
MULTILEVEL CHARACTERIZATIONS OF FUNCTION SPACESON SKELETONSStephan Dahlke� and Angela KunothInstitut f�ur Geometrie und Praktische MathematikRWTH Aachen52056 Aachen, Germanyfdahlke,kunothg@igpm.rwth-aachen.dehttp://www.igpm.rwth-aachen.de/fdahlke,kunothgABSTRACTFunction spaces on skeletons arise in the numeri-cal treatment of elliptic boundary value problemsby certain domain decomposition methods. In thisnote, we discuss such function spaces, which canbe interpreted as trace spaces. We construct awell{de�ned trace operator and present a charac-terization of the trace spaces by means of multi-level expansions.Key Words: Elliptic boundary value prob-lems, domain decomposition, skeleton, d-set, char-acterizations of smoothness spaces, wavelets.1. INTRODUCTIONMuch e�ort is spent to design e�cient numericalschemes to treat boundary value problems in theweak formulation�nd u 2 H10(
) such thata(u; v) = (f; v)L2(
) for all v 2 H10(
);(1)where a(�; �) is a bilinear form stemming from asecond order elliptic di�erential operator and 
 �IRn is a bounded polyhedral domain with bound-ary @
. In addition to the standard notation forSobolev spaces and their norms, H10(
) is the clo-sure in H1(
) of all C1 functions vanishing on @
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or, equivalently, the set of all v 2 H1(
) for whichalso �
v 2 H1(IRn). Here �G is the characteristicfunction on G.Many domain decomposition approaches aimat solving (1) on nonoverlapping subdomains 
kinto which 
 is decomposed,
 = K[k=1
k; 
k \ 
m = ;; k 6= m: (2)An important case is when one wants to use gridswith possibly di�erent grid sizes on the di�erentsubdomains suggested by physical or geometricalreasons without adaptation of the grids at the in-terface boundaries. A very general class of domaindecomposition methods with such non-matchinggrids is provided by the Three-Field-Formulation[1, 3]. It stems from appending the boundary con-ditions on the boundary of each subdomain, @
k,by Lagrange multipliers, and then requiring in ad-dition smoothness of these multipliers in a weaksense. In this context, a particular role is playedby a Sobolev space of positive order de�ned on theskeleton � =  K[k=1 @
k! n@
 (3)of the decomposition (2). In fact, the space usedin [1, 3] is X(�) := H10 (
)j� (4)



which is de�ned as ft 2 L2(�) : there exists somev 2 H10(
) such that t = vj�g with normktkX(�) := infv2H10 (
): vj�=t kvkH1(
): (5)At this point it is not clear yet that the `trace op-erator' j� is indeed well-de�ned since � is not theboundary of a Lipschitz domain. Recall that onlyfor n < 2, by the Sobolev embedding theorem, allfunctions in H1(
) are guaranteed to be continu-ous. In any case, whether one wants to use �niteelements or wavelets in the discretization scheme,in order to prove results for preconditioning or sta-bility, or error estimates, the question arises howj� could be de�ned and how to characterize X(�)for such an �. Recall that for Lipschitz domains,one always has the classical trace operatorTr : H1(
) �! H1=2(@
)which coincides with point evaluations on @
 forcontinuous functions, see [19] for details. Corre-spondingly, one may view X(�) as above, namely,by taking the usual trace with respect to � on adense subset of H10(
) and then consider its clo-sure with respect to a certain norm, and denotethis by H1=2(�). Or one may de�ne it directlyon � only by means of certain di�erences of func-tion values in the sense of [14], see Section 2 be-low. Moreover, motivated by the domain decom-position approach, we want to investigate whethersuch a space can be characterized by weighted se-quence norms induced by multilevel expansions asit is known for general Besov spaces on Lipschitzdomains or manifolds, see e.g. [7, 8, 9, 13].Thus, the purpose of this paper is the follow-ing:(i) to construct a well{de�ned trace operatorTr : H1(
) �! X(�) into some suitablesmoothness space X(�);(ii) to describe X(�) and its norm(s) and pro-vide equivalent de�nitions;(iii) to characterize X(�) in terms of weightedsequence norms of coe�cients with respectto a stable multiscale basis on �.In the following, we will assume that 
 is an n-di-mensional cube decomposed into smaller n-dimen-sional cubes 
k, see Figure 1. In this case, the

skeleton only contains faces which are parallel tothe coordinate axes. For more general domains,see Remark 3.5 below.�Figure 1: Example of a domain 
 � IR2 with itsskeleton �This note is organized as follows. In Section2 we apply some results from [14] to the situa-tion at hand. First we see that � is a d-set forwhich, following [14], Besov spaces can be de�ned.If we then identify the spaceH1(
) with the Besovspace B12(L2(
)), then there exists a suitable traceoperator, and the trace space X(�) can be de-scribed as a speci�c Besov space on �. In Sec-tion 3 we derive a multilevel characterization ofX(�) by using techniques similar to those in [15].This note cloeses with Section 4 with remarks howwavelet bases on � can be constructed.2. TRACE SPACES ON d{SETSIn this section, we briey recall some results from[14] to apply them to problem (i). Let F be aclosed non{empty subset of IRn and d a real num-ber satisfying 0 < d � n: We denote by B(x; �)the closed ball with center x and radius �. A pos-itive Borel measure � with support F is called d{measure on F if�(B(x; �)) � �d; for x 2 F; 0 < � � 1: (6)In this paper, `a � b' means that both quanti-ties can be uniformly bounded by some constantmultiple of each other. Likewise, `a <� b' indicatesinequality up to constant factors.Then a closed and non{empty subset of IRn iscalled a d{set if there exists a d{measure on F . It



is possible to de�ne Besov spaces on d{sets. Let0 < � < 1 and 1 � p � 1: A function f belongsto the Besov space B�p (Lp(F )) if and only if it has�nite normkfkB�p (Lp(F )) = kfkLp(d�)+ �R Rjx�yj<1 jf(x)�f(y)jpjx�yjd+�p d�(x)d�(y)�1=p :(7)There exist trace theorems with respect to Besovspaces on d{sets. The following version is provedin [14].Theorem 2.1 Let F be a d{set, 0 < d � n; 0 <� = �� (n� d)=p < 1; and 1 � p � 1: Then onehas B�p (Lp(IRn))���F = B�p (Lp(F ));i.e., there exists a linear operatorTrF : B�p (Lp(IRn)) �! B�p (Lp(F ))such thatkTrF (f)kB�p (Lp(F )) <� kfkB�p (Lp(IRn)) (8)for all f 2 B�p (Lp(IRn)). Conversely, for any h 2B�p (Lp(F )), there exists some f 2 B�p (Lp(IRn))such that h = TrF (f) andkfkB�p (Lp(IRn)) <� khkB�p (Lp(F )): (9)Using the previous theorem and the fact thatB12(L2(
)) = H1(
) with equivalent norms [19],we can establish the following result.Theorem 2.2 There exists a well{de�ned contin-uous trace operatorT : H1(
) �! B1=22 (L2(�)) =: H1=2(�) (10)such that T (H1(
)) = H1=2(�): (11)Proof: First we observe that the set � is in fact ad{set. In a measurable sense, � may be identi�edwith a set � which is the union of half{open in-tervals or cubes, respectively. We then de�ne theBorel measure � as the induced Lebesgue measureon the set �: Let r denote the minimal side lengthof all cubes under consideration. Without loss of

generality, we may assume that r > 2. Then therelations� � �(B(x); �) � 4�; if n = 2;0 < � � 1;�4�2 � �(B(x); �) � 4��2; if n = 3;0 < � � 1;(12)(and correspondingly for n > 3) can be easilyveri�ed so that � is an (n � 1){set. On 
, wehave the identity H1(
) = B12(L2(
)). More-over, since 
 is clearly minimally smooth in thesense of Stein [18], there exists a continuous Whit-ney extension operator E : H1(
) �! H1(IRn).By applying Theorem 2.1 with p = 2, � = 1,d = n � 1 and F = �, there exists a linear op-erator Tr� : H1(IRn)! H1=2(�). De�ningT := Tr� �E; (13)T is a well{de�ned linear operator into H1=2(�).Moreover, T is continuous,kT (f)kH1=2(�) = k(Tr� �E)(f)kH1=2(�)� kTr�kkEkkfkH1(
):It remains to check that T is onto and that aconverse estimate corresponding to (9) holds. Wehave to show thatTr�(f) = Tr�(E(�
f)) (14)holds for all f 2 H1(IRn). For then, writing ~f =�
f , T is onto and we obtain by (9) for any h 2H1=2(�) such that h = Tr�f where f 2 H1(IRn)k ~fkH1(
) = k�
fkH1(
) � kfkH1(IRn)<� kTr�(f)kH1=2(�)<� kTr�(E( ~f))kH1=2(�)= kT ( ~f)kH1=2(�): (15)By using Sobolev embeddings and the fact thatthe Whitney extension operator E extends simul-taneously all orders of di�erentiability, it is easyto check that (14) holds for all f 2 C10 (IRn): Thenthe result follows by density. �Remark 2.3 Since, by Theorem 2.2, T is nowwell-de�ned, one immediately has equivalence ofthe two norms de�ned on �,khkX(�) � khkH1=2(�) for any h 2 H1=2(�):(16)



3. MULTILEVELCHARACTERIZATION OF H1=2(�)3.1. Multiresolution for H10(
)We now apply similar techniques as in [15] to de-rive a multilevel characterization for H1=2(�).First note that we can obtain from a biorthog-onal multiresolution for H1(IR) [5] a multiresolu-tion forH1([0; 1]) by applying the results from [10]for this particular case. Clearly, one can get fromthis by tensor product standard techniques mul-tiresolution spaces and (biorthogonal) wavelets forH1(
). Furthermore, using the results in [12], itis known how to construct corresponding waveletswith homogeneous boundary conditions. Thus,in the following, we can assume that we have amultiresolution for H10(
) with a corresponding(biorthogonal) generator basis with the followingproperties:(P1) multiresolution for H10(
), starting from asmall �xed level j0 2 IN :Sj0 � : : :� Sj � Sj+1 � : : :� H10(
);~Sj0 � : : :� ~Sj � ~Sj+1 � : : :� L2(
);(17)such thatclosH1([j�j0Sj) = H10 (
) (18)and closL2([j�j0 ~Sj) = L2(
); (19)(P2) generator bases for Sj , ~Sj :Sj = span �j ; ~Sj = span ~�j ; (20)where for some �nite index set �j , #�j �2jn,�j = f�j;k : k 2 �jg; ~�j = f~�j;k : k 2 �jg;(21)consisting of functions with local support,diam(supp�j;k) � diam(supp ~�j;k) � 2�j ;(22)which are L2-stable;(P3) projectors Qj : L2(
) �! Sj de�ned asQjv = (v; ~�j)�j:= Xk2�j(v; ~�j;k)L2(
)�j;k ; (23)which are uniformly bounded on L2(
);

(P4) a Jackson estimate for Sj :infvj2Sj kv � vjkL2(
) <� 2�jkvkH1(
) (24)for any v 2 H1(
);(P5) a Bernstein inequality for Sj :kvjkH1(
) <� 2jkvjkL2(
) (25)for any vj 2 Sj .It was shown in [7, 9] how the following result fol-lows from (P3){(P5).Theorem 3.1 Let fSjgj�j0 be a multiresolutionanalysis for H10(
) having properties (P1){(P5).Then for any f 2 H10(
) the norm equivalencekfk2H1(
) � Xj�j0 22jk(Qj �Qj�1)fk2L2(
) (26)holds.3.2. Norm Equivalences for H1=2(�)Let the discretization spaces on the skeleton � bede�ned by Tj := Sj j� � H1=2(�) (27)such that for any hj 2 Tj the localization propertyinffj2Sj; fj j�=hj kfjkL2(
) � 2�j=2 khjkL2(�) (28)holds. Using the Bernstein and Jackson inequali-ties on 
, we can now prove their counterparts on�.Lemma 3.2 For any hj 2 Tj, we have the Bern-stein estimatekhjkH1=2(�) <� 2j=2khjkL2(�): (29)Proof: By de�nition of the trace spaces (27), com-bined with (5) and (16), we have for any hj 2 TjkhjkH1=2(�) <� inffj2Sj : fj j�=hj kfjkH1(
):Applying the Bernstein estimate on 
, (25), andthe localization property (28) yieldskhjkH1=2(�) <� 2j inffj2Sj : fjj�=hj kfjkL2(
)<� 2j=2khjkL2(�): �



Lemma 3.3 On �, the Jackson estimateinfhj2Tj kh� hjkL2(�) <� 2�j=2khkH1=2(�) (30)holds for any h 2 H1=2(�).Proof: By the Trace Theorem 2.2, there exists forany h 2 H1=2(�) some f 2 H1(
) satisfying (15)such that h = f j� and thusinfhj2Tj kh� hjkL2(�)� kh� (Qjf)j�kL2(�)= k(f �Qjf)j�kL2(�)= k Xm�j+1((Qm � Qm�1)f)j�kL2(�)� Xm�j+1 k((Qm � Qm�1)f)j�kL2(�):Applying now the localization property and usingCauchy-Schwartz' inequality givesinfhj2Tj kh� hjkL2(�)<� Xm�j+1 2m=2k(Qm �Qm�1)fkL2(
)= Xm�j+1 2m=22�m 2m� k(Qm �Qm�1)fkL2(
)<� 0@ Xm�j+1 2�m1A�1=2�0@ Xm�j+1 22mk(Qm � Qm�1)fk2L2(
)1A1=2 :The �rst term on the right hand side is equal to2�j=2, and the second term can be estimated usingthe norm equivalence (26) such that we obtaininfhj2Tj kh� hjkL2(�) <� 2�j=2kfkH1(
):Applying again the trace estimate (15) yields theassertion. �Let now Pj : H1=2(�) �! Tj (31)be uniformly bounded projectors onto Tj . Com-bining this with the Jackson and Bernstein in-equalities on �, we obtain as in [7] the followingresult.

Theorem 3.4 For any h 2 H1=2(�), we have thenorm equivalencekhk2H1=2(�) � Xj�j0 2jk(Pj � Pj�1)hk2L2(�): (32)Of course, the techniques used here apply also tothe case where � contains the boundary of @
,see Figure 2, or part of it, since the crucial crosspoints are already present in �.�Figure 2: 2-dimensional example where � alsocontains @
Remark 3.5 The techniques used here apply tomore general domains and skeletons as long as thecorresponding spaces satisfy the localness property(28). Note also that the generalization for othersmoothness spaces Hs(�) is obvious for s > 0.However, for the case s < 0, this is not so ap-parent since one cannot immediately apply dualitytechniques.The results derived here could have also been ob-tained by using techniques from [17].4. WAVELET BASES ON �Recall that the results in the previous section havebeen derived under the assumptions (27) and (28),i.e., that approximation spaces on the skeleton aretraces of the ones on 
. In order to carry out sucha construction, one could apply the ideas from [2]or [6]. There, for the boundary @
 of a Lipschitzdomain 
, approximation spaces satisfying (27)and (28) with uniformly bounded projectors (31)are constructed. It seems that this can be gener-alized to �. From this, wavelet bases for the com-plement spaces (Pj�Pj�1)Sj could be constructed



which then yields from (32) a norm equivalence interms of the wavelet coe�cients of h 2 H1=2(�).However, the approach for the construction ofwavelets in [11] (see also [4]) seems to be simplerto realize. Starting from generator and waveletbases on an (n�1)-dimensional unit cube, one cande�ne composite bases on � which is a union ofparametric images of the unit cube by gluing theirend points together. This construction would bedirectly de�ned on � only, without assuming it tobe embedded in a domain.In order to be able to apply the constructionfrom [11], we �rst need approximation spaces on� which are traces of approximation spaces on 
according to (27). We briey indicate a possibleconstruction for the simple example of 
 being theunit square which is subdivided into four equalsquares of side length 1=2. Let �j be generatorbases for Sj de�ned on 
 consisting of tensor prod-ucts of the hat function. Clearly, their restrictionsto � will be again piecewise linear functions whichare continuous at any crosspoints of �, see Figure3.
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