustrate the above conditions by one simple example. Let usassume that we have two basis functions  �1,  �2 2 X, such that B �1 = B �2 = c~#� forsome dual basis function ~#� 2M 0 and some c 6= 0. Let us now assume that �1 2 X�;  �2 62 X�: (3.12)Using condition (c) in Theorem 3.2 applied to  �2, it follows that #� 62 M� for ensuringthe LBB condition. On the other hand, using (3:10) applied to  �1 for checking (FEP), one would obtain #� 2 M� which contradicts the condition (c) in Theorem 3.2. Thisshows that (3:12) is not possible for a stable and equilibrated discretization. The `inverse'images with respect to B of a certain basis function #� either all have to belong to X� ornone of them.4 A posteriori error estimates and a re�nement strat-egyAs already mentioned, a convergent adaptive wavelet strategy for symmetric, positivede�nite operators has been introduced in [19]. However, a closer look to the proofs in[19] shows that the results concerning the construction of an adaptive re�nement strategy(without proof of convergence) can easily be generalized to a more general setting (includ-ing saddle point problems). In this section, we will therefore brie
y review the relevantresults but we omit the proofs since they can easily be deduced from [19]. Finally, wedescribe the application of these results to saddle point problems.4.1 The general settingLet us now describe the setting that we consider in this section. Let L : H ! H 0 be alinear boundedly invertible operator, i.e.,cLkLxkH 0 � kxkH � CLkLxkH 0; x 2 H; (4.1)where 0 < cL � CL are absolute constants and H is some Hilbert space. We consider theproblem Lx = z (4.2)for a given z 2 H 0. Moreover, we assume the existence of biorthogonal wavelet bases	 = f � : � 2 rg, ~	 = f ~ � : � 2 rg, such that ~	 characterizes H 0, i.e., there existabsolut constants 0 < c	 � C	, such thatc	�X�2r j
�hy;  �ij2�1=2 � kykH 0 � C	�X�2r j
�hy;  �ij2�1=2; (4.3)for any y 2 H 0, where 
� are suitable weight factors and h�; �i denotes the dual pairing ofH and H 0.



Adaptive Wavelet Methods for Saddle Point Problems 11Now, we consider the Galerkin approximation of (4:2), i.e., we look for some x� 2 S� :=S(	�) such that L�x� = z�; (4.4)where L�, z� are the usual Galerkin projections of L and z, i.e., L� = (hL �0;  �i)�;�02�and z� = (hz;  �i)�2�, respectively. Note that x� is indeed the Galerkin solution, i.e., wehave the Galerkin orthogonalityhL(x� x�); y�i = 0 for all y� 2 S�: (4.5)4.2 A posteriori error estimatesNow, using (4:1), (4:3) and the Galerkin orthogonality already gives rise to an a posteriorierror estimate:Proposition 4.1 Under the above assumptions, one has for�� := j
�hL(x� x�);  �ij; � 2 r; (4.6)the estimate cLc	� X�2rn� �2��1=2 � kx� x�kH � CLC	� X�2rn� �2��1=2: (4.7)Equation (4:7) states that we already have an e�cient and reliable error estimator.However, this is numerically useless, since rn� is a set of in�nite cardinality so that theestimator is not accessible. Hence, the idea is to reduce the in�nte sums in (4:7) to �niteones allowing some additional error that is under control. In order to do so, we have topose one more assumption on L and 	. To be precise, we call L quasi sparse w.r.t. 	, if2�(j�0j+j�j)tjhL �0;  �ij <� 2��jj�j�j�0jj(1 + 2min(j�j;j�0j))dist(��;��0)� ; (4.8)where �� := supp � and the constants t, � and � depend on L and 	 (see [19], Section4.3, for details). Let us remark that (4:8) is in fact valid for a wide class of di�erentialand integral operators. Then, one can show ([19], Lemma 4.2 and Remark 4.2) that foreach � 2 r and a given tolerance " > 0 there exists a �nite in
uence set J�;" � r suchthat the quantities e� := X�02�nJ�;"hL �0;  �ix�0 ; x�0 := hx�; ~ �0i; (4.9)satisfy 0@ X�2rn� j
� e�j21A1=2 � C" " kx�kH (4.10)



12 S. Dahlke, R. Hochmuth, K. Urbanfor some constant C" > 0.Now, we may de�ne the �nite index set, which will reduce the in�nite sum in (4:7). Tobe speci�c, let N�;" := f� 2 r n � : � \ J�;" 6= ;g: (4.11)Thus, setting Z� := � X�2rn� j
�z�j2�1=2; (4.12)one can prove (see [19], Theorem 4.1):Proposition 4.2 De�ningg�(�; ") := ���
� X�02�\J�;"hL �0;  �ix�0���; � 2 r n �; (4.13)the following estimates hold:kx� x�kH � CLC	h� X�2N�;" g�(�; ")2�1=2 + Z� + "C" kx�kHi (4.14)and � X�2N�;" g�(�; ")2�1=2 � 1cLc	kx� x�kH + Z� + "C" kx�kH : (4.15)Now, (4:14) and (4:15) state that the sum over g�(�; ") is an e�cient and reliable errorestimator up to a �xed tolerance. On the other hand, in contrary to (4:7), it is nowreduced to a �nite sum over N�;", so that it is in fact numerically accessible.4.3 An adaptive re�nement strategyNow, we may use the latter proposition to formulate a re�nement strategy (see [19],Theorem 4.2).Proposition 4.3 Under the above assumptions, we have: Let eps > 0 be a given toleranceand �x any #� 2 (0; 1). Then, de�ning Ce := 1cLc	 + 1�#�2CLC	 and choosing �� > 0 such that��Ce � 1�#�2(2�#�)CLC	 , we set " := ��eps2C"ku�kH : (4.16)Suppose that � � r is chosen so thatZ� < 12��eps: (4.17)



Adaptive Wavelet Methods for Saddle Point Problems 13Then whenever ~� � r, � � ~� is chosen so that� X�2~�\N�;" g�(�; ")2�1=2 � (1 � #�)� X�2N�;" g�(�; ")2�1=2; (4.18)there exists a constant � 2 (0; 1) such that eitherkx� � x~�kH � � kx� x�kH (4.19)or � X�2N�;" g�(�; ")2�1=2 = � X�2rn� g�(�; ")2�1=2 < eps: � (4.20)In [19], the distance property (4:19) is used to prove the convergence of the abovestrategy for symmetric positive de�nite operators (see also Section 5 below). In ourgeneral setting, a convergence result can not be expected.4.4 Saddle point problemsNow, we apply the above results to the saddle point operator A in (2:6). Obviously,assumption (4:1) is ful�lled by (2:7). As a wavelet basis on H = H, we choose 	�� andthen (2:22) and (2:23) imply (4:3) for the weight factors
[�;�] := � 2�tj�j2�sj�j � ; [�; �] 2 rX �rM ;and y = [v; q] 2 X �M = H. In fact, for [v0; q0] 2 X 0 �M 0, we havek[v0; q0]k2H 0 = kv0k2X 0 + kq0k2M 0� X�2rX 2�2tj�jjhv0;  �iX 0�X j2 + X�2rM 2�2sj�jjhq0; #�iM 0�M j2= X[�;�]2rX�rM ����� 2�tj�jhv0;  �iX 0�X2�sj�jhq0; #�iM 0�M �����2= X[�;�]2rX�rM j
[�;�]h[v0; q0]; [ �; #�]iH0�Hj2:Now, we de�ne the residualR� := � r��� � := A� u� � up� � p � = A� u�p� ��� fg � = � Au� +B0p� � fBu� � g � ; (4.21)and the quantities%� := jhr�;  �iX 0�X j; � 2 rX; �� := jh��; #�iM 0�M j; � 2 rM : (4.22)



14 S. Dahlke, R. Hochmuth, K. UrbanTheorem 4.4 For the above discretization (X�;M�), the following error estimate isvalid:ku�u�kX + kp� p�kM � � X�2rXn�X 2�2tj�j%2��1=2+� X�2rMn�M 2�2sj�j�2��1=2: (4.23)As a consequence, we get the following result:Corollary 4.5 For equilibrated discretizations, the following equivalence holds for g � 0:ku� u�kX � � X�2rXn�X 2�2tj�j%2��1=2: � (4.24)Remark 4.6 In view of Proposition 2.1, the estimates (4:23), (4:24) also hold if wereplace ku�u�kX + kp� p�kM by the energy norm k[u�u�; p� p�]kA and ku�u�kX byku� u�kA, respectively, provided that the assumptions of Proposition 2.1 are ful�lled.Finally, we apply the results concerning the adaptive strategy to saddle point problems.Firstly, we have to assume that both A and B are quasi sparse in the sense of (4:8), wherefor B we have to replace t in (4:8) by s. Then, for u�0 := hu; ~ �0iX 0�X , �0 2 rX, andp�0 := hp; ~#�0iM 0�M , �0 2 rM , the quantity in (4:9) becomese[�;�] = X[�0;�0]2(�XnJX�;")�(�MnJM�;")� u�0 hA �0;  �iX 0�X + p�0 hB0#�0;  �iX 0�Xu�0 hB �0; #�iM 0�M � ;where JX�;" � rX and JM�;" � rM are suitable �nite in
uence sets. Next, setting f� :=hf;  �iX 0�X , � 2 rX and g� := hg; #�iM 0�M , � 2 rM , equation (4:12) readsZ� = � X[�;�]2(rXn�X)�(rMn�M ) 2�2tj�jjf�j2 + 2�2sj�jjg�j2�1=2:Finally, the error quantities g[�;�](�; ") de�ned in (4:13) take the formg[�;�](�; ") = ��� X[�0;�0]2(�X\JX�;")�(�M\JM�;")� 2�tj�ju�0 hA �0;  �iX 0�X + 2�tj�jp�0 hB0#�0;  �iX 0�X+2�sj�ju�0 hB �0; #�iM 0�M����:With these de�nitions, Proposition 4.3 easily applies.



Adaptive Wavelet Methods for Saddle Point Problems 155 Convergence of adaptive schemesSo far, we have set up an a posteriori error analysis for adaptively re�ned wavelet spacesand introduced explicit conditions for the crucial properties (LBB) and (FEP). However,it remains to study the convergence of such an adaptive algorithm. In [19], the abovedescribed adaptive wavelet strategy for positive de�nite operators was proven to converge.Now, one might think that the generalization to saddle point problems is an easy task.Unfortunately, we did not succeed in adapting the arguments used in [19] to saddle pointproblems. Let us brie
y point out the main di�erences when going from a positive de�niteto an inde�nite problem. We consider the problem Au = f , where A : H t0(
)! H�t(
)is some positive de�nite, boundedly invertible operator and f 2 H�t(
) are the givendata, while the function u 2 H t0(
) has to be seeked. Taking as above a wavelet basis	 = f � : � 2 rg � H t0(
), we denote by u� the Galerkin solution w.r.t. a (�nite) set� � r.In the previous section, we have described a strategy how to enlarge � to some ~� � �such that the distance property holds, i.e., there exists some 0 < � < 1 such thatku� � u~�kA � � ku � u�kA;see Proposition 4.3, (4:19). Note that here the energy norm k � kA is used, which alreadyassumes that A is positive de�nite. Now, one proceeds using Galerkin orthogonalitya(u� � u~�; u� u~�) = 0 (5.1)to conclude ku� u~�k2A = ku� u�k2A � ku� � u~�k2A � (1� �2)ku� u�k2A;which proves the saturation property, i.e., a strict error reduction since 0 < 1� �2 < 1.Unfortunately, (5:1) is no longer true when A is replaced by the operator A in (2:6)which represents a saddle point operator. Now, one could try to use that A is positivede�nite on V = Ker(B). This approach in fact gives rise to a convergent adaptive algo-rithm (which can be numerically performed) for computing u provided that a basis forV is explicitly available. This of course contradicts the philosophy of the saddle pointapproach and is not what we aimed at.As a second approach, one could consider the reduced problem for p, i.e.,Sp = BA�1f � g;involving the Schur complement S. But also this approach seems to have some ultimateobstacles. Firstly, due to the presence of A�1, the entries of the corresponding sti�nessmatrix hS#�; #�0iM 0�M can not be easily computed (and the same is true for the righthand side). Now, one could approximate A�1 by some A�1� . But then one ends up withthe problem that the discretization of S is not the same as discretizing the three factorsseparately, i.e., B�A�1� B0� 6= S�: (5.2)



16 S. Dahlke, R. Hochmuth, K. UrbanThis means that the computed solution does not correspond to the Galerkin solutionw.r.t. �. This, however, is essential for (5:1). Note that the non{equality in (5:2) stillholds if one could replace B�, B0� by B and B0, respectively, which is indeed possible if(FEP) holds.Next, one could try to study the error between the real Galerkin solution p� w.r.t. S�and the perturbed one p�� w.r.t. B�A�1� B0� (which is available for example by Uzawa'salgorithm). We have not been able to give meaningful quantitative criteria for the indexset � such that this error is below some given tolerance.Another approach is to make use of (FEP) which is a very strong property so that onecould hope to derive a convergent strategy at least for u. Indeed, exploiting (LBB), weobtain for the operator Q� 2 L(X;X�) in Proposition 3.1b(Q�u� u�; q�) = b(Q�u; q�)� hg; q�iM 0�M = b(u; q�)� hg; q�iM 0�M = 0 (5.3)for all q� 2 M�, where u, u� are the solutions of the continuous and discrete problem(2:5), respectively. Hence, (FEP) impliesb(Q�u� u�; q) = 0 for all q 2M: (5.4)Since Q�u� u� 2 X�, we obtain a(Q�u� u�; u� u�) = 0, which, in turn, implieskQ�u� uk2A = kQ�u� u�k2A + ku� u�k2A: (5.5)This latter equation immediately impliesku� u�kA <� ku�Q�ukA (5.6)and since Q� was nothing but the biorthogonal projector on X�, the Riesz basis propertyensures that u� converges to u. However, this is also not what we really want to achievedue to two reasons. Firstly, the right hand side of (5:6) contains quantities depending onthe unknown solution u. This means, the choice of the index sets � depend directly onu, which is not available in numerical calculations. Secondly, (5:6) gives no quantitativeestimate which allows to predict the number of iterations an adaptive algorithm has toperform at most to reach a prescribed error tolerance.Hence, we looked for a new approach that circumvents all the above listed problemsand drawbacks. In this section, we introduce an alternative, namely an adaptive versionof Uzawa's algorithm. The analysis of this method leads us to the desired result, namelya convergent adaptive re�nement strategy for saddle point problems.5.1 An adaptive Uzawa algorithmThe Uzawa algorithm is a well{known iterative solver for saddle point problems, [2]. Weaim at using this algorithm as an outer iteration for an adaptive method. To this end, weconsider the Uzawa algorithm for (in�nite dimensional) Hilbert spaces. In a second step,we formulate our adaptive version of Uzawa's algorithm. This adaptive version createssome additional errors that need to be controlled over the iteration.



Adaptive Wavelet Methods for Saddle Point Problems 175.1.1 Uzawa algorithm in Hilbert spacesOriginally, the Uzawa algorithm was formulated for saddle point problems involving ma-trices of �nite dimension, [2]. Here, we consider its formulation in in�nite dimensionalHilbert spaces X and M . Given any bounded linear operator R : M 0 ! M (whoserole will be discussed later) and � 2 R, we consider the following variant of the Uzawaalgorithm:Algorithm 5.1 Given any p(0) 2M , we compute u(i) and p(i) for i = 1; 2; : : :, byAu(i) = f �B0p(i�1); (5.7)p(i) = p(i�1) + �RBu(i): (5.8)The convergence of this algorithm is well{known if R is the Riesz operator (see [7]and the references therein). However, since for the subsequent error analysis it will beimportant to keep track of the in
uence of the data to the error, we need an expliciterror estimate here. Hence, we state the following result and include also the proof forcompleteness and convenience.Theorem 5.2 Suppose that RS is selfadjoint and positive de�nite and 0 < � < 2kRSk�1[M ](S again being the Schur complement). Then the Algorithm 5.1 converges. To be precise,for p(0) := 0 and setting q := kId� �RSk[M ], we obtain the following error estimatekp� p(i)kM � kA�1fkX k�RBk[X;M ] qi1� q ; q < 1: (5.9)Proof. By induction, it is easy to show thatp(i) = (Id� �RS)ip(0) + � i�1Xk=0(Id� �RS)k��RBA�1f: (5.10)Now, let H be a Hilbert space. Then, for any linear bounded and selfadjoint operatorT : H ! H, the following equation is well{known [1]supfj�j : � 2 �(T )g = kTk[H ]; (5.11)where the norm is the operator norm induced by the norm in H and �(T ) denotes thespectrum of T . Now, we use the fact that RS is selfadjoint and hencesupfj�j : � 2 �(�RS)g = k�RSk[M ] = �kRSk[M ] < 2: (5.12)The assumptions on � and on RS imply that �(Id� �RS) � (�1; 1), sincesupf� : � 2 �(Id� �RS)g = 1� � inff� : � 2 �(RS)g < 1and inff� : � 2 �(Id� �RS)g = 1� � supfj�j : � 2 �(RS)g = 1� �kRSk[M ] > �1:



18 S. Dahlke, R. Hochmuth, K. UrbanConsequently, we obtainq = kId� �RSk[M ] = supfj�j : � 2 �(Id� �RS)g < 1:This �nally implies, using q < 1 and p(0) = 0kp � p(i)kM = 


S�1BA�1f � i�1Xk=0(Id� �RS)k�RBA�1f


M� kA�1fkX 


 1Xk=i (Id� �RS)k �RB


[X;M ]� kA�1fkX k�RBk[X;M ] qi1 � q ;which proves (5:9).Let us add some comments on the role of the operator R in (5:8). One natural choice isthe Riesz operator. However, we do not want to restrict Algorithm 5.1 to this case only.The reason for this is the fact that by Theorem 3.2 and 3.3 we have explicit conditionsat hand to check (LBB) and (FEP). In performing (5:8) for some discretization, one hasto guarantee that this discretization ful�lls (LBB). Hence, the freedom in the choice of Rmay also be used to ensure (LBB) and also (FEP).5.1.2 Adaptive versionNow, in general, we cannot compute u(i) and p(i) in each step exactly but only withsome approximations. Note that u(i) and p(i) are elements of in�nite dimensional spaces.We in fact compute approximations u(i)�i , p(i)�i with respect to �nite dimensional subsets�i = (�Xi ;�Mi ) � rX�rM . The aim of this subsection is to study the overall error in theUzawa iteration introduced by this approximation, where �i will be chosen adaptively.To be precise, we set ~u(i) := A�1(f �B0p(i�1)�i�1 )(which is not computable) and we assume that we approximate ~u(i) byu(i)�i = A�1�i Q0�i(f �B0p(i�1)�i�1 )up to a certain error, i.e., �i := u(i)�i � ~u(i); k�ikX < qi"i; (5.13)where we may choose "i. Here, Q0�i denotes the adjoint of the projector Q�i : X ! X�i .Now, we can formulate our adaptive Uzawa iteration:Algorithm 5.3 Let �M0 = ; and p(0)�0 = p(0) = 0. Then, for i = 1; 2; : : :, and given �Mi�1,proceed as follows:



Adaptive Wavelet Methods for Saddle Point Problems 191. Determine by an adaptive algorithm a set of indices �Xi such that for u(i)�i determinedby A�iu(i)�i = Q0�i(f �B0p(i�1)�i�1 ); (5.14)one has k�ikX < qi"i.2. Determine an index set �Mi such that RB(X�i ) � M�i and such that the LBBcondition holds. Then, set p(i)�i = p(i�1)�i�1 + �RBu(i)�i : (5.15)Theorem 5.4 Assume that "i are chosen such that1Xi=0 "i � C <1for some constant C > 0. Then, we havekp(i) � p(i)�ikM � Ck�RBk[X;M ] qi; (5.16)where p(0) = p(0)�0 and p(i) is de�ned by (5:10).Proof. As above, it is readily seen thatp(i) � p(i)�i = (Id� �RS)(p(i�1) � p(i�1)�i�1 )� �RB�i: (5.17)By iteration and assuming that p(0) = p(0)�0 , we obtainp(i)�i � p(i) = i�1Xk=0(Id� �RS)k�RB�i�k: (5.18)Inserting our assumption on k�ikX , we conclude thatkp(i) � p(i)�ikM � k�RBk[X;M ] qi i�1Xk=0 "k � Ck�RBk[X;M ]qi;which proves the result.Finally we obtain our desired result:Theorem 5.5 Under the above assumptions, we obtain the following error estimates forthe adaptive Uzawa Algorithm 5.3:(a) The Algorithm 5.3 converges, i.e., we havekp � p(i)�ikM <� qi:



20 S. Dahlke, R. Hochmuth, K. Urban(b) The solution of the saddle point problem can be approximated with any desired ac-curacy: ku� u(i+1)�i+1 kX + kp� p(i)�ikM <� qi:Proof. Using the triangle inequality and the Theorems 5.2 and 5.4 giveskp � p(i)�ikM � kp� p(i)kM + kp(i) � p(i)�ikM� kA�1fkX k�RBk[X;M ] qi1 � q + Ck�RBk[X;M ]qi= qi k�RBk[X;M ] �kA�1fkX 11� q + C�;which proves part (a) of the claim. For proving (b), we use standard arguments to obtainku� ~u(i+1)kX <� kB0p(i)�i �B0pkX 0 <� qi;where we have used (a) in the last step. Finally, using triangle inequality and (5:13) yieldsku� u(i+1)�i+1 kX � ku� ~u(i+1)kX + k~u(i+1) � u(i+1)�i+1 kX <� qi;which proves the desired result.Now, several remarks on the above results are in order:� As can be seen in (5:14), a convergent adaptive strategy for the positive de�nite op-erator A builds the kernel of our method. By assuming that this algorithm reducesthe error to k�ikX < qi"i, we implicitly assumed the convergence of the inner itera-tion, i.e., we assume that there exists a strategy to build �Xi which allows this errorreduction. As already pointed out, the algorithm in [19] meets this requirement.Also the question arises how large the set �Xi is, i.e., how many degrees of freedomare neccessary to reach the desired accuracy. This is a property of the adaptivestrategy used for (5:14) and the possible �ll{ins due to (LBB). For example, themethod introduced in [14] for positive de�nite operators was proven to have as-ymptotically optimal complexity. However, we will not study the complexity of ouradaptive Uzawa algorithm here and devote this to a forthcoming paper.� Clearly, the essential quantity q = kId � �RSk[X;M ] < 1 determining the speed ofconvergence will often not be available exactly. One could however estimate q inorder to obtain a priori a maximum number of (outer) Uzawa iterations to reachthe desired accuracy. Of course, an estimate for q depends on the various data fora particular saddle point problem.� At a �rst look one might get the impression that the performance of Algorithm 5.3depends only on p whereas the choice of the adaptive index sets �i depends only onu. However, the situation is somewhat more involved. Since the behaviour of theright hand side in
uences the choice of �i, it can be seen by (5:14) that p in fact



Adaptive Wavelet Methods for Saddle Point Problems 21e�ects the adaptive re�nement. On the other hand, u in
uences also the Uzawaalgorithm since in (5:8) we have to make sure that (LBB) is valid, i.e., we haveto determine �Mi for a given �Xi such that (�Xi ;�Mi ) gives rise to spaces ful�lling(LBB).� Finally, we comment on the relationship of the above algorithm to the inexactUzawa algorithm. The latter one has recently been studied e.g. in [6, 28], wherean error analysis is given if the elliptic subproblem corresponding to (5:7) is onlysolved up to some tolerance (in this sense inexact). Moreover, the preconditioningof this method is considered there. One might think that our algorithm is simply avariant of such an inexact Uzawa iteration. However, again, we point out that ourmethod works in in�nite dimensional Hilbert spaces and the error analysis considersthe inexact solution of the continuous elliptic problem in (5:7). To our knowledge,inexact Uzawa iterations are based on �nite dimensional spaces.6 Application No. 1: The Stokes problemIn this section, we detail our general criteria for (LBB) and (FEP) for the mixed formu-lation of the Stokes problem. Let us �rst apply Theorem 3.2 and 3.3 to this special case.We will use the particular multiscale discretization introduced in [23] ful�lling the LBBcondition. Firstly, we will review this construction and then we apply Theorem 3.2 and3.3 to obtain concrete conditions for this discretization.Let us start by reviewing the Stokes problem and its mixed formulation. For simplicity,we assume homogeneous boundary conditions, but the theory is of course not restrictedto this special case.Problem 6.1 Given a vector �eld f 2 H�1(
)n, one has to determine the velocity u 2H10(
)n and the pressure p 2 L20(
) := fq 2 L2(
) : R
 q(x) dx = 0g such that��u+rp = f in 
;r �u = 0 in 
; (6.1)where 
 � Rn is the bounded Lipschitz domain of interest.Thus, its mixed formulation is given by (2:2) for the particular choicea(u;v) := (ru;rv)0;
 = nXi;j=1Z
 @ui@xj (x) @vi@xj (x) dxb(v; q) := �(r � v; q)0;
 = nXi=1 Z
 q(x) @vi@xi (x) dx;for u = (u1; : : : ; un)T and v = (v1; : : : ; vn)T . For simplicity, let us restrict ourselves tothe case 
 = (0; 1)n. More general domains may be treated by domain decompositionapproaches using the cube as a reference domain, see [9, 10, 11, 17, 25, 27]. Hence, waveletbases on cubes also serve as reference basis elements in this approach.



22 S. Dahlke, R. Hochmuth, K. Urban6.1 Stable multiscale spaces for the Stokes problemIn this section, we brie
y review the construction of biorthogonal wavelet bases inH(div; 
)which can be used to generate multiscale bases for velocities and pressures, respectively.For the sake of simplicity, we again only describe this construction for 
 = (0; 1)n hereand refer to [41] for extensions to more general domains.Derivatives and primitives. The key for the subsequent construction is the followingresult for wavelet bases on (0; 1), which can be found e.g. in [26, 38, 40]. Roughly speak-ing, it states that certain wavelet systems on the interval are linked by derivatives andprimitives. This powerful mechanism is the key ingredient not only for the constructionof wavelet bases for the mixed formulation of the Stokes problem, which we will reviewnow, but also for the construction of divergence free wavelets, [37, 39]. To our knowledge,the result has so far been proven for three examples of wavelet systems on (0; 1):(a) Orthonormal wavelets on (0; 1), [16]. In this case, all what is said below, holds for~� = �.(b) Systems arising by iteratively applying Theorem 6.2 below to the systems in (a) andthe arising results. I.e., these are biorthogonal systems arising from orthonormalones by di�erentiation and integration.(c) Biorthogonal spline wavelets on (0; 1), [24, 26].Theorem 6.2 Let �(1)j := f�(1)j;k : k 2 Ijg, ~�(1)j := f~�(1)j;k : k 2 Ijg be one of the above listedsystems of univariate scaling functions and �(1)j := f�(1)j;k : k 2 Jjg, ~�(1)j := f~�(1)j;k : k 2 Jjgbe the induced biorthogonal wavelet system on (0; 1) such that ~�(1)j � H10 (0; 1). Then,there exists a second system of dual scaling functions �(0)j , ~�(0)j and induced biorthogonalwavelets �(0)j , ~�(0)j (w.r.t. the same set of indices Ij , Jj, respectively) such thatddx ~�(1)j = Dj;0 ~�(0)j ; ddx�(0)j = �DTj;0 �(1)j ;ddx ~�(1)j = Dj;1 ~�(0)j ; ddx�(0)j = �DTj;1�(1)j ; (6.2)where Dj;e 2 GL(jJj;ej � jJj;ej), e = 0; 1, are sparse, regular matrices andJj;e := � Ij; e = 0,Jj e = 1.Here and in the sequel, we use the short hand notation ddx�(0)j := ( ddx�(0)j;k )k2Ij and similarfor all other systems of functions. It will be necessary to detail the �rst equation in (6:2),namely ddx ~#(1)� = ddx ~#(1)j;e;k = Xk02r(�)dj;ek;k0 ~#(0)j;e;k0 ; k 2 Jj;e; e = 0; 1; (6.3)with some (small) set of indices r(�) � Jj;e and~#j;e;k := � ~�j;k; e = 0,~�j;k e = 1.



Adaptive Wavelet Methods for Saddle Point Problems 23Systems on the cube. The next step is to use tensor products to construct biorthog-onal wavelet systems on the unit cube (0; 1)n. The aim is to use the systems describedabove in an appropriate way so that a formula similar to (6:2) holds for the partial deriva-tives. Hence, we use the systems induced by �(1), ~�(1) as well as �(0), ~�(0) within a tensorproduct framework. For 
 = (
1; : : : ; 
n)T 2 f0; 1gn =: En, we de�ne (
)� (x) :=  (
)(j;e;k)(x) := nY�=1 #
�j;e� ;k� (x�); #
�j;e� ;k� :=8>>>>>><>>>>>>: �(1)j;k� ; 
� = 1; e� = 1;�(0)j;k� ; 
� = 0; e� = 1;�(1)j;k� ; 
� = 1; e� = 0;�(0)j;k� ; 
� = 0; e� = 0; (6.4)and � = (�1; : : : ; �n)T , �� = (j; e�; k�). All systems of functions 	(
)j as well as its dualsare de�ned in a straightforward manner. The corresponding set of indices is given byr := [j�j0�1rj; (6.5)where rj0�1 := f� = (j0; 0; k) : k 2 Inj0g;and for j � j0, we setrj := f� = (�1; : : : ; �n)T ; �� = (j; e�; k�) : e = (e1; : : : ; en)T 2 En n f0g; k� 2 Jj;e�g:Now, Theorem 6.2 implies:Corollary 6.3 For the above de�ned systems of wavelets, we obtain@@xi	(
) = D(i)	(
��i); @@xi ~	(
��i) = �(D(i))T ~	(
); (6.6)where �i := (�1;i; : : : ; �n;i)T , 1 � i � n denotes the canonical unit vector in Rn. Thematrices D(i) can be obtained by Dj;0 and Dj;1 in (6:2) in a straightforward way.In view of (6:3), we can express (6:6) as@@xi ~ (
)� = @@xi� nO�=1 ~#(
�)�� � = �O� 6=i ~#(
�)�� �� Xk0i2r(�i) dj;eiki;k0i ~#(
i�1)j;ei;k0i �= Xk0i2r(�i) dj;eiki ;k0i ~ (
��i)(j;e;k+�i(k0i�ki)): (6.7)



24 S. Dahlke, R. Hochmuth, K. UrbanVector �elds. For the space L2(
) of square integrable vector �elds, we denote waveletsystems by boldface characters, i.e., by	 (and similar for all other vector valued functionspaces). Moreover, we have to equip the index � 2 r labeling the scalar wavelets withsome additional index indicating the component of the vector �eld. For example, let	[�] := f [�]� : � 2 r[�]g, ~	[�] := f ~ [�]� : � 2 r[�]g, 1 � � � n, be (possibly di�erent)biorthogonal systems in L2(
). Then, the vector �elds (i;�) :=  [i]� �i; ~ (i;�) := ~ [i]� �i; � 2 r[i]; 1 � i � n;obviously form a biorthogonal wavelet basis for L2(
). Denoting byr := n[i=1 [�2r[i](i; �); � := (i; �);the corresponding set of indices, we have	 = f � : � 2rg; ~	 = f ~ � : � 2rg:Now, in view of Theorem 6.2, setting r := f(i; �) : i = 1; : : : ; n; � 2 rg with rde�ned by (6:5) and using the above mentioned systems adapted to di�erentiation andintegration, we de�ne div� :=  (�i)� �i; ~ div� := ~ (�i)� �i; � 2r: (6.8)It was proven that the wavelet systems 	div, ~	div de�ned by (6:8) in a straightforwardway, form a biorthogonal basis for H(div; 
), [23, 40, 41].6.2 Mixed wavelet discretizationsNow, we want to use the above described wavelet bases to obtain a mixed wavelet dis-cretization of the Stokes problem. In [23] it was shown that the `full' spacesMj := S(	(0)�j ); and Xj := S(~	div�j ) (6.9)indeed satisfy the LBB condition, where�j := f� 2 r : j�j � jg; �j := f� 2r : j�j � jg;and j�j := j for � = (i; �), � = (j; k). Moreover, in order to use ~	div and 	(0) to discretize(6:1), these functions do not only have to give rise to spaces that ful�ll (LBB). They alsohave to ful�ll appropriate boundary conditions. Since X =H10(
), the velocities need tohave vanishing traces at � := @
, which leads to the demand that the univariate systems~�(0) and ~�(1) need to ful�ll homogeneous Dirichlet boundary conditions at x = 0; 1. Onthe other hand, the pressures are functions inM = L20(
), so that no boundary conditionshave to be prescribed. Again, this implies that �(0) has to span all of L2(
). However,it was shown in [26] how to modify the construction of biorthogonal wavelets on theinterval from [24] in order to ful�ll these complementary boundary conditions. Finally,the pressure is forced to have a vanishing integral in a postprocessing.



Adaptive Wavelet Methods for Saddle Point Problems 25Norm equivalences. Let us �nally recall the norm equivalences for the above trialbases. It was shown in [23] that (2:22) and (2:23) are indeed satis�ed for at least t = 1and s = 0.6.3 Adaptivity and the LBB conditionSo far, the spaces in (6:9) are de�ned w.r.t. a full level, i.e., they are not adaptively chosen.As already mentioned, the validity of (LBB) for these spaces was shown in [23]. In [4],this result was extended to the adaptive case resulting in some condition on the set ofindices. However, the condition in [4] is still somewhat implicit since one has to check ifcertain inner products vanish. Here, we give an explicit condition on the correspondingset of indices.Corollary 6.4 Let M� � L20(
) be given in terms of some set of indices �M � rM = r.Then, the LBB condition is satis�ed provided that�X � B0(�M) := f� = (i; �) 2r; � = (j; e; k) : 9� = (j; e; k0) 2 �M :(1)k0i 2 �(�i)(2)k0i0 = ki0; for all i0 6= ig: (6.10)Proof. We have to check the condition (a) in Theorem 3.2. Now, for � 2r and � 2 r,we have b( ~ div� ;  (0)� ) = (r � ~ div� ;  (0)� )0;
 = � @@xi ~ (�i)� ;  (0)� �0;
= Xk0i2�(�i) dj;eiki;k0i ( ~ (0)(j;e;k+�i(k0i�ki));  (0)� )0;
= dj;eiki;k0i Yi0 6=i �ki0 ;k0i0 ;if k0i 2 �(�i) and b( ~ div� ;  (0)� ) = 0 else. Consequently, we obtain b( div� ;  (0)� ) = 0 forall � 2 �M if � 2 r n B0(�M ). This, in particular, implies that for � 2 �M one has (0)� 2 (X 	X�)?b, which, in view of condition (a) in Theorem 3.2 proves our assertion.6.4 Adaptivity and the equilibrium conditionApplying our general criteria for (FEP), we obtainCorollary 6.5 The discretization induced by (�X ;�M) � rX � rM = r � r ful�lls(FEP) provided that�M � B(�X) := [(j;e;k)2�X [k0i2�(�i)(j; e; k + �i(k0i � ki)): (6.11)



26 S. Dahlke, R. Hochmuth, K. UrbanProof. We have already seen thatr � ~ div� = Xk0i2�(�i) dj;eiki;k0i ~ (0)(j;e;k+�i(k0i�ki))holds for any � 2r. Hence, (6:11) implies B(X�) � ~M�, which, by Theorem 3.3 provesthe assertion.Finally, we combine the above results and obtainCorollary 6.6 If �M = B(�X), then both (LBB) and (FEP) are vaild.Proof. Obviously, we only have to check (LBB). Now, given any � = (i; �) 2 B(�M),� = (j; e; k). Then, by assumption, we have that � := (j; e; k+�i(k0i�ki)) 2 �M = B0(�M )for some k0i 2 �(�i). Hence, by de�nition of B(�X), we have that � 2 �X which proves(LBB).We see that the two conditions (LBB) and (FEP) are in fact contrary in nature. Whilethe condition for (LBB) determines �X for a given �M by the condition �X � B0(�M),the condition for (FEP) acts in the opposite way. In fact, given �X, one can determine�M by B(�X) � �M .7 Application No. 2: Appending boundary condi-tions by Lagrange multipliersAs a second example, we consider the inhomogeneous Dirichlet problem in a boundedLipschitz domain 
 � Rn with piecewise smooth boundary � := @
. In particular, � isassumed to be Lipschitzian and hence there exists a continuous trace operator 
0 : u 7!
0u = uj� : Hs(
) ! Hs�1=2(�), s 2 (1=2; 1], with a continuous right inverse 
�0 . By(�; �) we denote the dual pairing between Hs(
) and H�s(
) := (Hs(
))0; s � 0, suchthat (u; v) = R
 u(x)v(x) dx for smooth functions u and v. Analogously, h�; �i denotes thedual pairing between Hs(�) and H�s(�), such that hp; qi = R� p(x) q(x) d�x for functionsp and q in L2(�). Within this setting, we consider the following:Problem 7.1 Given two functions f 2 H�1(
) and g 2 H1=2(�), determine u 2 H1(
)such that ��u+ u = f in 
;u = g on �;holds.The `standard' weak formulation of this boundary value problem is formulated in a�nesubspaces of H1(
) related to the boundary condition posed by the function g. In certainapplications it turns out that it is advantageous to consider the weak mixed formulationarising from appending the boundary conditions by Lagrange multipliers. This has alsobeen studied in the wavelet context for example in [22, 34, 36].A mixed formulation for the inhomogeneous Dirichlet problem reads as follows:
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) � H1=2(�) �nd functions [u; p] 2 H1(
) �H�1=2(�) such that a(u; v) + b(v; p) = (f; v); v 2 H1(
);b(u; q) = �hq; gi; q 2 H�1=2(�); (7.1)where a(u; v) := (ru;rv)0;
 + (u; v)0;
 and b(v; q) := �hq; 
0vi for u; v 2 H1(
); q 2H�1=2(�).It is well{known that appending boundary conditions by Lagrange multipliers as inthe above mixed formulation gives rise to a uniquely solvable problem which �ts to ourabstract setting introduced in Section 2.1. In particular, one has X = H1(
), M =H�1=2(�), HX := L2(
), HM := L2(�) and V := H10 (
).For the sake of simplicity, we restrict ourselves to domains 
 � R2. However, everythingwhat will be stated in the sequel easily generalizes to higher dimensions. Firstly, wedescribe a discretization of Problem 7.2 for 
̂ := (0; 1)2. Secondly, we consider distorteddomains 
 � R2 which are isomorphic to 
̂. Finally, we use these domains in a domaindecomposition context to derive analogous results for more general domains.7.1 Wavelet discretization on 
̂ = (0; 1)2Let us assume that 
̂ and the four patches of the boundary �̂i, i = 1; : : : ; 4, are ori-ented as shown in the left part of Figure 1 below. Moreover, we choose the followingparametrizations �̂i : [0; 1]! �̂i by�̂1(t) := (t; 1); �̂2(t) := (0; t); �̂3(t) := (t; 0); �̂4(t) := (1; t); t 2 [0; 1]:On a �rst view, the orientation of the latter mappings might seem a little curious. Itsusefulness will become clear later (see (7:6) below).The simplest wavelet discretization for X = H1(
̂) probably consists of tensor productsof univariate wavelet and scaling functions on [0; 1]. Examples of such wavelet bases canbe found in the literature, e.g., in [16, 24, 26, 33], and we will not go into the technicaldetails here. Another possibility would be to choose the so called hyperbolic bases, whichare advantageous w.r.t. nonlinear approximation of functions with anisotropic smoothness,[35].In any case, it remains to construct a suitable wavelet basis on �̂. During the past years,several constructions of wavelets on general domains and manifolds have been introduced[9, 10, 11, 17, 25, 27]. In this section, we will follow the approach in [9, 10] to obtain asuitable wavelet basis on �̂. Let us brie
y review the main ingredients.One starts by any biorthogonal wavelet basis on [0; 1]. The next step is to modify thisbasis such that in addition it has the property that on a single level only one scalingfunction and one wavelet does not vanish at x = 0 and x = 1, respectively. Let us denoteby �Ij := f�j;k : k 2 IIj g; �Ij := f�j;k : k 2 J Ij g



28 S. Dahlke, R. Hochmuth, K. Urbanthose scaling functions and wavelets that vanish at the end points, i.e.,�j;k(0) = �j;k(1) = 0; k 2 IIj ; �j;k(0) = �j;k(1) = 0; k 2 J Ij ;while ILj , IRj , J Lj and J Rj denote the indices of those scaling functions and wavelets whichdo not vanish at the left and right end point, respectively. The `inner' functions are simplymapped to �̂i, i.e., #(i)j;k(�̂i(t)) := � �j;k(t); if k 2 IIj ,�j;k(t); if k 2 J Ij . (7.2)A similar de�nition is given for the dual functions. For those functions that do notvanish on the boundary, a matching is performed. To be precise, the functions �j;k,~�j;k, k 2 ILj ;IRj as well as �j;k, ~�j;k, k 2 J Lj ;JRj are mapped to �̂i in the same way as(7:2). Then, these mapped functions are matched by building suitable linear combinations(note that only two functions per patch �̂i enter these linear combination, i.e., four suchfunctions per corner of 
̂). The coe�cients are chosen in such a way that the matchedfunctions are continuous and biorthogonal. The corresponding matching coe�cients cane.g. be found in [10]. The resulting functions will be labeled by the set Ic for the fourscaling functions corresponding to the four corners and by J Lj and J Rj for the matchedwavelets. We set Jj0�1 := IIj0 [ Ic and Jj = J Lj [ J Ij [ J Rj , j � j0. Then, we end upwith a wavelet basis � := f#�̂ : �̂ 2 r̂�g; ~� := f~#�̂ : �̂ 2 r̂�g;where r̂� := r̂�I [ r̂�C andr̂�I := f�̂ := (i; j; k) : i = 1; : : : ; 4; k 2 IIj0 or k 2 J Ij for j � j0; resp.gdenotes those functions vanishing at the four corners andr̂�C := Ic [ J L [ J R; JK := [j�j0 JKj ; K 2 fL;Rg;indicate the matched fucntions around the corners. Finally, we introduce the notation#�̂ := fi 2 f1; : : : ; 4g : #�̂j�̂i 6� 0gindicating the set of the particular patches �̂i the corresponding function #�̂ is de�nedon. The wavelet bases �, ~� indeed ful�ll the norm equivalences (2:23) for s = 1=2, [9].Now, it remains to choose a wavelet basis for H1(
̂) which �ts to �, ~� on �̂ in thesense of (LBB) and (FEP) . For e = (e1; e2) 2 f0; 1g2 n f0g and Jj;ei := �Ij ; if ei = 0,Jj ; if ei = 1,we set r̂
 := f�̂ = (�̂1; �̂2); �̂i = (j; ei; ki) : ki 2 Jj;ei ; i = 1; 2g;as well as ̂�̂(x̂) := ��̂1(x̂1) ��̂2(x̂2); �̂i = (j; ei; ki); ��̂i := � �j;ki ; if ei = 0,�j;ki; if e1 = 1.



Adaptive Wavelet Methods for Saddle Point Problems 29Finally, for �̂X � r̂
 and �̂M � r̂�, we de�neX̂� := S(	̂�̂X ); M̂� := S( ~��̂M ):With these de�nitions at hand, we obtain for �̂ 2 r̂

0 ̂�̂(x̂) = 8>>><>>>: ��̂1(x̂1) ��̂2(1); if x̂ 2 �̂1,��̂1(0) ��̂2(x̂2); if x̂ 2 �̂2,��̂1(x̂1) ��̂2(0); if x̂ 2 �̂3,��̂1(1) ��̂2(x̂2); if x̂ 2 �̂4. (7.3)The LBB condition on 
̂. With all the above preparations, it can easily be seenthat the `full' spaces induced by the set of indices r̂
j := f�̂ 2 r̂
 : j�̂j � jg andr̂�j := f�̂ 2 r̂� : j�̂j � jg (with obvious de�nitions of j�̂j and j�̂j) ful�ll (LBB). For theadaptive case, we obtainCorollary 7.3 The spaces X̂� and M̂� ful�ll (LBB), if�̂X � B0(�̂M );where B0(�̂M ) := f�̂ = (�̂1; �̂2) 2 r̂
 : 9� = 1; 2 : �̂� 2 �̂M and  ̂�̂j�̂#�̂� 6= 0g:Proof. In view of (7:3), we have for �̂ 2 r̂
 and �̂ 2 r̂�I , fig = #�̂b( ̂�̂; ~#�̂) = c(�̂; i) Z 10 ��̂i(t) ~��̂(t) dt; (7.4)where c(�̂; i) := 8>><>>: ��̂2(1); if i = 1,��̂1(0); if i = 2,��̂2(0); if i = 3,��̂1(1); if i = 4.Obviously, (7:4) vanishes for all �̂ 2 r̂�I provided that �̂ 2 r̂
 n B0(�̂M). For �̂ 2 r̂�C, weobtain b( ̂�̂; ~#�̂) = Xi2#�̂ c(�̂; i) Z 10 ��̂i(t) ~��̂(t) dt; (7.5)which also vanishes provided that �̂ 62 B0(�̂M ). This proves the claim.



30 S. Dahlke, R. Hochmuth, K. UrbanFull equilibrium on 
̂. In a similar manner, we obtainCorollary 7.4 If �̂X and �̂M ful�ll B(�̂X) � �̂M , then the generated spaces are equili-brated, where B(�̂X) := [�̂2�̂X
0 �̂ 6=0 [�=1;2f�̂ 2 r̂� : �̂� = �̂g:Proof. The equations (7:4) and (7:5) in the proof of the above Corollary 7.3 and thebiorthogonality on [0; 1] show that the assumption indeed implies B(X̂�) � ~̂M�, whichproves the claim. Note that the trace of  ̂�̂ is continuous at the corners, so that ~� in factis a dual basis to B	̂.Finally, putting everything together leads to the following result:Corollary 7.5 The assumption B(�̂X) = �̂M implies (LBB) and (FEP) .Proof. We only have to prove (LBB). To this end, let �̂ 2 B0(�̂M ). Then, �̂� 2 �̂M =B(�̂X) for some � = 1; 2. Since B(�̂X) consists of the union over all �̂ 2 �̂X, we obtain�̂ 2 �̂X which proves (LBB).7.2 Distorted domains 
 � R2Now, we consider domains 
 � R2, that are the parametric image of the reference domain
̂, i.e., there exists a function G 2 C1(
̂) such that 
 = G(
̂) and jJG(x̂)j > 0 for x̂ 2 
̂.In particular, the parametric mapping G : 
̂! 
 is constructed with the aid of a methodintroduced by Gordon and Hall, [31, 32] using trans�nite interpolation, see also [8]. Givenany parametric mappings �i : �̂i ! �i, i = 1; : : : ; 4 (recall their orientation as indicatedin Figure 1), the mapping is given byG(x̂1; x̂2) = x̂2 �1(x̂1) + (1 � x̂2)�3(x̂1)+ (1� x̂1)h�2(x̂2)� x̂2 �2(1)� (1� x̂2)�2(0)i+ x̂1h�4(x̂2)� x̂2�4(1) � (1� x̂2)�4(0)i: (7.6)An analogous 3d{formulation can be found in [31, 32]. The advantage of this approach forour example is obvious, namely that the mappings of the pieces of the boundary enter ina natural and easy way into the mapping of the domain. Hence, we can restrict ourselvesto the consideration of the image of �.Let us now assume that �̂i is parametrized by 
̂i : [(i� 1); i]! �̂i in a straightforwardmanner so that �̂ is parametrized over I := [0; 4] with some canonical mapping 
̂ : I ! �̂satisfying j
̂ 0(t)j = 1 (piecewise) for all t 2 I. Then, we obtain for any integrable functionĝ on �̂ Z�̂ ĝ(x̂) d�x̂ = ZI ĝ(
̂(t)) dt: (7.7)
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̂̂�1�̂2 �̂3 �̂4x̂2 x̂1 &�����"hhhhhh
�1�2 �3 �4-GFigure 1: Mapping of the rectangle 
̂ = (0; 1)2 into a quadrilateral 
 with curved bound-aries.Adapting the bilinear form. First, we follow the ideas in [9, 10, 11, 17, 25], that (forthis example) may be sketched as follows: one builds biorthogonal wavelet systems 	̂, ~̂	on the reference cube 
̂ as above and then simply de�nes systems 	, ~	 on 
 by mapping: (x) :=  ̂(G�1(x)); x 2 
;  ̂ 2 	̂:De�ning the dual system ~	 in the same way gives rise to a system 	, ~	 on 
 which isbiorthogonal w.r.t. a modi�ed inner product, namely [u; v]
 := Z
u(x) v(x) jJG�1(x)j dx.It can be shown that the norm induced by this latter inner product is in fact equivalentto the usual L2(
){norm.However, this has a drawback for the example treated in this section. Since our condi-tions for checking (LBB) as well as (FEP) are based on biorthogonality w.r.t. the usualL2(
){inner product (�; �), we cannot directly apply our conditions. Let us make this alittle bit more precise. Using similar arguments as for obtaining (7:7), we conclude forany integrable function g on � with 
 := G � 
̂ thatZ� g(x) d�x = ZI g(
(t))j
0(t)j dt:Setting as above ĝ(x̂) := g(G(x̂)) and taking into account that g(
(t)) = ĝ(G�1(
(t))) =ĝ(
̂(t)) leads to Z� g(x) d�x = Z�̂ ĝ(x̂) jJG(x̂)j d�x̂:Hence, biorthogonality on �̂ implies biorthogonality on � only for linear mappingsG whichrepresent of course only a very limited number of domains 
, namely parallelepipeds.However, this problem can be solved by adapting the bilinear form b(�; �) as follows: Tobegin with, we replace h�; �i by h�; �i� de�ned byhp; qi� := Z� p(x) q(x) j
0(
�1(x))j�1 d�x (7.8)



32 S. Dahlke, R. Hochmuth, K. Urbanfor piecewise smooth functions p and q on �. Analogously we introduce b
(�; �) : H�1=2(�)�H1(
)! R by b
(v; q) := �Z� q(x) (
0v)(x)j
0(
�1(x))j�1 d�x (7.9)for piecewise smooth functions q on � and v on 
. Formally, we could introduce h�; �i�̂and b
̂(�; �) using the de�nitions (7:8) and (7:9), respectively. However, since j
̂0(t)j = 1,these forms coincide with the original ones.Now, we note that the biorthogonality relations with respect to b(�; �) on 
̂ imply thoseon 
 with respect to b
(�; �), sinceb
(v; q) = �Z� q(x) v(x)j
0(
�1(x))j�1d�x= �Z�̂ q(G(x̂)) v(G(x̂)) j
0(
�1(G(x̂)))j�1 j
0(
�1(G(x̂)))j d�x̂= �hq̂; 
0v̂i�̂ = �hq̂; 
0v̂i = b(v̂; q̂) (7.10)for v 2 H1(
) and q 2 H�1=2(�)Next, we introduce an adapted mixed formulation with respect to h�; �i� and b
(�; �)Problem 7.6 For given [f; g] 2 H�1(
) � H1=2(�) �nd functions [u; p] 2 H1(
) �H�1=2(�) such that a(u; v) + b
(v; p) = (f; v); v 2 H1(
);b
(u; q) = �hq; gi�; q 2 H�1=2(�): (7.11)Clearly, both mixed problems are equivalent in the sense that they provide the samesolution u 2 H1(
). But one should notice that the interpretation of the Lagrangemultiplier is changed, since the bilinear form b(�; �) is changed to b
(�; �). To be precise, itis well{known that for smooth data f , the Langrange multiplier p in Problem 7.2 can beinterpreted as the normal derivative of the solution u on the boundary �. On the otherhand, in Problem 7.6 the situation is as follows: for f 2 L2(
) one obtains for the solution[u; p] 2 H1(
)�H�1=2(�) the identity�(�u; �) + (u; �) = (f; �); � 2 C10 (
);i.e., in particular �u = �f + u 2 L2(
). Thus, we have for v 2 H1(
) by (7:11)hp; 
0vi� = �b
(v; p) = (ru;rv) + (u; v)� (f; v) = (�u; v) + (ru;rv);which implies by the Green formulap = j
0(
�1(�))j�1 @u@n 2 H�1=2(�);i.e., one has to multiply the normal derivative of the solution u by the factor j
0(
�1(�))j.Now we have to check whether the inf{sup condition still holds with respect to b
(�; �).



Adaptive Wavelet Methods for Saddle Point Problems 33Theorem 7.7 Under the above assumptions, there exists a constant � > 0 such thatinfq2H�1=2(�) supv2H1(
) b
(v; q)kqkH�1=2(�)kvkH1(
) � �: (7.12)Proof. Let v 2 H1(
) be the variational solution of the Neumann problem��v + v = 0; in 
;@nv = q � j
0(
�1(�))j; on �: (7.13)Then, one has by de�nition b
(v; q) = �hq; 
0vi� = kvk2H1(
) (7.14)as well as kvkH1(
) � kq � j
0(
�1(�))jkH�1=2(�):On the other hand, one obtains bykqkH�1=2(�) = sup'2H1=2(�) hq; 'i
k'kH1=2(�)� sup'2H1=2(�) kq(�) � j
0(
�1(�))jkH�1=2(�) k' � j
0(
�1(�))j�1kH1=2(�)k'kH1=2(�)<� kq(�) � j
0(
�1(�))jkH�1=2(�);the estimate kvkH1(
) >� kqkH�1=2(�): (7.15)The identity (7:14) and the estimate (7:15) imply the inf{sup condition (7.12).Now, in view of (7:10), all results in the Corollaries 7.3, 7.4 and 7.5 remain valid for theProblem 7.6. Finally, the norm equivalences in 
 and on � allow to use the a posteriorierror estimates to construct an adaptive wavelet strategy.7.3 More general domainsLet us brie
y indicate some generalizations of the above presented results to more generaldomains 
.7.3.1 Domain decompositionThe results in the latter two sections can easily be used to obtain pairs of wavelet spacesthat ful�ll (LBB) and (FEP) also for more general domains 
. In fact, one may use oneof the constructions of wavelets on domains and manifolds in [9, 10, 17, 25] featuring do-main decomposition approaches. The basic idea is very similar to the above constructionof wavelets on �̂, namely mapping and matching. For (LBB) and (FEP), we only haveto consider functions on 
 that have a non{trivial trace on � = @
. As long as this



34 S. Dahlke, R. Hochmuth, K. Urbantrace vanishes at the corners of �
, the same reasoning as in the previous section applies.Accross the interelement boundaries a matching is performed so that the resulting func-tions (and hence also their traces) are globally continuous. Since both (LBB) and (FEP)only re
ect subsets where b(�; �) vanishes, the discussion indeed reduces to the single sub-domains, which have been considered in the previous section. We will not formulate thecorresponding results in detail here, since this would force us to introduce some additionaltechnicalities whereas the above guidelines should be su�ciently clear.7.3.2 Biorthogonality on 
Recently, a new approach for constructing wavelets on domains and manifolds has beenintroduced, [27]. This method di�ers from those in [9, 10, 17, 25] that have already beendiscussed above. The advantage is that the wavelet bases in [27] are constructed suchthat they are biorthogonal w.r.t. the L2{inner product on the domain 
. Hence, one mayconsider (LBB) and (FEP) directly w.r.t. b(�; �) without modifying this bilinear form.However, the relationship between X� and its trace space is not so easy as in the abovepresented case. This connection turns out to be more complicated. Since this would gobeyond the scope of the present paper this subject will be treated elsewhere.7.3.3 Imbedding strategiesAnother approach to deal with wavelet methods on complex domains is to imbed thedomain 
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