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ABSTRACT

Function spaces on skeletons arise in the numeri-
cal treatment of elliptic boundary value problems
by certain domain decomposition methods. In this
note, we discuss such function spaces, which can
be interpreted as trace spaces. We construct a
well-defined trace operator and present a charac-
terization of the trace spaces by means of multi-
level expansions.
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1. INTRODUCTION

Much effort is spent to design efficient numerical
schemes to treat boundary value problems in the
weak formulation

find v € H}(Q) such that

for all v € H} (),
(1)
where a(-,-) is a bilinear form stemming from a
second order elliptic differential operator and € C
IR™ is a bounded polyhedral domain with bound-
ary d€2. In addition to the standard notation for
Sobolev spaces and their norms, HJ () is the clo-
sure in H'(Q) of all C* functions vanishing on 9

a(u7 U) = (f7 U)Lz(ﬂ)
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or, equivalently, the set of all v € H'(Q) for which
also yqu € H'(IR"). Here x¢ is the characteristic
function on G.

Many domain decomposition approaches aim
at solving (1) on nonoverlapping subdomains QF
into which €2 is decomposed,

K
a=Ja, QN =0, k#m. (2)
k=1

An important case is when one wants to use grids
with possibly different grid sizes on the different
subdomains suggested by physical or geometrical
reasons without adaptation of the grids at the in-
terface boundaries. A very general class of domain
decomposition methods with such non-matching
grids is provided by the Three-Field-Formulation
[1, 3]. It stems from appending the boundary con-
ditions on the boundary of each subdomain, 9Q*,
by Lagrange multipliers, and then requiring in ad-
dition smoothness of these multipliers in a weak
sense. In this context, a particular role is played
by a Sobolev space of positive order defined on the
skeleton

= (LIJ agk) \oQ (3)

k=1

of the decomposition (2). In fact, the space used
in [1, 3] is



which is defined as {t € Ly(X) : there exists some
v e HY(Q) such that ¢t = v|y} with norm

It x(z) = inf ol (q)- (5)

veHL(Q): v]|z=t
At this point it is not clear yet that the ‘trace op-
erator’ |y is indeed well-defined since X is not the
boundary of a Lipschitz domain. Recall that only
for n < 2, by the Sobolev embedding theorem, all
functions in H!(Q) are guaranteed to be continu-
ous. In any case, whether one wants to use finite
elements or wavelets in the discretization scheme,
in order to prove results for preconditioning or sta-
bility, or error estimates, the question arises how
|y could be defined and how to characterize X ()
for such an Y. Recall that for Lipschitz domains,
one always has the classical trace operator

Tr: HY(Q) — HY*(Q)

which coincides with point evaluations on 952 for
continuous functions, see [19] for details. Corre-
spondingly, one may view X (X) as above, namely,
by taking the usual trace with respect to X on a
dense subset of H}(€) and then consider its clo-
sure with respect to a certain norm, and denote
this by H'/?(X). Or one may define it directly
on X only by means of certain differences of func-
tion values in the sense of [14], see Section 2 be-
low. Moreover, motivated by the domain decom-
position approach, we want to investigate whether
such a space can be characterized by weighted se-
quence norms induced by multilevel expansions as
it is known for general Besov spaces on Lipschitz
domains or manifolds, see e.g. [7, 8, 9, 13].

Thus, the purpose of this paper is the follow-

ing:
(i) to construct a well-defined trace operator

Tr: H'(Q) — X (¥) into some suitable
smoothness space X (X);

(ii) to describe X (X) and its norm(s) and pro-
vide equivalent definitions;

(iii) to characterize X (X) in terms of weighted
sequence norms of coefficients with respect
to a stable multiscale basis on ..

In the following, we will assume that Q is an n-di-
mensional cube decomposed into smaller n-dimen-
sional cubes QF see Figure 1. In this case, the

skeleton only contains faces which are parallel to
the coordinate axes. For more general domains,
see Remark 3.5 below.

Figure 1: Example of a domain Q C IR? with its
skeleton X

This note is organized as follows. In Section
2 we apply some results from [14] to the situa-
tion at hand. First we see that X is a d-set for
which, following [14], Besov spaces can be defined.
If we then identify the space H!(Q) with the Besov
space Bi(L3(Q)), then there exists a suitable trace
operator, and the trace space X (X) can be de-
scribed as a specific Besov space on . In Sec-
tion 3 we derive a multilevel characterization of
X (X) by using techniques similar to those in [15].
This note cloeses with Section 4 with remarks how
wavelet bases on 3 can be constructed.

2. TRACE SPACES ON d-SETS

In this section, we briefly recall some results from
[14] to apply them to problem (i). Let F be a
closed non—empty subset of IR"™ and d a real num-
ber satisfying 0 < d < n. We denote by B(z,p)
the closed ball with center 2 and radius p. A pos-
itive Borel measure g with support F is called d-
measure on F if

u(B(z,p)) ~ p’,

In this paper, ‘a ~ b means that both quanti-
ties can be uniformly bounded by some constant
multiple of each other. Likewise, ‘e < b’ indicates
inequality up to constant factors.

Then a closed and non—empty subset of IR" is
called a d-set if there exists a d-measure on F. It

forzeF, 0<p<1. (6)



is possible to define Besov spaces on d—sets. Let
0<a<landl<p<oo. A function f belongs
to the Besov space By (L,(F)) if and only if it has
finite norm

1 B2 o)) = 1Ly
r)— 14 l/p
+ ([ fioyper I () dp(y) )

| —y|dtar

(7)
There exist trace theorems with respect to Besov

spaces on d-sets. The following version is proved
in [14].

Theorem 2.1 Let F be a d-set, 0 < d <n, 0<
f=a—-(n—d)/p<1, and 1 < p < oc. Then one
has

By (L,(IR)| . = B (Ly(F)),
i.e., there exists a linear operator
Trp : BY (L,(IR")) — BE(L,(F))
such that
HTTF(f)HBg(LP(F)) < HfHBg(Lp(JR")) (8)

Jor all f € By (L,(IR")). Conversely, for any h €
B (L,(F)), there exists some f € Bg(L,(IR"))
such that h = Trp(f) and

I g,y S Wllgs, iy (9)

Using the previous theorem and the fact that
Bi(Ly(Q)) = H'(Q) with equivalent norms [19],
we can establish the following result.

Theorem 2.2 There exists a well-defined contin-
uous trace operator

T HYQ) — BY*(1,(2) = HY*(Z)  (10)

such that
T(HY(Q) = H/* (D). (11)

Proof: First we observe that the set X is in fact a
d—set. In a measurable sense, > may be identified
with a set I' which is the union of half-open in-
tervals or cubes, respectively. We then define the
Borel measure p as the induced Lebesgue measure
on the set I'. Let r denote the minimal side length
of all cubes under consideration. Without loss of

generality, we may assume that r > 2. Then the
relations

p < w(Blx)p) < dp, if n =2,
0<p <,

507 < u(B(x),p) < 4Amp?, ifn=3
0<p <,
(12)

(and correspondingly for n > 3) can be easily
verified so that ¥ is an (n — 1)-set. On €, we
have the identity H'(Q) = Bi(L2(Q)). More-
over, since {2 is clearly minimally smooth in the
sense of Stein [18], there exists a continuous Whit-
ney extension operator ' : H'(Q) — H(IR").
By applying Theorem 2.1 with p = 2, a = 1,
d=n—1and FF = X, there exists a linear op-
erator Try : H'(IR") — H'*(X). Defining

T:=TrgoF, (13)

T is a well-defined linear operator into H'/?(X).
Moreover, T is continuous,

1T ares) 1(Trs 0 EY(Dll 172 (x)
< N TesHEA e ) -

It remains to check that 7 is onto and that a
converse estimate corresponding to (9) holds. We
have to show that

Trs(f) = Trs(E(xaf)) (14)

holds for all f € H'(IR™). For then, writing f=
xaf, T is onto and we obtain by (9) for any h €
H'Y?(%) such that h = Trg f where f € H'(IR")

Ixa Sl @) < 1 la(mm
1Trs (Dl g7z s)

I Trs (B s

T D)l rrr2(s)- (15)
By using Sobolev embeddings and the fact that

the Whitney extension operator I extends simul-
taneously all orders of differentiability, it is easy

to check that (14) holds for all f € C5°(JR"). Then
the result follows by density. o
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Remark 2.3 Since, by Theorem 2.2, T is now

well-defined, one immediately has equivalence of

the two norms defined on X,

for any h € HY?(D).
(16)

1hllx sy ~ 1Al gz



3. MULTILEVEL
CHARACTERIZATION OF H/%(%)

3.1. Multiresolution for H}(Q)

We now apply similar techniques as in [15] to de-
rive a multilevel characterization for H1/?(%).
First note that we can obtain from a biorthog-
onal multiresolution for H'(IR) [5] a multiresolu-
tion for H'([0, 1]) by applying the results from [10]
for this particular case. Clearly, one can get from
this by tensor product standard techniques mul-
tiresolution spaces and (biorthogonal) wavelets for
H'(Q). Furthermore, using the results in [12], it
is known how to construct corresponding wavelets
with homogeneous boundary conditions. Thus,
in the following, we can assume that we have a
multiresolution for H{(2) with a corresponding
(biorthogonal) generator basis with the following
properties:
(P1) multiresolution for H}(), starting from a
small fixed level jo € IV:
€j0 C -.-C@j C€j+1 C...C H&(Q),
Sy C...CS; C 841 C...C Ly(9),
(17)
such that
closg (Uj»jo9;) = Ho () (18)
and .
closr, (Uj»joSi) = L2(); (19

(P2) generator bases for S;, S;:

S; =span ®;, S; =span (fj, (20)

where for some finite index set Aj, #A; ~
217

(I)]‘ = {(bj,k 1k € A]‘},(i)]‘ = {&j,k k€ A]‘},
(21)
consisting of functions with local support,

diam (supp ¢; x) ~ diam(supp qgj’k) ~ 277,
(22)
which are Lo-stable;

(P3) projectors Q; : Lo(Q2) — S; defined as
Qv = (v,®))®;
= Y (0, 0) 1 (@) Dk (23)

kEA,;

which are uniformly bounded on L3(Q2);

(P4) a Jackson estimate for S;:

inf |Jo—vjllL,0) < 27 Iollme)  (24)

v €S
for any v € H'();

(P5) a Bernstein inequality for .S;:

il < 2 villna) (25)
for any v; € 5;.

It was shown in [7, 9] how the following result fol-
lows from (P3)—(P5).

Theorem 3.1 Let {S;};>j, be a multiresolution
analysis for H} () having properties (P1)-(P5).
Then for any f € HL(Q) the norm equivalence

HfH%ﬂ(Q) ~ Y 2Y(Q; - Qj-1)fll7, (26)
3230
holds.
3.2. Norm Equivalences for H'/%(X)

Let the discretization spaces on the skeleton X be

defined by
T;:=S;|ls C HY*(X) (27)
such that for any h; € T; the localization property

inf f‘L Q N2_j/2 h‘L b)) 28

pes, oy Milla@) 1Bl ) (28)
holds. Using the Bernstein and Jackson inequali-
ties on €2, we can now prove their counterparts on

3.

Lemma 3.2 For any h; € T}, we have the Bern-
stein estimate

Ioillzrregsy S 27210l L (s)- (29)
Proof: By definition of the trace spaces (27), com-
bined with (5) and (16), we have for any h; € T

thHHl/2(2) N inf

™~ €Sy fils=hy HfJHHl(Q)

Applying the Bernstein estimate on €2, (25), and
the localization property (28) yields

h: < 9 inf 4
| ]HH1/2(E) ~ €85 fln=h, Hf]HLz(Q)
< 22| h - o



Lemma 3.3 On X, the Jackson estimate

. —7/2
it b= hillzy) < 2 Pl sy (30)

holds for any h € HY*(X).

Proof: By the Trace Theorem 2.2, there exists for
any h € H'*(X) some f € H'(Q) satisfying (15)
such that h = f|y and thus

hjngJ 1A =Rl =)
< b= @ Nzllra)
= I(f = Qi NIsllL.(x)
= | Y. ((Qn = Qu-1) Nzl

m>j+1

< Y @ = Qu-) NsllLy(s)-

m>j+1

Applying now the localization property and using
Cauchy-Schwartz’ inequality gives

hjngJ 1A =Rl =)
< Y 2(@Qn = Qumt) fllia@)

m>j+1
— Z 2m/22—m 2m
m>j+1

’ H(Qm - Qm—l)fHL2(Q)

-1/2
( E 2—m)
m>j+1

IN

1/2
( 3 22mH(Qm—Qm_1)fH%2<m) :

m>j+1

The first term on the right hand side is equal to
279/2 and the second term can be estimated using
the norm equivalence (26) such that we obtain

. —-J 2
Jnf 1l =Rl S 270 i)

Applying again the trace estimate (15) yields the
assertion. o
Let now

P HYY(X) — T; (31)

be uniformly bounded projectors onto 7;. Com-
bining this with the Jackson and Bernstein in-
equalities on X, we obtain as in [7] the following
result.

Theorem 3.4 For any h € H'*(Z), we have the
norm equivalence

1l ~ 32 2B = Pl (32)
J>Jjo
Of course, the techniques used here apply also to
the case where X contains the boundary of 912,
see Figure 2, or part of it, since the crucial cross
points are already present in .

Figure 2: 2-dimensional example where 3 also
contains 0f2

Remark 3.5 The techniques used here apply to
more general domains and skeletons as long as the
corresponding spaces satisfy the localness property
(28). Note also that the generalization for other
smoothness spaces H®(X) is obvious for s > 0.
However, for the case s < 0, this is not so ap-
parent since one cannot immediately apply duality
techniques.

The results derived here could have also been ob-
tained by using techniques from [17].

4. WAVELET BASES ON X

Recall that the results in the previous section have
been derived under the assumptions (27) and (28),
i.e., that approximation spaces on the skeleton are
traces of the ones on Q. In order to carry out such
a construction, one could apply the ideas from [2]
or [6]. There, for the boundary 02 of a Lipschitz
domain €, approximation spaces satisfying (27)
and (28) with uniformly bounded projectors (31)
are constructed. It seems that this can be gener-
alized to 2. From this, wavelet bases for the com-
plement spaces (P;—FP;_1)S; could be constructed



which then yields from (32) a norm equivalence in
terms of the wavelet coefficients of h € H'/2(X).

However, the approach for the construction of
wavelets in [11] (see also [4]) seems to be simpler
to realize. Starting from generator and wavelet
bases on an (n—1)-dimensional unit cube, one can
define composite bases on ¥ which is a union of
parametric images of the unit cube by gluing their
end points together. This construction would be
directly defined on 3 only, without assuming it to
be embedded in a domain.

In order to be able to apply the construction
from [11], we first need approximation spaces on
> which are traces of approximation spaces on £
according to (27). We briefly indicate a possible
construction for the simple example of €2 being the
unit square which is subdivided into four equal
squares of side length 1/2. Let ®; be generator
bases for S; defined on €2 consisting of tensor prod-
ucts of the hat function. Clearly, their restrictions
to X will be again piecewise linear functions which
are continuous at any crosspoints of 33, see Figure

3.

.

Figure 3: text

It has been shown (see [17]) that (28) holds
for this case. Now the construction from [11] can
be applied to obtain wavelets on . A detailed
description will be given elsewhere.
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