
Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

Instant Level-of-Detail

N. Grund1, E. Derzapf1, and M. Guthe1

1Graphics and Multimedia Group, FB12, Philipps-Universität Marburg, Germany

Figure 1: A subset of the 10 detail levels for the Welsh Dragon generated with our algorithm.

Abstract

Highly detailed models are commonly used in computer games and other interactive rendering applications. In this
context, static levels-of-detail are frequently used to achieve real-time frame rates. While this is a simple solution to
improve the rendering performance, the additional geometry needs to be stored and loaded into graphics memory.
This is especially problematic in online applications, where the data needs to be transmitted over a possibly slow
connection. On the other hand, consumer level computers are usually equipped with a graphics card that can be
used for general purpose parallel computing. Based on this observation, we propose a high-quality parallel mesh
simplification algorithm based on the quadric error metric. The simplification performance can compete with the
time required to load additional meshes from a local hard disk.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations I.3.1 [Computer Graphics]: Hardware
architecture—Parallel processing

1. Introduction

Highly detailed geometric models are very popular in in-
teractive applications such as computer games or internet
shops. These models are usually represented as triangle
meshes. To render several of these models at real-time frame
rates, level-of-detail (LOD) techniques are commonly used.
For multiple smaller objects, static LODs are usually the
method of choice. Each model is represented at several reso-
lutions. During rendering, a level is chosen per object based
e.g. on the distance to the viewer (see Figure 2). Simplifi-
cation algorithms can be used to automatically generate the
different resolutions, so that designers only need to model
the finest level.

Figure 2: With increasing distance, coarser approximations
of the model can be used.

The main goal of simplification algorithms is to reduce
the number of rendered triangles while introducing little or
no visual difference. The maximum screen-space deviation

c© The Eurographics Association 2011.

N. Grund & E. Derzapf & M. Guthe / Instant Level-of-Detail

εs in pixels and the simplification error ε between simplified
and original model induce a minimum view distance d. The
distance also depends on the field of view α and the screen
resolution r. It can be computed by d = ε

r
2εs tan α

2
.

As the distance depends on the maximum error, a simpli-
fication error that reduces the model up to a specified error
bound is desirable in this context. An efficient way to re-
duce the model to a specified ε are the quadric error met-
rics proposed by Garland and Heckbert [GH97]. The dis-
tance between an simplified and original model is estimated
by accumulating quadratic plane distances. While this is an
overestimation of the real error, the specified error is still an
upper bound.

Due to the processing time, simplification algorithms are
normally used as a preprocessing step. Considering that the
average performance of the quadric error metrics simplifier
is about 50,000 operations per second, the LOD generation
needs 20 seconds for a model with one million vertices.
Therefore, the levels are stored on disk and loaded at pro-
gram startup. As the LODs in total normally contain as many
triangles as the original mesh, the loading times are dou-
bled. While this is unproblematic when loading from a local
disk, it might be inacceptible for online applications. Here
the LODs need to be generated from the transferred origi-
nal mesh. Although almost every customer level computer
contains a graphics card that can be used for general pur-
pose computations, edge-collapse simplification algorithms
are still working sequentially. This is mainly due to the fact
that a significant amount of neighborhood information is re-
quired to compute an optimal ordering of operations.

The main contribution of our paper is a high-quality paral-
lel simplification algorithm using edge collapse operations.
Based on the observation, that the ordering only needs to
be preserved locally, we propose to determine and collapse
all possible edges in parallel. The collapsed vertex locations
and the simplification errors are computed using the quadric
error metric. This leads to an exceedingly fast high-quality
simplification algorithm. Using our implementation, we can
generate a complete set of 10 detail levels from the welsh
dragon model (2.2 million faces) within 0.73 seconds. Fig-
ure 1) shows a subset of the generated levels.

2. Related Work

Mesh simplification is one of the fundamental techniques for
real-time rendering of polygonal models. There is an ex-
tensive amount of methods that mainly focus on accurate
bounds of the simplification error. A detailed review of sim-
plification algorithms is given by Luebke [Lue01]. As we fo-
cus on real-time simplification, we only discuss the methods
that would be suitable candidates.

Rossignac and Borrel [RB93] proposed to use uniform
vertex clustering. The bounding box of the model is sub-
divided using a regular grid and all vertices inside the same

grid cell are collapsed to their mean. Low and Tan [LT97]
proposed a weighted vertex clustering to preserve edge fea-
tures that are not aligned with the grid. While uniform clus-
tering is relatively fast and a precise upper bound for the
simplification error can be given, a further reduction in flat
regions would be possible.

Garland and Heckbert [GH97] as well as Popović and
Hoppe [PH97] introduced the vertex pair contraction. This
approach has become the most common technique for the
simplification of triangle meshes. The contraction operation
is combined with the introduced quadric error metric. It al-
lows a flexible control over the geometric error and can be
used to calculate optimal vertex positions. Later Garland and
Heckbert extended their approach to an arbitrary number of
vertex attributes [GH98]. While the generated approxima-
tions are superior to vertex clustering at the same number
of triangles, the simplification performance is significantly
lower. On the other hand, the required levels can be gener-
ated using a single simplification sequence from the original
model to the coarsest level.

Lindstrom [Lin00] proposed a combination of vertex clus-
tering with error quadrics to improve the placement of the
clustered vertices. Nevertheless, a high number of triangles
is used in flat regions. Shaffer and Garland [SG01] proposed
to overcome this problem by using a BSP tree instead of a
uniform grid. The runtime is increased by a factor of three
compared to uniform clustering, but the method is still faster
than edge collapse simplification. An adaptive vertex cluster-
ing using octrees was later proposed by Schaefer and War-
ren [SW03]. The runtime is even higher than using a BSP
tree, but the quality of the simplified mesh can almost com-
pete with edge collapse simplification. Garland and Shaffer
developed a multiphase algorithm [GS02] which combines
vertex clustering with a subsequent edge contraction to gen-
erate a drastic simplification. While this is faster than edge
collapses alone, it can only be used to generate a single de-
tail level. Additionally, DeCoro and Tatarchuk [DT07] pro-
posed a parallel implementation of vertex clustering on the
GPU. It is based on the octree clustering approach of Schae-
fer and Warren [SW03] by implementing an efficient octree
data structure on the GPU. While the performance is ex-
tremely high, it still has the same quality problems as all
vertex clustering algorithms.

Hu et al. [HSH09] proposed a parallel adaption algorithm
for progressive meshes. They introduced a relatively com-
pact explicit dependency structure that allows to group ver-
tex splits and half-edge collapses into parallel steps. A more
compact progressive meshes data structure for parallel adap-
tion was proposed by Derzapf et al. [DMG10].

3. Quadric Error Metric

Our simplification algorithm generates the simplified mod-
els by collapsing all non-conflict edges in parallel. Figure 3

c© The Eurographics Association 2011.

N. Grund & E. Derzapf & M. Guthe / Instant Level-of-Detail

v

vu

colv

fn0

fn6

fn3

fr
fl

fn1

fn5 fn2

fn4

fn0

fn6

fn3

fn1

fn5 fn2

fn4

v

Figure 3: Edge collapse. The edge defined by vertex v and
vu is collapsed into the vertex v.

shows the principle of an edge collapse operation colv, which
contracts an edge, connecting the vertices v and vu, into a
point. By applying colv the adjacent faces fl and fr of the
vertices v and vu disappear and the position of the collapse
vertex v is computed by minimizing the costs of the collapse
operation colv. To provide control over the simplification er-
ror and to evaluate the costs for colv a suitable measure is
required. Garland and Heckbert [GH97] proposed a quadric
error metric that estimates the distance between simplified
and original mesh. The approximation is based on the dis-
tances of the simplified vertex to the planes defined by the
adjacent triangles in the original mesh. Let P(v) be the set
of planes adjacent to mesh vertex v, then the maximum error
can be estimated with the sum of squared distances:

∆(v) = ∆[vx vy vz 1]T = ∑
p∈P(v)

(pT v)2,

where p = [a b c d]T is the implicit plane equation ax+by+
cz+ d = 0 in normalized form . Note, that the coefficients
a, b and c are the plane normal and d the signed distance
between the origin and the plane. The sum of the squared
distances can be transformed into a quadratic form:

∆(v) = vT

(
∑

p∈P(v)
Qp

)
v,

where Qp is the convariance matrix of the planes p in P(v).

To prevent a degeneration of the mesh boundary, we use
the same approach as Garland and Heckbert. In addition to
the vertex quadrics, a boundary quadric is calculated for each
boundary edge. It is computed from a virtual plane that is or-
thogonal to the triangle plane. Let v1 and v2 be the vertices
of the boundary edge and v3 the third vertex of the only ad-
jacent face. Then the normal equation of the virtual plane is:
txx+ tyy+ tzz−n · v1 = 0, with

e1 =
v2− v1
‖v2− v1‖

,e2 =
v3− v1
‖v3− v1‖

, t =
e2− (e1 · e2)e1
‖e2− (e1 · e2)e1‖

.

The quadric error metrics can be generalized to arbitrary
dimensions [GH98]. The general quadric Qp can be written
as:

Qp =

(
A b

bT d

)
,

with

A = Id− e1eT
1 − ttT

b = (v1 · e1)e1 +(v1 · t)t− v1

d = v1 · v1− v1 · e1− v1 · t

In order to compute the cost of collapsing a pair of ver-
tices v and vu, we can derive the associated error from the
vertex quadrics Qv and Qvu. The total sum of squared dis-
tances is Q = Qv +Qvu. In addition, Q can be used to find
the optimal position of the collapsed vertex v. The optimal
vertex minimizes the sum of squared distances ∆(v). This
translates into solving the following linear equation system:

∇Q (v) =
(

A b
0 · · ·0 1

) (
v
1

)
=

0
...
0
1

4. Overview

Traditionally, edge collapse simplification works by sequen-
tially collapsing the edge with the minimum induced error.
When generating a specific level-of-detail, the simplification
stops when collapsing the next edge would exceed the error
threshold. This can also be seen as successively collapsing
the vertex va that is adjacent to the edge with the minimum
error with the other vertex of that edge vb. With this, we can
associate the minimal adjacent edge error with the vertex.
In our example, va and vb will have the same error which is
also the global minimum. The quadric error of the collapsed
vertex is then the minimum of the other edges adjacent to
the collapsed one. By construction, the vertex quadrics are
monotonically increasing and thus the quadric error of the
adjacent edges will be at least as high as that of the collapsed
edge. This means that we can not only collapse the edge with
the minimal error, but also all other edges that have a local
minimum of the error below the given threshold. Due to the
monotonically increasing error of the other edges, these will
also be collapsed in the sequential algorithm. The overall al-
gorithm therefore works as follows:

1. Compute vertex quadrics.
2. Compute placement and error for each edge.
3. Find local error minima below threshold and collapse

edges.
4. Continue with 2. until no collapses can be performed.

To perform the quadric computations and the edge col-
lapses in parallel, we require an adequate data structure. In
addition to vertices and faces, we also need a data structure
for the edges of the mesh. To compute the target placement
for an edge collapse, access to the vertices and the associated
vertex quadrics from the edge is required. Theoretically, we
also need access to all edges from a vertex in order to find
the edge with minimal error. Since we compute this for all
vertices, we can use atomic operations and process all edges

c© The Eurographics Association 2011.

N. Grund & E. Derzapf & M. Guthe / Instant Level-of-Detail

instead. The same holds for removing the degenerated faces.
There we can simply update the indices and remove the faces
using a compaction algorithm.

4.1. Connectivity Data Structure

As discussed above, we need to extract the edges of the
mesh. In addition, we need to determine the boundary edges
for the boundary quadrics. Initially, we load an indexed face
set (IFS) and transfer it to the GPU. This means that we
have attributes per vertex and three indices per triangle. Al-
gorithm 1 shows how the edge information is build from this
data.

foreach face f in parallel do

i1 ,i2 ,i3 = get_face_indices(f)
edge1 = create_edge(min(i1 , i2),max(i1, i2),i3)
edge2 = create_edge(min(i2 , i3),max(i2, i3),i1)
edge3 = create_edge(min(i3 , i1),max(i3, i1),i2)

RADIX SORT edges in parallel by imax
RADIX SORT edges in parallel by imin
foreach edge e in parallel do

ep = get_previous_edge(e)
if ep==e

set_edge_flag(e, 0)
else

set_edge_flag(e, 1)
if get_previous_edge(e)==e

set_single_flag(e, 0)
else

set_single_flag(e, 1)
COMPACT edges in parallel

Algorithm 1: Parallel generation of the edge data structure.

We first generate an edge for each of the three half-edges
of a triangle. Then we sort the edges by their higher vertex
imax and then by the lower one imin using radix sort. Since
radix sort is stable, the edges are now sortened in lexico-
graphic order and we can mark duplicates for removal. Dur-
ing this process, we also store the third vertex of the face and
flag single edges.

The complete data structure required for the edge setup
and the allocated memory (per entry) are shown in Table 1.
The input data are the vertex and the index buffer. All gen-
erated data are stored per edge, where the opposite vertex
and single edge flag are only required to compute the ver-
tex quadric. The total memory required during this phase is
246+4k bytes per vertex, where k is the number of vertex at-
tributes, or 222 bytes in addition to the IFS. After removing
the duplicate edges and freeing the temporary arrays, this is
reduced to 63+4k bytes per vertex, or 39 additional bytes.

5. Parallel Simplification

The algorithm is subdivided into several consecutive steps
to implement the simplification on massively parallel hard-
ware. The partitioning is required for thread synchronisation
while each step can be processed completely in parallel. Fig-
ure 4 shows the steps of the algorithm. The first step is to
compute the vertex quadrics. These are sums of all adjacent

buffers elements bytes per entry
vertices vertex VBO 4k
faces index VBO 12

edges
vertex index (×2) 8
vertex index (opposite) 4
single edge flag 1

temporary per edge

sorting edge (×3) 12
sort order 4
sort key 4
sort prefix sum (scan) 4

Table 1: Mesh data structure after generating the edge in-
formation, where k is the number of vertex attributes.

face and boundary edge quadrics. After this step, the oppo-
site vertex and single edge flag arrays can be deallocated.
Then the parallel simplification loop starts. First, the optimal
collapse position and cost are computed per edge. Then the
local cost minima are found and the associated collapses are
performed. After updating the face and edge connectivity,
the collapsed edges are removed. If no further collapses are
possible without exceeding the threshold, the current level
can be copied to a vertex and index buffer. The simplifica-
tion loop is then continued with an increased threshold, until
all required LODs are generated.

Figure 4: The steps of the algorithm.

The complete data structure maintained during simplifica-
tion is shown in Table 2. For each vertex the quadric, the in-
dex of the adjacent edge with the minimal cost are required.
Due to the symmetry of Q we only store the upper triangu-
lar matrix. Thus we only need 2k2 + 6k+ 4 bytes instead of
4k2+8k+4 bytes per quadric. Again, k is the number of ver-
tex attributes. In addition, we need to flag inactive vertices
to generate an IFS for each level-of-detail. To determine the
minimal cost edge, we also need the minimal cost over all
adjacent edges as temporary data. Later, when the collapse
target of each vertex is required, we can reuse this array. For
the faces, we only need the flag for degenerated triangles
during construction of the indexed face set. Finally, we need
to store the collapse cost and the optimal placement v for
each edge, together with the collapse state and a flag to mark
degenerated edges. In total 2k2 +22k+120 bytes per vertex
are required, which is 204 bytes for k = 3 and 324 bytes for
k = 6.

c© The Eurographics Association 2011.

N. Grund & E. Derzapf & M. Guthe / Instant Level-of-Detail

buffers elements per entry (bytes)

vertices

vertex VBO 4k
vertex quadric 2k2 + 6k + 4
min edge ID 4
active flag 4
min edge cost / target vertex 4

faces
index VBO 12
active flag 4

edges

vertex indices 8
edge cost 4
optimal placement 4k
collapse state 4
active flag 4

temporary perfix sum (scan) 4

Table 2: Data structure used during simplification loop.

5.1. Vertex Quadrics

The first step is the computation of the vertex quadrics which
are the sum of all adjacent face quadrics. In addition, we
need to compute and accumulate the boundary quadrics. As
we have already flagged the boundary edges, we simply
need to compute the virtual plane and add the corresponding
quadric to the edge vertices. The complete parallel vertex
quadric calcuation is shown in Algorithm 2. Note, that while
we use atomic float addition in our implementation, parallel
binning could also be used to accumulate the quadrics for
GPU this operation.

foreach face f in parallel do

i1 ,i2 ,i3 = get_face_indices(f)
quad = compute_face_quadric(f)
add_quadric(i1 , quad)
add_quadric(i2 , quad)
add_quadric(i3 , quad)

foreach single_edge e in parallel do

i3 = get_opposite_vertex(e)
quad = compute_boundary_quadric(imin[e], imax [e], i3)
add_quadric(imin[e], quad)
add_quadric(imax [e], quad)

Algorithm 2: Parallel calculation of the vertex quadrics.

5.2. Quadric Error Optimization

The first step of the simplification loop is calculating the
edge cost and to determine the possible collapses. The edge
e can be collapse if its cost is at most ε

2, where ε is the
error threshold. If the cost is below the threshold, the edge
is marked as a collapse candidate. To compute the cost, we
first need to find the optimal placement v and then evaluate
the quadric Q for v. The edge quadric v is the sum of the
two vertex quadrics Qvmin and Qvmax . Since A is a symmetric,
positiv-semidefinite matrix we use the LDL decomposition
(cholesky decomposition without square roots) to solve the
linear equations. We also exploit the symmetry of Q when
calculating the quadric error. For each vertex we then store
the minimal edge cost using the atomic min operation. Simi-
lar to the vertex quadric accumulation, we could use binning
on GPU without atomic operations. Algorithm 3 shows the
parallel quadric error minimization.

foreach edge e in parallel do

quad = calc_edge_quadric(vertex_quadric[vmin],vertex_quadric[vmax])
collapse_pos[e] = optimize_pos(quad)
edge_cost[e] = calc_cost(quad, collapse_pos[e])
if edge_cost[e] ≤ ε

2

collapse_state[e] = collapse
atomic_min(min_edge_cost[vmin], edge_cost[e])
atomic_min(min_edge_cost[vmax], edge_cost[e])

else

collapse_state[e] = no_operation

Algorithm 3: Parallel quadric error minimization algo-
rithm.

5.3. Parallel Edge Collapses

The collapse of an edge is only possible if its cost is a local
minimum. As we already stored the minimal cost per ver-
tex, we now need to determine the edge with the associated
cost. Then the edge can be collapsed if both vertices store
a reference to it as minimal cost edge. For all other edges,
the collapse flag is cleared. After the possible collapses are
determined, they can be applied to the mesh. The collapse
operation then simply moves vertex v = vmin to its new po-
sition v, which is stored with the edge and marks vu = vmax
as invalid and stores v as its target index. The new quadric
Qv is the sum of the vertex quadrics Qvmin and Qvmax . Algo-
rithm 4 shows the parallel processing of the edge collapse
operations.

foreach edge e in parallel do

if collapse_state[e] == collapse
cost = get_edge_cost(e)
if min_edge_cost[vmin] == cost: edge_ID[vmin] = e
if min_edge_cost[vmax] == cost: edge_ID[vmax] = e

foreach edge e in parallel do

if collapse_state[e] == collapse
if edge_ID[vmin] == e and edge_ID[vmax] == e

v = collapse_pos[e]
vertex_quadric[vmin] += vertex_quadric[vmax]
collapse_target[vmax]=vmin
vertex_active[vmax]=false

Algorithm 4: Parallel edge collapse algorithm.

5.4. Connectivity Update

After performing the collapses, the indices of the adjacent
faces and edges need to be updated (i.e. fn1− fn6, fl , and fr
in Figure 3). Algorithm 5 shows the parallel index update.
Here we use the collapse targets set during the edge col-
lapses. If a face or edge becomes degenerated it is marked
as invalid and will be removed in a subsequent stage.

foreach face f in parallel do

update_indices(f ,collapse_target)
if degenerate(f): face_vaid[f]=false

foreach edge e in parallel do

update_indices(e,collapse_target)
if degenerate(e): edge_vaild[e]=false

Algorithm 5: Parallel index update.

c© The Eurographics Association 2011.

N. Grund & E. Derzapf & M. Guthe / Instant Level-of-Detail

5.5. Edge Buffer Compaction

The final step of the adaption is the compaction of the edge
buffer. The removal of invalid edges is not only necessary
for performance reasons, but also tells us when the simplifi-
cation has finished. Algorithm 6 shows the edge compaction.
At the end we can free the storage for the old edge buffer and
thus gradually reduce the memory consumption. If no dupli-
cate or degenerated edge was found, we skip the compaction
and start with the LOD creation. Otherwise, we continue
with the simplification loop. Note, that we sort the edges af-
ter each fifth iteration only as the speedup from the removed
duplicates is less than the time required for sorting.

RADIX SORT edges in parallel by imax
RADIX SORT edges in parallel by imin
foreach edge e in parallel do

ep = get_previous_edge(e)
if ep==e or degenerate(e)

set_edge_flag(e, 0)
else

set_edge_flag(e, 1)
COMPACT edges in parallel

Algorithm 6: Edge compaction algorithm.

5.6. LOD Creation

If no collapses were performed, the generated level can be
stored. To store the mesh, we first compact the vertex buffer
according to the active flag of the vertices. The compacted
vertices are directly stored in a vertex VBO. Then we com-
pact the indices according to the active flag of the faces and
store them in an index buffer. If the number of faces is above
a user specified threshold, we double the error threshold and
generate another level. Otherwise, we can free all data struc-
tures except the original and generated VBOs and can now
render them as static LODs.

6. Results

Our test system consists of a 3.333 GHz Intel Core i7-980X
CPU with 6 GB DDR3-1333 main memory and an NVIDIA
GTX580 (841/4204MHz). We used CUDA to implement
the parallel simplification and generate indexed face sets for
OpenGL. For comparison with loading precomputed LODs,
we use a SATAII hard disk (8.5ms/64MB/7200rpm) with ap-
proximately 100 MB/s read speed. Table 3 gives an overview
of the models we simplified. All models use position and
normal as vertex attributes (k = 6). Additionally, the origi-
nal model size (IFS) and the size of the generated LODs are
shown.

Figure 1, 2, and 5 show some of the generated LODs and
Table 4 gives an overview of all generated levels with their
number of faces. The first level was generated with an error
threshold of ε = 0.1% of the bounding box diagonal. With
each level, the threshold is doubled and we stop LOD gen-
eration as soon as a level contains less than 10k triangles.

model # vertices # faces IFS LODs
Apache 445,836 807,365 19.4 MB 16.7 MB
St. Dragon 437,645 871,414 19.9 MB 17.5 MB
Welsh Dragon 1,105,352 2,210,673 50.5 MB 45.9 MB
Youthful 1,728,305 3,411,563 78.6 MB 70.6 MB
Awakening 2,057,930 4,060,497 93.5 MB 81.4 MB

Table 3: Models used for evaluation.

level Apache St. Dragon Welsh Dragon Youthful Awakening
original 807,365 871,414 2,210,673 3,411,563 4,060,497
level 1 321,072 328,733 871,236 1,255,238 1,514,414
level 2 187,542 190,002 469,588 750.257 893,595
level 3 112,622 110,765 278,126 455,584 517,640
level 4 66,433 63,105 163,848 267.815 284,144
level 5 39,359 35,218 95,372 152,008 149,370
level 6 22,701 19,096 53,074 83,185 75,750
level 7 12,908 10,058 30,768 42,530 37,273
level 8 7,249 5,132 17,552 19,368 15,203
level 9 - - 11,500 8,982 5,639
level 10 - - 7,476 - -

Table 4: Generated levels with number of faces.

Depending on the complexity of the model, 8 to 10 levels
are generated this way.

Table 5 shows a comparison of our approach to the
reference QSlim implementation of Garland and Heck-
bert [GH97]. The runtime complexity of their approach is
O(N logN), due to the required priority queue. In contrast
to that, the complexity of our algorithm is O(N) as we only
use radix sorting with fixed key length. Compared to CPU
simplification, we achieve a speedup of 30 to 40 and can
perform up to 2 million collapses per second. The simplifi-
cation time is similar to the transfer time of the levels from
HDD to the GPU and is significantly faster than the transfer
time over a network. The total amount of consumed graph-
ics memory is approximately 7 to 8 times higher than that of
the original models. This is equal slightly less than the main
memory consumed by CPU quadric error metrics.

QSlim our approach
model time (s) k Op/s memory time (s) k Op/s speedup
Apache 8.0 55.7 136.4 MB 0.29 1537 28
St. Dragon 8.0 54.7 139.9 MB 0.28 1564 29
Welsh Dragon 22.2 49.8 354.2 MB 0.73 1519 31
Youthful 35.8 48.3 550.7 MB 0.89 1941 40
Awakening 43.9 46.9 655.6 MB 1.03 2003 43

Table 5: Comparison of processing time and the number of
operations per second with QSlim tested of our system.

Compared to the vertex clustering algorithm of Lind-
strom [Lin00] we have an approximate speedup of 10. Con-
sequently, our method is 20 times faster than using BSP
trees [GS02] and 70 times faster than octree vertex cluster-
ing [SW03]. Compared to the GPU implementation of vertex
clustering by DeCoro and Tatarchuk [DT07], our method is
3 to 4 times slower. They implemented the method however
for vertex position only (k = 3). With increasing quadric di-
mension, the difference vanishes since most of the time is

c© The Eurographics Association 2011.

N. Grund & E. Derzapf & M. Guthe / Instant Level-of-Detail

Figure 5: Each second generated LOD of the Apache model. The first level is the original model.

spent to optimize the vertex placement. In addition, even
octree vertex clustering requires slightly more triangles to
achieve the same quality.

Finally, we analyze the runtime of each step of the adap-
tion and rendering algorithm in Figure 6. Already for k = 6,
the most time consuming part of our algorithm is the quadric
error minimization. As the LDL decomposition has a time
complexity of O(Nk), this dominates the runtime for higher
number of attributes.

8%

28%

42%

6%
3%

10%
3%Connectivity Data Structure

Vertex Quadrics

Quadric Error Optimization

Parallel Edge Collapses

Connectivity Update

Edge Buffer Compaction

LOD Creation

Figure 6: Relative time of the adaption steps compared to
rendering.

7. Conclusion and Limitations

We have proposed a parallel implementation of the quadric
error simplification developed by Garland and Heck-
bert [GH97]. By collapsing all edges with a local minimum
of the collapse cost, the generated meshes are identical to
those produced by the sequential algorithm for a given error
bound. On a customer level graphics card, our method can
generate a set of LODs for a model containing over 4 mil-
lion faces in less than a second. This is comparable to load-
ing the generated LODs from disk and significantly faster
than network transfer.

The main limitation of our algorithm is that the compu-
tation of the target placement is rather expensive. With in-
creasing number of attributes, this dominates the total run-
time. Another limitation is, that we do not check for triangle
flips during simplification. While this was unproblematic for
the models we examined, it might produce visible artifacts
for others.

A possible extension of our method would be the addi-
tion of vertex pair contractions. These could be integrated by

adding an additional set of virtual edges before simplifying
the mesh for a level. The maximum vertex distance would
then be in the range of the error threshold.

References
[DMG10] DERZAPF E., MENZEL N., GUTHE M.: Parallel view-

dependent refinement of compact progressive meshes. In Eu-
rographics Symposium on Parallel Graphics and Visualization
(2010), pp. 53–62. 2

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the gpu. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games (2007), pp. 161–166. 2, 6

[GH97] GARLAND M., HECKBERT P. S.: Surface simplifica-
tion using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques (1997), SIGGRAPH ’97, pp. 209–216. 2, 3, 6, 7

[GH98] GARLAND M., HECKBERT P. S.: Simplifying surfaces
with color and texture using quadric error metrics. In Proceed-
ings of the conference on Visualization ’98 (1998). 2, 3

[GS02] GARLAND M., SHAFFER E.: A multiphase approach to
efficient surface simplification. In Proceedings of the conference
on Visualization ’02 (2002), pp. 117–124. 2, 6

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In I3D ’09: Pro-
ceedings of the 2009 symposium on Interactive 3D graphics and
games (2009), pp. 169–176. 2

[Lin00] LINDSTROM P.: Out-of-core simplification of large
polygonal models. In Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques (2000),
SIGGRAPH ’00, pp. 259–262. 2, 6

[LT97] LOW K.-L., TAN T.-S.: Model simplification using
vertex-clustering. In Proceedings of the 1997 symposium on In-
teractive 3D graphics (1997), pp. 75–ff. 2

[Lue01] LUEBKE D. P.: A developer’s survey of polygonal sim-
plification algorithms. IEEE Comp. Graph. Appl. 21 (2001). 2

[PH97] POPOVIĆ J., HOPPE H.: Progressive simplicial com-
plexes. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques (1997), SIGGRAPH
’97, pp. 217–224. 2

[RB93] ROSSIGNAC J., BOREL P.: Multi-resolution 3d approxi-
mations for rendering. Geometric Modeling in Computer Graph-
ics (1993), 455–465. 2

[SG01] SHAFFER E., GARLAND M.: Efficient adaptive simplifi-
cation of massive meshes. In Proceedings of the conference on
Visualization ’01 (2001), pp. 127–134. 2

[SW03] SCHAEFER S., WARREN J.: Adaptive vertex clustering
using octrees. In SIAM Geometric Design and Computing (2003).
2, 6

c© The Eurographics Association 2011.

